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Abstract

The goal of Event Factuality Prediction (EFP)

is to determine the factual degree of an event

mention, representing how likely the event

mention has happened in text. Current deep

learning models has demonstrated the impor-

tance of syntactic and semantic structures of

the sentences to identify important context

words for EFP. However, the major problem

with these EFP models is that they only encode

the one-hop paths between the words (i.e., the

direct connections) to form the sentence struc-

tures. In this work, we show that the multi-

hop paths between the words are also neces-

sary to compute the sentence structures for

EFP. To this end, we introduce a novel deep

learning model for EFP that explicitly con-

siders multi-hop paths with both syntax-based

and semantic-based edges between the words

to obtain sentence structures for representation

learning in EFP. We demonstrate the effective-

ness of the proposed model via the extensive

experiments in this work.

1 Introduction

In Information Extraction (IE), an event mention is

represented via an anchor/trigger word that evokes

an event in the input sentence. We study the prob-

lem of Event Factuality Prediction (EFP) that aims

to identify the degrees of uncertainty/factuality for

event mentions in text. Among others, EFP finds

its applications in knowledge base construction to

differentiate between factual and non-factual event

mentions. In this work, we follow the recent re-

gression formulation for EFP that seeks to predict

a real-valued score in the range of [-3,3] to indi-

cate the occurrence possibility for a given event

mention (Stanovsky et al., 2017; Rudinger et al.,

2018). For instance, in the sentence “He cannot go

to the restaurant.”, “go” is the trigger word for an

event mention with the factuality score of -3 (i.e.,

certainly not happened).

In order to predict the factuality scores for the

event mentions, the EFP models need to locate the

important context words in the sentences (i.e., the

cue words) and combine them appropriately to re-

veal the factuality for the event triggers. As the

important context words might be distributed at dif-

ferent positions in the sentences, the current state-

of-the-art deep learning models for EFP have relied

on the sentence structures to facilitate the identifi-

cation of the cue words. In particular, the sentence

structures in the EFP models can be represented

via the importance score matrices that involve cells

to quantify the contribution of a context word for

the representation vector computation of the cur-

rent word for EFP (Veyseh et al., 2019a). The

sentence structures would then be used to induce

the representation vectors for the words to perform

factuality prediction. Both syntactic and semantic

structures of the sentences have been exploited in

the deep learning models for EFP. As such, the syn-

tactic structures are based on the direct connections

between the words in the dependency parsing trees

of the input sentences while the contextual similar-

ities between the words are employed to form the

semantic structures (Veyseh et al., 2019a).

Despite their success, a major limitation of the

current deep learning models for EFP is their in-

ability to capture the multi-hop paths between the

words to produce the importance scores in the sen-

tence structures for EFP. In particular, the current

deep learning models for EFP have only focused on

the direct connection/relation (i.e., one-hop path)

between a pair of words to determine the impor-

tance score for the words in the structures. For

example, the syntactic structures in (Veyseh et al.,

2019a) involve an binary importance score matrix

where a cell is only set to 1 if the two words cor-

responding to that cell are directly connected in

the dependency tree. This is not desirable as based

on our analysis, the multi-hop paths between the

words are also important and should be considered
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to generate better importance scores for the struc-

tures for EFP. Consider the trigger word “involve-

ment” in the following sentence as an example:

It was confirmed that Hagai, Basir’s brother, had

been a key member of al-Qaeda while their repre-

sentatives constantly denied the involvement of any

Basir’s family members in this terrorist group.

The important context words to correctly predict

the factuality score +3 (i.e., actually happened) for

“involvement” in this case involve “any Basir’s fam-

ily members”, “Basir’s brother”, “Hagai”, “a key

member”, and “confirmed”. In the deep learning

models for EFP, these important words should be

encoded into the representation vector for “involve-

ment” to perform factuality prediction. Using the

dependency tree for this sentence, ones can use

the one-hop paths (i.e., the edges) to link “involve-

ment” with the information in ‘any Basir’s family

members”. Similarly, the direct semantic similarity

between “involvement” and “member” can also be

used to connect “a key member” to “involvement”

for representation learning in this case. However, it

is very challenging for the one-hop paths to directly

connect “involvement” with the other important

context words (i.e., “Basir’s brother”, “Hagai”, and

“confirmed”) (either syntactically or semantically)

due to the far distances/differences between them

in the sentence. Fortunately, by considering the

multi-hop paths between the words, we can rely on

“any Basir’s family members” to link “involvement”

with “Basir’s brother” (i.e., with the semantic con-

nection between “family members” and “brother”)

that can be further extended to “Hagai”, “member”,

and “confirmed” via the dependency connections

for representation learning. Besides the multi-hop

nature, we also note that the edges along the multi-

hop path in this example contains both syntactic

and semantic connections (i.e., heterogeneous edge

types) that are necessary to identify the important

context words for EFP.

