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A Bayesian optimized framework
for successful application of
unscented Kalman filter in parameter
identification of MDOF structures

Mohamadreza Sheibani and Ge Ou

Abstract
The success of the unscented Kalman filter can be jeopardized if the required initial parameters are not identified
carefully. These parameters include the initial guesses and the levels of uncertainty in the target parameters and the
process and measurement noise parameters. While a set of appropriate initial target parameters give the unscented
Kalman filter a head start, the uncertainty levels and noise parameters set the rate of convergence in the process.
Therefore, due to the coupling effect of these parameters, an inclusive approach is desired to maintain the chance of
convergence for expensive experimental tests. In this paper, a framework is proposed that, via a virtual emulation prior
to the experiment, determines a set of initial conditions to ensure a successful application of the online parameter
identification. A Bayesian optimization method is proposed, which considers the level of confidence in the initial guesses
for the target parameters to suggest the appropriate noise covariance matrices. The methodology is validated on a five-
story shear frame tested on a shake table. The results indicate that, indeed, a trade-off can be made between the
robustness of the online updating and the final parameter accuracy.

Keywords
Unscented Kalman filter, Bayesian optimization, Bouc–Wen model, system identification, nonlinear structural dynamics

Introduction

Model updating techniques are widely used in structural health monitoring applications such as damage detec-
tion,1 force identification,2 response prediction,3 and structural control of the existing structures.4 Dynamic model
updating calibrates numerical models to improve the simulation accuracy of the structural responses under certain
loads. The calibration is achieved through the system identification of the structure under study. Although linear
system identification methods have been studied and successfully applied to various structures,5 due to the non-
linearities in real-world structures, the range of applicability is limited for these methods. Kalman filter is a
member of the Bayes filter family, which is frequently used for state estimation of linear models and Gaussian
distributed parameters. However, for nonlinear systems, to avoid obtaining non-Gaussian distributions for
the transformed parameters of the state vector, either a linearization technique or a non-parametric method
should be adopted.

Various nonlinear system identification techniques have been suggested in the literature, such as the least
square estimation,6 H1 Filter,7 the extended Kalman filter (EKF),8 the unscented Kalman filter (UKF),9–12

and sequential Monte Carlo13,14 methods. Among them, UKF and EKF have become popular due to their
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practicality and computational efficiencies for Gaussian-distributed parameters.15–18 EKF was first introduced to
extend the Kalman filter applications to nonlinear models by locally linearizing the functions at each step of the
process.19 EKF has been successfully applied to models with low-to-moderate nonlinearities.20–22 However, since
the linearization is performed by a Taylor expansion, and Jacobian matrices are calculated at each step, EKF may
become inefficient for high-dimensional variable estimation and large uncertainties.

The UKF, on the other hand, does not require the linearization of the underlying functions and, instead,
propagates the probability distribution functions (PDF) of the parameters in an efficient way. UKF directly
transforms a set of weighted sigma points through the nonlinear function and approximates the Gaussian distri-
bution of the state and measurement vectors. Comparative studies have concluded the better robustness of UKF
compared to EKF.10,23 UKF is more robust when noisy measurements are present and is accurate up to the
second-order Taylor series expansion, which, in case of Gaussian variables, handles up to the third order for any
nonlinearity.24,25

UKF has been implemented in various system identification problems in civil engineering. The computational
efficiency of UKF has made it favorable for online updating methods such as real-time hybrid simulation
(RTHS).26–29 Various numerical studies have been conducted on different aspects of the UKF algorithm. Shao
et al.30 implemented UKF for RTHS of a 3 degree of freedom (DOF) structure. The importance of initial
covariance matrices of state and noise vectors, as well as the initial guesses for the structural parameters that
are the focus of the system identification (called the target parameters hereafter), was stated. Parametric study of
the mentioned variables was conducted for the specific case, and the initial target parameters for the RTHS
experiment were obtained from a prior quasi-static experimental testing.

Variants of the UKF method have been suggested to overcome different possible scenarios. Constrained
unscented Kalman filter is proposed for enforcing boundaries on the state variables for higher robustness of
the algorithm.31 Adaptive UKF is proposed for online identification of sudden changes in stiffness of structures
under seismic loads.32 Xie and Feng15 studied the applications of the iterated unscented Kalman filter (IUKF) to
highly nonlinear systems subjected to different signal noise levels and concluded that the IUKF is more accurate
in highly nonlinear systems and more robust to measurement noise levels. Al-Hussein and Haldar33 suggested a
substructure concept which estimates the stiffness and Rayleigh damping coefficients for a small part of the
structure and generates the excitation using an iterative least-squares method. Responses of the key nodes of
the structure are required for this implementation, and the stiffness and damping coefficients are used as the initial
state vector for the UKF procedure. The authors later suggested a weighted global iteration (WGI) UKF, which,
instead of implementing the UKF to the complete set of responses once, applies the UKF to a fraction of the
responses several times and reduces the uncertainty of the state parameters.34 Although the excitation data is no
longer required in this approach, the system responses such as velocity and displacement cannot be obtained easily
in practical applications. Chatzi and Smyth35 compared the UKF algorithm with the particle filter (PF) method
by testing a 3DOF structure with only the first DOF being nonlinear, and it was shown that UKF is the most
computationally efficient. Although a discussion was made about the influence of the initial condition intervals
for the PF method, no explanation was provided regarding the selection of the initial target parameters in the
UKF method.

