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Abstract

Fine-grained temporal relation extraction

(FineTempRel) aims to recognize the dura-

tions and timeline of event mentions in text.

A missing part in the current deep learning

models for FineTempRel is their failure to

exploit the syntactic structures of the input

sentences to enrich the representation vectors.

In this work, we propose to fill this gap by

introducing novel methods to integrate the

syntactic structures into the deep learning

models for FineTempRel. The proposed

model focuses on two types of syntactic

information from the dependency trees,

i.e., the syntax-based importance scores for

representation learning of the words and the

syntactic connections to identify important

context words for the event mentions. We also

present two novel techniques to facilitate the

knowledge transfer between the subtasks of

FineTempRel, leading to a novel model with

the state-of-the-art performance for this task.

1 Introduction

An important step in event understanding involves

identifying the temporal relations between events

(i.e., TempRel), finding its applications in different

natural language processing (NLP) systems such

as question answering and timeline construction.

A large volume of the prior works has focused on

the classification setting for this problem where

categorical temporal relations should be predicted

for pairs of event-referring and/or time-referring

expressions in text (i.e., categorical TempRel) (Dli-

gach et al., 2017; Cheng and Miyao, 2017; Ning

et al., 2019). For instance, in the sentence “The

meeting to discuss the possible merger of the two

financial companies lasted for two hours, eventu-

ally leading to their union yesterday.”, a system for

TempRel should be able to realize that the “discus-

sion” event happens before the “union” event (i.e.,

the categorical label of BEFORE).

∗The first two authors contribute equally to this paper.

However, a major problem with the classification

setting is its inability to capture the fine-grained

distinction between the temporal structures of the

events (i.e., the duration information). For exam-

ple, the classification setting would not be able to

specify the amount of time between the end time of

an event and the start time of a later one in the time-

line. To this end, (Vashishtha et al., 2019) presents

the first work on fine-grained temporal relation

extraction (FineTempRel) that seeks to distribute

event pairs in a real-valued relative timeline. In

particular, in FineTempRel, given a pair of events,

the systems need to predict the start and end times

(thus the durations) of the events so the relative

orders between these times of the events can be re-

vealed. Our work follows this fine-grained setting

for TempRel, aiming to introduce a novel model to

improve the performance for this problem.

The current state-of-the-art methods for

FineTempRel have involved deep learning models

(Vashishtha et al., 2019); however, one problem

with these deep learning models is that they fail

to exploit the syntactic structures of the input

sentences (i.e., the parsing trees) to further advance

the performance. Consequently, in the current

work, we seek to fill in this gap by extracting

useful knowledge from the syntactic structures

to help the deep learning models learn better

representations for FineTempRel. In particular,

based on the dependency parsing trees, we envision

two major types of syntactic information that

can be complementarily beneficial for the deep

learning models for FineTempRel in this work,

i.e., the syntax-based importance scores and the

syntactic word connections for representation

learning. First, for the syntax-based importance

scores, our intuition is that the closer words to

the words along the shortest dependency paths

between the two event mentions of interest would

involve more useful context information for

FineTempRel than the farther ones. For instance,
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in our running example, the word “leading” along

the shortest dependency path between “meeting”

and “union” is an important word to reveal the

temporal relations between these two events,

suggesting the distances from the words to the

shortest dependency path between the event

mentions as an useful feature for FineTempRel.

Consequently, in this work, we propose to use

such dependency distances to obtain a score to

represent the contextual importance for every

word in the sentence (i.e., the importance scores).

These importance scores would then be introduced

into the deep learning models to improve the

representation learning for FineTempRel.

How can we integrate these syntax-based im-

portance scores into the deep learning models for

FineTempRel? In this work, we propose to em-

ploy the representation vectors for the words in the

deep learning models to compute a model-based

importance score for each word in the sentence.

Afterward, we propose to introduce the informa-

tion from the syntax-based importance scores into

the models for FineTempRel by enforcing the sim-

ilarity/consistency between the syntax-based and

model-based importance scores for the words in

the sentence. The motivation is to leverage the

importance score consistency to guide the represen-

tation learning process of the deep learning models

(using the extracted syntactic information) so more

effective representation vectors for FineTempRel

can be induced. In order to implement this idea,

we utilize the Ordered-Neuron Long Short-Term

Memory Networks (ON-LSTM) (Shen et al., 2019;

Veyseh et al., 2020a) to facilitate the computation

of the model-based importance scores and the ef-

fective integration of the syntax-based scores for

better representation vectors for FineTempRel.

For the second type of syntactic information, the

main motivation is to leverage the syntactic de-

pendency connections between the words to iden-

tify the important context words that should be

encoded to compute effective representation vec-

tors for the event mentions in the sentences. In

particular, following (Vashishtha et al., 2019), we

decompose FineTempRel into two subtasks that

would be solved jointly for a given pair of events

in this work, i.e., event duration prediction (i.e.,

predicting the durations of the events) and tem-

poral relation prediction (i.e., predicting the start

and end times of the events). First, for event dura-

tion prediction, we argue that the important context

words for the representation vectors of the event

mentions involve the syntactic neighboring words

of the event mentions in the dependency trees. For

instance, in our example, the words “lasted” and

“two hours” are crucial to determine the duration for

the event mention “meeting”. Note that although

these words are far away from “meeting” in the sen-

tence, they are directly connected to “meeting” in

the dependency tree (i.e., the syntactic neighboring

words). Second, for temporal relation prediction,

our intuition is based on (Cheng and Miyao, 2017)

and (Goyal and Durrett, 2019) that use the short-

est dependency paths between the event mentions

to capture the important context words for cate-

gorical TempRel (e.g., the word “leading” in our

example). Motivated by these benefits of the de-

pendency trees for FineTempRel, in this work, we

propose to run Graph Convolutional Neural Net-

works (GCN) (Kipf and Welling, 2017; Nguyen

and Grishman, 2018) over the dependency struc-

tures of the sentences to facilitate the incorporation

of the dependency-based important context words

into the representation vectors for FineTempRel.