Motivated by this limitation, in this work, we

propose to learn the importance scores for the sen-

tence structures, leveraging Graph Transformer

Networks (GTN) (Yun et al., 2019) to facilitate the

emergence of the effective multi-hop paths with

heterogeneous edge types for EFP. In particular,

we propose to first generate the initial sentence

structures for EFP based on both the syntactic and

semantic information. These initial sentence struc-

tures are then combined by the GTN model via the

weighted sums, serving as the intermediate struc-

tures that are able to capture both syntactic and

semantic one-hop connections between the words

for EFP. Afterward, the intermediate structures are

multiplied to induce the final structures that enable

the modeling of the multi-hop paths with heteroge-

neous edge types to compute the importance scores

for the structures (Yun et al., 2019). As illustrated

by our example, we expect that these multi-hop

paths between the words can help to produce more

effective representation vectors for the deep learn-

ing models to achieve better performance for EFP.

Finally, in order to improve the generalization of

the proposed model for EFP, we propose a novel in-

ductive bias for the GTN model based on the Infor-

mation Bottleneck technique (Tishby et al., 2000).

In particular, the rich combined structures from the

syntactic and semantic information might offer the

proposed GTN model with the high capacity for

representation learning to encode the detailed in-

formation in the input sentences. As the training

datasets for EFP are generally small, such high ca-

pacity might eventually lead to the overfitting of the

GTN model where all the context information in

the input sentences, including the irrelevant ones, is

preserved in the induced representation vectors. To

this end, we propose to promote the GTN model in

this work as an information bottleneck so the GTN-

produced representations are trained to not only

have good factuality prediction performance but

also maintain a minimal mutual information with

the input sentences (Belghazi et al., 2018). The

extensive experiments on four benchmark datasets

demonstrate the benefits of the proposed model,

yielding the state-of-the-art performance for EFP

in this work.

2 Related Work

Various methods have been proposed to solve EFP,

including the early rule-based approaches (Nairn

et al., 2006; Saurí, 2008; Lotan et al., 2013), the

feature-based machine learning approaches (Diab

et al., 2009; Prabhakaran et al., 2010; De Marn-

effe et al., 2012; Lee et al., 2015), and the hybrid

methods (Saurí and Pustejovsky, 2012; Qian et al.,

2015). The recent work has featured deep learning

as the state-of-the-art method for EFP. In partic-

ular, (Qian et al., 2018) presents a model based

on Generative Adversarial Networks (GAN) while

(Rudinger et al., 2018) applies Long-short Term

Memory Networks (LSTM) over both the sequen-

tial order and the dependency tree of the input sen-
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tences for factuality prediction. The best perfor-

mance for EFP so far is reported by (Veyseh et al.,

2019a) that linearly combines the syntactic and se-

mantic structures for Graph Convolutional Neural

Networks (GCN). We also employ syntactic and

semantic structures for EFP in this work; however,

our model presents novel techniques with trigger-

based structure customization, GTNs to learn the

sentence structures with the multi-hop path rea-

soning, and information bottleneck to improve the

generalization for EFP. Model-wise, our work bears

some similarity with other NLP models that lever-

age syntactic structures and GCNs to encode input

texts for different NLP tasks, including relation ex-

traction (Zhang et al., 2018), joint information ex-

traction (Nguyen et al., 2021), metaphor detection

(Le et al., 2020), and rumor detection (Veyseh et al.,

2019b). Finally, we also note some related tasks

for EFP that seek to classify event trigger words in

texts, including event detection (Nguyen and Gr-

ishman, 2015; Chen et al., 2015; Lai et al., 2020;

Veyseh et al., 2021), event realis classification (Mi-

tamura et al., 2015; Nguyen et al., 2016) and uncer-

tainty detection (Adel and Schütze, 2017).

3 Model

We formalize EFP as a regression problem in this

work. In particular, given an input sentence W =
w1, w2, . . . , wN of N words/tokens (i.e., wi is the

i-th token) and an event mention with the trigger

word located at the k-th position (i.e., wk), we need

to predict a real-valued score between -3 and +3 to

indicate the factual degree for wk.

