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ABSTRACT
Large tensor (multi-dimensional array) data routinely appear nowadays in a wide range of applications, due
to modern data collection capabilities. Often such observations are taken over time, forming tensor time
series. In this articlewepresent a factormodel approach to the analysis of high-dimensional dynamic tensor
time series andmulti-categorydynamic transport networks. This article presents twoestimationprocedures
along with their theoretical properties and simulation results. We present two applications to illustrate the
model and its interpretations.
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1. Introduction

Asmodern data collection capability has led tomassive accumu-
lation of data over time, high-dimensional time series observed
in tensor form are becoming more and more commonly seen
in various fields such as economics, finance, engineering, envi-
ronmental sciences, medical research, and others. For exam-
ple, Figure 1 shows the monthly import–export volume time
series of four categories of products (Chemical, Food, Machin-
ery and Electronic, and Footwear and Headwear) among six
countries (the United States, Canada, Mexico, Germany, the
United Kingdom and France) from January 2001 to December
2016. At each time point, the observations can be arranged
into a three-dimensional tensor, with the diagonal elements for
each product category unavailable. This is a part of a larger
dataset with 15 product categories and 22 countries which we
will study in detail in Section 7.1. Univariate time series deals
with one item in the tensor (e.g., Food export series of the
United States to Canada). Panel time series analysis focuses
on the co-movement of one row (fiber) in the tensor (e.g.,
Food export of the United States to all other countries). Vector
time series analysis also focuses on the co-movement of one
fiber in the tensor (e.g., Export of the United States to Canada
in all product categories). Wang, Liu, and Chen (2019), Chen
and Chen (2019), and Chen, Tsay, and Chen (2019) studied
matrix time series. Their analysis deals with a matrix slice of
the tensor (e.g., the import–export activities between all the
countries in one product category). In this article, we develop
a factor model for the analysis of the entire tensor time series
simultaneously.

The import-export network belongs to the general class of
dynamic transport (traffic) network. The focus of such a net-
work is the volume of traffic on the links between the nodes on
the network. The availability of complex and diverse network

CONTACT Rong Chen rongchen@stat.rutgers.edu Department of Statistics, Rutgers University, Piscataway, NJ 08854
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

data, recorded over periods of time and in very large scales,
brings new opportunities of interesting applications as well as
challenging problems inmodels,methods and theory (Aggarwal
and Subbian 2014). For example, weekly activities in different
forms (e.g., text messages, email, phone conversations, and
personal interactions) and on different topics (politics, food,
travel, photo, emotions, etc.) among friends on a social network
form a transport network similar to the import–export network,
but as a four-dimensional tensor time series. The number of
passengers flying between a group of cities with a group of
airlines in different seat classes on different days of the week
can be represented as a five-dimensional tensor time series. In
Section 7.2 we will present a second example on taxi traffic
patterns in New York city. With the city being divided into 69
zones, we study the volume of passenger pickups and drop-offs
by taxis among the zones, at different hours during the day as a
daily time series of a 69 × 69 × 24 tensor.

In the existing literature, most statistical inference meth-
ods in network analysis are confined to static network data
such as social network (Snijders 2006; Hanneke, Fu, and Xing
2010; Goldenberg et al. 2010; Zhao, Levina, and Zhu 2012;
Kolaczyk and Csárdi 2014; Phan and Airoldi 2015; Ji and Jin
2016). However, most networks are dynamic in nature. Thus, an
important challenge is to develop stochastic models/processes
that capture the dynamic dependence and dynamic changes of a
network.

Besides dynamic traffic networks, tensor time series are
observed in many other applications. For example, many eco-
nomic indicators such as GDP, unemployment rate and infla-
tion index are reported quarterly by many countries, forming a
matrix-valued time series. FunctionalMRI produces a sequence
of three-dimensional brain images (forming three-dimensional
tensors) that changes with different stimulants. Temperature
and salinity levels observed at a regular grid of locations and a set
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Figure 1. Monthly import-export volume time series of four categories of products (Chemical, Food, Machinery and Electronic, and Footwear and Headwear) among six
countries (United States, Canada, Mexico, Germany, UK and France) from January 2001 to December 2016.

of different depth in the ocean form three-dimensional tensors
and are observed over time.

Such tensor systems are often very large. Thirty economic
indicators from 30 countries yield total 900 individual time
series. Import–export volume of 15 product categories among
20 countries makes up almost 6000 individual time series.
FMRI images often consist of hundreds of thousands of voxels
observed over time.

The aim of this article is to develop a factor model to sys-
tematically study the dynamics of tensor systems by jointly
modeling the entire tensor simultaneously, while preserving
both the tensor structure and the time series structure. This
is different from the more conventional time series analysis
which deals with scalar or vector observations (Box and Jenkins
1976; Tong 1990; Brockwell and Davis 1991; Härdle, Chen,
and Luetkepohl 1997; Shumway and Stoffer 2002; Fan and Yao
2003; Tsay 2005; Tsay and Chen 2018) and multivariate time
series analysis (Hannan 1970; Lütkepohl 1993), panel time series
analysis (Geweke 1977; Sargent and Sims 1977; Hsiao 2003;
Baltagi 2005) and spatial–temporal modelling (Bennett 1979;
Cressie 1993; Handcock and Wallis 1994; Wikle, Berliner, and
Cressie 1998; Mardia et al. 1998; Stein 1999; Wikle and Cressie
1999; Irwin, Cressie, and Johannesson 2000; Stroud,Muller, and
Sanso 2001; Woolrich et al. 2004).

We mainly focus on the cases where the tensor dimension
is large. When dealing with many time series simultaneously,
dimension reduction is one of the main approaches to
extracting common information from the data without being

overwhelmed by the idiosyncratic variations. One of the most
powerful tools for dimension reduction in time series analysis
is the dynamic factor model in which “common” information
is summarized into a small number of factors and the co-
movement of the time series is assumed to be driven by these
factors and their inherited dynamic structures (Chamberlain
1983; Peña and Box 1987; Forni et al. 2000; Bai 2003; Bai andNg
2008; Pan and Yao 2008; Connor, Hagmann, and Linton 2012;
Stock and Watson 2012). We will follow this approach in our
development.

It is noted that any tensor can be stacked into a long vec-
tor. Hence, it is tempting to simply use the standard factor
analysis designed for vector or panel time series. Although
such an approach is simple, straightforward and relatively well
understood, it has two drawbacks in dealing with tensor time
series data. First, stacking a tensor into a long vector loses
the structural information, creating difficulties in interpreting
results. When rows, columns and depths have special meanings
and close relationships within classification, models directly
using such structures typically provide better interpretation
and meaningful results. Second, dimension reduction under
the stacked vector structure is more difficult. Although the
tensor factor model we study here can be viewed as a special
case of the factor model with the stacked vector time series,
the tensor structure used in the tensor factor model induces
naturally a special form of the loading matrix in the corre-
sponding vectorized factor model with a much smaller number
of parameters. Using the tensor structure allows more effective
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dimension reduction, a crucial component in the analysis of
high-dimensional time series under consideration here. In sim-
ulation studies on matrix factor models, Wang, Liu, and Chen
(2019) showed that, if the data-generating process is indeed in
a matrix factor model form, it is better to use the structure than
stacking the tensor into a long vector and using vector factor
models. We expect similar difficulties to directly extend low-
dimensional time series models andmethods to our setting. For
example, tensor time series can be modeled as autoregression
with multilinear coefficients structures as in Hoff (2015) and
Chen, Xiao, and Yang (2020), but the number of unknown
parameters would typically be too large in the high-dimensional
case.

The tensor factor model in this article is similar to thematrix
factor model studied in Wang, Liu, and Chen (2019). Specifi-
cally, we use a Tucker-type decomposition to relate the high-
dimensional tensor observations to a low-dimensional latent
tensor factor that is assumed to vary over time. Two estimation
approaches, namedTOPUPandTIPUP, are studied.Asymptotic
properties of these estimators are investigated and compared to
each other. The estimation procedure used in Wang, Liu, and
Chen (2019) in the matrix setting is essentially the TOPUP. We
show that the convergence rate they obtained for the TOPUP
can be improved. On the other hand, the TIPUP has a faster
rate than the TOPUP, under a mildly more restrictive condition
on the level of signal omission and cancellation. The theoretical
study here also covers the case where the dimensions of the
tensor factor increase with the dimensions of the observed
tensor time series.

The article is organized as follows. Section 2 contains some
preliminary information about the factor models that we will
adopt and the basic notations of tensor analysis. Section 3
introduces a general framework of factormodels for large tensor
time series, which is assumed to be the sum of a signal part
and a noise part. The signal part has a multi-linear factor form,
consisting of a low-dimensional tensor that varies over time, and
a set of fixed loading matrices in a Tucker-type decomposition.
Section 4 introduces TOPUP and TIPUP as two general estima-
tion procedures. Section 5 proves their theoretical properties.
Section 6 presents some simulation studies to demonstrate the
performance of the estimation procedures. Section 7 illustrates
the model and its interpretations in two real data applications.
The appendix contains proof of the theorems, some discussion,
some additional simulation results and additional results of the
examples.

2. Preliminary: Dynamic Factor Models and Tensor
Operations

In this section, we briefly review the approach of the linear factor
model to panel time series data and tensor data analysis. Both
serve as foundations of our approach to tensor time series.

Let {(xi,t)d×T} be a panel time series. The dynamic factor
model assumes

xt = Af t + εt , or equivelently
xit = ai1f1t + . . . + airfrt + εit for i = 1, . . . , d, (1)

where f t = (f1t , . . . , frt)� is a a vector-valued unobserved latent
factor time series with dimension r � d; The row vector ai =

(ai1, . . . , air), treated as unknown and deterministic, is called
factor loading of the ith series. The collection of all ai forms the
loading matrix A. The idiosyncratic noise εt is assumed to be
uncorrelated with the factors f t in all leads and lags. BothA and
f t are unobserved hence some further model assumptions are
needed. Two different types of model assumptions are adopted
in the literature. One type of models assumes that a common
factor must have impact on “most” (defined asymptotically) of
the time series, but allows the idiosyncratic noise to have weak
cross-correlations and weak autocorrelations (Geweke 1977;
Sargent and Sims 1977; Forni et al. 2000; Stock andWatson 2012;
Bai and Ng 2008; Stock and Watson 2006; Bai and Ng 2002;
Hallin and Liška 2007; Chamberlain 1983; Chamberlain and
Rothschild 1983; Connor, Hagmann, and Linton 2012; Connor
and Linton 2007; Fan, Liao, and Wang 2016; Fan, Wang, and
Zhong 2019; Peña and Poncela 2006; Bai and Li 2012). Under
such sets of assumptions, principle component analysis (PCA)
of the sample covariance matrix is typically used to estimate
the space spanned by the columns of the loading matrix, with
various extensions. Another type of models assumes that the
factors accommodate all dynamics, making the idiosyncratic
noise “white” with no autocorrelation but allowing substantial
contemporary cross-correlation among the error process (Peña
and Box 1987; Pan and Yao 2008; Lam, Yao, and Bathia 2011a;
Lam and Yao 2012; Chang, Guo, and Yao 2018). The estimation
of the loading space is done by an eigen analysis based on the
nonzero lag autocovariancematrices. In this article we adopt the
second approach in our model development.

The key feature of the factor model is that all co-movements
of the data are driven by the common factor f t and the fac-
tor loading ai provides a link between the underlying factors
and the ith series xit . This approach has three major benefits:
(i) It achieves great reduction in model complexity (i.e., the
number of parameters) as the autocovariance matrices are now
determined by the loading matrix A and the much smaller
autocovariance matrix of the factor process f t ; (ii) The hidden
dynamics (the co-movements) become transparent, leading to
clearer and more insightful understanding. This is especially
important when the co-movement of the time series is complex
and difficult to discover without proper modeling of the full
panel; (iii) The estimated factors can be used as input and
instrumental variables in models in downstream data analyses,
providing summarized and parsimonious information of the
whole series.

In the following we briefly review tensor operations mainly
for the purpose of fixing the notation in our later discussion. For
more detailed information, see Kolda and Bader (2009).

A tensor is a multidimensional array. The order of a tensor is
the number of dimensions, also known as the number ofmodes.
Fibers of a tensor are the higher order analogue of matrix rows
and columns, which can be obtained by fixing all but one of the
modes. For example, a matrix is a tensor of order 2, and amatrix
column is a mode-1 fiber and a matrix row is a mode-2 fiber.

Consider an order-K tensor X ∈ R
d1×···×dK . Following

Kolda and Bader (2009), themode-k product ofX with amatrix
A ∈ R

d̃k×dk is an order-K tensor of size d1 × · · · × dk−1 × d̃k ×
dk+1 × · · · × dK and will be denoted by X ×k A. Elementwise,
(X ×k A)i1···ik−1jik+1···iK = ∑dk

ik=1 xi1···ik···iK ajik . Similarly, the
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mode-k product of an order-K tensor with a vector a ∈ R
dk is

an order-(K−1) tensor of size d1×· · ·×dk−1×dk+1×· · ·×dK
and denoted by X ×k a. Elementwise, (X ×k a)i1···ik−1ik+1···iK =∑dk

ik=1 xi1···ik···iK aik . Let d = d1 . . . dK and d−k = d/dk. The
mode-k unfolding matrix matk(X ) is a dk × d−k matrix by
assembling all d−k mode-k fibers as columns of the matrix. One
may also stack a tensor into a vector. Specifically, vec(X ) is a
vector inRd formed by stackingmode-1 fibers ofX in the order
of modes 2, . . . ,K.