To our knowledge, this is the first work on using

GCNs for TempRel in the literature.

In particular, we propose to employ two separate

GCN models (i.e., one for for each task in FineTem-

pRel) to induce more flexible representation vectors

for the two subtasks in FineTempRel. Afterward,

we introduce a mechanism to allow the layers of the

two GCN models to interact with each other so the

knowledge learned for one task in each GCN layer

can be used to improve the representation vectors

for the other task (i.e., transfer learning). Finally,

a novel inductive bias is proposed to further con-

nect the two GCN models, seeking to enforce the

similarity of the representation vectors learned by

the two models for the same input sentences. We

perform extensive experiments to demonstrate the

effectiveness of the proposed model, yielding the

state-of-the-art performance for FineTempRel on

the benchmark datasets.

2 Related Work

Most of the previous work on TempRel has focused

on the categorical setting using the TimeML stan-

dard for the datasets (i.e., TimeBank, TimeBank-

Dense, Richer Event Description (RED)) (Puste-

jovsky et al., 2003; UzZaman et al., 2013; Cas-

sidy et al., 2014; Minard et al., 2016; O’Gorman

et al., 2016; Hong et al., 2016; Ning et al., 2018b,c).
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(Vashishtha et al., 2019) is the first work to con-

sider the fine-grained distinction for the temporal

relations for events.

Regarding TempRel methods, the early ap-

proaches has involved feature-based models (Mani

et al., 2006; Bethard, 2013; Lin et al., 2015), the hy-

brid methods (D’Souza and Ng, 2013), sieve-based

methods (i.e., CAEVO (Chambers et al., 2014),

CATENA (Mirza and Tonelli, 2016)), structured

learning methods (Ning et al., 2017), and Interger

Linear Programming (Ning et al., 2018). Recently,

deep learning models have been developed and

shown promising results for TempRel (Dligach

et al., 2017; Tourille et al., 2017; Cheng and Miyao,

2017; Meng and Rumshisky, 2018; Ning et al.,

2019; Han et al., 2019a). The closet work to ours is

(Vashishtha et al., 2019) that presents an attention-

based deep learning model for FineTempRel; how-

ever, it does not capture the syntactic structures of

the sentences as we do in this work. Some pre-

vious works have also considered event duration

modeling in text (Pan et al., 2007; Gusev et al.,

2011; Williams and Katz, 2012; Filatova and Hovy,

2001) although they do not tie duration and tempo-

ral relations as we do. Finally, we also note related

tasks that concern other types of relations between

events/entities, including event coreference reso-

lution (Lu et al., 2016; Nguyen et al., 2016; Lu

and Ng, 2017; Tran et al., 2021), event causaltiy

identification (Liu et al., 2020; Tran and Nguyen,

2021), and event argument extraction (Veyseh et al.,

2020b; Nguyen et al., 2021).

3 Model

FineTempRel can be formulated as a regression

problem. Formally, given a sentence W of N
words: W = w1, w2, . . . , wN with wm1 and wm2

(1 ≤ m1 < m2 ≤ N ) as the trigger words for the

two event mentions of interest, we need to predict

the start and end times for the two event mentions

to reflect the temporal order and durations of the

events in the timeline. Following (Vashishtha et al.,

2019), we aim to predict the start and end times

b1 and e1 for wm1 and b2 and e2 for wm2 using a

reference interval [0, 1] (i.e., 0 ≤ b1 ≤ e1 ≤ 1 and

0 ≤ b2 ≤ e2 ≤ 1). Also, let d1 and d2 be the dura-

tions for wm1 and wm2 respectively. Note that as

the input event mentions might belong to different

sentences in FineTempRel, we follow (Vashishtha

et al., 2019) to combine these sentences into a sin-

gle sequence of words for W in those cases.

To prepare the input sentence for the deep learn-

ing models and to achieve a fair comparison with

(Vashishtha et al., 2019), we first send W into the

pre-trained language model ELMo (Peters et al.,

2018) to produce a sequence of hidden vectors

X = x1, x2, . . . , xN for W . Note that the hid-

den vector xi for wi ∈ W is the concatenation of

the hidden vectors for wi in three layers of ELMo.

3.1 Syntax-Model Consistency

The first component in our model for FineTem-

pRel aims to exploit the consistency between the

syntax-based and model-based importance scores

for the words in the input sentence to improve the

representation vectors in the deep learning mod-

els for FineTempRel. In particular, the syntax-

based importance scores are supposed to evalu-

ate the potential contributions of the words in

W for the representation vectors in FineTempRel.

As the closer words to the shortest dependency

path SDP between between wm1 and wm2 in the

dependency tree T of W are considered to be

more important, we first compute the distance

dsyni between every word wi ∈ W to SDP via:

dsyni = min{L(wi, w)|w ∈ SDP} where L(wi, w)
denotes the length of the shortest path between the

words wi and w in the dependency tree T . Af-

terward, the syntax-based importance score ssyni

for the word wi would be computed by: ssyni =
exp(−d

syn
i )

∑
j=1..N exp(−d

syn
j )

.

In order to implement the importance score con-

sistency, we additionally need to obtain the model-

based importance scores smod
1 , smod

2 , . . . , smod
N for

the words in W based on the representation vec-

tors of the deep learning models for FineTempRel.

While the computation of the model-based scores

will be described later, the syntax-model consis-

tency between the importance scores in this work

is achieved by including the KL divergence Lconst

between the importance scores into the overall loss

function for minimization during the training of the

models: LKL = −
∑

i s
mod
i

smod
i

s
syn
i

.