In order to achieve a fair comparison with the

prior work for EFP (Veyseh et al., 2019a), we first

apply the BERTbase model in (Devlin et al., 2019)

to obtain a pre-trained embedding vector xi for

each word wi ∈ W . In particular, we run the

BERTbase model over the input sentence W and

use the hidden vector for the first wordpiece of wi

in the last layer of BERT as the embedding vec-

tor xi (of 768 dimensions) for wi. This encoding

step transforms W into a sequence of embedding

vectors X = x1, x2, . . . , xN (called the input vec-

tors) for the neural computation in the next steps.

The EFP model in this work involves three major

components: (i) structure generation, (iii) structure

combination, and (iii) representation regularization.

We will explain the details of these components in

the following sections.

3.1 Structure Generation

The goal of this section is to generate the initial

sentence structures that would be combined in the

next steps to generate richer structures for repre-

sentation learning in EFP. Formally, the sentence

structures in this work can be seen as the impor-

tance score matrices of size N×N . Each cell (i, j)
in these matrices contains a score to represent the

importance of the contextual information from wj

for the representation vector of wi if this vector is

used to create the features for factuality prediction

(called the importance score for the pair (wi, wj)).
Following the previous work for EFP, we consider

two types of sentence structures for EFP in this

work, i.e., the syntactic structures and the semantic

structures (Veyseh et al., 2019a).

Syntactic Structures: As presented in the in-

troduction, the syntactic structures would lever-

age the information in the dependency tree T of

W to compute the syntactic importance scores for

EFP. The simplest approach for the syntactic struc-

tures is to directly use the binary adjacency matrix

Asyn = {asyni,j }i,j=1..N of T for the importance

score matrix as in (Veyseh et al., 2019a): a
syn
i,j = 1

if wi and wj are connected in T or i = j. This ap-

proach is based on the motivation that the syntactic

neighboring words of wi in T would be the most

informative words to reveal the contextual seman-

tics of wi for EFP (Veyseh et al., 2019a). However,

one problem with this syntactic structure is its igno-

rance of the trigger word wk ∈ W (i.e., Asyn is not

dependent on wk). As wk is the focused word in

EFP, in this work, we argue that the syntactic struc-

tures should be conditioned on the trigger word

wk to produce more effective structures for repre-

sentation learning in EFP. To this end, we propose

to customize the syntactic structures for the event

triggers in EFP, leveraging the intuition that the

closer words to wk in the dependency tree T would

provide more contextual information for the repre-

sentation vectors in EFP than the farther ones (e.g.,

the words “Basir’s family members” in our running

example). The syntactic neighboring words of wk

in T should thus be assigned with higher impor-

tance scores in the syntactic sentence structures

for EFP, serving as the main method to achieve

trigger-based customization for the syntactic struc-

tures in this work. In particular, to generate the

task-specific syntactic structures, we first compute

the length di of the shortest path between wi and

the trigger word wk (i.e., the distance) in T for all
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1 ≤ i ≤ N . Afterward, we obtain the customized

syntactic structure Asyn = {asyni,j }i,j=1..N via:

a
syn
i,j = σ(FF ([di, dj , di ∗ dj , di + dj , |di − dj |])) (1)

where [] is the vector concatenation, FF is a two-

layer feed-forward network to convert a vector to

a scalar, and σ is the sigmoid function. We expect

that learning the syntactic structures in this way

would introduce the flexibility to infer effective

structures for EFP.

Semantic Structure: The importance score for

a pair of words (wi, wj) in the semantic structures

would be based on the contextual semantics of

wi and wj in the sentence (Veyseh et al., 2019a).

As such, to capture the contextual semantic for

wi ∈ W , we directly utilize the embedding vec-

tor xi from the BERT model of the encoding step.

As BERT is a deep model that has been trained

on a large corpus, we expect that the BERT-based

vectors xi would provide effective semantic repre-

sentations for the importance scores in this case.

Concretely, given the semantic vectors xi and xj
for wi and wj , the semantic importance scores asemi,j

for the semantic structure Asem = {asemi,j }i,j=1..N

can be learned via asemi,j = f(xi, xj) where f is

some learnable function to fuse xi and xj to pro-

duce a score. A simple version of the function f

for the semantic importance scores is presented in

(Veyseh et al., 2019a):

x′

i = tanh(W sem
1 xi)

asem
i,j = σ(W sem

2 [x′

i, x
′

j ])
(2)

where W sem
1 and W sem

2 are the weight matrices

and the biases are omitted for brevity.

