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ABSTRACT

The Monte Carlo probability (MCP) model, which has been used for official tropical cyclone (TC) warnings to the
public by the United States’ National Hurricane Center (NHC), can estimate the probability of wind speed in the vi-
cinity of a TC during the forecast period. It has been successful in the operational environment for many years.
However, due to its strong dependence on a given forecast track (e.g., forecast from the NCEP Global Forecast Sys-
tem), the MCP model may generate a poor probability map for TCs near landfall. In this study, we proposed and
tested a modified MCP method for TC forecasts near landfall. We first adjusted the MCP model by adding limits to
the direction angle and motion distance to deal with the substantial change in TC moving direction and the low wind
speeds during landfall. Then, we combined ensemble probability maps generated from ECMWF, United Kingdom
MetOffice(UKMO),andNCEPensembleforecasts,obtained from TheInternational Grand Global Ensemble(TIGGE), into
the MCP model to configure a modified MCP model. Wind speed probability maps for the 0—120-h forecast from
both the original and modified MCP models are compared. It is found that the modified MCP model can provide a
better wind speed probability map during landfall, especially at wind speeds of 20—-64 kt near TC landfall. The res-
ults from this study prove the benefits of combining the MCP model with ensemble forecasting in potential applica-
tions for improved TC forecasts.
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(up to 120 h after 2003). These provide information on

Accurate forecasts of tropical cyclones (TCs), espe-
cially landfalling hurricanes, are crucial for reducing the
damage they cause (Smith, 2017). Despite progress in
numerical weather prediction (Bauer et al., 2015) and
statistical forecast (DeMaria et al., 2009), forecast error
mitigation is difficult due to the complexity of TC evolu-
tion and the lack of observations (Rappaport et al., 2009;
Emanuel and Zhang, 2016). To overcome forecast uncer-
tainty and provide early warning for TCs, a TC probabil-
ity program was implemented in 1983 (Sheets, 1985)
with support from the National Hurricane Center (NHC).
With this program, 10-yr samples of official forecast er-
rors are composited relative to the forecast position at the
discrete forecast verification times of 12, 24, 48, and 72 h

the likelihood of a storm of interest moving over a given
area. Following this effort, DeMaria et al. (2009) de-
veloped a Monte Carlo probability (MCP) model to gen-
erate a TC wind probability map at individual locations
during a 0-120-h forecast period. In this wind probabil-
ity model, random samples from the past five years of
forecast errors [usually with a sample size of 1000, as
suggested by DeMaria et al. (2009)] are required to gen-
erate cyclone track, intensity, and corresponding radii
realizations [with the simple climatology and persistence
model (radii-CLIPER); Knaff et al., 2007] based on an
official forecast track from NHC. These generated realiz-
ations can then be used to produce a probability map in a
single forecast result by counting the number of realiza-
tions for which the point is inside the radius of the wind
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speed threshold of interest (e.g., 34, 50, and 64 kt, where
1kt=0.5144ms™).

To narrow the forecast track error distribution, after
2010, the NHC introduced the Goerss predicted con-
sensus error (GPCE; Goerss, 2007) into the MCP model
to generate a more relevant wind probability map. The
different GPCE selections at different forecast times lead
to a slight improvement in MCP model forecasts in most
cases (DeMaria et al., 2013). Meanwhile, because of
well-distributed historical errors with a mean value of
about zero (DeMaria et al., 2009), the MCP model gener-
ates track realizations that are always distributed along
the given forecast track. When there are strong spreads
between the forecast and best track [i.e., the poststorm
best estimates of the cyclone track and intensity, intro-
duced by Jarvinen et al. (1984) and Knapp et al. (2010)],
the 1000 generated track realizations can be identified as
inaccurate realizations that lead to poor TC realizations
and result in poor wind probability forecasts. In order to
reduce the forecast errors, more forecast tracks and er-
rors should be considered and added to the MCP model.

Besides the MCP model, major operational numerical
weather prediction centers, such as the United States’
NCEP, the ECMWF, and the United Kingdom Met Of-
fice (UKMO), all provide reliable TC ensemble fore-
casts. While these ensembles can improve probabilistic
forecasts for severe weather events (Froude, 2010, 2011;
Frame et al., 2011; Swinbank et al., 2016), wind probab-
ility maps (Matsueda and Nakazawa, 2015) for hurricane
forecasts can also be generated by combining ensemble
forecasts from multiple sources (e.g., from ECMWF,
UKMO, and NCEP).