Chatzi et al.36 proposed a modified Bouc–Wen (BW) model to capture an oddly shaped hysteresis behavior
obtained in an experiment using UKF. Despite not being far from each other, a number of choices for the initial
estimation of the BW parameters were guessed, and it was stated that the effects of these initial guesses are
negligible. Another experimental implementation of the online model updating using UKF can be found in Song
and Dyke,16 where a quasi-static cyclic test is performed for offline identification of the BW parameters. The set of
identified parameters is later used in the shake table tests as the initial target parameters. In another study, UKF
and adaptive constrained UKF methods are compared experimentally;37 however, the choice of the initial target
parameters is not described. The unknown input UKF was also studied on a large-scale concrete shear wall
structure.38 Although the importance of the initial target parameters was discussed for the numerical tests, the
initial parameters for the experimental test were chosen based on previous studies.

The importance of the initial guesses for the target parameters is emphasized in most applications of the UKF;
yet, to the authors’ knowledge, no nondestructive and practical solutions have been proposed. Moreover, the
coupling effect of the initial state covariance matrix and process and measurement noise covariance matrices are
not studied comprehensively. This gap exists in spite of the fact that starting the algorithm with arbitrarily chosen
parameters may result in the numerical divergence of the process. In this paper, we aim to provide guidelines
regarding an optimal and robust system identification with UKF. The joint effect of the initial target parameters
and algorithm noise covariance matrices should be investigated in order to be able to diminish the possibility of
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the algorithm divergence. We demonstrate the impact of the noise parameters on the outcome of the parameter
identification on a toy example. Subsequently, we propose a Bayesian optimization method to identify the optimal
set of the noise parameters given different sets of initial target parameters. In order to apply this framework to an
online parameter identification of a five-story shear frame, a comprehensive numerical analysis of the model is
performed. Different sets of initial guesses for the target parameters with different levels of confidence are con-
sidered, and their effect on the result of the parameter identification is analyzed. To model the nonlinear behavior
of the structure, we use the phenomenological BW model, which has been shown to be a suitable model in this
area.12,39,40 Finally, the application of the proposed framework is validated with an experimental parameter
identification of a five-story steel frame.

The remainder of this article is organized as follows: “Uncented Kalman filter in system identification” section
briefly describes the UKF formulation and the steps required for a successful implementation; “Optimization of
UKF initial conditions” section explains the proposed method for the identification of optimum initial conditions
for the UKF algorithm; “Premilinary steps for the implementation of the UKF in shake table tasting” section
shows the implementation of the proposed steps to a five-story experimental model; “Parameter identification of
the experimental model with UKF” section discusses the results of the UKF implementation on the experimental
model with and without taking the preliminary steps; and the final section states the concluding remarks.

Unscented Kalman filter in system identification

Kalman filter is commonly used for state estimation of systems given noisy observations. To identify the hysteretic
behavior of a structural system based on a parametric model, the set of target parameters is appended to the state
vector. Considering the system state parameters in vector UðtÞ and the structural target parameters in vector /, the
continuous state-space formulation for the system identification of a nonlinear dynamic system can be written in
the following form

_X ¼ f X tð Þ; l tð Þ; w tð Þð Þ (1)

Y tð Þ ¼ hðX tð Þ; v tð ÞÞ (2)

where the state-vector X tð Þ ¼ fU tð Þ; /g, YðtÞ represents the measurements, l is the input loading, and w and v are
system process and measurement noise vectors, respectively, and are assumed to be Gaussian white noise with
zero mean. The state equations can be converted to discrete format as follows

Xk ¼ F Xk$1; lk$1ð Þ þ wk (3)

Yk ¼ H Xkð Þ þ vk (4)

In the rest of the article, the covariance matrices for the process and measurement noise vectors are shown byQ
and R, respectively. Function F can be obtained from the following equation

F Xk; lkð Þ ¼ Xk þ
Z ðkþ1ÞDt

kDt
f XðtÞ; lðtÞð Þ dt (5)

where Dt is the time step. The integration can be solved by numerical methods such as the fourth-order Runge–
Kutta method. In each time step, the sigma points are computed for the state parameters to predict the a priori
state vector. The sigma points are chosen such that the weighted average and covariance of the propagated points
capture the true mean and covariance of the state in the next step. The sigma points can be calculated as

vk ¼ X̂k X̂k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ kÞPk

p
X̂k $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ kÞPk

ph i
(6)

where L is the length of the state-vector X and k is a scaling factor that can be determined as described in Kandepu
et al.9 With the calculation of the sigma points, the time update step can be initiated. In this stage, each sigma
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point is propagated using the nonlinear function F obtained from equation (5). The a priori state estimation and
its covariance can then be computed by weighted averaging of the propagated sigma points

vkþ1jkð Þi ¼ F ðvkÞi; lk
! "

(7)