Model-based Importance Scores: As pre-

sented in the introduction, we propose to compute

the model-based importance scores for FineTem-

pRel based on the Ordered-Neuron Long Short-

Term Memory Networks (ON-LSTM) (Shen et al.,

2019), an extension of the popular Long Short-

Term Memory Networks (LSTM). In particular,

given the vector sequence X = x1, x2, . . . , xN
as the input, a LSTM layer returns a sequence of
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hidden vectors H = h1, h2, . . . , hN via:

fi = σ(Wfxi + Ufhi−1 + bf )

ii = σ(Wixi + Uihi−1 + bi)

oi = σ(Woxi + Uohi−1 + bo)

ĉi = tanh(Wcxi + Uchi−1 + bc)

ci = fi ◦ ci−1 + ii � ĉi, hi = oi � tanh(ci)

(1)

where h0 is the zero vector, � is the element-wise

multiplication, and ft, it and ot are called the for-

get, input, and output gates respectively. In ON-

LSTM, two additional gates (i.e., the master forget

gate f̂t and the master input gate ĥt) (Shen et al.,

2019) are introduced into the LSTM cell via:

f̂i = cummax(Wf̂xi + Uf̂hi−1 + bf̂ )

îi = 1− cummax(Wîxi + Uîht−1 + bî)

f̄i = f̂i � (fi îi + 1− îi), īi = îi � (itf̂i + 1− f̂i)

ci = f̄i � ci−1 + īi � ĉi

(2)

where cummax is an activation function:

cumax(x) = cumsum(softmax(x))1.

The difference between the forget and input

gates in LSTM (i.e., ft and it) and the master forget

and input gates in ON-LSTM (i.e., f̂t and ît) is that

the dimensions/neurons of the hidden vectors in the

gates of LSTM are considered equally important,

being active/used for every word in W . This is

in contrast to the master gates in ON-LSTM that

impose an importance hierarchy over the neurons

in the hidden vectors, enabling the neurons to be

active for only a portion of the words in the sen-

tence (i.e., neurons with higher rankings would be

active for more words in the sentence). ON-LSTM

achieves such neuron hierarchy and activity limi-

tation via the function cumax(x) that aggregates

the softmax-produced result of the input vector x
along its dimensions. The output of cummax(x)
would represent the expectation of a binary vector

of the form (0, . . . , 0, 1, . . . , 1) (i.e., two consecu-

tive segments of 0’s and 1’s). At one word wi, the

1’s segment in its master gate vector correspond to

the neurons that are activated for that word. In ON-

LSTM, a word wi is more contextually important

than another word wj for representation learning if

the master gates for wi have more active neurons

than those for wj (Shen et al., 2019). Consequently,

in order to compute the model-based importance

score for a word wi, we employ the numbers of ac-

tive neurons in the master gates for wi that in turn

can be estimated via the sums of the weights of

1cumsum(u1, u2, . . . , un) = (u′
1, u

′
2, . . . , u

′
n) where

u′
i =

∑

j=1..i uj .

the neurons in the gates of ON-LSTM. Following

(Shen et al., 2019), we use the hidden vectors for

the master forget gate to obtain the model-based

importance scores ssemi for the words wi:

dsemi = 1−
∑

i=1..D

f̂ij , s
sem
i =

exp(dsemi )
∑

j=1..N exp(dsemj )
(3)

where D is the dimensionality of the hidden vectors

for ON-LSTM and f̂ij is the weight of the j-th

dimension of the master forget gate f̂i at wi.

Consequently, by promoting the syntax-model

consistency with the loss LKL, we expect that the

syntactic information from the syntax-based impor-

tance scores can deeply interfere with the internal

computation/structure of the ON-LSTM cell (via

the neurons of the master gates) to potentially lead

to better representation vectors for FineTempRel.

For convenience, we also use H = h1, h2, . . . , hN
to denote the hidden vectors returned by ON-LSTM

over the input sequence vector X for the next com-

ponents (called the ON-LSTM hidden vectors).

3.2 Graph Convolutional Networks

In the previous component, the syntax-model con-

sistency has attempted to enrich the representation

vectors for FineTempRel by encouraging them to

capture the contextual importance scores for the

words in the sentence. This component seeks to

further improve the representation vectors for the

event mentions by identifying and encoding the

important context words for the temporal relation

prediction between wm1 and wm2 . In particular, as

presented in the introduction, we aim to leverage

the words in the syntactic neighbors of wm1 and

wm2 and their shortest dependency path in the de-

pendency tree T of W for this purpose. As such,

in order to encode these dependency-based impor-

tant words for representation learning, we propose

to feed the ON-LSTM hidden vectors H into the

Graph Convolutional Neural Networks (GCN) that

structure the computations over T . In particular,

a GCN model in this work involves several lay-

ers (i.e., G layers in our case) to compute the

representation vectors for the words in W with

different abstract levels. At the (k + 1)-th layer

(0 ≤ k < G), the representation vector h̄k+1
i for

the word wi ∈ W is computed via:

h̄k+1
i = σ

(

Σwj∈N (i)Wkh̄
k
j

|N (i)|

)

(4)

Here, N (i) is the set of the words in W that are di-

rectly connected to wi (including itself) in T , Wk is
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the weight matrix (biases are omitted for simplicity

in this work), and σ is the sigmoid function. The

input vector h̄0i for GCNs is set to the ON-LSTM

hidden vector hi in this case (i.e., h̄0i = hi for all

1 ≤ i ≤ N ). Note that if there are more than

one sentences in the input, following (Cheng and

Miyao, 2017), we unify their dependency trees by

introducing a new root node to be the parent of the

roots of these dependency trees.