Similar to the simple syntactic structure Asyn,

a problem for this version of f is that the seman-

tic scores asemi,j are not dependent on the trigger

word wk, potentially causing the lack of neces-

sary context (i.e., the trigger word) to obtain the

sentence structures for EFP. To this end, we pro-

pose to improve the semantic score function f in

(Veyseh et al., 2019a) by additionally including the

embedding vector xk of the trigger word wk into

the computation of the semantic structure Asem for

EFP. In particular, we first employ the embedding

vector xk of the trigger word wk to generate a task-

specific control vector csyn. This control vector

would then be used to filter the information in the

embedding vectors xi of the words in W so only

the relevant information for the trigger word wk

in EFP is preserved. This trigger-based filtering

will serve as the main mechanism to customize the

semantic structures for the trigger words for EFP

in this work. Finally, to obtain the task-specific

semantic structures, the filtered vectors would be

sent to the same function in (Veyseh et al., 2019a)

to compute the importance scores asemi,j :

csyn = tanh(W sem
3 xk)

x′

i = tanh(W sem
4 xi), x

′′

i = csyn � x′

i

asem
i,j = σ(W sem

5 [x′′

i , x
′′

j ])
(3)

where � is the element-wise multiplication.

3.2 Structure Combination

In this work, we consider the customized sentence

structures Asyn and Asem as two different types of

relations between the pairs of words in W (called

the relation word types). For these structures, the

importance score in the cell (i, j) is intended to

capture the degree of connection between wi and

wj based on their direct interaction/edge (i.e., the

one-hop path (wi, wj)) and the corresponding re-

lation type (i.e., syntactic relations for Asyn and

semantic relations for Asem). Given this interpreta-

tion for the structures, this component aims to com-

bine Asyn and Asem to generate richer sentence

structures for EFP. In particular, instead of only

relying on the direct interactions between a pair of

word (wi, wj) to compute the importance scores,

the combined structures should be able to model

the multi-hop interactions between wi and wj that

possibly involve the other words in W (i.e., the

multi-hop reasoning paths between wi and wj). In

addition, the multi-hop reasoning paths between wi

and wj are also expected to enable the appearance

of the direct edges/connections between the words

that belong to different relation types in the ini-

tial structures (i.e., heterogeneous edge types with

syntactic and semantic relations). As illustrated

in the introduction, both the multi-hop reasoning

paths and the heterogeneous edge types are neces-

sary for factuality score prediction in our problem.

Consequently, in this work, we propose to further

feed Asyn and Asem into the Graph Transformer

Networks (GTN) (Yun et al., 2019) that are able

to generate rich sentence structures with multi-hop

reasoning paths and heterogeneous edge types, thus

fitting well with our intuition for EFP.

In particular, to learn the multi-hop paths at dif-

ferent lengths, following (Yun et al., 2019), we

first include the identity matrix I (of size N ×N )

into the set A of the initial structures for EFP, i.e.,

A = [Asyn, Asem, I] = [A1,A2,A3]. The GTN
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model in this work would then process these initial

structures via C channels to learn richer structures

for EFP. At the i-th channel of GTNs (1 ≤ i ≤ C),

M intermediate structures Qi
1, Q

i
2, . . . , Q

i
M of size

N ×N (i.e., amounting to M − 1 layers in GTNs)

are computed via the weighted sums of the ini-

tial structures in A: Qi
j =

∑
v=1..3 α

i
j,vAv for all

1 ≤ j ≤ M (αi
j,v are the learnable weights). Note

that similar to (Veyseh et al., 2019a), the weighted

sums help to combine Asyn and Asem, enabling the

intermediate structures Qi
j to reason with any of

the two relation types (i.e., syntactically with Asyn

or semantically with Asem) for EFP. Afterward,

to capture the multi-hop paths for the importance

scores, the intermediate structures at the i-th chan-

nel are multiplied to obtain a single sentence struc-

ture Qi for this channel: Qi = Qi
1×Qi

2×. . .×Qi
M .

The resulting structures Qi at the GTN channels

serve as the final structures that can model any

multi-hop reasoning paths with lengths up to M

and edges of heterogeneous relation types (i.e., syn-

tactic or semantic) for the importance scores (as

demonstrated in (Yun et al., 2019)).