The CP decomposition (Carroll and Chang 1970; Harshman
1970) and Tucker decomposition (Tucker 1963, 1964, 1966) are
two major extensions of the matrix singular value decompo-
sition (SVD) to tensors of higher order. Recall that the SVD
of a matrix X ∈ R

d1×d2 of rank r has two equivalent forms:
X = ∑r

l=1 λlu(1)
l u(2)�

l , which decomposes a matrix into a sum
of r rank-one matrices, and X = U1�rU�

2 , where U1 and U2
are orthonormal matrices of size d1 × r and d2 × r spanning
the column and row spaces of X, respectively, and �r is an r× r
diagonalmatrixwith r positive singular values on its diagonal. In
parallel, CP decomposes an order-K tensorX into a sumof rank
one tensors,X = ∑r

l=1 λlu(1)
l ⊗ u(2)

l ⊗ · · ·⊗ u(K)

l ∈ R
d1×···×dk ,

where “⊗” represents the tensor product. The vectors u(k)
l ∈

R
dk , l = 1, 2, . . . , r, are not necessarily orthogonal to each other,

which differs from the matrix SVD. The Tucker decomposition
boils down to K orthonormal matrices Uk ∈ R

dk×rk containing
basis vectors spanning mode-k fibers of the tensor, a potentially
much smaller “core” tensor G ∈ R

r1×r2×···×rK and the relation-
ship

X = G ×1 U1 ×2 U2 ×3 · · · ×K UK = G ×K
k=1 Uk. (2)

Here the “loading” Uk is the left singular matrix of the mode-k
unfoldingmatk(X ) of the tensor, and the core tensorG is similar
to the �r in the middle of matrix SVD. While G is typically
not diagonal, its matrix unfolding matk(G) has orthogonal rows
for every mode k, that is, the slabs of G in the same mode are
orthogonal to each other for each mode.

3. A Tensor Factor Model

In tensor times series, the observed tensors would depend on
t = 1, . . . ,T and be denoted by Xt ∈ R

d1×···×dK as a series
of order-K tensors. By absorbing time, we may stack Xt into
an order-(K + 1) tensor Y ∈ R

d1×···×dK×T , with time t as the
(K + 1)-th mode, referred to as the time-mode. We assume the
following decomposition

Y = S + R, or equivalently Xt = Mt + Et , (3)

where S is the dynamic signal component and R is a white-
noise part. In the second expression (3), Mt and Et are the
corresponding signal and noise components of Xt , respectively.
As discussed in Section 2, there are two different approaches
to factor analysis, based on the assumption on the dynamic
structure of noise Et . In this article we assume that the noise Et
are uncorrelated (white) across time, but with arbitrary contem-
porary covariance structure, following Lam and Yao (2012).

In this model, all dynamics are contained in the signal com-
ponent Mt . We assume that Mt is in a lower-dimensional

space and has certain multilinear decomposition. We further
assume that any component in this multilinear decomposition
that involves the time-mode is random and dynamic, and will
be called a factor component (depending on its order, it will be
called a scalar factor ft , a vector factor f t , a matrix factor Ft , or
a tensor factor Ft), which when concatenated along the time-
mode forms a higher order object (respectively as g,G,G). Any
components ofMt other than Ft are assumed to be determin-
istic and will be called the loading components.

Although it is tempting to directly model S with standard
tensor decomposition approaches to find its lower dimensional
structure, the dynamics and dependency in the time direction
(auto-dependency) are important and should be treated differ-
ently. Traditional tensor decomposition using tensor SVD/PCA
on S ignores the special role of the time-mode and the covari-
ance structure in the time direction, and treats the signal S as
deterministic (Richard and Montanari 2014; Anandkumar, Ge,
and Janzamin 2014; Hopkins, Shi, and Steurer 2015; Sun et al.
2016). Such a direct approach often leads to inferior inference
results as demonstrated in Wang, Liu, and Chen (2019). In our
approach, the component in the time direction is considered
as latent and random. As a result, our model assumptions and
interpretations, and their corresponding estimation procedures
and theoretical properties are significantly different.

Here, we propose a specific model for tensor time series,
based on a decomposition similar to Tucker decomposition.
Specifically, we assume that

S = G ×1 A1 ×2 · · · ×K AK or equivalently
Mt = Ft ×1 A1 ×2 · · · ×K AK (4)

whereFt is itself a tensor times series of dimension r1×· · ·×rK
with rk � dk and Ak are dk × rk loading matrices. We assume
without loss of generality in the sequel that Ak is of rank rk. In
this article we consider the case that the order of the tensor K is
fixed but the dimensions d1, . . . , dK → ∞ and ranks r1, . . . , rK
can be fixed or diverge.

Model (4) resembles a Tucker-type decomposition similar to
Equation (2) where the core tensor G ∈ R

r1×···×rK×T is the
factor term and the loading matrices Ak ∈ R

dk×rk are constant
matrices, whose column spaces are identifiable. The core tensor
Ft is usuallymuch smaller thanXt in dimension. It drives all the
comovements of individual time series in Xt . For matrix time
series, model (4) becomes Mt = Ft ×1 A1 ×2 A2 = A1FtA�

2 .
A notable difference between the decompositions (4) and (2) is
that the slabs of Ft are not guaranteed to be orthogonal. For
example, in the matrix case, Equation (2) becomes the SVD
but Ft is not required to have orthogonal rows or columns in
Equation (4). Thematrix version ofModel (4) was considered in
Wang, Liu, and Chen (2019), which also provided several model
interpretations. Most of their interpretations can be extended to
the tensor factor model. In this article we consider more general
model settings and more powerful estimation procedures.

As Ft → Xt = Ft×K
k=1Ak + Et is a linear mapping from

R
r1×···×rK to R

d1×···×dK . It can be written as a matrix acting on
vectors as in

vec(Xt) = ( �K
k=1 Ak

)
vec(Ft) + vec(Et), (5)

where �K
k=1Ak = AK � · · · � A1 is the Kronecker product

as a d × r matrix, d = ∏K
k=1 dk, r = ∏K

k=1 rk, and vec(·) is
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the tensor stacking operator as described in Section 2. While ⊗
is often used to denote the Kronecker product, we shall avoid
this usage as ⊗ is preserved to denote the tensor product in
this article. For example, in the case of K = 2 with observation
Xt ∈ R

d1×d2 , Xt−h ⊗ Xt is a d1 × d2 × d1 × d2 tensor of order
four, not a matrix of dimension d21 × d22, as we would need to
consider the mode-2 unfolding of Xt−h ⊗ Xt as a d2 × (d21d2)
matrix. The Kronecker expression in Equation (5) exhibits the
same form as in the factor model for panel time series except
that the loading matrix of size d × r in the vector factor model
is assumed to have a Kronecker product structure of K matrices
of much smaller sizes di × ri (i = 1, . . . ,K). Hence, the tensor
factor model reduces the number of parameters in the loading
matrices from dr = d1r1 . . . dKrK in the stacked vector version
to d1r1 + . . . + dKrK , a very significant dimension reduction.
The dimension reduction comes from the assumption imposed
on the loading matrices.

Remark 1. (Model identification) It is well known that factor
models have severe identification problems. To ensure identifi-
cation, various normalization and constraints can be imposed
(Bekker 1986; Neudecker 1990; Bai and Wang 2014, 2015).
In order to obtain the most general solutions, in this article
we work under the assumption that there is a natural data-
generating process that produces the observed data. The gener-
ating process consists of a natural (unobserved) dynamic factor
process Ft and its corresponding loading matrices A1, . . . ,AK ,
whose combination leads to the signal process Mt and the
observed process Xt . For example, the model would accommo-
date a stationary Ft of fixed dimension even when the dimen-
sion dk of the observed Xt and the singular values of Ak all
diverge to infinity. As the factor process and the loadingmatrices
cannot be identified even with the noiseless signal processMt ,
we do not attempt to impose constraints and normalization in
order to estimate them. Instead, we focus on the projection
matrixPk = Ak(A�

k Ak)
−1A�

k , which is uniquely defined, as well
as other uniquely defined functionals ofMt . The general theory
we developed are based on conditions specified on the signal
processMt and the noise process Et , even though we often refer
to Ft and Ak in the discussions. In specific examples, we may
specify structures ofFt and Ak and derive specific results based
on the general theory.

While the consistent estimation of the orthogonal projection
Pk does not require the identifiability of the natural factor series
Ft , we will use a canonical form of the factor model (4) to
facilitate more explicit explanation of our methodology and
theory.

Canonical Factor Series: Let Ak = ‖Ak‖SUkDkV�
k be the

scaled SVD of Ak with diagonal Dk satisfying ‖Dk‖S = 1 and
rank(Dk) = rk. The canonical form of the model in (3) and
(4) is

Xt = (
λF (cano)

t
) ×K

k=1 Uk + Et , (6)

where λ = ∏K
k=1 ‖Ak‖S and F (cano)

t = Ft ×K
k=1 (DkV�

k ) =
λ−1(Mt×K

k=1U
�
k
) ∈ R

r1×···×rK is the canonical factor series. In
this canonical form,Pk = UkU�

k . In thematrix case, we observe
Xt = A1FtA�

2 + Et = λU1F(cano)
t U�

2 + Et respectively in the
natural and canonical forms.

One-Factor Model: We refer to the simplest case of rk = 1∀k ≤
K as the One-Factor Model,

Xt = λft
(
u1 ⊗ · · · ⊗ uK) + Et , (7)

where ft ∈ R is a weakly stationary process and uk ∈ R
dk are

deterministic with ‖uk‖2 = 1∀k ≤ K. As there is no rotation in
R, the natural and canonical factor series are the same, f (cano)t =
ft . In the matrix case (K = 2), (7) becomes Xt = λftu1u�

2 .

Remark 2. In our theoretical development, we do not impose
any specific structure for the dynamics of the relatively low-
dimensional factor process Ft ∈ R

r1×···×rK , except condi-
tions on the spectrum norm and singular values of certain
matrices in the unfolding of the average of the cross-product
(T − h)−1(

∑T
t=h+1Mt−h ⊗ Mt). As Mt = Ft ×K

k=1 Ak,
these conditions on Mt would hold when we impose certain
structures onFt and Ak. Specifically, asMt = (

λF (cano)
t

)×K
k=1

Uk with orthonormal Uk, these spectrum norm and singular
values can be scaled to the corresponding ones with respect
to (T − h)−1 ∑T

t=h+1 F
(cano)
t−h ⊗ F (cano)

t in the canonical form
Equation (6), or to those with respect to the natural (T −
h)−1 ∑T

t=h+1 Ft−h ⊗ Ft under proper conditions on Dk or
Ak. For relatively low-dimensional Ft , the consistency of such
spectrum norms and singular values to their population version
in the matrix unfolding ofE

[
(T−h)−1(

∑T
t=h+1Mt−h ⊗Mt)

]
has been extensively studied in the literature with many options
such as variousmixing conditions, especially for fixed r1, . . . , rK .

Remark 3. The above tensor factor model does not assume
any structure on the noises except that the noise process is
white as explained below (1) and below (3). In particular, it
allows structures for the contemporary cross-correlation of the
elements of Et . For example, one may assume that Et follows
the array Normal distribution (Hoff 2011) in the form Et =
Zt ×1 �

1/2
1 ×2 �

1/2
2 ×3 · · ·×K �

1/2
K where all elements inZt are

iidN(0, 1). Hence, each of the�i can be viewed as the common
covariancematrix ofmode-i fiber in the tensor Et . More efficient
estimators may be constructed to use such a structure but is out
of the scope of this article.

Remark 4. The core factor tensor Ft may collapse to a lower
dimensional tensor. When rk = 1, the factor tensor collapses
its mode-k fiber to a scalar. The corresponding loading matrix
Ak is then a dk × 1 vector, and every mode-k fiber of the signal
tensorMt is proportional to the vector Ak. It seems possible to
test the hypothesis rk = 1 by studying the proportionality of the
fibers but the problem is out of scope of this article.