GCN Interaction: The straightforward appli-

cation of GCNs in our FineTempRel problem is

to run a single GCN model over H whose repre-

sentation vectors are used for both event duration

prediction (EDP) and temporal relation prediction

(TRP). However, a problem with this approach is

that the induced representations for the event men-

tions from the single GCN model might be con-

fused between the representation learning for the

two subtasks. In particular, EDP needs to focus on

the modeling of the individual event mentions for

their duration while jointly encoding the two event

mentions is crucial for the TRP between them. Due

to such distinction, a single GCN model might not

be able to customize its computation for the dif-

ferent modeling expectations required by the two

subtasks. Consequently, in this work, we propose

to employ two different GCN models; each of them

aims to learn the representation vectors for one sub-

task of FineTempRel. Among others, the benefit of

the two GCN models is the improved flexibility to

enable the models to tailor their operation toward

the specific subtasks for FineTempRel. Note that

the two GCN models share the architecture and are

only different in terms of their weights.

Despite its flexibility, one limitation with the

model so far is that the GCN models for EDP and

TRP are operating separately, lacking the effective

interactions to benefit from the knowledge transfer

between the two subtasks. In particular, as shown

in (Vashishtha et al., 2019), using the representa-

tion vectors for one subtask as one of the inputs

to make prediction for the other task is helpful to

improve the performance for FineTempRel on un-

seen test data. This demonstrates the relatedness

of the two subtasks in FineTempRel, suggesting

the knowledge transfer between the models for the

two subtasks to enhance the representation vec-

tors. To this end, we propose a novel interaction

mechanism for the two GCN models of the two

subtasks for FineTempRel in which the representa-

tion vectors in the current layer for one GCN model

are additionally conditioned on the representation

vectors from the previous layer of the other GCN

model. In particular, let GCNdur and GCNrel be

the GCN models for event duration and temporal

relation prediction respectively. Also, let πk
i and

rki (1 ≤ k ≤ G) be the hidden vectors for the word

wi at the k-the layers of GCNdur and GCNrel re-

spectively (π0
i = r0i = hi for all 1 ≤ i ≤ N ). The

hidden vector πk+1
i of GCNdur (1 ≤ k < G) in

this work would then be computed based on the

hidden vectors from the previous layer (i.e., the k-

layer) of GCNrel (in addition to the hidden vectors

in the k-layer of GCNdur itself):

πk+1
i = σ

(

Σwj∈N (i)α
k
jW

π
k π

k
j

)

αk
j = exp(ukπk

j )/
∑

wt∈N (i)

exp(ukπk
t )

uk = Wu
k [r

k
m1

, rkm2
]

(5)

where W π
k and W u

k are the weight matrices at the

k-layer for GCNdur.

The rationale for this formula is to use the rep-

resentation vectors for the event mentions at the

k-layer of GCNrel (i.e., rke1 and rke2) to compute

a query vector uk that would then be used to de-

termine the weight αk
j for each neighboring word

wj ∈ N (i) in the representation computation for

πk+1
i . A similar formula is employed to compute

the hidden vector rk+1
i of GCNrel in this work:

rk+1
i = σ

(

Σwj∈N (i)β
k
j W

r
k r

k
j

)

βk
j = exp(vkrkj )/

∑

wt∈N (i)

exp(vkrkt )

vk = W v
k [π

k
m1

, πk
m2

]

(6)

Representation Regularization: Finally, to

provide an additional channel for the two GCN

models to transfer their knowledge, we introduce a

novel inductive bias that encourages the two GCN

models to generate similar representation vectors

for the input sentence for FineTempRel. As the two

GCN models use the similar network architecture

to learn the representations for the two related tem-

poral subtasks of FineTempRel, we expect that the

overall representation vectors for the same input

sentence induced by these two GCN models should

also be similar (although the representation vectors

for the event mentions in the input sentence from

each network might be more task-specific). To this

end, we first obtain the overall representation vec-

tors πW and rW for W based on the hidden vectors

in the last layers of GCNdur and GCNrel (respec-

tively) via: πW = max_pool(πG
1 , π

G
2 , . . . , π

G
N )
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and rW = max_pool(rG1 , r
G
2 , . . . , r

G
N ). After-

ward, we enforce the similarity between these rep-

resentation vectors for W by including their mean

square error (MSE) Ldif into the overall loss func-

tion for minimization: Ldif = MSE(πW , rW ).

On the one hand, Ldif serves as a regularizer to

improve the representation vectors for the model.

On the other hand, Ldif introduces a novel commu-

nication channel between the two GCN models so

the knowledge from this GCN model can be trans-

ferred to improve the representation learning of the

other GCN. Overall, our model performs deep and

layer-wise interactions between the two GCN mod-

els for FineTempRel (i.e., the interactions are done

for all the GCN layers), enabling the knowledge

transfer to occur at different abstraction levels for

potentially better representations for FineTempRel.

3.3 Prediction

In order to predict the durations for wm1 and wm2 ,

we assemble the overall representation vectors

Rdur
1 and Rdur

2 for them based on hidden vectors

in the last layer of GCNdur: Rdur
1 = [πG

m1
, πW ],

Rdur
2 = [πG

m2
, πW ]. These overall vectors are

then sent to a two-layer feed-forward network

FF1 to predict the durations d̂1 and d̂2 for wm1

and wm2 : d̂1 = FF1(R
dur
1 ), d̂2 = FF1(R

dur
2 ).

Afterward, the loss function for EDP would be:

Ldur = (d1 − d̂1)
2 + (d2 − d̂2)

2.