X̂
%
kþ1 ¼

X2L

i¼0
WðmÞ

i vkþ1jkð Þi (8)

P%
kþ1 ¼

X2L

i¼0
WðcÞ

i vkþ1jkð Þi % X̂
%
kþ1

h i
vkþ1jkð Þi % X̂

%
kþ1

h iT
þQ (9)

where the dash superscript denotes the a priori stage. Likewise, using the predicted state vectors, the predicted
measurements associated with each sigma point and its covariance matrix can be computed

wkþ1jk
! "

i
¼ H ðvkþ1jkÞi; lkþ1

! "
(10)

Ŷ
%
kþ1 ¼

X2L

i¼0
WðmÞ

i wkþ1jk
! "

i
(11)

PYY
kþ1 ¼

X2L

i¼0
W

ðcÞ
i wkþ1jk

! "
i
% Ŷ

%
kþ1

h i
wkþ1jk
! "

i
% Ŷ

%
kþ1

h iT
þ R (12)

where the proper choice ofW
cð Þ
i andW

mð Þ
i parameters can be found at Kandepu et al.9 Although the noise matrices

are added to the state and measurement matrices directly, an augmented state vector can also be considered to
propagate the noise through the nonlinear equations as in Kandepu et al.9 The augmented state vector increases
the computational costs, and therefore, we preferred to use the former method here.

Next, the measurement update step can be executed using the Kalman gain factor. This factor determines the
ratio by which the process calculations and sensor measurements are weighted and applied to the calculation of
the next step state vector

PXY
kþ1 ¼

X2L

i¼0
W

ðcÞ
i vkþ1jkð Þi % X̂

%
kþ1

h i
wkþ1jk
! "

i
% Ŷ

%
kþ1

h iT
(13)

fkþ1 ¼ PXY
kþ1 PYY

kþ1

# $%1
(14)

X̂kþ1 ¼ X̂
%
kþ1 þ fkþ1 Ykþ1 % Ŷ

%
kþ1

# $
(15)

Pkþ1 ¼ P%
kþ1 % fkþ1P

YY
kþ1f

T
kþ1 (16)

where f is the Kalman gain matrix.
Prior to implementing the UKF process, the initial state vector X̂0, the corresponding initial state covariance

matrix P0, the process noise covariance matrix Q, and the measurement noise covariance matrix R should be
determined. The selection of suitable entries for these matrices is crucial to the performance of the algorithm.
The proposed Bayesian approach for optimal selection of these parameters is described in the next section.

Optimization of UKF initial conditions

During the UKF implementation, the process and measurement noise significantly affect the performance of the
parameter identification.26 These noise values determine the rate of convergence in the state parameters. Diagonal
elements of matrix Q provide constant values which are added to the state covariance matrix in each step
(equation (9)) to prevent a null Kalman gain. These values are non-zero for state elements that have no constant
true values, such as the system parameters in vector U, and are often considered zero for the target parameters.30

However, in parameter identification studies, we aim to fit a parametric model to experimental components, and
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we may not expect a single set of values to be the only correct answer for the defined target parameters. Therefore,
for better robustness, we also consider non-zero entries for the diagonal elements of Q that correspond to the
elements of /. The process noise vector has the same units as the state vector, and to simplify the formulations, we
formed it as

w ¼ 1
/0

! "
(17)

where vector 1 has the same size as U and /0 contain the initial values considered for the target parameters. The
process noise covariance matrix can then be tuned by considering a single parameter wf as

Q ¼ 10"wfIw2 (18)

where I is the identity matrix. The noise parameters are assumed to be Gaussian white noise vectors, and thus, the
off-diagonal elements of the covariance matrices are zero. Similarly, P0 is a diagonal matrix where each element
reflects the initial uncertainty of the state parameters.30 Therefore, since the uncertainty for the initial vector U is
zero and we expect the level of uncertainty in the parameters of / to be correlated with the initial guesses for these
parameters, the following matrix can be considered for P0

P0 ¼ 10"pfI
0
/0

! "
(19)

At the same time, matrix R compensates for the errors in the measurement due to sensor noise and error.
Therefore, consistent with the formulations of the Q and P0, the measurement noise covariance matrix can be
formed as

R ¼ Iv2 (20)

where v is a vector containing the standard deviation of the sensor noise for all measurement channels.
Measurement noise is calculated according to the quality of data acquisition. Lower levels of measurement
noise result in higher Kalman gains and subsequent increases in the rate of convergence. One should be careful
not to choose the measurement noise parameters too small since it opens up the possibility of divergence in the
process.

Aside from the noise parameters discussed above, the performance of UKF is affected by the initial guesses
about the target parameters, /0. An illustrative example is provided in the next section.

The influence of the initial parameters on the UKF performance

In this section, the influence of the /0 parameters is shown by applying UKF to a simplified parameter identi-
fication problem. In this example, UKF is utilized to identify the target parameters a and b from the noisy
measurements of the function y ¼ asinðbtÞ. The response is obtained by considering a ¼ 2, b ¼ 3, and
t ¼ 0 : 0:01 : 10. To visualize the effect of the initial parameters, a range of different wf and pf as well as three
initial guesses with different levels of accuracy about the target parameters are considered (Table 1). Gaussian
white noise with zero mean and standard deviation of 10"2 is added to the observation signal in all cases.