Remark 5. We note that the array Normal distribution of Hoff
(2011) corresponds to model (4) with iid normal entries in Ft
and no observational noise Et . Loh and Tao-Kai (2000) used
similar structure for spatial data. Hafner, Linton, and Tang
(2020) and Linton and Tang (2020) considered decomposing
the covariance matrix of a vector time series into Kronecker
products. Their approach is in some way related to our model,
as they essentially arrange the vector time series into a tensor
form. However, their objective is quite different from ours.
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4. Estimation Procedures

Low-rank tensor approximation is a delicate task. To begin with,
the best rank-r approximation to a tensormay not exist (de Silva
and Lim 2008) or is NP hard to compute (Hillar and Lim 2013).
On the other hand, despite such inherent difficulties, many
heuristic techniques are widely used and often enjoy great suc-
cesses in practice. Richard and Montanari (2014) and Hopkins,
Shi, and Steurer (2015), among others, have considered a rank-
one spiked tensor model S + R as a vehicle to investigate the
requirement of signal-to-noise ratio (SNR) for consistent esti-
mation under different constraints of computational resources,
where S = λu1 ⊗ u2 ⊗ u3 for some deterministic unit vectors
uk ∈ R

dk and all entries of R are iid standard normal. As
shown by Richard andMontanari (2014), in the symmetric case
where d1 = d2 = d3 = d, S can be estimated consistently
by the MLE when

√
d/λ = o(1). Similar to the case of spiked

PCA (Koltchinskii, Lounici, and Tsybakov 2011; Negahban and
Wainwright 2011), it can be shown that the rate achieved by
the MLE is minimax among all estimators when S is treated as
deterministic. However, at the same time it is also unsatisfactory
as the MLE of S is NP hard to compute even in this simplest
rank one case. Additional discussion of this and some other key
differences betweenmatrix and tensor estimations can be found
in recent studies of related tensor completion problems (Barak
and Moitra 2016; Yuan and Zhang 2016, 2017; Xia and Yuan
2017; Zhang et al. 2019).

A commonly used heuristic to overcome this computational
difficulty is tensor unfolding. In the following we proposed
two estimation methods that are based on the tensor unfold-
ing of lagged cross-product, the tensor version of the auto-co-
moments. Both methods are motivated by the dynamic and
random nature of the latent factor process and the whiteness
assumption on the error process. As mentioned earlier, due to
identification issues, we only attempt to estimate the column
space of Ak, which can be viewed as the kth principle space of
the signal tensor time seriesMt = Ft×K

k=1Ak in Equation (4).
Equivalently, our estimation target is the orthogonal projection

Pk = Ak
(
A�
k Ak

)−1A�
k . (8)

The lagged cross-product operator, which we denote by �h,
can be viewed as the (2K)-tensor

�h = E

[ T∑
t=h+1

Xt−h ⊗ Xt
T − h

]

= E

[ T∑
t=h+1

Mt−h ⊗ Mt
T − h

]
∈ R

d1×···×dK×d1×···×dK ,

h = 1, . . . , h0. We consider two estimation methods based on
the sample version of �h,

�h =
T∑

t=h+1

Xt−h ⊗ Xt
T − h

, h = 1, . . . , h0. (9)

AsMt = Mt×K
k=1Pk for all t, we have

�h = �h×2K
k=1Pk = E

[ T∑
t=h+1

Ft−h ⊗ Ft
T − h

]
×2K

k=1PkAk.

with the notation Ak = Ak−K and Pk = Pk−K for k > K. Once
consistent estimates P̂k are obtained for Pk, the estimation of
other aspects of �h can be carried out based on the low-rank
projection of Equation (9),

�h×2K
k=1P̂k =

T∑
t=h+1

(Xt−h×K
k=1P̂k) ⊗ (Xt×K

k=1P̂k)

T − h
,

as if the low-rank tensor time series Xt×K
k=1P̂k is observed.

For the estimation of Pk, we propose two methods, and both
methods can bewritten in terms of themode-kmatrix unfolding
matk(Xt) of Xt as follows.
(i) TOPUP method: Let d = ∏K

k=1 dk and d−k = d/dk. Define

Vk,h =
T∑

t=h+1

matk(Xt−h) ⊗ matk(Xt)

T − h
, (10)

which organize all lag-h cross-products of fiber time series in a
dk × d−k × dk × d−k tensor. Define

TOPUPk = (
mat1(Vk,h), h = 1, . . . , h0

)
(11)

as a dk×(d−kdh0)matrix.We estimate the left singular matrices
of E[TOPUPk] by

P̂k,m = PLSVDm
(
TOPUPk

)
, (12)

where PLSVDm stands for the orthogonal projection to the span
of the first m left singular vectors of a matrix. In particular, we
estimate the projection Pk by P̂k = P̂k,rk .

The above method is expected to yield consistent estimates
of Pk under proper conditions on the dimensionality, signal
strength and noise level since Equations (11) and (4) imply

E
[
TOPUPk

]
= (

mat1
(∑T

t=h+1E
(
matk(Mt−h) ⊗ matk(Mt)

)
/(T − h)

)
, h = 1, . . . , h0

)
= matk

({∑T
t=h+1E

(
Ft−h ⊗ Ft

)
/(T − h)

}×2K
k=1Ak, h = 1, . . . , h0

)
= Akmatk

(∑T
t=h+1E

(
Ft−h ⊗ Ft

)
/(T − h)

} ×k−1
�=1 A�

×2K
�=k+1A�, h = 1, . . . , h0

)
. (13)

This is a product of two matrices, with Ak = PkAk on the left.
We note that the left singular vectors of TOPUPk are the

same as the eigenvectors in the PCA of the dk×dk nonnegative-
definite matrix

Ŵk = (TOPUPk)(TOPUPk)�

=
h0∑
h=1

mat1
(
Vk,h

)
mat�1

(
Vk,h

)
, (14)

which can be viewed as the sample version of

Wk = E
[
TOPUPk

]
E
[
TOPUP�

k
]
. (15)

It follows from Equation (13) that Wk has a sandwich formula
with Ak on the left and A�

k on the right.
As Ak is assumed to have rank rk, its column space is iden-

tical to that of E[TOPUPk] in Equation (13) or that of Wk in
Equation (15) as long as they are also of rank rk. Thus, Pk is
identifiable from the population version of TOPUPk. However,
further identification of the lagged cross-product operator by
the TOPUP would involve parameters specific to the TOPUP
approach. For example, the TOPUP (12) is designed to estimate



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 7

Pk,m = ∑m
j=1 uk,ju�

k,j where uk,j is the jth left singular vector
of the matrix in Equation (13). While Pk,rk = Pk as given in
Equation (8), Pk,m is specific to the TOPUP in general. Even
then, the singular vector uk,m is identifiable only up to the sign
through the projections Pk,m and Pk,m−1 provided a sufficiently
large gap between the (m − 1)th, the mth and the (m + 1)th
singular values of the matrix in Equation (13).

For the ease of discussion, we consider for example the case of
k = 1 andK = 2 with stationary factorFt whereXt ∈ R

d1×d2 is
amatrix. The TOPUP estimates the column space of the loading
matrix A1 by the span of the first rk eigenvectors of

Ŵ1 =
h0∑
h=1

d2∑
j1=1

d2∑
j2=1

V1,h,j1j2V
�
1,h,j1j2 (16)

as in Equation (14), where V1,h,j1j2 = (T −
h)−1 ∑T

t=h+1 x·,j1,t−hx�·,j2,t ∈ R
d1×d1 are the mode-(1, 3)

matrices of V1,h in Equation (10). By Equation (15), the
population version of Ŵ1 is

W1 =
h0∑
h=1

∑
j1,j2

(
E
[
V1,h,j1j2

])(
E
[
V1,h,j1j2

])�

= A1

( h0∑
h=1

∑
j1,j2

�1,h,j1j2�
�
1,h,j1j2

)
A�
1 , (17)

where�1,h,j1j2 = E[Ft−h⊗Ft]×2A2,j1·×3A1×4A2,j2· ∈ R
r1×d1 .

BecauseW1 is a nonnegative-definite matrix sandwiched by A1
and A�

1 , the column space of A1 and the column space of W1
are the same when the matrix between A1 and A�

1 in Equation
(17) is of full rank.

This procedure uses the time-lagged outer-product of all
mode-1 fibers of the observed tensor to extract information
about P1 and aggregate the information by applying the PCA to
the sum over their Hermitian squares. By considering positive
lags h > 0, we explicitly use the assumption that the noise
process is white, hence avoiding having to deal with the contem-
poraneous covariance structure of the noise Et , as Et disappears
in E

[
V1,h,j1j2

] = A1�1,h,j1j2 for all h > 0. We also note that
while the PCAof Ŵk in Equation 14) is equivalent to the SVD in
Equation (12) for the estimation ofPk, it can be computationally
more efficient to perform the SVD directly in many cases.

We call this TOPUP (Time series Outer-Product Unfolding
Procedure) as the tensor product in the matrix unfolding in
Equation (10) is a direct extension of the vector outer product.
The TOPUP reduces to the algorithm in Wang, Liu, and Chen
(2019) for matrix time series.

(ii) TIPUP method: The TIPUP (Time series Inner-Product
Unfolding Procedure) can be simply described as the replace-
ment of the tensor product in (10) with the inner product:

V∗
k,h =

T∑
t=h+1

matk(Xt−h)mat�k (Xt)

T − h
∈ R

dk×dk . (18)

Consequently, the TOPUPk in (11) is replaced by

TIPUPk = (
V∗
k,h, h = 1, . . . , h0

) ∈ R
dk×(dkh0). (19)

The estimator P̂k,m is then defined as

P̂k,m = PLSVDm
(
TIPUPk

)
. (20)

Again TIPUP is expected to yield consistent estimates of Pk in
(8) as

E
[
TIPUPk

]
= (〈

�h, Ik,k+K
〉
{k,k+K}c , h = 1, . . . , h0

)
(21)

= Ak
(〈
E
[∑T

t=h+1(Ft−h ⊗ Ft)/(T − h)
]

×��=k,1≤�≤2KA�, Ik,k+K
〉
{k,k+K}c , h ≤ h0

)
,

where Ik,k+K is the (2K)-tensor with elements (Ik,k+K)i,j =
I{i−k = j−k} at i = (i1, . . . , iK) and j = {j1, . . . , jK), and
〈·, ·〉{k,k+K}c is the inner product summing over indices other
than {k, k + K}.

We use the superscript ∗ to indicate the TIPUP counterpart
of TOPUP quantities, for example,

Ŵ∗
k = (

TIPUPk
)(
TIPUPk

)� =
h0∑
h=1

V∗
k,hV

∗�
k,h , (22)

is the sample version of

W∗
k = E

[
TIPUPk

]
E
[
TIPUP�

k
]
. (23)

We note that by Equation (21)W∗
k is again sandwiched between

Ak and A�
k . For k = 1 and K = 2, the TIPUP estimates P1 by

applying the PCA to

Ŵ∗
1 =

h0∑
h=1

( d2∑
j=1

V1,h,jj

)( d2∑
j=1

V1,h,jj

)�
(24)

as in Equation (22), where V1,h,j1j2 ∈ R
d1×d1 is as in Equation

(16). The noiseless version of the above Ŵ∗
1 is

W∗
1 = A1

⎡
⎢⎣ h0∑

h=1

⎛
⎝ d2∑

j=1
�1,h,jj

⎞
⎠

⎛
⎝ d2∑

j=1
�1,h,jj

⎞
⎠�⎤⎥⎦A�

1 (25)

as in Equation (23), where �1,h,j1j2 is as in Equation (17). If the
middle term in Equation (25) is of full rank, then the column
space ofW∗

1 is the same as that of A1.
As in the case of the TOPUP, for the estimation of the

auto-covariance operator beyondPk, the TIPUPwould typically
only identify parameters specific to the approach. For example,
similar to the TOPUP (12) estimation of the projection Pk,m as
discussed below Equation (15), the TIPUP (20) aims to estimate
P∗
k,m = ∑m

j=1 u∗
k,ju

∗�
k,j with u

∗
k,j being the jth left singular vectors

of (21). However, while P∗
k,rk = Pk = Pk,rk in the full-rank case

as both (17) and (25) are sandwiched between Ak and A�
k , it

is evident that P∗
k,m �= Pk,m for m ∈ [1, rk) in general as the

“fillings” in the two sandwiches are not guaranteed to be the
same.

Remark 6. The differences between the TOPUP and TIPUP,
and the pros and cons: First, taking K = 2, k = 1 as an
example, the TOPUP estimation of P1 uses the auto-cross-
product matrices V1,h,j1j2 ∈ R

d1×d1 in Equation (16) between
all the mode-1 fibers in Xt−h and all the mode-1 fibers in Xt ,
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with all possible combinations of j1 and j2, while the TIPUP
only uses V1,h,jj with j = j1 = j2 in Equation (24). Hence,
the TIPUP may suffer a loss of efficiency from signal omission
but may also benefit from this feature when the SNR is low in
V1,h,j1j2 with j1 �= j2. Second, the TOPUP takes the Hermitian
squares of all theV1,h,j1j2 in Equation (16) before the summation
over j1 and j2, while the TIPUP takes the summation of V1,h,jj
in Equation (24) before the Hermitian square. As a result, the
order of summation and Hermitian square is also switched in
the noiseless W1 and W∗

1 in Equations (17) and (25), respec-
tively. Hence, the TIPUP may suffer a loss of efficiency, or even
the complete loss of identifiability, from signal cancellation by
taking the summation first. This can be seen more clearly from
Equation (25) as the matrix in between A1 and A�

1 has to be of
full rank for consistent estimation of P1 and the sum

∑
j �1,h,jj

is not guaranteed to be of full rank even when all �1,h,jj are.
For the TOPUP, W1 is of full rank when at least one of �1,h,j1j2
is of full rank. Meanwhile, compared with the TOPUP, the
TIPUP may benefit from noise omission and noise cancellation
by omitting terms and taking the summation first, which result
in faster convergence rate. Here the noise V1,h,j1j2 − E[V1,h,j1j2]
comes from both the systematic noise Et and the randomness of
the factor series. The above discussion is valid for the general
K ≥ 2 as both the TOPUP and TIPUP begin by unfolding
the tensors Xt to matrices matk(Xt), respectively, in Equations
(10) and (18), given the mode k, because both the estimation
procedures deal with each mode separately by estimating each
loading space individually. For the vector time series xt with
K = 1, the TOPUP and TIPUP are identical with V1,h =
V∗
1,h = ∑T

t=h+1 xt−hx�
t /(T − h) in Equations (11) and (19).