Similarly, for TRP, we create an overall rep-

resentation vector Rrel for this task by: Rrel =
[rGm1

, rGm2
, rW ]. This vector is then consumed by

another two-layer feed-forward network FF2 to

predict the start and end times b̂1, ê1, b̂2 and ê2 for

wm1 and wm2 : [b̂1, ê1, b̂2, ê2] = FF2(R
rel). Fol-

lowing (Vashishtha et al., 2019), we use the follow-

ing loss function for temporal relation prediction:

Lrel = |(b1− b2)− (b̂1− b̂2)|+ |(e1− b2)− (ê1−
b̂2)|+|(e2−b1)−(ê2−b̂1)|+|(e1−e2)−(ê1−ê2)|.

To summarize, the overall loss function to train

the model in this work is: L = Ldur + γrelLrel +
γKLLKL+γdifLdif where γrel, γKL and γdif are

the trade-off parameters.

4 Experiments

• Datasets & Parameters: To evaluate the perfor-

mance of the models, we use the Universal De-

compositional Semantics Time (UDS-T) dataset

introduced in (Vashishtha et al., 2019) for FineTem-

pRel. UDS-T is annotated on top of the Universal

Dependencies English Web Treebank (Bies et al.,

2012) whose sentences are associated with the gold

standard Universal Dependency parses (to be used

for the dependency trees). There are 32,302 events

and 70,368 event-event relations (i.e., examples) in

UDS-T where the same data split for training data,

development data and test data in (Vashishtha et al.,

2019) is used to ensure a fair comparison. The

development dataset of UDS-T is used to fine-tune

the hyper-parameters for the models in this work.

This fine-tuning process leads to the following val-

ues for the hyper-parameters in this work: 1 layer

for the ON-LSTM model with D = 256 dimen-

sions for the hidden vectors, 2 layers for the GCN

models (also with 256 dimensions for the hidden

vectors), 64 hidden units for the FF1 and FF2 net-

works for duration and temporal relation prediction,

and γrel = 0.5, γKL = 0.1, and γdif = 0.1 for the

trade-off parameters in the overall loss function.

Also, we use the Adam optimizer with the learning

rate of 1e-5 to train the models in this work.

In addition, for the TE3 and TD datasets with the

transfer learning experiment, similar to (Vashishtha

et al., 2019), we employ the sklearn 0.20.0

package to train the SVM classifier with Gaus-

sian kernel and the same hyper-parameters. Fi-

nally, we use the same procedure as in (Vashishtha

et al., 2019) to pre-process the datasets in this ex-

periment (e.g., using the Stanford CoreNLP

3.9.2 toolkit for data pre-processing).

In addition, similar to (Vashishtha et al., 2019),

we further examine the models on the categorical

TempRel datasets, including the TempEval3 (TE3,

(UzZaman et al., 2013), Task C-relation only)

and TimeBank-Dense (TD, (Cassidy et al., 2014))

datasets. We follow the same preprocessing proce-

dure for these datasets and the same training and

tuning procedures for the models as in (Vashishtha

et al., 2019) to achieve a fair comparison. In partic-

ular, we use a transfer learning approach where the

best-performing model on the UDS-T development

set is first used to obtain the overall representa-

tion vector Rrel = [rGm1
, rGm2

, rW ] for each pair of

annotated event-event relations in TE3 and TD. Af-

terward, we employ this vector as the input features

for a SVM classifier with a Gaussian kernel that

is trained on the training sets and evaluated on the

test sets for these datasets. Specifically, the train-

ing set for TE3 involves the union of the TimeBank

(Pustejovsky et al., 2003) and AQUAINT (Graff,

2002) datasets provided in the TE3 workshop (Uz-

Zaman et al., 2013) while the training data and
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Duration Timeline

Model ρ rank diff R1(rank diff) Absolute ρ Relative ρ R1(MAE)

System1 (Vashishtha et al., 2019) 32.63 1.86 8.59 77.91 68.00 2.82

System2 (Vashishtha et al., 2019) 37.75 1.75 13.73 77.87 67.68 2.35

System3 (Vashishtha et al., 2019) 38.38 1.75 13.85 77.82 67.73 2.58

System4 (Vashishtha et al., 2019) 38.12 1.75 13.68 78.12 68.22 2.96

ON-LSTM-GCN (with ELMo) 50.77 1.30 37.58 84.41 80.41 23.33

ON-LSTM-GCN (with BERT) 54.37 1.27 39.14 84.91 81.67 24.71

Table 1: The performance on the UDS-T test set. Except for the rank diff for duration prediction, all metrics prefer large values.

development data in TD (i.e., TD-train, TD-dev)

are combined to form the training set for TD. We

follow the same hyper-parameter tuning process for

the SVM classifier as in (Vashishtha et al., 2019)

for these datasets where a grid-search with 4-fold

cross-validation is done over the training sets. Fi-

nally, the performance of the models is reported

on the test sets of the datasets (i.e., TE3-Platinum

(TE3-PT) for TE3 and TD-test for TD).

For the performance measures for FineTempRel

on the UDS-T dataset, following (Vashishtha et al.,

2019), we use three metrics for the duration pre-

diction task (i.e., Spearman correlation (ρ), mean

rank difference (RD), and the proportion of rank

difference explained (R1(RD))), and three met-

rics for temporal relation prediction (i.e., Spear-

man correlation between the normalized values of

the actual start and end times and the predicted

ones (absolute ρ), the Spearman correlation be-

tween the actual and predicted values for Lrel (rel-

ative ρ), and the proportion of mean absolute error

(MAE) explained (R1(MAE))). Note that for a per-

formance metric A, the proportion of A explained

is computed by: R1(A) = 1 - Amodel/Abaseline where

Amodel is the performance metric A computed for

the model and Abaseline is those computed for the

model that always guesses the median.