In the next step, the final structures

Q1, Q2, . . . , QC of GTN would be used as

the adjacency matrices in a Graph Convolutional

Network (GCN) model (Kipf and Welling, 2017;

Nguyen and Grishman, 2018) over the input vector

sequence X to induce more abstract representation

vectors for the words in W for EFP. In particular,

the GCN model in this work involves G layers to

compute the representation vectors at different

abstract levels for the words. For the j-th final

structure Qj , the representation vector h
j,t
i for the

word wi in the t-th GCN layer is computed via:

h
j,t
i = ReLU(U t

∑

v=1..N

Q
j
i,vh

j,t−1

v∑
u=1..N

Q
j
i,u

) (4)

where U t is the weight matrix for the t-th GCN

layer and the input vectors h
j,0
i for the GCN model

are obtained from BERT-generated vectors xi (i.e.,

h
j,0
i = hi for all 1 ≤ j ≤ C, 1 ≤ i ≤ N ).

Afterward, the hidden vectors in the last GCN

layer for wi for all the final structures (i.e.,

h
1,G
i , h

2,G
i , . . . , h

C,G
i ) are concatenated to form the

final representation vector h′i for wi in the pro-

posed model: h′i = [h1,Gi , h
2,G
i , . . . , h

C,G
i ]. Finally,

in order to predict the factuality score for wk in

W , we create an overall representation vector R

based on the hidden vectors from the GCN model

via: R = [h′k,MaxPool(h′1, h
′

2, . . . , h
′

N )]. This

vector is then fed into a two-layer feed-forward

network to produce the factuality score for the re-

gression model. Following (Rudinger et al., 2018;

Veyseh et al., 2019a), we use the Huber loss Lpred

with δ = 1 to train the models in this work.

3.3 Representation Regularization

Due to the high learning capacity with rich syn-

tactic and semantic structures, the proposed GTN

model might overfit to the training data by mem-

orizing the irrelevant information from the input

sentences in the induced representation vectors for

EFP (as described in the introduction). In order

to improve the generalization of the GTN model,

we propose to regularize the representation vec-

tors obtained by the GTN model so only the effec-

tive information for EFP is preserved in the rep-

resentation vectors for factuality prediction. To

this end, we introduce the Information Bottleneck

(IB) framework (Tishby et al., 2000) into the GTN

model so the GTN-produced representation vec-

tors H ′ = h′1, h
′

2, . . . , h
′

N would be simultaneously

trained for two objectives: (1) retain the effective

information to predict the factuality score for EFP

(i.e., the high prediction capacity), and (2) achieve

a small Mutual Information (MI)1 with the rep-

resentation vectors from the earlier layers of the

model (i.e., the minimality of the representations)

(Belghazi et al., 2018). In this work, on the one

hand, we follow the common practice to accom-

plish the high prediction capacity by training the

GTN representation vectors to directly perform the

prediction task of interest (i.e., the factuality score

prediction in our case of EFP). On the other hand,

we propose to achieve the minimality of the repre-

sentations for the GTN model by explicitly mini-

mizing the MI between the GTN-produced vectors

H ′ = h′1, h
′

2, . . . , h
′

N and the BERT-produced hid-

den vectors X = x1, x2, . . . , xN from sentence

encoding. By enforcing a small MI between X and

H ′, we expect that only the relevant information

for EFP in X is passed through the GTN bottleneck

to be recorded in H ′ for better generalization.

In order to facilitate the MI estimation between

X and H ′, we first aggregate them into a single

summarization vector via the max-pooling func-

tion: x = MaxPool(x1, x2, . . . , xN ) and h′ =
MaxPool(h′1, h

′

2, . . . , h
′

N ). We would then evalu-

ate the MI between x and h′ and include it in the

1In information theory, MI measures the information we
know about one random variable if the value of another vari-
able is revealed.
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overall loss function for minimization. Note that

the MI between x and h′ is the KL divergence be-

tween the joint and marginal distributions of these

variables. Unfortunately, the direct computation

for the MI between x and h′ is prohibitively expen-

sive due to their high dimensions. Consequently,

in this work, we propose to apply the mutual infor-

mation neural estimation (MINE) method in (Bel-

ghazi et al., 2018) to approximate the MI with its

lower bound. In particular, motivated by (Hjelm

et al., 2019), we further approximate the lower

bound of the MI between two the vectors/variables

x and h′ via the adversarial approach using the loss

function of a variable discriminator. The goal of

the discriminator is to differentiate the vectors that

are sampled from the joint distribution and those

from the product of the marginal distributions of

the variables. In our case, we sample from the

joint distribution for x and h′ by directly concate-

nating the two vectors (i.e., [h′, x]) and treat it as

the positive example. To obtain the sample from

the product of the marginal distributions, we first

obtain another sentence Ŵ from the same batch

with the current sentence W during training. After-

ward, we compute the aggregated vector x̂ (i.e., via

max-pooling) of the BERT-produced vectors for

the words in Ŵ . The concatenation vector [h′, x̂]
would then be used as the sampled vector for the

product of the marginal distributions (the negative

example). These positive and negative examples

are then fed into a two-layer feed-forward network

D (i.e., the discriminator) to produce a scalar score,

serving as the probability to perform a binary clas-

sification for the variables. Afterward, we use the

logistic loss for the discriminator Ldisc as an es-

timation for the MI between x and h′ and add

it into the overall loss function for minimization:

Ldisc = log(1+e(1−D([h′,x])))+log(1+eD([h′,x̂])).