The results of the parameter identification are evaluated by calculating the root mean square (RMS) error of
the distance from the identified parameters to the true values of the target parameters. Figure 1 shows the RMS
values for different noise and initial parameters. It can be observed that, in all three cases, we only obtain accurate

Table 1. Different initial guesses for the illustrative example.

Case 1: true Case 2: close Case 3: inaccurate

/0 parameters a ¼ 2, b ¼ 3 a ¼ 2:4, b ¼ 2:4 a ¼ 0:2 , b ¼ 15
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results for certain combinations of noise parameters. If wf and pf are chosen too large, the UKF process prac-
tically ends up delivering the same parameters as the initial guesses, and hence we observe the accurate predictions
at the top right corner of the Case 1. Moreover, as the initial guesses for the state parameters draw apart from the
true values in Cases 2 and 3, the region in which we obtain accurate results shrinks. This observation emphasizes
the need for carefully selecting the initial noise parameters in situations where likely guesses about the initial target
parameters are difficult to make.

The proposed optimal initialization process for UKF

Based on the observations from the illustrative example in the previous section, it can be inferred that the need for
an inclusive approach determine the initial conditions of the UKF algorithm is crucial. Therefore, in this man-
uscript, a framework that is designed to ensure a successful UKF parameter identification is proposed.

Parameter identification is usually performed with phenomenological models where parameters do not convey
physical meanings. Therefore, the proposed method begins with creating a simple constitutive model, such as a
bilinear model, to get a good sense regarding the initial guesses about the target parameters. This model is created
with the knowledge about the basic properties of the experimental specimen including geometric dimensions, yield
stress, mass, etc. Then, a phenomenological model is fitted to the numerical constitutive model in an offline
process. The identified parameters for this model are stored to be used as the initial guesses for the final exper-
imental testing. Next, the virtual emulation of the experiment is performed by considering the fitted phenome-
nological model as the actual experimental specimen and intentionally distancing the guesses about the initial
target parameters from the identified parameters. These inaccurate guesses are planned to account for the uncer-
tainty of the guessed initial target parameters in the actual experiment. By emulating the experiment, the noise
combinations that perform well for inaccurate initial target parameters can be identified. The sets of combinations
can be divided into different zones. Based on the confidence in the proximity of the fitted model to the exper-
imental specimen, the operator can select either a set of noise parameters from an “Accurate” zone or a “Robust”
zone. Parameters in the Accurate zone are intended to deliver the best UKF performance, provided that the initial
guesses are chosen close to the actual parameters. On the contrary, the Robust zone provides noise parameters
that prevent the divergence of the algorithm for incautiously guessed initial target parameters. Since every con-
dition in the experimental test is considered in the simulation, the authors hypothesize that the noise combinations
found for the emulated model will adequately fit the experiment.

The identification of the suitable noise parameters requires tedious virtual implementations of the UKF process
on the initially fitted phenomenological model. Therefore, to reduce the computational costs, a Bayesian optimi-
zation algorithm is utilized to find the mentioned zones. Details of the Bayesian optimization are described in the
next section.

Bayesian optimization of UKF algorithm parameter. It has been customary to obtain a reasonable set of noise param-
eters h ¼ ½Q; R; P0# by trial and error in the current literature. To address the existing gap, the authors propose a
Bayesian optimization with the Gaussian process approximation41,42 strategy to find the best set of parameters in
this study.

We formulate Bayesian optimization to find the global minimum of the objective function over a compact set
C, which consists of a range of different combinations for the parameters in h: The RMS value of the difference

Figure 1. Results of the UKF implementation on the illustrative example with different initial conditions. (a) Case 1, (b) Case 2, and
(c) Case 3.
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between the measured displacement and the displacement obtained from the final identified BW parameters is
considered as the objective function. This function can be optimized with the following equation

min
h2C

gðhÞ (21)

where g calculates the RMS value. Since the problem is non-parametric, the objective function should be queried
at all instances of Q, R, P0 in order to find the extremum. However, each query is equivalent to performing the
computationally expensive UKF emulation. In contrary to the grid search approach, Bayesian optimization
provides the best “next sample” in order to reduce the number of total function evaluations.

This procedure starts with choosing a few instances randomly and fitting Gaussian processes to the observa-
tions. Then, an exploration–exploitation trade-off should be considered for the choice of the next sampling point.
The exploration contributes to areas with high uncertainty, and the exploitation takes advantage of the points that
are more likely to be closer to the extremum. The trade-off can be managed in the form of an improvement-based
acquisition function. The Bayesian approach suggests using the following acquisition function which automati-
cally balances the trade-off

EIðhÞ ¼ lðhÞ $ gðhþÞ
! "

XðZÞ þ rðhÞxðZÞ if rðhÞ > 0
0 if rðhÞ ¼ 0

#
(22)

Z ¼ lðhÞ $ gðhþÞ
rðhÞ

(23)

where l is the mean and r is the standard deviation of the Gaussian processes at h. Operators X and x represent
the cumulative distribution function and PDF of the parameters, respectively, and hþ ¼ argmaxhi2h1:tgðhiÞ. The
best “next sample” point can be obtained by maximizing the EI function. More details and derivation of equations
can be found at Brochu et al.43

For the sake of simplicity and better visualization of the results, the measurement noise parameters are con-
sidered constant in this article and are determined based on the measured noise from the sensors. However, one
can include R in the Bayesian optimization for higher accuracy. The proposed steps for achieving a set of opti-
mum preliminary conditions for the final experiment are summarized in the flowchart shown in Figure 2.