• Comparison on UDS-T: We compare the

FineTempRel model in this work (called ON-

LSTM-GCN) with the best-reported models on the

UDS-T dataset in (Vashishtha et al., 2019). In par-

ticular, we use the top four models in (Vashishtha

et al., 2019) (called System1, System2, System3,

and System4) as the baselines in this work. Table 1

reports the performance of the models. Note that in

addition to the ELMo embeddings as in (Vashishtha

et al., 2019), we also show the performance of the

ON-LSTM-GCN model when the BERT embed-

dings (Devlin et al., 2019) (i.e., the base model) are

employed to encode the sentences. Both ELMo and

BERT are fine-tuned during training in this work.

As we can see, using the same ELMo embed-

dings, the proposed model ON-LSTM-GCN signif-

icantly outperforms all the models in (Vashishtha

et al., 2019) with substantial performance gap over

different performance metrics and the two subtasks

(i.e., event duration prediction and temporal re-

lation prediction). This clearly demonstrates the

effectiveness of the proposed model for FineTem-

pRel. We also see that replacing ELMo with the

BERT embeddings can help to improve the perfor-

mance for both subtasks, suggesting the application

of BERT for FineTempRel in the future research.

• Comparison on TE3 and TD: Table 2 shows

the performance of the models on the TE3 and TD

datasets. For both datasets, similar to (Vashishtha

et al., 2019), we only evaluate on the Event-Event

(E-E) relations as we only capture those in the

model. Note that this is different from some of the

prior works on TempRel where the performance

metrics are reported for all relations (i.e., including

timex-timex, and event-timex relations), making

them not directly comparable to ours. For instance,

(Ning et al., 2017) reports a F1-score of 0.672 for

all relations on the TE3 test set, but it is not di-

rectly comparable to our model as we only eval-

uate on event-event relations. Also, as this is a

transfer learning experiment from UDS-T, the most

comparable baselines to ours in this case is from

(Vashishtha et al., 2019) for both TE3 and TD. For

a reference, we also include the best-reported per-

formance on TD from the recent work (i.e., (Cheng

and Miyao, 2017; Han et al., 2019a,b)). Note that

we follow the previous work to report the temporal

awareness scores (F1) for TE3 and the F1 micro-

average scores for TD (Vashishtha et al., 2019).

In Table 2, we explicitly indicate the pre-trained

word embeddings (i.e., ELMo or BERT) for the

recent models on TempRel. The first observation

from the table is that among the models with ELMo

embeddings, the proposed model ON-LSTM-GCN

is significantly better than the baseline models for
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System Evaluation F1
Data (E-E)

(Vashishtha et al., 2019) (with ELMo) TE3-PT 0.498

ON-LSTM-GCN (with ELMo) TE3-PT 0.551
ON-LSTM-GCN (with BERT) TE3-PT 0.596

CAEVO TD-test 0.494
CATENA TD-test 0.519
(Cheng and Miyao, 2017) TD-test 0.529
(Vashishtha et al., 2019) (with ELMo) TD-test 0.566
(Han et al., 2019a) (with BERT) TD-test 0.632
(Han et al., 2019b) (with BERT) TD-test 0.645

ON-LSTM-GCN (with ELMo) TD-test 0.620
ON-LSTM-GCN (with BERT) TD-test 0.658

Table 2: Test performance on TE3 and TD for our transfer
learning experiment (only for the Event-Event relations).

Duration Timeline

Model ρ RD R1 Abs Rel R1
(RD) ρ ρ (MAE)

ON-LSTM-GCN 55.4 1.26 38.8 85.7 82.5 26.0

- LKL 53.4 1.33 35.3 83.9 80.3 20.8
- ON-LSTM 41.1 1.50 27.2 80.2 75.7 15.7
repw/ LSTM 44.2 1.42 30.9 82.9 79.0 19.8

- GCN Interact 46.7 1.34 35.0 84.1 80.5 22.2
- Ldif 51.6 1.31 36.2 84.6 81.4 23.6
- Interact - Ldif 46.1 1.38 32.5 83.1 79.6 20.7
One GCN 45.0 1.43 30.6 82.2 78.1 19.3
- GCN 42.7 1.49 27.6 80.9 76.7 16.2

Table 3: Models’ performance on the UDS-T development
set. Except for the rank diff (RD) metric for duration predic-
tion, all the metrics prefer large values.

both datasets TE3 and TD, including the previous

best-reported model in (Vashishtha et al., 2019)

with p < 0.01. Second, for the models with

BERT embeddings, ON-LSTM-GCN also signifi-

cantly outperforms the previous best-reported mod-

els on TD (i.e., (Han et al., 2019a,b)). In fact,

ON-LSTM-GCN achieves the state-of-the-art per-

formance with the BERT embeddings over both

datasets, clearly testifying to the advantages of the

proposed model for TempRel.

• Model Analysis and Ablation Study: This

section investigates different variations of the two

major components in ON-LSTM-GCN (i.e., ON-

LSTM and GCN) to demonstrate their benefits.

ON-LSTM: First, we consider the following

variations for the ON-LSTM component: (i) “-

LKL”: this is the ON-LSTM-GCN model where

the syntax-model consistency loss LKL is not in-

cluded in the overall loss function, (ii) “- ON-

LSTM”: this model completely removes the ON-

LSTM component from ON-LSTM-GCN (so the

consistency loss LKL is not used and the input vec-

tor sequence X is directly sent to the GCN models),

and (iii) “repw/ LSTM”: this model replaces ON-

LSTM with the traditional LSTM model in ON-

LSTM-GCN (the LKL loss is also not employed

in this case as LSTM does not support the neuron

hierarchy for the model-based importance scores).