In Section 5, we will show that in the One-Factor Model (7),
W∗

k = Wk so that the TIPUP benefits from noise omission and
cancellation without suffering from signal omission or signal
cancellation.

The detailed asymptotic convergence rates of both methods
presented in Section 5 reflect the differences. In Section 6 we
show an example in which the auto-covariance matrices cancel
each other for the TIPUP. We note that such complete cancel-
lation does not occur often and can often be avoided by using
a larger h0 in estimation, although partial cancellation can still
have a significant impact on the performance of TIPUP in finite
samples.

Remark 7. The problem of determining the rank rk in prac-
tice and its associated testing procedure is out of the scope of
this article and remains an important and challenging problem
to investigate. Many developed procedures for factor model,
including the information criteria approach (Bai and Ng 2002,
2007; Hallin and Liška 2007; Amengual and Watson 2007) and
ratio of eigenvalues approach (Lam and Yao 2012; Pan and Yao
2008; Lam, Yao, and Bathia 2011b; Ahn and Horenstein 2013),
can be extended.

Remark 8. There are other possible estimators using Vk,h.
For example, in the case of K = 2, k = 1, simi-
lar to TOPUP in Equation (16) and TIPUP in Equation
(24), one may use Ŵ1 = ∑h0

h=1
∑d2

j=1 V1,h,jjV�
1,h,jj or

Ŵ1 = ∑h0
h=1

∑d2
j1=1

(∑d2
j2=1 V1,h,j1j2

)(∑d2
j2=1 V1,h,j1j2

)�. They
may have certain advantages in different cases and can be ana-
lyzed with the tools we developed. However, for the sake of
space we refrain from further discussion of such variations of
our approach.

Remark 9. iTOPUP and iTIPUP: One can construct itera-
tive procedures based on the TOPUP and TIPUP respectively.
Again, consider the case of K = 2 and k = 1. If a version of
U2 ∈ R

d2×r2 is given with P2 = U2U�
2 , P1 can be estimated

via the TOPUP or TIPUP using X̃ (1)
t = ×2U�

2 ∈ R
d1×r2 .

Intuitively the performance improves since X̃ (1)
t is of much

lower dimension than Xt as r2 � d2. With the results of the
TOPUP and TIPUP as the starting points, one can alternate the
estimation of Pk given other estimated loading matrices until
convergence. They have similar flavor as tensor power iteration
methods. Numerical experiments show that the iterative pro-
cedures do indeed outperform the simple implementation of
the TOPUP and TIPUP. However, their asymptotic properties
require more detailed analysis and are out of the scope of this
article. The benefit of such iteration has been shown in tensor
completion (Xia and Yuan 2017) and tensor de-noising (Zhang
and Xia 2018) among other examples.

5. Theoretical Results

Here, we present some theoretical properties of the proposed
estimators. Recall that our aim is to estimate the projection Pk
in Equation (8) to the column space of Ak. We focus on the
spectrum norm loss ‖P̂k − Pk‖S, which is connected to the
angular error θ (̂Pk,Pk) (or the largest canonical angle between
the column spaces of P̂k and Pk) via

‖P̂k − Pk‖S = sin
(
θ (̂Pk,Pk)

)
= max

1≤m≤rk

∣∣ sin (
angle(̂bk,m, bk,m)

)∣∣, (26)

where b̂k,m and bk,m are, respectively, the mth left- and right-
singular vectors of P̂kPk.

5.1. Main Condition and Notation

We shall consider the theoretical properties of the estimators
under the following main condition:

Condition A: Et are independent Gaussian tensors conditionally
on the entire process of {Ft}. In addition, we assume that for
some constant σ > 0, we have

E(u�vec(Et))2 ≤ σ 2‖u‖22, u ∈ R
d, (27)

where E is the conditional expectation given {Ft , 1 ≤ t ≤ T}
and d = ∏K

k=1 dk.
We note that the normality assumption, which ensures fast

convergence rates in our analysis, is imposed for technical con-
venience. In fact we only need to impose the sub-Gaussian
condition for the results below. For distributions with heavier
tails, the convergence rate may be slower.

Condition A, which holds with equality when Et has iid
N(0, σ 2) entries, allows the entries of Et to have a range of
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dependency structures and different covariance structures for
different t. Under Condition A, we develop a general theory
to describe the ability of the TOPUP and TIPUP estimators to
average out the noise Et . It guarantees consistency and provides
convergence rates in the estimation of the principle spaces of
the signalMt , or equivalently the projections Pk, under proper
conditions on the magnitude and certain singular value of the
lagged cross-product of Mt , allowing the ranks rk to grow as
well as dk in a sequence of experiments with T → ∞.

We then apply our general theory in two scenarios in the
general tensor factor model which we refer to as Fixed-Rank
Factor Model and Factor Strength Model, The first one, which
is also the simpler, imposes assumptions on the factor series Ft
and the loading matrices directly as follows.
Fixed-Rank Factor Model: Assume Condition A holds in Equa-
tions (3) and (4), the ranks rk = rank(Ak) are fixed, the
canonical factor series F (cano)

t = Ft ×K
k=1 (DkV�

k ) in Equation
(6) is weakly stationary, and

P

{ T∑
t=h+1

F (cano)
t−h ⊗ F (cano)

t
T − h

→E
[
F (cano)
T−h ⊗ F (cano)

T
]
, as T → ∞

}
= 1. (28)

Here the diagonalDk and orthonormalVk are deterministic rk×
rk matrices from the scaled SVD Ak = ‖Ak‖SUkDkV�

k .
Similarly, we define the natural Fixed-Rank Factor Model

as the one in which the above assumptions hold with F (cano)
t

replaced byFt . As rank(Ak) = rk,Dk is positive-definite, so that
the two versions of the Fixed-Rank Factor Model are equivalent
when the rk × rk matricesDk and Vk can be viewed as fixed. As
a special case of the Fixed-Rank Factor Model, the One-Factor
Model (7) has identical canonical and natural factor series. We
leave to the existing literature for the verification of (28) asmany
options are available.

In the Factor StrengthModel, to be introduced and discussed
in Section 5.4. we will consider cases where the ranks r1, . . . , rK
are allowed to diverge with the dimensions d1, . . . , dK , and the
conditions on the processMt are expressed in terms of certain
factor strength and related quantities.

We will express general error bounds for the TOPUP and
TIPUP in terms of norms and singular values of certain low-
dimensional matrices quadratic in the canonical factor series
F (cano)
t in (6). Let r = ∏K

k=1 rk and r−k = r/rk. Parallel to (10)
define

�
(cano)
k,h = matk

( T∑
t=h+1

F (cano)
t−h ⊗ F (cano)

t
T − h

)
∈ R

rk×(r−kr).(29)

By (3), (4) and (6), the Vk,h in Equation(10) is related to Equa-
tion (29) by

E[mat1(Vk,h)] = λ2Uk�
(cano)
k,h U�

[2k]\{k}
where Uk is as in (6),U [2k]\{k} = �j∈[2K]\{k}U j ∈ R

(d−kd)×(r−kr)

with [2K] = {1, . . . , 2K} and Uk+K = Uk, and E is the condi-
tional expectation in Condition A. It follows that by Equation
(11)

E
[
TOPUPk

] = λ2Uk�
(cano)
k,1:h0

(
diag

(
U [2k]\{k}

))�, (30)

where �
(cano)
k,1:h0 = (�

(cano)
k,1 , . . . ,�(cano)

k,h0 ) ∈ R
rk×(r−krh0) and

diag(U [2k]\{k}) ∈ R
(d−kdh0)×(r−krh0) with h0 blocks in the diag-

onal. As Uk are orthonormal, U [2k]\{k} and diag(U [2k]\{k}) are
orthonormal matrices of the respective dimensions. Thus, in
connection to the PCA of Equations (14) and (15),

Wk = λ4UkE
[
�

(cano)
k,1:h0

]
E

[
�

(cano)�
k,1:h0

]
U�

k .

Moreover, as in Equation (28), the analysis of the TOPUP also
involves the matrix

�
(cano)
h =

T∑
t=h+1

vec(F (cano)
t−h ) ⊗ vec(F (cano)

t )

T − h
∈ R

r×r . (31)

For the TIPUP, the matrix parallel to Equation (18) is

�
(cano)∗
k,h =

T∑
t=h+1

matk(F (cano)
t−h )mat�k (F (cano)

t )

T − h
∈ R

rk×rk . (32)

Similar to the derivation of Equation (30), E
[
V∗
k,h

] =
λ2Uk�

(cano)∗
k,h U�

k by Equations (3), (4), (6), and (18), so that

E
[
TIPUPk

] = λ2Uk�
(cano)∗
k,1:h0

(
diag

(
Uk

))� (33)

by (19), where �
(cano)∗
k,1:h0 = (�

(cano)∗
k,1 , . . . ,�(cano)∗

k,h0 ) ∈ R
rk×(rkh0)

and diag
(
Uk

) ∈ R
(dkh0)×(rkh0) has h0 blocks in the diagonal.

Again, as diag
(
Uk

)
is orthonormal,

W∗
k = λ4UkE

[
�

(cano)∗
k,1:h0

]
E

[
�

(cano)∗�
k,1:h0

]
U�

k . (34)

in connection to the PCA of Equations (22) and (23).

5.2. Theoretical Properties of TOPUP:

Based on Condition A and the notation in the above subsection,
we present some error bounds for the TOPUP in the following
theorem.

Theorem 1. Let λ be as in (6), d = ∏K
k=1 dk, d−k = d/dk, r =∏K

k=1 rk, r−k = r/rk and

�k,h = σ(2Td)1/2

λ(T − h)

{(
d−1/2

−k + r1/2−k

)∥∥�(cano)∗
k,0

∥∥1/2
S

+
(
d−1/2

−k + √
r/dk

)∥∥�(cano)
0

∥∥1/2
S

}
+ σ 2d1/2−k

λ2

{
(d−1

−k + 1)
√
2d√

T − h
+ 2dk

T − h

}
(35)

with the matrices �
(cano)
0 and �

(cano)∗
k,0 in Equations (31)

and (32), respectively. Suppose Condition A holds with
the conditional expectation E. Then, E[mat1(Vk,h)] =
λ2Uk�

(cano)
k,h U�

[2k]\{k} and

E
∥∥λ−2mat1

(
Vk,h

) − Uk�
(cano)
k,h U�

[2k]\{k}
∥∥
S ≤ �k,h, (36)

E
∥∥λ−2TOPUPk − Uk�

(cano)
k,1:h0

(
diag

(
U [2k]\{k}

))�∥∥
S ≤

√
h0�k,h0 ,

for all k and h0 ≤ T/4, with the matrices Uk in Equation (6),
�

(cano)
k,h in Equation (29) and �

(cano)
k,1:h0 and diag

(
U [2k]\{k}

))
in
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(30). Moreover, for the estimator P̂k = P̂k,rk with m = rk in
Equation (12),

E
[∥∥P̂k − Pk

∥∥
S
] ≤ 2

√
h0�k,h0

/
σrk

(
�

(cano)
k,1:h0

)
(37)

for the spectrum loss in Equation (26), where σm(·) is them-th
largest singular value.

Remark 10. As the removal of the effect of the systematic noise
Et and dimension reduction are the most important tasks in the
analysis of SVD-based estimators of the projectionsPk, themain
theorems in this article are stated in the general form in terms of
the conditional expectation E with error bounds involving only
norms and singular values of auto-cross-productmatrices of the
canonical factor series. As discussed in Remark 2 of Section 3,
we intentionally leave open many options to study such error
bounds tomaintain generality and simplicity. Still, deterministic
error bounds are provided in the corollaries below for more
specific models. In the noiseless case of σ = 0, �k,h = 0 in
Equations (36), and (37) has the interpretation

P
{
P̂k = Pk

} = P
{
rank

(
�

(cano)
k,1:h0

) = rk
}
,

so that the recovery of Pk is feasible as long as the factor
series is almost surely in general position, without requiring the
consistency of the random matrix �

(cano)
k,1:h0 ∈ R

rk×(r2h0/rk).

Theorem 1 asserts that the observable TOPUPk can be
viewed as a noisy version of a low-rank matrix sandwiched
between Uk and another orthonormal matrix. The spectrum
bound (36) for this noise leads to the error bound for the
estimation of Pk = UkU�

k in Equation (37) and additional
results in Corollaries 1 and 3 below. The proof of the theorem
is shown in Appendix A. The following corollary gives explicit
error bounds for the Fixed-Rank Factor Model.