Preliminary steps for the implementation of the UKF in shake table testing

The proposed approach is implemented in the experimental parameter identification of a five-story shear frame.
The preliminary steps prior to the experimental testing are described in this section, and the experimental

Offline  
fitting 

Experimental 
specimen setup 

Constituve model 
Set of initial target parameters 

for the phenomenological 
model  

Dimensions and 
previous knowledge 

Experiment 

Determination of 
Sensors noise levels 

, and input 
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Robust zone 

High  

Low  

Disturbed parameters 

Figure 2. Flowchart of the proposed approach.
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procedure is discussed in “Parameter identification of the experimental model with UKF” section. In the follow-
ing subsections, the state-space formulation for parameter identification of an MDOF BW model is derived, and
the required steps before the final experiment follow next.

Equation of motion for a nonlinear MDOF system

As stated in the “Introduction” section, in this study, the nonlinear behavior of steel material is modeled by a
classical BW model, and degradation and pinching effects are neglected. The equation of motion for an MDOF
nonlinear system can be considered as follows

M€u þ C _u þ S ¼ lðtÞ (24)

where M and C are the mass and damping matrices, and u, _u, and €u are displacement, velocity, and acceleration
vectors, respectively. For the classical BW model, the restoring force of the ith story Si can be formed as

Si u; zð Þ ¼ aikiðui % ui%1Þ þ 1% aið Þkizi (25)

where

_zi ¼ Aið _ui % _ui%1Þ % bi _jui % _ui%1jjzijn%1zi % cið _ui % _ui%1Þjzijn (26)

where zi is the hysteresis component, ki is the stiffness coefficient, and ai 2 ½0; 1' indicates the level of the
nonlinearity of the system. Ai, bi, n, and ci are the coefficients determining the shape of the hysteresis loops.
The effect of each parameter on the shape of the hysteresis cycles can be found in Chatzi et al.36 and Ou44

Considering the equation of motion for a q-story shear building with identical lumped masses m located at
floors, the mass matrix can be considered as mIq(q and the damping matrix as

c1 þ c2 %c2 ) ) ) 0

. .
.

..

.
%ci ci þ ciþ1 %ciþ1

..

.

. .
.

0 ) ) ) %cq cq

2

66666664

3

77777775

q(q

(27)

Assuming identical components, the damping matrix can be formed using only two parameters c1 and c2 as

c1 þ c2 %c2 ) ) ) 0

. .
.

..

.
%c1 c1 þ c2 %c1

..

.

. .
.

0 ) ) ) %c1 c2

2

66666664

3

77777775

q(q

(28)

Therefore, the equations of motion can be decoupled as follows

m €u1 þ ðc1 þ c2Þ _u1 % c2 _u2 þ S1 % S2 ¼ l1 tð Þ
..
.

m€ui þ ðc1 þ c2Þ _ui % c1 _ui%1 þ _uiþ1ð Þ þ Si % Siþ1 ¼ li tð Þ (29)

..

.

m €uq þ c2 _uq % c1 _uq%1 þ Sq ¼ lq tð Þ

Equation set (29) can be used for the finite element model updating of a nonlinear shear building.
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State space formulation of the MDOF system

In order to formulate the dynamic response problem of an MDOF structure into nonlinear parameter identifi-
cation formulation, the state-space form of the MDOF equation of motion is constructed. The floor accelerations
are considered as measurements, while the ground acceleration signal is utilized as the input control to the system.
The state vector consists of the system-state variables followed by the BW parameters

X ¼ U tð Þ; /
! "

¼ u1$q; _u1$q; z1$qf g; A1$q; b1$q; c1$q; a1$q; c1$q; k1$q
! "! "

(30)

The nonlinear state-space equation can be written as

_X ¼ f X tð Þ; l tð Þð Þ (31)

In the case of seismic loading, the input l is defined as

lðtÞ ¼ %€ugmr (32)

where €ug is the ground acceleration and r is the displacement transformation vector. Considering equations (29),
equation (31) can be written as

f X tð Þ; l tð Þð Þ ¼

_u

€u
_z
_/

2

6664

3

7775 ¼

_u

m%1 l1 tð Þ % c1 þ c2ð Þ _u1 þ c2 _u2 % k1 a1u1 þ 1% a1ð Þz1ð Þ þ k2 a2ðu2 % u1Þ þ ð1% a2Þz2ð Þ
# $

..

.

m%1 li tð Þ % ci _ui% _ui%1ð Þ % ciþ1ð _ui% _uiþ1Þ % ki aiðui % ui%1Þ þ 1% aið Þzi
# $

þ kiþ1 aiþ1ðuiþ1 % uiÞ þ ð1% aiþ1Þziþ1ð Þ
# $

..