GCN: Second, for the GCN component, we eval-

uate the following variations for ON-LSTM-GCN:

(i) “- GCN Interact”: this model does not apply

the interaction mechanism for the two GCN mod-

els in Equations 5 and 6 for ON-LSTM-GCN; it

instead uses Equation 4 for the computation of both

GCN models, (ii) “- Ldif”: this model eliminates

the regularization loss Ldif from ON-LSTM-GCN,

(iii) “- Interact - Ldif”: this model removes both

the GCN interaction mechanism in Equations 5

and 6 and the loss Ldif from ON-LSTM-GCN (but

it still has two GCN models), (iv) “One GCN”:

instead of using two GCN models for the two sub-

tasks of FineTempRle, this model only utilize a

single GCN model for both tasks (the GCN inter-

action in Equations 5 and 6 and the regularization

loss Ldif are thus not used in this case as well),

and (v) “- GCN”: this model completely removes

the GCN component (thus also excluding the GCN

interaction and the loss Ldif ); the ON-LSTM hid-

den vectors H are directly exploited to perform the

duration and relation predictions in this case. Table

3 presents the models’ performance (using ELMo)

on the UDS-T development set

There are several important observations from

this table. First, regarding ON-LSTM, we see that

both the ON-LSTM and syntax-model consistency

loss LKL are necessary for the proposed model as

eliminating any of them or replacing ON-LSTM

with LSTM would significantly hurt the perfor-

mance. Second, for the GCN component, it is clear

that the GCN interaction mechanism in Equations

5 and 6 and the regularization loss Ldif are crucial

for ON-LSTM-GCN to achieve its highest perfor-

mance, clearly verifying the benefits of knowledge

transferring between duration and relation predic-

tion for FineTempRel. In addition, the better perfor-

mance of the full model and the “- Interact - Ldif”

model over “One GCN” demonstrates the necessity

to employ different GCN models for the two sub-

tasks in FineTempRel to enhance the representation

customization capacity for the tasks. The model’s

performance becomes the worst when GCNs are

completely excluded (i.e., “- GCN”), confirming

the effectiveness of GCNs for FineTempRel.

5 Conclusion

We introduce a novel deep learning model for

FineTempRel that exploits the syntactic structures
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of the sentences to improve the representation vec-

tors. We focus on two type of syntactic informa-

tion for FineTempRel in this work, i.e., the syntax-

based importance scores for the representations

of the words that are injected into the models via

ON-LSTM, and the dependency connections be-

tween the words that are exploited in GCN models.

Two novel transferring learning methods are pre-

sented for the two GCN models for duration and

relation predictions. Comprehensive experiments

are performed to demonstrate the advantages of the

proposed model for FineTempRel.

Acknowledgments

This research has been supported by the Army Re-

search Office (ARO) grant W911NF-21-1-0112

and the NSF grant CNS-1747798 to the IU-

CRC Center for Big Learning. This research is

also based upon work supported by the Office

of the Director of National Intelligence (ODNI),

Intelligence Advanced Research Projects Activ-

ity (IARPA), via IARPA Contract No. 2019-

19051600006 under the Better Extraction from Text

Towards Enhanced Retrieval (BETTER) Program.

The views and conclusions contained herein are

those of the authors and should not be interpreted

as necessarily representing the official policies, ei-

ther expressed or implied, of ARO, ODNI, IARPA,

the Department of Defense, or the U.S. Govern-

ment. The U.S. Government is authorized to re-

produce and distribute reprints for governmental

purposes notwithstanding any copyright annotation

therein. This document does not contain technol-

ogy or technical data controlled under either the

U.S. International Traffic in Arms Regulations or

the U.S. Export Administration Regulations.

References

Steven Bethard. 2013. ClearTK-TimeML: A minimal-
ist approach to TempEval 2013. In Second Joint
Conference on Lexical and Computational Seman-
tics (*SEM), Volume 2: Proceedings of the Seventh
International Workshop on Semantic Evaluation (Se-
mEval 2013).

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012. English web treebank. In Linguistic Data
Consortium.

Taylor Cassidy, Bill McDowell, Nathanael Chambers,
and Steven Bethard. 2014. An annotation frame-
work for dense event ordering. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Nathanael Chambers, Taylor Cassidy, Bill McDow-
ell, and Steven Bethard. 2014. Dense event or-
dering with a multi-pass architecture. In Transac-
tions of the Association for Computational Linguis-
tics (TACL).

Fei Cheng and Yusuke Miyao. 2017. Classifying tem-
poral relations by bidirectional LSTM over depen-
dency paths. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT).

Dmitriy Dligach, Timothy Miller, Chen Lin, Steven
Bethard, and Guergana Savova. 2017. Neural tem-
poral relation extraction. In Proceedings of the Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL).

Jennifer D’Souza and Vincent Ng. 2013. Classify-
ing temporal relations with rich linguistic knowl-
edge. In Proceedings of the Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT).

Elena Filatova and Eduard Hovy. 2001. Assigning
time-stamps to event-clauses. In Proceedings of the
ACL 2001 Workshop on Temporal and Spatial Infor-
mation Processing.

Tanya Goyal and Greg Durrett. 2019. Embedding time
expressions for deep temporal ordering models. In
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

David Graff. 2002. The aquaint corpus of en-
glish news text. In Linguistic Data Consortium
(LDC2002T31).

Andrey Gusev, Nathanael Chambers, Divye Raj
Khilnani, Pranav Khaitan, Steven Bethard, and Dan
Jurafsky. 2011. Using query patterns to learn the du-
ration of events. In Proceedings of the Ninth Inter-
national Conference on Computational Semantics
(IWCS).

Rujun Han, I-Hung Hsu, Mu Yang, Aram Galstyan,
Ralph Weischedel, and Nanyun Peng. 2019b. Deep
structured neural network for event temporal rela-
tion extraction. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL).

Rujun Han, Qiang Ning, and Nanyun Peng. 2019a.
Joint event and temporal relation extraction with
shared representations and structured prediction. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).



44

Yu Hong, Tongtao Zhang, Tim O’Gorman, Sharone
Horowit-Hendler, Heng Ji, and Martha Palmer. 2016.
Building a cross-document event-event relation cor-
pus. In Proceedings of the 10th Linguistic Annota-
tion Workshop held in conjunction with ACL 2016
(LAW-X 2016).