Corollary 1. Let h0 be fixed. SupposeE
[
�

(cano)
k,1:h0

]
is of rank rk for

the matrix �
(cano)
k,1:h0 ∈ R

rk×(r2h0/rk) in (30). Then, in the Fixed-
Rank Factor Model, Equations (36) and (37) hold with

�k,h � √
d/dk

{
(σ/λ)

√
dk/T

+(σ/λ)2
(√

d/T + dk/T
)}
, (38)

where λ = ∏K
k=1 ‖Ak‖S. Consequently, the TOPUP (12) satis-

fies
∥∥P̂k − Pk

∥∥
S �

√
d/dk

{
(σ/λ)

√
dk/T + (σ/λ)2

√
d/T

}
. (39)

If in addition E
[
�

(cano)
k,1:h0

]
has distinct nonzero singular values,

then Equation (12) satisfies
∥∥P̂k,m − Pk,m

∥∥
S

�
√
d/dk

{
(σ/λ)

√
dk/T + (σ/λ)2

√
d/T

}
(40)

where Pk,m = ∑m
j=1 uk,ju�

k,j with uk,j being the jth left singular
vector of E

[
�

(cano)
k,1:h0

]
.

In the One-Factor Model (7) with ρ̂h = ∑T
t=h+1 ft−hft/(T −

h), we have

�
(cano)
k,h = �

(cano)∗
k,h = ρ̂h,

σ1
(
�

(cano)
k,1:h0

) = ∥∥�(cano)
k,1:h0

∥∥
2 = (∑h0

h=1ρ̂
2
h
)1/2, (41)

in view of Equations (31), (32) and (30). Thus, when∑h0
h=1 ρ̂2

h/h0 � 1 � ρ̂0, (39) of Corollary 1 becomes∣∣ sin (
angle(̂uk, uk)

)∣∣ = ∥∥̂ukû�
k − uku�

k
∥∥
S

�
√
d/dk

{
(σ/λ)

√
dk/T + (σ/λ)2

√
d/T

}
(42)

for the spectrum loss in Equation (26) and the TOPUP estimates
ûk of uk.

In the case of K = 2 where the matrix time series Xt =
A1FtA�

2 + Et is observed, properties of the TOPUP were stud-
ied in Wang, Liu, and Chen (2019) under the conditions of
Corollary 1 assuming (λ/σ)2 � d1−δ′

1
1 d1−δ′

2
2 = d1−δ′

0 for some
δ′
0 ∈ [0, 1]. Their error bounds yield the convergence rate∥∥P̂k − Pk

∥∥
S � dδ′

0/T1/2 � dδ′
0/2(σ/λ)

√
d/T � (σ/λ)2d/T1/2

The result of Wang, Liu, and Chen (2019) can be viewed as an
extension of the results of Lam, Yao, andBathia (2011a) from the
vector factor model (1) with K = 1 to the matrix factor model
with K = 2. In comparison, (39) is sharper and also applies to
the tensor factor model with K ≥ 3.

5.3. Theoretical Properties of TIPUP

We summarize our analysis of the TIPUP procedure in the
following theorem.

Theorem 2. Let λ be as in Equation (6), �(cano)∗
k,h as in Equation

(32), �(cano)∗
k,1:h0 as in Equation (33), d = ∏K

k=1 dk and

�∗
k,h = 2σ(8Tdk)1/2

λ(T − h)
∥∥�(cano)∗

k,0
∥∥1/2
S

+ σ 2

λ2

( √
8d√

T − h
+ 2dk

T − h

)
. (43)

Suppose ConditionA holds. Then,E
[
V∗
k,h

] = λ2Uk�
(cano)∗
k,h U�

k
and

E
∥∥V∗

k,h/λ
2 − Uk�

(cano)∗
k,h U�

k
∥∥
S ≤ �∗

k,h,

E
∥∥TIPUPk/λ2 − Uk�

(cano)∗
k,1:h0 U�

k
∥∥
S ≤ h1/20 �∗

k,h0 , (44)

for all k and h0 ≤ T/4. Moreover, for the estimator P̂k = P̂k,rk
withm = rk in (20),

E
∥∥P̂k − Pk

∥∥
S ≤ 2

√
h0�∗

k,h0
/
σrk

(
�

(cano)∗
k,1:h0

)
. (45)

Parallel to Theorem 1, Theorem 2 asserts that the observable
TIPUPk can be viewed as a noisy low-rank matrix sandwiched
between Uk and U�

k . The spectrum bound (44) for this noise
leads to the error bound for the estimation of Pk = UkU�

k in
(45) and additional results in Corollaries 2 and 3. The proof of
the theorem is shown in Appendix A. Again we consider the
Fixed-Rank Factor Model in a corollary.
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Corollary 2. Let h0 be fixed. SupposeE
[
�

(cano)∗
k,1:h0

]
is of rank rk for

the matrix �
(cano)∗
k,1:h0 ∈ R

rk×(rkh0) in Equation (33). Then, in the
Fixed-Rank Factor Model, Equations (44) and (45) hold with

�∗
k,h � (σ/λ)

√
dk/T + (σ/λ)2

(√
d/T + dk/T

)
, (46)

where λ = ∏K
k=1 ‖Ak‖S. Consequently, the TIPUP (20) satisfies∥∥P̂k − Pk

∥∥
S � (σ/λ)

√
dk/T + (σ/λ)2

√
d/T. (47)

If in addition E
[
�

(cano)∗
k,1:h0

]
has distinct nonzero singular values,

then Equation (20) satisfies∥∥P̂k,m − P∗
k,m

∥∥
S � (σ/λ)

√
dk/T

+(σ/λ)2
√
d/T, 1 ≤ m ≤ rk, (48)

where P∗
k,m = ∑m

j=1 u∗
k,ju

∗�
k,j with u∗

k,j being the j-th left singular
vector of E

[
�

(cano)∗
k,1:h0

]
.

For the One-FactorModel (7), (41) applies to the TIPUP and
Equation (47) of Corollary 2 becomes∣∣ sin (

angle(̂uk, uk)
)∣∣ = ∥∥̂ukû�

k − uku�
k
∥∥
S

� (σ/λ)
√
dk/T + (σ/λ)2

√
d/T (49)

for the TIPUP estimate ûk of uk under the condition∑h0
h=1 ρ̂2

h/h0 � 1 � ρ̂0.
We note that the convergence rate in Equations (47), (48)

and (49) is faster by a factor of
√
d/dk = ∏

j�=k d
1/2
j than the

corresponding rate for the TOPUP in Equations (39), (40) and
(42) under the respective conditions. However, it is important to
recognize that the full rank condition on the population matrix
E
[
�

(cano)∗
k,1:h0

]
in Corollary 2, which guarantees that potential

signal omission and cancellation do not change the rate, is sig-
nificantly stronger than the corresponding full rank condition
on the matrix E

[
�

(cano)
k,1:h0

]
in Corollary 1. As we explained in

Equations (17), (25) and Remark 6 below Equation (25), the
matrix E

[
�

(cano)
k,1:h0

]
is of full rank if and only if the following sum

h0∑
h=1

r/rk∑
j1=1

r/rk∑
j2=1

(
�

(cano)
k,h,j1j2

)(
�

(cano)
k,h,j1j2

)� ∈ R
rk×rk (50)

is positive-definite, where �
(cano)
k,h,j1j2 =

E
[(
matk

(
F (cano)
t−h

)
ej1

)(
matk

(
F (cano)
t−h

)
ej2

)�] with the canonic
unit vectors ej in R

r/rk . Meanwhile, E[�(cano)∗
k,1:h0 ] is of full rank if

and only if
h0∑
h=1

( r/rk∑
j=1

�
(cano)
k,h,jj

)( r/rk∑
j=1

�
(cano)
k,h,jj

)�
∈ R

rk×rk (51)

is positive-definite. Compared with Equation (50), (51) omits
the signals in �

(cano)
k,h,j1j2 with j1 �= j2 and may cancel the signals

in �
(cano)
k,h,jj . While the signal omission and cancellation rarely

cause the rank deficiency of the matrix in Equation (51), the
resulting loss of efficiency may still have an impact on the finite
sample performance as our simulation results demonstrate. In
any cases, there is no signal omission or cancellation in TIPUP
in the One-Factor Model as shown in Equations (49) and (41),
and in general wemay alleviate the signal cancellation in TIPUP
by taking a larger h0 in Equation (51).

5.4. ModelsWith Diverging Ranks

In Theorems 1 and 2, the risk bounds for the TOPUP and
TIPUP are expressed in the scale λ = ∏K

k=1 ‖Ak‖S in (6) and
in terms of spectrum norms of the matrices �

(cano)
0 ∈ R

r×r

in Equation (31) and �
(cano)∗
k,0 ∈ R

rk×rk in Equation (32) and
the singular values of the matrices �

(cano)
k,1:h0 ∈ R

rk×(r−krh0) in
Equation (30) and�

(cano)∗
k,1:h0 ∈ R

rk×(rkh0) in Equation (33).When
the ranks rk and the maximum lag h0 are fixed, it would be
quite reasonable to treat these norms and singular values as
constants in the Fixed-Rank Factor Model as in Corollaries 1
and 2. However, the situation is different when the ranks rk are
allowed to diverge. First, as the loading of the factor series Ft
may not be uniform in different directions, we may desire to
allow the condition numbers ‖D−1

k ‖2S of A�
k Ak ∈ R

rk×rk to
diverge. Second, we may need to take into account the impact
of the ranks and heterogeneity of the singular values of these
matrices on the estimation error. To this end, we consider below
the Factor Strength Model in which the scaling constant λ and
the combined impacts of the above discussed and other features
of the canonical factor series are summarized in terms of certain
signal strength parameters, following the tradition of Lam, Yao,
and Bathia (2011a) among others.

For the vector factor model (1) with bounded r1 and ‖D−1
1 ‖S

and λ = ‖A1‖S � σd(1−δ′)/2 for a δ′ ∈ [0, 1], Lam, Yao, and
Bathia (2011a) proved the convergence rate of (σ/λ)2d/T1/2 for
their estimator of P1, which can be viewed as the TOPUP for
K = 1. The quantity δ′, which reflects the signal-to-noise ratio
in the factor model, can be referred to as the factor strength
index (Bai and Ng 2002; Doz, Giannone, and Reichlin 2011;
Lam, Yao, and Bathia 2011a; Lam and Yao 2012; Wang, Liu, and
Chen 2019). When δ′ = 0, the information contained in the
signal Af t grows linearly with the dimension d. In this case the
factor is said to be “strong” and the convergence rate is T−1/2

in Lam, Yao, and Bathia (2011a) for K = 1 and Wang, Liu, and
Chen (2019) for K = 2. When 0 < δ′ ≤ 1, the information
in the signal increases more slowly than the dimension and the
factor is said to be “weak.” Compared withWang, Liu, and Chen
(2019), Corollary 1 provides the same rate for strong factors
and faster rate for weak factors. It is still true that one would
need longer time series to compensate the weakness in signal to
achieve consistent estimation of the loading spaces. Below we
provide a concise description of the relationship between the
signal strength and convergence rates of TOPUP and TIPUP in
the Factor Strength Model.

Factor Strength Model: Let the canonical factor series in Equa-
tion (6) be scaled such that

E
[
trace

(
�

(cano)
0

)] = r, λ2 = σ 2d1−δ0/r, (52)

for the �
(cano)
0 in (31) and some δ0 ∈ R. Suppose Condition A

holds, that with probability 1 + o(1)
trace

(
�

(cano)
0

) � r, (53)

σrk
(
�

(cano)
k,1:h0

) ≥ c1dδ0−δ1h1/20 r/(rkr0)1/2, (54)

σm
(
�

(cano)
k,1:h0

) − σm+1
(
�

(cano)
k,1:h0

) ≥ c1dδ0−δ1h1/20 r/(r3kr0)
1/2, (55)

σrk
(
�

(cano)∗
k,1:h0

) ≥ c1dδ0−δ∗
1 h1/20 r/(rkr∗k,0)1/2, (56)

σm
(
�

(cano)∗
k,1:h0

) − σm+1
(
�

(cano)∗
k,1:h0

) ≥ c1dδ0−δ∗
1 h1/20 r/(r3kr

∗
k,0)

1/2, (57)
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for 1 ≤ m < rk and the matrices in (31), (32), (30) and (33),
and that with probability 1 + o(1)

∥∥E[�(cano)
k,1:h0

] − E
[
�

(cano)
k,1:h0

]∥∥
S � dδ0−δ1h1/20 r/(r3kr0)

1/2, (58)∥∥E[�(cano)∗
k,1:h0

] − E
[
�

(cano)∗
k,1:h0

]∥∥
S � dδ0−δ∗

1 h1/20 r/(r3kr
∗
k,0)

1/2,(59)

where δ∗
1 ≥ δ0, δ1 ≥ δ0 and c1 > 0 are constants, r0 =

trace
(
�

(cano)
0

)
/
∥∥�

(cano)
0

∥∥
S ∈ [1, r] is the effective rank of

�
(cano)
0 , and r∗k,0 = trace

(
�

(cano)∗
k,0

)
/
∥∥�(cano)∗

k,0
∥∥
S ∈ [1, rk] is

the effective rank of �
(cano)∗
k,0 . In each statement in the sequel,

only the referenced conditions among Equations (53)–(59) are
imposed when the Factor Strength Model is invoked.