Finally, the overall loss function L to train the

model in this work would be: L = Lpred +
αdiscLdisc where αdisc is a trade-off parameter.

4 Experiments

Datasets & Parameters: Following the previous

work (Stanovsky et al., 2017; Rudinger et al., 2018;

Veyseh et al., 2019a), we evaluate the proposed

model on four datasets for EFP: FactBank (Saurí

and Pustejovsky, 2009), UW (Lee et al., 2015),

Meantime (Minard et al., 2016) and UDS-IH2

(Rudinger et al., 2018). The factuality scores for the

first three datasets (i.e., FactBack, UW, and Mean-

time) are unified and scaled to the values in [-3, +3]

based on their original annotations by (Stanovsky

et al., 2017). The scaling of the factuality scores

for UDS-IH2, on the other hand, is done with the

procedure described in (Rudinger et al., 2018) (i.e.,

the scores are also between -3 and +3 in this case).

In order to achieve a fair comparison, we obtain

the same scaled and preprocessed versions of these

datasets (i.e., with dependency trees) from (Veyseh

et al., 2019a) where the training/development/test

data is provided for each dataset.

We use the development datasets to tune the

hyper-parameters for the models in this work. The

values suggested by this tuning process include:

300 dimensions for the hidden vectors in the lay-

ers of the GCN model and all the feed-forward

networks (i.e., to compute a
syn
i,j for the customized

syntactic structures, and to consume the overall rep-

resentation vector R), G = 2 layers for the GCN

model, C = 2 channels for the GTN model with

M = 3 intermediate structures in each layer, and a

learning rate of 1e-5 for the Adam optimizer. For

the trade-off parameter αdisc in the loss function L,

the best values based on the development data is

0.1 for the FactBank, UW, and UDS-IH2 datasets,

and 0.5 for Meantime.

Comparing with the State of the Art: This

part compares the proposed model (called “SynSem-

Customization+MultiHop+GCN+IB+BERT”)

with the previous models for EFP. In particular, we

consider both the traditional feature-based models

(Lee et al., 2015; Stanovsky et al., 2017) and the

recent deep learning methods (Rudinger et al.,

2018; Veyseh et al., 2019a) as the baselines for

EFP. Note that the model in (Veyseh et al., 2019a)

(called “SynSemLinearCombine+GCN+BERT”)

currently has the best reported performance on the

datasets. Table 1 reports the test set performance

of the models, using Mean Absolute Error (i.e.,

MAE) and Pearson Correlation (i.e., r) as the

performance measures.

Similar to the prior work (Rudinger et al., 2018;

Veyseh et al., 2019a), we consider two methods to

train the models in this work: (i) training and evalu-

ating the models on separate datasets (i.e., the rows

with * in the table), and (ii) training the models on

the union of FactBank, UW and Meantime, leading

to a single model to be evaluated on the test data

of the individual datasets (i.e., the rows with ** in

the table). As we can see from the table, for both

training methods, the proposed model significantly
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FactBank UW Meantime UDS-IH2

Models MAE r MAE r MAE r MAE r

(Lee et al., 2015)* - - 0.511 0.708 - - - -

(Stanovsky et al., 2017)* 0.590 0.710 0.420 0.660 0.340 0.470 - -

Models reported in (Rudinger et al., 2018)

L-biLSTM(2)-S* 0.427 0.826 0.508 0.719 0.427 0.335 0.960 0.768

L-biLSTM(2)-MultiBal** 0.391 0.821 0.496 0.724 0.278 0.613 - -

L-biLSTM(1)-MultiFoc** 0.314 0.846 0.502 0.710 0.305 0.377 - -

L-biLSTM(2)-MultiSimp w/UDS-IH2** 0.377 0.828 0.508 0.722 0.367 0.469 0.965 0.771