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proceedings of the International Con-
ference on Learning Representations (ICLR).

Chen Lin, Dmitriy Dligach, Timothy A Miller, Steven
Bethard, and Guergana K Savova. 2015. Multilay-
ered temporal modeling for the clinical domain. In
Journal of the American Medical Informatics Asso-
ciation.

Jian Liu, Yubo Chen, and Jun Zhao. 2020. Knowledge
enhanced event causality identification with men-
tion masking generalizations. In Proceedings of the
Twenty-Ninth International Joint Conference on Ar-
tificial Intelligence (IJCAI).

Jing Lu and Vincent Ng. 2017. Joint learning for
event coreference resolution. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (ACL).

Jing Lu, Deepak Venugopal, Vibhav Gogate, and Vin-
cent Ng. 2016. Joint inference for event coreference
resolution. In Transactions of the Association for
Computational Linguistics (TACL).

Inderjeet Mani, Marc Verhagen, Ben Wellner,
Chong Min Lee, and James Pustejovsky. 2006.
Machine learning of temporal relations. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics (ACL).

Yuanliang Meng and Anna Rumshisky. 2018. Context-
aware neural model for temporal information extrac-
tion. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

Anne-Lyse Minard, Manuela Speranza, Ruben Urizar,
Begoña Altuna, Marieke van Erp, Anneleen Schoen,
and Chantal van Son. 2016. MEANTIME, the
NewsReader multilingual event and time corpus. In
Proceedings of the Language Resources and Evalu-
ation Conference (LREC).

Paramita Mirza and Sara Tonelli. 2016. CATENA:
CAusal and TEmporal relation extraction from NAt-
ural language texts. In Proceedings of the Inter-
national Conference on Computational Linguistics
(COLING).

Minh Van Nguyen, Viet Dac Lai, and Thien Huu
Nguyen. 2021. Cross-task instance representation
interactions and label dependencies for joint in-
formation extraction with graph convolutional net-
works. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT).

Thien Huu Nguyen, , Adam Meyers, and Ralph Grish-
man. 2016. New york university 2016 system for
kbp event nugget: A deep learning approach. In Text
Analysis Conference.

Thien Huu Nguyen and Ralph Grishman. 2018. Graph
convolutional networks with argument-aware pool-
ing for event detection. In Proceedings of the Asso-
ciation for the Advancement of Artificial Intelligence
(AAAI).

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A struc-
tured learning approach to temporal relation extrac-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Qiang Ning, Zhili Feng, Hao Wu, and Dan Roth. 2018.
Joint reasoning for temporal and causal relations. In
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Qiang Ning, Sanjay Subramanian, and Dan Roth. 2019.
An improved neural baseline for temporal relation
extraction. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Qiang Ning, Hao Wu, and Dan Roth. 2018c. A multi-
axis annotation scheme for event temporal relations.
In Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics (ACL).

Qiang Ning, Zhongzhi Yu, Chuchu Fan, and Dan Roth.
2018b. Exploiting partially annotated data in tempo-
ral relation extraction. In Proceedings of the Seventh
Joint Conference on Lexical and Computational Se-
mantics.

Tim O’Gorman, Kristin Wright-Bettner, and Martha
Palmer. 2016. Richer event description: Integrating
event coreference with temporal, causal and bridg-
ing annotation. In Proceedings of the 2nd Workshop
on Computing News Storylines (CNS 2016).

Feng Pan, Rutu Mulkar-Mehta, and Jerry R Hobbs.
2007. Modeling and learning vague event durations
for temporal reasoning. In Proceedings of the Asso-
ciation for the Advancement of Artificial Intelligence
(AAAI).

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT).

James Pustejovsky, Patrick Hanks, Roser Sauri, An-
drew See, Robert Gaizauskas, Andrea Setzer,
Dragomir Radev, Beth Sundheim, David Day, Lisa
Ferro, and et al 2003. 2003. The timebank corpus.
In Corpus linguistics, volume 2003, page 40.



45

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Julien Tourille, Olivier Ferret, Aurélie Névéol, and
Xavier Tannier. 2017. Neural architecture for tem-
poral relation extraction: A bi-LSTM approach for
detecting narrative containers. In Proceedings of
the Annual Meeting of the Association for Compu-
tational Linguistics (ACL).

Hieu Minh Tran, Duy Phung, and Thien Huu Nguyen.
2021. Exploiting document structures and clus-
ter consistencies for event coreference resolution.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (ACL-IJCNLP).

Minh Phu Tran and Thien Huu Nguyen. 2021. Graph
convolutional networks for event causality identi-
fication with rich document-level structures. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT).

Naushad UzZaman, Hector Llorens, Leon Derczyn-
ski, James Allen, Marc Verhagen, and James Puste-
jovsky. 2013. SemEval-2013 task 1: TempEval-3:
Evaluating time expressions, events, and temporal
relations. In Second Joint Conference on Lexical
and Computational Semantics (*SEM), Volume 2:
Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013).

Siddharth Vashishtha, Benjamin Van Durme, and
Aaron Steven White. 2019. Fine-grained temporal
relation extraction. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Amir Pouran Ben Veyseh, Franck Dernoncourt, Dejing
Dou, and Thien Huu Nguyen. 2020a. Exploiting the
syntax-model consistency for neural relation extrac-
tion. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

Amir Pouran Ben Veyseh, Tuan Ngo Nguyen, and
Thien Huu Nguyen. 2020b. Graph transformer net-
works with syntactic and semantic structures for
event argument extraction. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing: Findings (EMNLP).

Jennifer Williams and Graham Katz. 2012. Extracting
and modeling durations for habits and events from
twitter. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).