.

m%1 lq tð Þ % cqð _uq% _uq%1Þ % kq aqðuq % uq%1Þ þ 1% aqð Þzq
# $# $

A1 _u1 % b1j _u1jjz1j
n%1z1 % c1 _u1jz1j

n

..

.

Aið _ui % _ui%1Þ % bij _ui % _ui%1jjzijn%1zi % cið _ui % _ui%1Þjzijn

..

.

Aqð _uq % _uq%1Þ % bqj _uq % _uq%1jjzqjn%1zq % cqð _uq % _uq%1Þjzqjn

06q$1

2

6666666666666666666666666664

3

7777777777777777777777777775

(33)

At the same time, the acceleration measurement vector can be calculated as follows:

Y ¼ h XðtÞ; lðtÞð Þ (34)

where

Y ¼ €u % lðtÞ
m

¼

m%1 % c1 þ c2ð Þ _u1 þ c2 _u2 % k1 a1u1 þ 1% a1ð Þz1ð Þ þ k2 a2ðu2 % u1Þ þ ð1% a2Þz2ð Þ
# $

..

.

m%1 %ci _ui% _ui%1ð Þ % ciþ1ð _ui% _uiþ1Þ % ki aiðui % ui%1Þ þ 1% aið Þzi
# $

þ kiþ1 aiþ1ðuiþ1 % uiÞ þ ð1% aiþ1Þziþ1ð Þ
# $

..

.

m%1 %cqð _uq% _uq%1Þ % kq aqðuq % uq%1Þ þ 1% aqð Þzq
# $# $

2

66666664

3

77777775

(35)
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In case the same components are used for all stories of the shear model, the vectors of BW parameters in vector
/ can be substituted with scaler values.

Experimental model

The experimental model represents a five-story shear building with steel columns. This specimen is manufactured
with identical floor masses and column components. The details of the floor sections and columns are shown in
Figure 3. The contributing mass of each story is 23.2 kg, and the total linear stiffness of the components in each
floor is approximated as 1.82e5 kN/m.

At this stage, the measurement noise levels are determined in idling situations. The standard deviations of the
five acceleration sensors were measured in units of m=s2 as v ¼ f0:0024; 0:0023; 0:0018; 0:0013; 0:0022g.

Identification of the /0 parameters

A preliminary numerical analysis is required to obtain reasonable guesses for the /0 parameters and optimal set of
noise parameters Q and P0 for the experimental test. Therefore, a bilinear model with kinematic hardening is
developed with regards to the geometry and materials of the experimental setup. Uniaxial cold and hot tension
tests were performed on the steel material batch used in the lab manufacturing. The numerical model uses a
simplified bilinear Steel01 material, which is created in OpenSees with a yield stress of 460MPa and the modulus
of elasticity of 200GPa. The strain hardening ratio is assumed to be 5% of the initial elastic tangent. The enforced
displacement time history and the cyclic behavior of the numerical model can be seen in Figure 4.

Figure 3. The five-story building model.
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Figure 4. The behavior of the constitutive bilinear model: (a) displacement input and (b) hysteretic cycles.
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Based on the numerical response of the 1-DOF system, a set of BW parameters are fitted to the bilinear model,
as shown in Figure 5(a). In order to simulate the uncertainty of initial state parameters in the experimental test,
inaccurate /0 parameter sets are also considered. The two other /0 vectors are tagged as “Confident estimation”
(Figure 5(b)) and “Inaccurate estimation” (Figure 5(c)). The second case represents a rough estimation of the
actual parameters, which might be practical for complex models. And the third case represents a careless selection
of the parameters that create reasonable hysteresis cycles despite being far from the actual case. The full set of the
considered /0 vectors for each case is shown in Table 2.

The parameter n in a BW model is an exponential constant, and a minor variance may result in the divergence
of the algorithm. This issue worsens in the presence of signal noise, and it is beneficial to consider n as a constant
in practice.45 Therefore, obtained from the offline fitting of the BW parameters to the numerical bilinear model, n
is considered to be 1.65 and will not be considered a target parameter.

Optimization of the UKF noise parameters

To identify a set of optimal noise parameters for the experimental test, different combinations are tested on
emulated test setups, and different zones are identified with Bayesian optimization. First, a time history analysis
with the specified ground motion is performed on the fitted BW model (Case 1 in Table 2), and acceleration
responses are recorded. Then, different rounds of UKF are performed using different /0 parameters of Table 2 as
initial guesses for the target parameters and the acceleration responses of the Case 1 as measurements. The
excitation is 30 s of a scaled El-Centro earthquake both in time and amplitude with a maximum amplitude of
0.65 g and with a time step of 0.005 s (Figure 6).

The measured signals in the virtual emulation are contaminated with white Gaussian noise at the same level as
the measured noise from actual sensors in vector v. The matrix R is then calculated according to equation (20). In
order to find the best noise combinations for matrices Q and P0, optimal sets of wf and pf are solved with a two-
dimensional Bayesian optimization, as explained in “Bayesian optimization of UKF algorithm parameter”
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Figure 5. The comparison between cyclic behaviors of the considered BW models with the bilinear model. (a) Case 1, (b) Case 2,
and (c) Case 3.