Some explanations of the model are in order: Condition (52)
can be always achieved by scaling ‖Ak‖S properly and then
picking δ0 accordingly. By Equations (6) and (31), Equation (52)
is equivalent to

E

[ T∑
t=1

‖vec(Mt)‖22
σ 2d T

]
= d−δ0 ,

E

[ T∑
t=1

‖vec(F (cano)
t )‖22
r T

]
= 1. (60)

Thus, d−δ0 = rλ2/(σ 2d) has the interpretation as the SNR,
and the mean squared value of the canonical factor series
{F (cano)

t , 1 ≤ t ≤ T} is normalized to 1. It follows from
Equations (30) and (52) that Equation (54) is equivalent to
(rkr0)1/2σrk

(
E
[
TOPUPk/h

1/2
0

]) ≥ c1σ 2d1−δ1 , so that d−δ1 can
be viewed as the order of the SNR relevant to the TOPUP with
proper adjustments for the ranks and the total number of lags
involved. See Equations (61) and (62) in Lemma 1 and the
discussion below the lemma for the rational of the adjustments.
Similarly, by Equations (33) and (52) d−δ∗

1 can be viewed as the
order of the SNR relevant to the TIPUP. For K = 1 and δ0 = δ1,
the δ0 in Equation (53) is comparable with the δ′ in Lam, Yao,
and Bathia (2011a). For K = 2 and δ0 = δ1, the dδ0 in Equation
(53) is comparable with the dδ′

1
1 dδ′

2
2 in Wang, Liu, and Chen

(2019). The Factor Strength Model is more general than the
Fixed-Rank Factor Model as the factor series Ft is not required
to be weakly stationary and r1, . . . , rK , h0 are allowed to diverge.
In the Fixed-Rank FactorModel, Equations (53)–(57) all hold as
their left-hand sides are all of the constant order, provided that
the respective canonical population matrices E

[
�

(cano)
k,1:h0

]
and

E
[
�

(cano)∗
k,1:h0

]
are of full rank and have distinct singular values.

The Factor Strength Model also allow weaker signals with δ1 >

δ0 or δ∗
1 > δ0. The following lemma provides some relationships

among the norms and singular values in Equations (53)–(59).

Lemma 1. Let λ andF (cano)
t be as in Equation (6) and�

(cano)
0 ∈

R
r×r be as in Equation (31). Then,

r0
∥∥�(cano)

0
∥∥
S = r∗k,0

∥∥�(cano)∗
k,0

∥∥
S = trace

(
�

(cano)
0

)
=

T∑
t=1

‖vec(Mt)‖22
λ2T

, (61)

where r0 ∈ [1, r] and r∗k,0 ∈ [1, rk] are the effective ranks in
Equations (54)–(59). Moreover,

σrk
(
�

(cano)
k,1:h0

) ≤
rk∑

m=1

σm
(
�

(cano)
k,1:h0

)
rk

≤ h1/20 trace
(
�

(cano)
0

)
(rkr0)1/2(1 − h0/T)

(62)

and

σrk
(
�

(cano)∗
k,1:h0

) ≤
∑rk

m=1 σm
(
�

(cano)∗
k,1:h0

)
rk

≤ h1/20 trace
(
�

(cano)
0

)
(rkr∗k,0)1/2(1 − h0/T)

. (63)

It follows from Equation (61) that Equation (53) holds when∑T
t=1 ‖vec(F (cano)

t )‖22/(rT) = 1+oP(1), so that (53) is expected
to follow from Equation (52). By Equation (53), the right-hand
side of Equation (62) is of the order h1/20 r/(rkr0)1/2. Thus,
Equation (54) with δ1 = δ0 means that the two sides of Equation
(62) are of the same order but Equation (54) also allows larger
δ1 for weaker signals. For the interpretation of Equation (55), we
note that with δ1 = δ0 it follows fromEquation (54) when all the
singular values�(cano)

k,1:h0 are of the same order and all the singular-
value gaps are of the same order for each k, but Equation (55)
also allows relaxation with δ1 > δ0. The interpretation of
Equations (56) and (57) is parallel as the right-hand side of (63)
is of the order h1/20 r/(rkr∗k,0)

1/2 by Equation (53). We allow δ∗
1 ≥

δ1 to take into account the impact of potential signal omission
and cancellation by the TIPUP. Finally, Equations (58) and (59)
simply guarantee the population version of Equations (55) and
(57), respectively. Again, we leave to the existing literature for
the analysis of the low-dimensional matrices in Equations (53)–
(59), as many options are available.

Corollary 3. Let h0 ≤ T/4. In the Factor Strength Model, the
TOPUP yields∥∥P̂k − Pk

∥∥
S � dδ1−δ0

√
d−k

√
(r0/r∗k,0) ∨ 1

×{
(σ/λ)

√
dk/T + (σ/λ)2

√
d/T/r−k

}
(64)

under conditions (53) and (54), and for 1 ≤ m < rk and the
Pk,m in (40)∥∥P̂k,m − Pk,m

∥∥
S � dδ1−δ0

√
d−krk

√
(r0/r∗k,0) ∨ 1

×{
(σ/λ)

√
dk/T + (σ/λ)2

√
d/T/r−k

}
(65)

under conditions (53), (55) and (58), where d−k = d/dk and
r−k = r/rk; The TIPUP yields∥∥P̂k − Pk

∥∥
S � dδ∗

1−δ0
{
(σ/λ)

√
dk/(r−kT)

+ (σ/λ)2
√
d/T/r−k

}
(66)

under conditions (53) and (56), and for 1 ≤ m < rk and the
P∗
k,m in (48)∥∥P̂k,m − P∗

k,m
∥∥
S � dδ∗

1−δ0rk
{
(σ/λ)

√
dk/(r−kT)

+ (σ/λ)2
√
d/T/r−k

}
(67)

under conditions (53), (57) and (59).
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Compared with the results in Lam, Yao, and Bathia (2011a)
and Wang, Liu, and Chen (2019) and Corollaries 1 and 2 which
involve {d1, . . . , dK , λ,T}, the bounds inCorollary 3 also involve
the ranks {r0, r∗k,0, r1, . . . , rK} as they are allowed to diverge in
the Factor Strength Model. We note that while Pk,m = P∗

k,m for
m = rk, the estimation targets in Equations (65) and (67) are
not the same in general for 1 ≤ m < rk as discussed in the
paragraph below (25).

For the vector series xt = λU1f (cano)
t + et in the canonical

form with U1 being the left singular matrix of A1 and λ =
‖A1‖S, the TOPUP and TIPUP are identical, and �

(cano)
1,h =

�
(cano)∗
1,h = ∑T

t=h+1 f
(cano)
t−h f (cano)

t
�
/(T − h), �

(cano)
0 =

�
(cano)
1,0 = �

(cano)∗
1,0 in Equations (29)–(32) and (52)–(57). and

the rates in Corollary 3 are simplified to∥∥P̂1 − P1
∥∥
S � dδ1−δ0

1 (σ/λ)
√
d1/T(1 + σ/λ).

While the conditions in the Factor Strength Model are all
expressed in terms of the canonical factor series, Equation (64)
of Corollary 3 for the TOPUP estimation of Pk also leads to the
oracle inequality under parallel conditions on the natural factor
series Ft , as F (cano)

t = Ft ⊗K
k=1 (DkV�

k ) in view of Equations
(4) and (6). Similar to Equations (29), (32), (30) and (31), define

�k,h =
T∑

t=h+1

matk(Ft−h ⊗ Ft)

T − h
,

�∗
k,h =

T∑
t=h+1

matk(Ft−h)mat�k (Ft)

T − h
,

�k,1:h0 = (
�k,1, . . . ,�k,h0

)
and �0 =∑T

t=1 vec(Ft)vec�(Ft)/T. Corollary 3 yields the following.

Corollary 4. Let d−δ0 be the SNR in the sense of∑T
t=1 ‖vec(Mt)‖22/(σ 2dT) � d−δ0 . Let λ = ∏K

k=1 ‖Ak‖S.
Suppose Ak are scaled such that λ2 = σ 2d1−δ0/r. Let
UkDkV�

k be the SVD of Ak/‖Ak‖S and κ0 = ∏K
k=1 σrk(Dk). If

κ2
0σrk

(
�k,1:h0

) ≥ c1dδ0−δ1h1/20 r/(rkr0)1/2, then∥∥P̂k − Pk
∥∥
S � dδ1−δ0

√
d−k

√
(r0/r∗k,0) ∨ 1

{
(σ/λ)

√
dk/T

+ (σ/λ)2
√
d/T/r−k

}
, (68)

where P̂k is the TOPUP estimate of Pk, r0 and r∗k,0 are the effec-
tive ranks in Lemma 1. Moreover, κ2

0 ≤ r0‖�0‖S/trace(�0) ≤
κ−2
0 and κ2

0 ≤ r∗k,0‖�∗
0,k‖S/trace(�0) ≤ κ−2

0 .

It follows from Corollary 4 that for the TOPUP estimation
of the projection Pk to the column space of Ak, conditions for
Equation (64) can be equivalently stated in terms of the natural
factor series when the condition numbers ‖D−1

k ‖2S of A�
k Ak are

uniformly bounded in the Factor StrengthModel.However, par-
allel variation of Equation (66) in the TIPUP theory is unclear as
the impact ofDk inside the inner-product in Equations (18) and
(32) cannot be directly deciphered for h �= 0. Similarly, neither
parallel variations of Equations (65) and (67) are available as the
impact ofDk on the gaps of the singular values is unclear. Below
we consider a special case with more explicit results.

Bi-Orthogonal CP Factor Model: Let r1 = · · · = rk and Ak =
(ak,1, . . . , ak,r1). Suppose

Mt = Ft ⊗K
k=1 Ak = λ

r1∑
i=1

κifit
(

⊗K
k=1 bk,i

)
, (69)

where λ = ∏K
k=1 ‖Ak‖S, bk,i = ak,i/‖ak,i‖2, κi =(∏K

k=1 ‖ak,i‖2
)
/λ and the factor series Ft is diagonal with

elements fi1i2···iK t = fitI{i1 = . . . = iK = i}. We assume that
the loading vectors ak,i are bi-orthogonal: For each i1 �= i2,
a�
k,i1ak,i2 = 0 for at least two k ≤ K, or equivalently

min
1≤i1<i2≤r1

#
{
k ≤ K : b�

k,i1bk,i2 = 0
} ≥ 2. (70)

Moreover, without loss of generality by scaling, assume always
that E

[∑T
t=1 f 2it /T

] = 1 and that Equations (52) and (60) hold
with the SNR d−δ0 and λ2 = σ 2d1−δ0/rK1 in agreement with
the λ in Equation (69). We shall call (69) the Fully Orthogonal
CP Factor Model when E

[∑T
t=h+1 fi1,t−hfi2,t/T

] = 0 and
b�
k,i1bk,i2 = 0 for all 1 ≤ i1 < i2 ≤ r1 and 1 ≤ h ≤ h0.

Proposition 1. In the above Bi-Orthogonal CP Factor Model,
let f t = (f1t , . . . , fr1t)�, �f ,h = (T − h)−1 ∑T

t=h+1 f t−hf�
t ,

D0 = diag(κ1, . . . , κr1) ∈ R
r1×r1 , �κf ,h = D0�f ,hD0 and

Bk = (bk,1, . . . , bk,r1). Then, rK1 = r = E
[
trace

(
�

(cano)
0

)] =
E
[
trace

(
�κf ,0

)] = ∑r1
i=1 κ2

i and

σm
(
�

(cano)
0

) = σm
(
�κf ,0

)
, (71)

σm
(
�

(cano)
k,1:h0

) = σ
1/2
m

(∑h0
h=1Bkdiag

((
�κf ,h

)(
�κf ,h

)�)B�
k
)
, (72)

σm
(
�

(cano)∗
k,0

) = σm
(
Bkdiag

(
�κf ,0

)
B�
k
)
, (73)

σm
(
�

(cano)∗
k,1:h0

) = σ
1/2
m

(∑h0
h=1

(
Bkdiag

(
�κf ,h

)
B�
k
)2). (74)

Thus, in Equations (52)–(59), �
(cano)
0 , �

(cano)∗
k,h and

�
(cano)
k,h can be replaced by �κf ,0, Bkdiag

(
�κf ,h

)
B�
k and{

Bkdiag
((

�κf ,h
)(

�κf ,h
)�)B�

k
}1/2 respectively.