H-biLSTM(1)-MultiSimp** 0.313 0.857 0.528 0.704 0.314 0.545 - -

H-biLSTM(2)-MultiSimp w/UDS-IH2** 0.393 0.820 0.481 0.749 0.374 0.495 0.969 0.760

Models reported in (Veyseh et al., 2019a)

L-biLSTM(2)-S+BERT* 0.381 0.850 0.475 0.752 0.389 0.394 0.895 0.804

L-biLSTM(2)-MultiSimp w/UDS-IH2+BERT** 0.343 0.855 0.476 0.749 0.358 0.499 0.841 0.841

H-biLSTM(1)-MultiSimp+BERT** 0.310 0.821 0.495 0.771 0.281 0.639 0.822 0.812

H-biLSTM(2)-MultiSimp w/UDS-IH2+BERT** 0.330 0.871 0.460 0.798 0.339 0.571 0.835 0.802

SynSemLinearCombine+GCN+BERT* 0.315 0.890 0.451 0.828 0.350 0.452 0.730 0.905

SynSemLinearCombine+GCN+BERT** 0.310 0.903 0.438 0.830 0.204 0.702 0.726 0.909

Models proposed in this work

SynSemCustomization+MultiHop+GCN+IB+BERT* 0.257 0.914 0.392 0.850 0.197 0.619 0.511 0.915

SynSemCustomization+MultiHop+GCN+IB+BERT** 0.239 0.920 0.389 0.852 0.190 0.685 0.482 0.918

Table 1: Test set performance. * denotes the models trained on separate datasets while ** indicates those trained on multiple
datasets. The smaller values are better for MAE while the correlation r prefers the larger values.

UW UDS-IH2

Models MAE r MAE r

The proposed model 0.389 0.852 0.482 0.918

- Asyn 0.448 0.842 0.590 0.909

- Asem 0.449 0.839 0.580 0.904

Table 2: The contribution of the initial structures.

outperforms the baseline models across different

performance measures and datasets (except for r

on Meantime). In fact, the separate dataset perfor-

mance of the proposed model is also significantly

better than the performance of the other models

with the union of the datasets for training. The

proposed model achieves the state-of-the-art per-

formance when trained on multiple datasets, clearly

demonstrating the benefits of the model in this work

for EFP. As UW and UDS-IH2 are the two largest

datasets among the four considering datasets, we

will focus on them in the following model analysis.

Structure Analysis: The proposed model for

EFP has two major sentence structures in the initial

set A = [Asyn, Asem] based on the syntactic and

semantic information (i.e., Asyn and Asem). This

part investigates the effectiveness of the individual

structures by evaluating the performance of the

remaining models when each of these structures is

eliminated from the overall proposed model. Table

2 presents the performance of the models2. It is

2Note that we train the models in analysis experiments

clear from the table that the model performance

is significantly worse when we remove any of the

initial structures in A, thus testifying to the benefits

of the initial structures for the proposed model.

Ablation Study: There are three major compo-

nents in the proposed models for EFP, i.e., the struc-

ture customization, the structure combination with

GTN, and the representation regularization with

information bottleneck. In order to analyze the

contribution of these components, this part seeks

to remove each of them from the overall model

and evaluate performance of the remaining mod-

els. In particular, we consider two ablated models

for the structure customization: (i) avoiding the

trigger-based customization for the syntactic struc-

ture Asyn (i.e., instead of using Equation 1, the

adjacency matrix of the dependency tree T is di-

rectly used for Asyn as in (Veyseh et al., 2019a))

(called “- SyntaxCustom”), and (ii) avoiding the

trigger-based customization for the semantic struc-

ture Asem (i.e., instead of using Equation 3, the

function in Equation 2 is employed to compute

the syntactic structure Asem as in (Veyseh et al.,

2019a)) (called “- SemanticCustom”).

The main benefit of the GTN models in the sec-

ond component for structure combination is to com-

bine the initial syntactic and semantic structures

with the multiple dataset setting (i.e., FactBank, UW and
Meantime); however, the same trends for the models also hold
for the setting with separate dataset training.
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UW UDS-IH2

Models MAE r MAE r

The proposed model 0.389 0.852 0.482 0.918

- SyntaxCustom 0.429 0.838 0.578 0.901

- SemanticCustom 0.409 0.844 0.565 0.909

- GTN 0.461 0.828 0.610 0.894

- Multi-Hop 0.402 0.836 0.587 0.905

- IB 0.450 0.842 0.602 0.907

- IB + BERT in R 0.419 0.830 0.564 0.910

Table 3: The ablation study.

to generate richer structures with multi-hop path

reasoning. Consequently, we examine two ablated

versions for this component: (i) completely remov-

ing the GTN model for structure combination and

directly running the GCN model on the initial struc-

tures in A (so the intermediate and final structures

are not computed) (called “- GTN”), and (ii) only

generating the intermediate structures and avoid-

ing the intermediate structure multiplications for

multi-hop path reasoning in each channel of GTN.