Table 2. The values of the initial guesses for the target parameters of each case.

/0 parameters Case 1: true Case 2: confident Case 3: inaccurate

A 0.84 0.67 1.85
b 1395.21 1116.2 2790.41
c 40.44 32.35 55.00
a 0.09 0.06 0.09
c1 73.68 58.94 221.04
c2 91.11 72.88 27.33
K 182,000.00 145,600.00 18,200.00
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section. The considered domain for wf ranges from 0 to 25 with 0.5 increments, and pf is chosen to range from –1
to 10, totaling 600 combinations. To start the Bayesian optimization process, 30 combinations are randomly
chosen, and the performance of the parameter identification is evaluated. Then, these points are considered as the
input to the Gaussian processes, and the next sampling point is calculated from equation (22). The process
continues until a convergence to the minimum value achieves.

The outcome of each optimization process is presented in a 2D domain showing all the combinations of the
noise parameters considered. In each figure, the yellow-colored spots show the initial 30 points. The other spots
marked as green indicate the points suggested by Bayesian optimization for evaluation, and the surface shows the
mean value for the fitted Gaussian process model. For these surfaces, areas with lower RMS errors are illustrated
with darker colors. Spots marked with a red symbol denote the divergence of the process in that noise combina-
tion. The optimization solver is trained to avoid the red spots in order to focus on areas where the algorithm
converges with better performance.
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Figure 7. Illustration of individual sample points, and the path suggested by Bayesian optimization. (a) Case 1, (b) Case 2, and (c)
Case 3.
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Figure 8. The domain considered for wf and pf and the optimization results for different cases. (a) Case 1, (b) Case 2, and (c) Case 3.
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Figure 6. The time series of the El-Centro earthquake excitation.
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The optimization path is shown in terms of RMS value in Figure 7 and also in Figure 8 as a 2D map. Figure 7
shows the suggestions of the Bayesian optimization through the convergence to the baseline minimum, which is
the global optimum in the chosen domain. Comparing the minimum identification errors (the red-dashed lines in
Figure 7) among the three cases, it can be inferred that the minimum error found significantly increases with a
worse choice of the initial target parameters.

Figure 8 shows that a Robust zone can be described by a triangular shape for all three cases. Although the
performance is better for Cases 1 and 2, in this zone, the process converges regardless of the initial target
parameters. This zone is enclosed with cyan dash-dotted lines in Figure 8. Moreover, a smaller trapezoid area
can be marked for the first and second cases where the error is significantly lower than other areas and can be
considered as the Accurate zone. It should be pointed out that choosing a noise combination in this area will result
in the divergence of the process for Case 3 where the initial target parameters are chosen carelessly. The Accurate
zone is enclosed with magenta-colored dashed lines in Figure 8.

Parameter identification of the experimental model with UKF

The experimental model is mounted on a 6-DOF shake table in the Intelligent Infrastructure System Lab (IISL;
https://engineering.purdue.edu/IISL/) at Purdue University for the dynamic testing. In this setup, the El-Centro
ground motion is imposed laterally to the building’s axis. Accelerometers and optical sensors are used to measure
the absolute responses of the frame, as indicated in Figure 9. The data acquisition system recorded the structural
acceleration responses with a sampling frequency of 2048Hz. Also, the displacement responses are measured
using a 6D krypton optical tracking system, capturing the position of LED sensors on model’s base and floors.
The krypton system recorded the responses with a sampling frequency of 60Hz.

To test the UKF performance with optimized algorithm parameters determined from the numerical study, we
only need to use the target parameters of Case 1 in Table 2 as /0 and a set of noise parameters from the identified
zones. However, to show the effect of the preliminary steps on the outcome of the parameter identification of the
experimental model, the UKF process is also performed with different initial conditions. First, a noise combina-
tion is chosen from the Accurate zone for the first two cases of /0 parameters with wf ¼ 14 and pf ¼ 7, and
second, a combination from the Robust zone for the third case of the initial state parameters as wf ¼ 8 and pf ¼ 8.
Displacement responses of the experimental tests are shown in the form of the time history responses of the first
and fifth stories of the model. Moreover, the responses of the numerical simulations with initial state parameters
and the parameters that the UKF process converged to are plotted over the experimental signals. The displace-
ment signals from the initial guesses and identified parameters are compared to the experimental signal for Case 1
in Figures 10 and 11, Case 2 in Figures 12 and 13, and Case 3 in Figures 14 and 15. Also, the response spectrums
in frequency domain and the force-displacement graphs of the first story components for all cases are shown in
Figures 16 and 17, respectively.

The quantitative improvements obtained from UKF identified parameters over the initial /0 parameters are
shown in Table 3. Three different criteria are defined to measure the performance, namely, the difference between
the time histories and power spectrums in terms of the RMS error, and the dominant frequency of the displace-
ment response. The values in Table 3 are averaged over all stories of the model. Some values are not available for
Case 3 because of the divergence of the time history analysis for the initial parameter set. From Figures 10 and 11,
it can be inferred that the initial parameter set for Case 1 can accurately imitate the responses of the actual

Figure 9. Shake table test configuration.
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Figure 11. Displacement response of the fifth story of the model for Case 1 of the initial BW parameters.