In the Bi-Orthogonal CP FactorModel with orthonormalBk,
conditions (54) and (56) for the estimation of Pk become

min
1≤i≤r1

{ h0∑
h=1

r1∑
j=1

(
�κf ,h

)2
i,j
}1/2

≥ c1dδ0−δ1rK1
√
h0/(r1r0)1/2,

min
1≤i≤r1

{ h0∑
h=1

(
�κf ,h

)2
i,i
}1/2

≥ c1dδ0−δ∗
1 rK1

√
h0/(r1r∗k,0)

1/2,

respectively by Proposition 1 with (�κf ,h)i,j =
κiκj

∑T
t=h+1 fi,t−hfj,t/(T − h). Thus, while the TOPUP uses

the information in all elements of the matrix �κf ,h, the TIPUP
would fail due to the omission of signals in the off-diagonal
elements when E[(�κf ,h)ii] = 0 for all 1 ≤ h ≤ h0 for
at least one i ≤ r1. When Bk is not orthonormal in the
Bi-Orthogonal CP Factor Model, the TIPUP is also subject
to mild signal cancellation in the diagonal elements of the
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matrix. However, the TIPUP enjoys noise omission and noise
cancellation as exhibited in the faster rates in Equations
(66) and (67) under the respective conditions. In the Fully
Orthogonal CP Factor Model where Bk is orthonormal and
E[�κf ,h] is diagonal, σm

(
E[�(cano)

k,1:h0 ]) = σm
(
E[�(cano)∗

k,1:h0 ]) and
σm

(
E[�(cano)

0 ]) = σm
(
E[�(cano)∗

k,0 ]) so that the TIPUP yields
smaller error bounds in Corollary 3 with δ∗

1 = δ1.

6. Simulation Results

Here we present some empirical study on the performance of
the estimation procedures, with various experimental config-
urations. We also check the performance of a standard tensor
decomposition procedure which incorporates time as an addi-
tional tensor dimension, and treats the factor as deterministic
without temporal structure. The loading matrices are then esti-
mated using SVD of the mode-1 (or 2, 3) matricization of the
expanded tensorY in (3) to estimate the column space ofA1 (or
A2, A3). We will call it the unfolding procedure (UP). The main
difference between UP and the estimators TIPUP and TOPUP
is that UP does not incorporate the assumption that the noise is
white, while the TIPUP and TOPUP take full advantage of that
assumption.
To compare the performance of different methods in finite
samples, we generated observations from the following two-
dimensional model:

Xt = 2A1FtA�
2 + Et (75)

where Ft = [f1t , f2t] is a 1 × 2 factor, with two independent
AR(1) processes fit = φifit−1 + eit . The noise Et is generated
the same way as the simulation in the rank one case. The
elements of the loadings A1 (a d1 × 1 matrix) and A2 (a d2 × 2
matrix) are generated from iid N(0,1), then normalized so that
‖A1‖2 = 1 (A1 is vector) and A2 is orthonormal through
QR decomposition. We use dimension d1 = d2 = 16 here.
Figures 2 and 3 show the comparison of the estimationmethods,

using boxplots of the logarithm of the estimation error in 100
simulation runs. The estimation error of A1 is calculated the
same way as that in the rank one case (since A1 is a vector).
The estimation error ofA2 is the spectral norm of the difference
between P̂2 = Â2(Â

�
2 Â2)

−1Â�
2 andP2 = A2(A�

2 A2)
−1A�

2 , that
is, the sine of the largest canonical angle between the column
spaces of Â2 and A2. We consider TOPUP and TIPUP with
h0 = 1 and h0 = 2. UP denotes the results using simple tensor
decomposition via unfolding. The top panel is for estimatingA1
and the bottom panel for A2.

Figure 2 shows the results of using φ1 = 0.8 and φ2 = −0.8
in the AR processes of the factors and sample sizes T = 256 and
1024. Note that with φ1 = 0.8 and φ2 = −0.8, we have

E
[
�

(cano)∗
k=1,h

] = E[FtF�
t−h] = (φh

1 + φh
2 )σ

2
f , h = 0, 1, 2,

so that E
[
�

(cano)∗
k=1,1:(h0=1)

] = 0. It violates the full-rank condition
for the TIPUP in estimating A1 with h0 = 1. Essentially the
signal in

∑T
t=h+1 XtX�

t−1 completely cancelled out so that the
results of the TIPUP with h0 = 1 in the top two panels in
Figure 2 are significantly worse than the respective results of
the TOPUP with E

[
�

(cano)
k=1,1:(h0=1)

] = (φ1σ
2
f , 0, 0,φ2σ

2
f ). On the

other hand, for h0 = 2, the signal cancellation does not happen
to the TIPUP for the h = 2 term, E

[
�

(cano)∗
k=1,1:(h0=2)

] = (0, (φ2
1 +

φ2
2)σ

2
f ), so that the TIPUP is comparable with the TOPUP with

E
[
�

(cano)
k=1,1:(h0=2)

] = (φ1σ
2
f , 0, 0,φ2σ

2
f ,φ

2
1σ

2
f , 0, 0,φ

2
2σ

2
f ) as well

as the TOPUP with h0 = 1. Still, for the larger T, the perfor-
mance of the TIPUP with h0 = 2 is slightly worse compared
with the TOPUP with either h0 = 2 or h0 = 1, due to partial
signal cancellation andweaker signal for lag 2. The TOPUPdoes
not have such a cancellation problem since it is based on the sum
of the squares of column-wise autocovariance. The cancellation
problem should not be very common in practice. For example,
there is no cancellation for estimatingA2 when using the TIPUP
in this setting, since E[F�

t Ft−1] is a full rank matrix. Since the
TIPUP in general has a faster convergence rate, its performance

Figure 2. Finite sample comparison between TIPUP, TOPUP with different h0 and UP under model (75) where φ1 = 0.8, φ2 = −0.8. The boxplots show the logarithms of
the estimation errors. The top row is for estimation of the column space of the mode 1 loading matrix A1 and bottom for A2. The left column is for T = 256 and right for
T = 1024.
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Figure 3. Finite sample comparison between TIPUP, TOPUP with different h0 and UP under model (75) where φ1 = 0.8, φ2 = −0.7. The boxplots show the logarithms of
the estimation errors. The top row is for estimation of the column space of the mode 1 loading matrix A1 and bottom for A2. The left column is for T = 256 and right for
T = 1024.

is better than that of the TOPUP, especially for small sample
sizes, as shown in the bottom panel of Figure 2.

Figure 3 shows the results of using φ1 = 0.8 and φ2 = −0.7
in the AR processes of the factors. Here although E[FtF�

t−1] is
not zero, TIPUPwith h0 = 1 for estimatingA1 is still worse than
TOPUP due to the partial cancellation, though not as severe as
that in the complete cancellation φ2 = −0.8 case.

The UP procedure is always the worst performer in our
experiments, most probably due to the presence of contem-
porary correlation in the noise Et and the fact that TOPUP
and TIPUP utilize the whiteness assumption on Et . Additional
simulation results, including the relative estimation error com-
paring TTPUP or TOPUPwithUP for this example, are given in
AppendixC.1. An additional simulation example on the analysis
of order 3 tensor time series is given in Appendix C.2, which
shows similar results to the matrix times series example here.
The simulation study to verify the theoretical results is given in
Appendix C.4.

7. Applications

7.1. Tensor FactorModels for Import–Export Transport
Networks

Here we analyze themulti-category import-export network data
as illustrated in Figure 1. The dataset contains the monthly total
export among 22 countries inNorthAmerican and Europe in 15
product categories from January 2010 toDecember 2016 (length
84), so that the original dataset can be viewed as a four-way
tensor of dimension 22 × 22 × 15 × 84, with missing values
for the export from any country to itself. For simplicity, we
treated the missing diagonal values as zero in the analysis. More
sophisticated imputation can be implemented. The details of the
data, countries and product categories are given in Appendix B.
Following Linnemann (1966), to reduce the effect of incidental
transactions of large trades or unusual shipping delays, a three-
month moving average of the series is used, so that Xt ∈

R
22×22×15 with t = 1, . . . , 82. Each element xi,j,k,t is the three-

monthmoving average of total export from country i to country
j in category k in the tth month.

Figure 4 shows the total volume from year 2010 to 2017
in two categories of products (Machinery and Electronic, and
Footwear and Headwear) among 22 countries in North Amer-
ican and Europe. The arrows show the trade direction and the
width of an arrow reflects the volume of the trade. Clearly the
networks are quite different for different product categories. For
example, Mexico is a large importer and exporter of Machinery
and Electronic as it serves as one of the major part suppliers in
the product chain of machinery and electronics. On the other
hand, Italy is the largest exporter of Footwear and Headwear.

Under our general framework presented in Section 3, we use
the following model for the dynamic transport networks. Let
Xt be the observed tensor at time t. The element xi1i2i3,t is the
trading volume from country i1 (the exporter) to country i2 (the
importer) of product type i3. Let

Xt = Ft ×1 A1 ×2 A2 ×3 A3 + Et (76)

where Xt ∈ R
d1×d2×d3 (d1 = d2), Ft ∈ R

r1×r2×r3 (r � d), and
Ai ∈ R

di×ri . This is similar to theDEDICOMmodel (Harshman
1978; Kolda, Bader, and Kenny 2005; Kolda and Bader 2006).
Chen andChen (2019) provided some interpretations of the fac-
tors in a uni-category import-export network under the matrix
factor model setting of Wang, Liu, and Chen (2019).

In the following, we provide some interpretation of the
model. Consider the loading matrix A3. It can be viewed as the
loading matrix of a standard factor model

xi1i2·,t = A3f (3)
i1i2·,t + ε

(3)
i1i2·,t

of the mode-3 fiber xi1i2·,t for all (t, i1, i2). This is essentially
unfolding the order 4 tensorY with dimensions d1×d2×d3×T
into a d3 × (d1d2T) matrix and fit a standard factor model
with d1d2T factors, each a vector of dimension r3. These factors
drive the co-moment of all mode-3 fibers Xi1,i2,·,t at time t.
The loading matrix reflects how each element of the mode-3
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Figure 4. Time aggregated import-export volume of Machinery and Electronic products and Footwear and Headwear products among 22 countries in North American
and Europe.

Table 1. Estimated loading matrixA3 for category fiber.

Animal Vegetable Food Mineral Chemical Plastic Leather Wood Textile Footwear Stone MetalMachineryTransportation Misc

1 0 2 0 0 −1 0 0 −2 1 0 −1 −1 29 0 7
2 0 1 0 30 −1 0 0 2 −1 0 0 1 0 0 3
3 0 −1 1 0 29 1 0 0 0 0 0 0 −1 0 8
4 0 0 2 0 −1 0 0 2 −1 0 0 1 0 30 3
5 6 5 6 0 2 16 1 7 6 1 4 19 3 0 −9
6 −1 0 1 0 −1 −3 0 1 0 0 29 −1 −1 0 6

NOTE: Matrix is rotated via varimax. Elements are multiplied by 30 and truncated to integer.

fiber is related to the factors. Note that this scheme is only for
interpretation. Th estimation procedure is based on a different
set-up.

Table 1 shows an estimate of A3 of the import-export data
under the tensor factor model, using r3 = 6 factors. The
estimation is based on the TIPUP procedure with h0 = 2. The
loadingmatrix is rotated using the varimax procedure for better
interpretation. All numbers are multiplied by 30 then truncated
to integers for clearer viewing.

It can be seen that there is a group structure. For example,
Factors 1, 2, 3, 4, and 6 can be interpreted as the Machinery
and Electrical factor, Mineral factor, Chemicals factor, Trans-
portation factor, and Stone and Glass factor, respectively, since
the corresponding product categories load heavily and almost
exclusively on them. On the other hand, Factor 5 is mixed,
with large loadings byMetals andPlastics/Rubbers, andmedium
loadings by Animal, Vegetable, and Food products.Wewill view
each factor as a “condensed product group.” Figure 5 shows the
clustering of the product categories according to their loading
vectors.

The factor matrix F·,·,i3,t (for a fixed i3) can be viewed as
the trading pattern among several trading hubs for the i3-th
condensed product groups (product factor). One can imagine
that the export of a product by a country would first go through
a virtual “export hub,” then to a virtual “import hub,” before

Figure 5. Clustering of product categories by their loading coefficients

arriving at the country that imports the product. Each row of
the matrix F·,·,i3,t represents an export hub and each column
represents an import hub. The elements Fi1,i2,i3,t can be viewed
as the volume of the condensed product group i3 moved from
export hub i1 to import hub i2 at time t. The corresponding
loading matrices A1 and A2 reflects the trading activities of
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Table 2. Estimated loading matrixA1 for the export fiber (hub).

BE BG CA DK FI FR DE GR HU IS IR IT MX NO PO PT ES SE CH TR US GB

1 4 0 80 0 1 2 −4 0 0 0 5 0 −3 3 0 1 2 0 3 0 3 5
2 −1 0 −4 0 0 1 −6 0 1 0 −2 2 1 1 1 0 0 0 1 0 102 1
3 9 0 −1 2 1 12 29 0 2 0 7 9 −3 1 4 1 7 3 6 2 1 8
4 −8 0 5 0 0 0 15 0 0 0 −7 2 104 −2 −2 −1 −4 1 −3 −1 0 2

NOTE: Matrix is rotated via varimax and column normalized. Values are in percentage.