The final structures are thus not computed and the

GCN model is applied directly over the intermedi-

ate structures in this case (called “- Multi-Hop”)3.

Finally, for third component with representation

regularization, the introduction of the information

bottleneck (IB) leads to the inclusion of the loss

term Ldisc in the overall loss function L. The

removal of this regularization loss Ldisc from L
amounts to the ablated model “- IB” for this com-

ponent. In addition, as this component relies on the

MI between the hidden vectors computed by the

BERT and GTN models for the words, we further

evaluate another version for the overall model in

which the regularization loss Ldisc is also removed

from L, but the hidden vectors from the BERT

model X = x1, x2, . . . , xN are incorporated into

the final representation vector R for prediction (i.e.,

R = [xk, x, h
′

k, h
′]) (called “- IB + BERT in R”).

The performance of the models for this ablation

study is shown in Table 3.

The most important observation from the table

is that all the components are important for the

proposed model to ensure the highest performance.

In particular, the customization for the syntactic

and semantic structures are necessary as eliminat-

ing any of them would reduce the performance

3Note that for the ablated models in this component, we
also re-tune the numbers of intermediate structures and chan-
nels for the GTN model (i.e., M and C), and the number of
layers for the GCN model (i.e., G) on the the development
sets, leading to M = 3, C = 2, and G = 2.

significantly. The removal of the GTN model or

its multi-hop path reasoning for the structures also

makes the performance worse, thus highlighting

the benefits of the structure combination with multi-

hop paths for the structures for EFP in this work.

Finally, the better performance of the proposed

model over “- IB” and “-IB + BERT in R” clearly

demonstrates the ability of the IB-based regulariza-

tion technique to improve the generalization of the

proposed model in this work.

Error Analysis: In order to better understand

the errors made the proposed model for EFP, we

analyze the outputs of the model on the test set

of the UDS-IH2 dataset (i.e., the largest dataset in

our case). In particular, we examine the examples

for which the absolute values of the differences be-

tween the predicted factuality scores and the golden

ones are greater than 1 (i.e., focusing on the exam-

ples with the largest prediction errors). A notable

insight from our analysis is that among 118 exam-

ples selected in this way, 71.4% of the examples in-

volves the same signs for the predicted and golden

factuality scores. This suggests that although the

proposed model has large prediction error on these

examples, it can still capture the correct factuality

polarity (i.e., positive or negative) for a great por-

tion of the examples (i.e., 71.4%). In other words,

a main source of errors for the proposed model has

to do with the difficulty to identify the degrees of

factuality (i.e., the fine-grained distinction with the

real-valued factuality scores) for the events, not

with the factuality polarity.

In addition, among the 28.6% of the examples

with both large prediction errors and different signs

for the predicted and golden scores, we find that

a major portion of the examples (i.e., 62.5%) in-

volves important context words that are not present

in the training data (i.e., unknown word issue).

Some examples of this type are shown below where

the unknown and important context words are high-

lighted (the trigger words are in bold):

Israel-Syrian talks have been cut off for two

years. (Predicted score: 2.78, Golden Score: -3).

A man who was accused of faking his death last

summer pleaded guilty to a conspiracy charge ...

(Predicted score: 2.45, Golden Score: -3).

Based on this observation, we hypothesize that

even with the contextualized word embeddings

(e.g., BERT) and the wordpiece tokenization to

encode the input sentences, unknown words still

constitute a challenging problem for EFP. In par-
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ticular, as the unknown words do not appear in the

training data, the model does not have sufficient

training signals to adapt the initial language models

(i.e., BERT) to appropriately encode the unknown

words for EFP. Future research can focus on these

directions to improve the performance for EFP.

5 Conclusion

We present a novel deep learning model for EFP

that combines the customized sentence structures

(i.e., based on both syntactic and semantic infor-

mation) to learn effective representation vectors.

Our model features GTNs to infer rich sentence

structures with multi-hop reasoning paths for the

importance scores and information bottleneck to

improve the generalization. We perform extensive

experiments to demonstrate the effectiveness of the

proposed model. In the future, we plan to extend

the proposed model to the related tasks of EFP.
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