Figure 12. Displacement response of the first story of the model for Case 2 of the initial BW parameters.
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Figure 13. Displacement response of the fifth story of the model for Case 2 of the initial BW parameters.

Figure 10. Displacement response of the first story of the model for Case 1 of the initial BW parameters.
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Figure 15. Displacement response of the fifth story of the model for Case 3 of the initial BW parameters.
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Figure 16. The amplitude frequency spectrums of the response displacement. The top row shows the responses of the first story,
and the bottom row shows the fifth story responses. (a) Case 1, (b) Case 2, and (c) Case 3.

Figure 14. Displacement response of the first story of the model for Case 3 of the initial BW parameters.
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experimental test. Therefore, we can infer that fitting a BW model to the assumed constitutive model has guided
us to a very close estimation of the best fit of a BW set. Nevertheless, the UKF process has improved the accuracy
further according to Table 3, and this improvement can be seen in the magnified plots of Figures 10 and 11. On
the other hand, Figures 12 and 13 show that the small disturbance in the initial target parameters of Case 2 can
change the dynamic behavior of the model significantly. Similarly, the UKF algorithm converged to a set of BW
parameters that follow the experimental signals carefully. Finally, although the time history analysis diverges at
the very early stages of the process with /0 parameters of Case 3, the UKF process still converges to a set of BW
parameters, that, except the damping ratio, can model the behavior of the experimental model (Figures 14
and 15). In fact, same as Cases 1 and 2, the identified dominant frequency for Case 3 is still 98% accurate,
according to Table 3. This observation indicates that choosing a noise combination in the Robust zone will result
in the convergence of the UKF process, though the eventual results may not be optimal.

To find out the performance of the UKF algorithm on the experimental testing given other noise combinations,
the results of a grid search for all the combinations of the wf and pf parameters are shown in Figure 18.

Table 3. Rate of improvement in parameter identification with UKF in different cases.

Case

RMS time history RMS response spectrum Signal’s dominant frequency (Hz)

Initial Final improvement Initial Final improvement Experimental Initial Final

1 0.0025 0.0021 16.0% 0.2197 0.1107 49.6% 3.60 3.73 3.67
2 0.0087 0.0021 75.9% 0.6852 0.1101 83.9% 3.60 2.93 3.67
3 1 0.0039 1 1 0.2547 1 3.60 n/a 3.67
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Figure 18. Performance of the UKF algorithm on the experimental test setup given different initial target parameters. The borders
of the robust and accurate zones, as well as the chosen combinations for the experimental testing are shown on top of the
experimental results. (a) Case 1, (b) Case 2, and (c) Case 3.
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Figure 17. The hysteresis behavior of the first story component under seismic loading. (a) Case 1, (b) Case 2, and (c) Case 3.
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The heatmap surface shows the RMS value for each combination. Also, the borders of the zones identified in the
numerical analysis and the chosen combinations based on those zones are shown in this figure. It can be seen that
the heatmaps show good correlations with the result of the Bayesian optimization in Figure 8. Therefore, the
zones are valid in the experimental analysis as well, and the chosen combinations for the experimental testing
performed earlier are well within the aimed areas.

Finally, it can be argued that the Bayesian optimization of the UKF parameters can help preventing the
divergence of the process in the expensive experimental tests. Also, if good chances of convergence with a high
performance are required, one should obtain a decent estimation of the initial target parameters.

Conclusion

Parameter identification using the UKF algorithm is a tricky task and needs careful attention to the details.
Several parameters contribute to the outcome of the algorithm, and in case of experimental testing, a preliminary
study should be performed in order to obtain a reasonable set of parameters to start the process with. In this
paper, a Bayesian optimization approach for finding the initial parameters of UKF algorithm is proposed and
studied. Utilizing the optimized results, a combination of the noise parameters is chosen, and the parameter
identification process is implemented on a five-story model, experimentally. Specific findings and contributions
are summarized as follows:

1. The hypothesis is proved that the process noise covariance matrix as well as the initial state covariance matrix
induces large variations in the outcome of the UKF algorithm, and poor judgment may result in the divergence
of the process.

2. Given different initial BW model parameters, it is validated that the Bayesian optimization can automatically
select the best noise combination required to run the UKF. The findings yield the same optimal identification
performance as compared to the combinations determined from a grid search approach.

3. The optimization approach demonstrates that a trade-off exists between the robustness of the UKF algorithm
and the final identification accuracy. Therefore, a suitable choice of the initial state parameters can avoid the
divergence of the UKF process, but furthermore, if a high accuracy outcome is desired, choosing a splendid
combination for the noise parameters is undeniable.

4. Meanwhile, the minimum identification error, which is the theoretical best identification performance that can
be achieved, is affected by the initial guesses for the target parameters of the BWmodel. If the initial guesses are
closer to the true parameters, the possible minimum error is smaller. Therefore, the selection of initial BW
parameters is more important and should be carefully managed.
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