Figure 6. Clustering of countries by their export (left) and import (right) loading coefficients

Table 3. Estimated loading matrixA2 for the import fiber (hub). Matrix is rotated via varimax and column normalized. Values are in percentage.

BE BG CA DK FI FR DE GR HU IS IR IT MX NO PO PT ES SE CH TR US GB

1 1 0 2 0 0 −1 0 0 0 0 0 0 −2 0 0 0 1 0 0 0 100 −1
2 0 0 57 0 0 2 −5 0 0 0 1 −2 44 0 −1 −1 −2 −1 0 1 0 7
3 10 1 −2 3 2 22 −3 1 4 0 1 11 0 2 6 2 6 5 8 4 0 18
4 7 0 4 0 0 0 68 1 −2 0 4 4 1 1 −2 1 8 0 −2 2 0 5

each country through each of the export and import hubs,
respectively. We normalize each column of the loading matrices
to sum up to one, so the value can be viewed as the proportion
of activities of each country contributes to the hubs. Tables 2
and 3 show the estimated loading matrices A1 and A2 after
varimax rotation and column normalization, using four export
hubs (E1 to E4) and four import hubs (I1 to I4). All values are
in percentage. There are a few negative values since we do not
constrain the loadings to be positive. The interpretation of the
negative values is tricky. Fortunately, there are not many and
the values are small. From Table 2, it is seen that Canada, the
United States and Mexico heavily load on export hubs E1, E2,
and E4, respectively, while European countries mainly load on
export hub E3. The clustering based on loading coefficients of
A1 of each country is shown in the left panel of Figure 6. The
three countries in North America are very different from the
European countries. In Europe, Germany behaves differently
from the others as an exporter. For imports, seen from Table 3,
the United States and Germany load heavily on hubs I1 and
I4, respectively, while Canada and Mexico share hub I2. The
European countries other than Germany mainly load on hub
I3. The clustering based on loading coefficients of A2 of each

country is shown in the right panel of Figure 6. It seems that the
European countries (other than Germany) can be divided into
two groups of similar import behavior, mainly based on the size
of their economies.

The left panel of Figure 7 shows the trade transport net-
work for the condensed product group 1 (mainly Machinery
and Electrical). Several interesting features emerge. Export hub
E3 (European hub) has the largest trading volume, and the
goods mainly go to import hub I3 (European hub) and hub I1
(U.S. hub). This is understandable as trades among the many
countries in Europe accumulate, and the United States is one
of the largest importers. Mexico dominates export hub E4 and
it mainly exports to import hub I1, used by the United States,
confirming what is shown in the left panel of Figure 4. The
United States is also a large exporter ofmachinery and electrical,
occupying export hub E2, which mainly exports to import hub
I2 used by Mexico and Canada.

On the other hand, for the network of condensed product
group 2 (mainly mineral products) shown by the right panel of
Figure 7, the dynamic is quite different. Export hub E1, mainly
used by Canada, is the largest hub for mineral products. The
import hub I1 is the largest import hub, mainly used by the
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Figure 7. Trade network for condensed product group 1 (left) and group 2 (right). Export and import hubs are on the left and right of the center network respectively. Line
width is proportional to the total volume of trade between the hubs for the last three years (2015 to 2017). Vertex size is proportional to total volume of trades through the
hub. The line width between the countries and the hubs is proportional to the corresponding loading coefficients, for coefficients larger than 0.05 only.

Figure 8. Loadings on four pickup factors for business day series

United States. Most of its volume come through export hubs
E1 (used mainly by Canada) and E4 (used mainly by Mex-
ico). The network plots of other product groups are shown in
Appendix B.

We remark that this analysis is just for illustration and show-
casing the interpretation of the model. A more formal analysis
would include the determination of the number of factors and
model comparison procedures. Results of a parametric boot-
strap study for this example are given in Appendix C.3.

Remark 11. The above analysis is based on the original obser-
vation. It can be seen that the volume (or the scale) of the
individual time series tends to dominate the factor structure.
Factor and principle component analysis always depend on the
choice of using covariance structure or correlation structure.
In this example, if the individual time series are standard-
ized for the analysis, the results lack economic interpretation.
Some small countries and small product categories become

dominating factors as their variations can be (proportionally)
much larger than the large countries and large product cate-
gories, after standardization. From the view of economics, the
global trade network is indeed dominated by large countries
and large product categories. Our analysis shows a pattern that
is intuitively true, but also revealed hidden structures that are
difficult to study by looking at trading patterns individually.

7.2. Taxi Traffic in New York City

In this example we analyze taxi traffic pattern in New York city.
The data include all individual taxi rides operated by Yellow
Taxi within New York City, maintained by the Taxi & Limousine
Commission of New York City and published at

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.
page.

The dataset contains 1.4 billion trip recordswithin the period
of January 1, 2009 toDecember 31, 2017, among these 1.2 billion

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Figure 9. Loadings on four pickup factors for nonbusiness day series

Figure 10. Loadings on four dropoff factors for business day series

Figure 11. Loadings on four dropoff factors for nonbusiness day series

are for rides withinManhattan Island. Each trip record includes
fields capturing pick-up and drop-off dates/times, pick-up and
drop-off locations, trip distances, itemized fares, rate types,
payment types, and driver-reported passenger counts. As we are
interested in themovements of passengers using the taxi service,
our study focuses on the pick-up and drop-off dates/times,
and pick-up and drop-off locations of each ride. To sim-
plify the discussion, we only consider rides within Manhattan
Island.

The pick-up and drop-off location in Manhattan are coded
according to 69 predefined zones in the dataset after 2016 and
we will use them to classify the pick-up and drop-off locations.
To account for time variation during the day, we divide each
day into 24 hourly periods. The first hourly period is from 0
a.m. to 1 a.m. The total number of rides moving among the
zones within each hour is recorded, yielding a Xt ∈ R

69×69×24

tensor for each day. Here xi1,i2,i3,t is the number of trips from
zone i1 (the pick-up zone) to zone i2 (the drop-off zone) and the
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pickup time within the i3-th hourly period in day t. We consider
business day and non-business day separately and ignore the
gaps created by the separation.Hence, wewill analyze two tensor
time series. The business-day series is 2,262 days long, and the
non-business-day series is 1025 day long, within the period of
January 1, 2009 to December 31, 2017.

After some exploratory analysis, we decide to use the tensor
factor model with a 4 × 4 × 4 core factor tensor and estimate
the model using the TIPUP estimator with h0 = 1. The TOPUP
produces similar results.

Figure 8 shows the heatmap of the loadingmatrixA1 (related
to pick-up locations) of the 69 zones inManhattan. It is seen that
during business days, the midtown/Times square area is heavily
loaded on Factor 1, upper east side on Factor 2, upper west side
on Factor 3 and lower east side on Factor 4. For non-business
days, the loading matrix is significantly different, as shown in
Figure 9. The area on the lower west side near Chelsea (with
many restaurants and bars) that heavily loads on the first factor
is not active for pickups during the business day.

Table 4. Label of representing areas identified under the tensor factor model with
area description.

Source factor

Business Non-Bus

Area p d p d description

1 Upper east 2 1 3 Affluent neighbor-
hoods and muse-
ums

2 Midtown/Times
square

1 3 1 Tourism and office
buildings

3 Upper
west/Lincoln
square

3 4 4 4 Affluent
neighborhoods
and performing
arts

4 East
village/Lower
east

4 2 Historic district
with art

5 Union square 2 2 Transportation hub
with shops and
restaurants

6 Clinton
east/Chelsea

1 Lots of restaurants
and bars

7 Yorkvill/Lenox
hill

3 A few universities

NOTE: “p” stands for pickup and “d” for dropoff.

Figures 10 and 11 show the loading matrices A2 (related
to dropoff locations) for business days and non-business days,
respectively. For dropoff during business days, the areas that
load heavily on the factors are quite similar to that for pick-
up, except the area that loads heavily on Factor 2. This area is
around Union Square which is a big transportation hub servic-
ing the surrounding tri-state area (New York, Connecticut and
New Jersey), and a heavy shopping/restaurant area. For non-
business days, the dropoff area that heavily loads on Factor 3
(Yorkvill/Lenox hill) is different from all the areas used for both
pickup and dropoff and for both business days and non-business
days. To simplify our presentation and to show comparable
results in different settings, we will roughly match the pickup
and dropoff factors by their corresponding heavily loaded areas,
shown in Table 4 with brief area descriptions.

Tables 5 and 6 show the loading matrix A3 (on the time of
day dimension) for business day and non-business day, respec-
tively, after varimax rotation. The shaded cells roughly show the
dominating periods of each of the factors, though the change
is more continuously and smooth. It is seen that, for business
days, the morning rush-hours between 6 a.m. and 9 a.m. are
heavy and almost exclusively loaded on factor 1 and we will
name this factor the morning rush-hour factor. The business
hours from 8am to 3 p.m. heavily load on Factor 2 (the business
hour factor), the evening rush-hours from 3 p.m. to 8 p.m.
load heavily on Factor 3 (the evening rush-hour factor) and the
night life hours from 8 p.m. to 1 a.m. load on Factor 4 (the
night life factor). On the other hand, for nonbusiness days, we
have morning activities between 8 a.m. and 1 p.m. (themorning
factor), afternoon/evening activities between 12 p.m. to 9 p.m.
(the afternoon/evening factor), and night activities between 9pm
to 12am (the early night factor) and 12 a.m. to 4 a.m. (the late
night factor).

Figures 12 and 13 show the traffic network plots between the
areas defined in Table 4 during different time factor periods. The
width of the lines reflects total traffic volume between the major
areas over the entire time series (the sum of the factors fk1k2k3,t
over time t.) The size of the vertices reflects total number of
pickups (left vertices) and dropoffs (right vertices) in the area
during the time factor period.

The figures reveal many interesting patterns. For example,
during the morning rush-hours of business days, traffic mainly

Table 5. Estimated loading matrixA3 for hour of day fiber. Business day.

0am 2 4 6 8 10 12pm 2 4 6 8 10 12am

1 −2 −1 −1 −1 1 10 47 72 42 14 2 −6 −11 −9 −8 −5 −1 5 5 4 1 2 0 −2
2 0 0 0 0 −1 −4 −13 −5 32 46 36 35 38 33 29 19 9 1 −2 −5 −3 −3 −1 1
3 −5 −4 −3 −2 −1 1 4 6 −15 −25 −6 4 7 9 19 31 32 43 47 39 22 14 4 −6
4 28 18 11 7 4 1 0 −8 2 14 4 −2 −3 −2 −7 −15 −13 −11 1 19 35 41 46 47

NOTE: Matrix is rotated via varimax. Values are in percentage.

Table 6. Estimated loading matrixA3 for hour of day fiber. Nonbusiness day.

0am 2 4 6 8 10 12pm 2 4 6 8 10 12am

1 −20 −3 11 10 5 3 9 19 34 47 47 35 23 14 10 12 3 −4 −13 −16 −14 −13 −5 10
2 19 0 −13 −11 −3 0 0 −2 −3 −2 6 17 25 29 30 27 29 34 39 33 22 17 5 −17
3 −11 3 14 7 −2 −4 −4 −3 −2 2 −1 −5 −3 1 0 4 −3 −3 2 17 20 24 45 78
4 53 52 45 37 21 8 6 5 4 2 1 2 −2 −4 −4 −6 −2 0 0 −1 4 6 0 −10

NOTE: Matrix is rotated via varimax. Values are in percentage.
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Figure 12. Network Plots during the four time factor periods for business day series

Figure 13. Network Plots during the four time factor periods for nonbusiness day series

goes from Areas 1 and 2 (upper east and midtown) to Area 2
(midtown). There is only a small amount of traffic to Area 5.
During the business hours and early evening hours, traffic is
mainly within Areas 1 and 2. During the evening rush-hour, the
main pickup area is midtown and the main dropoff area is the
Union square where many people take public transportation to
the surrounding tri-state area. During the night life hours, main
traffic is towardArea 2 (midtown), sinceTimes square is popular
among tourists and night-life goers.

For nonbusiness days, the pattern is very different. During
morning time from 8 a.m. to 12 p.m., most traffic takes place
from Area 6 (Chelsea) to Area 2 (midtown) and from Area 1
(upper east side) to Area 7 (Yorkvill/Lenox hill); during after-
noon/evening from 12 p.m. to 9 p.m., many riders take taxi from
Area 4 (lower east) to Area 5 (Union square); during early night
(from 8 p.m. to 12 a.m.), the traffic volume is much smaller,
mainly from Areas 1 (upper east) and 6 (Chelsea) to Areas 7
(Yorkvill/Lenox hill) and 2 (midtown); during late night from
12 a.m. to 5 a.m., the traffic is heavier than early night, mainly
dominated by pickups fromAreas 4 (lower east) and 6 (Chelsea)
and dropoffs in Areas 5 (Union square) and 2 (midtown). The
late night dropoff to Union square is very plausible since people
need to go to transportation hub to go back home after a long
night in New York city after midnight.

Again, this analysis is for demonstration of the tensor factor
model only. More thorough and sophisticated analysis may be
needed to fully understand the traffic pattern.
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