In this study, we develop a modified MCP model by
combining probability maps from both MCP and multi-
model ensemble forecasts to improve TC probability
forecasts near landfall. Based on the MCP model using
the NCEP Global Forecast System (GFS) forecast as the
official forecast track, we first evaluate and adjust the
MCP method by limiting the unrealistic TC moving
speeds and directions to be more suitable for TCs near
landfall. Then, we combine it with ensemble forecast
maps from ECMWF, UKMO, and NCEP to further mit-
igate the unrealistic TC moving directions to improve
hurricane 0-120-h cumulative wind speed probability
forecasts. It is our purpose to explore a feasible method
of combining MCP and ensemble forecasts for accurate
TC wind forecasts near landfall. Hurricanes Sandy
(2012), Irma (2017), Harvey (2017), and major hur-
ricanes during the 2018 season over the Atlantic Ocean
are used as cases for this study. The MCP model, en-
semble forecasts, and modifications of the MCP model
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are described in Section 2. Probability forecast results
and statistical evaluation of cases are provided in Sec-
tion 3. Section 4 includes an evaluation based on major
hurricanes during the 2018 season. Concluding remarks
are presented in Section 5.

2. Wind speed probability forecasts and eval-
uation

2.1 MCP model

The MCP model estimates the probability of wind
speed at individual locations during a TC forecast period
(e.g., 0-120 h) based on randomly sampled errors from
previous years (historical) of official track errors by
adding these errors to the official deterministic forecast
positions. The sample error distributions are calculated
by comparing the official forecast positions to the NHC
“best track” positions, which are the poststorm best es-
timates of the cyclone track and intensity from observa-
tions. Therefore, with the MCP model, random samples
of track and intensity forecast errors from operational
forecasts, such as those from the NCEP GFS, in the pre-
vious five years are added to a single, deterministic fore-
cast (e.g., official GFS forecast) to generate 1000 realiza-
tions of cyclone track, intensity, and corresponding radii.
The model produces a probability map by counting the
number of realizations for which the points are inside the
radius of the wind speed threshold of interest (e.g., 34,
50, and 64 kt). Commonly, the NHC generates 0—120-h
official wind probability maps based on its official cyc-
lone forecasts (DeMaria et al., 2009, 2013).

2.1.1  Track realizations

TC track errors are defined as the great-circle distance
from the forecast track to the best-track positions. Ac-
cording to DeMaria et al. (2009), track errors can be de-
composed into along-track (AT; positive when the fore-
cast position is ahead of the best-track position) and
cross-track (CT; positive when the forecast position is to
the right of the best-track position) errors. Since these
AT and CT errors (i.e., ATE and CTE) at a certain time
can be affected by forecast errors at earlier times (De-
Maria et al.,, 2009), directly adding these randomly
sampled past ATE and CTE to a single forecast can lead
to unrealistic tracks. Therefore, a serial correlation is
used to eliminate this problem and generate realistic track
forecasts. DeMaria et al. (2009) used a linear fit method
to determine the influence of an error at a previous time
on ATE and CTE:

ATE[ = a[ATE[_]z + b[,

()
CTE, = ¢,CTE,_12 +d,,
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where a, b, ¢, and d are fitting coefficients determined by
the input historical ATE and CTE, and the subscript ¢ is
the forecast time. Then, based on Eq. (1), the historical
ATE (CTE) can be divided into two parts: the influence
of previous errors (i.e., calculated errors), which is calcu-
lated from Eq. (1) with coefficients a, b, ¢, and d; and the
residuals, which are the historical ATE (CTE) minus the
calculated values from Eq. (1). For ¢ = 12, the coeffi-
cients a and c are equal to zero, and the ATE (CTE) cal-
culated from Eq. (1) is equal to coefficient b (d), which is
the mean of the historical ATE (CTE) at this time. The
residuals are generated from the differences between the
historical ATE (CTE) and the coefficient b (d). From ¢ =
24 to t = 120, the residuals are generated from the differ-
ences between the historical ATE (CTE) and calculated
errors from Eq. (1). These residuals at each time are the
samples of the following MCP realizations.

After the historical ATE (CTE) is transformed into re-
siduals as discussed above, the residuals are randomly
sampled at each forecast time to generate the final ATE
(CTE) of MCP and make the MCP forecast. At ¢t = 12,
The residuals are randomly sampled and added to Eq. (1)
with coefficients b, and d;, as the sample mean AT and
CT track error biases at 12 h (as the error is equal to zero
att = 0; a;, = c;5 = 0). Then these values of ATE (CTE)
are input into Eq. (1) to obtain the calculated errors and
added to the randomly sampled residuals at 24 h to gen-
erate the final ATE (CTE) at 24 h. Following a similar
step, the final ATE (CTE) at 24 h is again input into Eq.
(1) and combined with the residuals to generate the final
ATE (CTE) at the subsequent forecast time. Finally, with
the forecast errors from the past five years, a total of
1000 x 10 final ATE (CTE) are generated. These final er-
rors are added to a single forecast track, thus producing
1000 hurricane tracks for the 120-h forecast.

2.1.2  Intensity realizations

Similar to track realizations, TC intensity errors in the
previous five years are required as random samples for
intensity realizations. In the MCP model, intensity is rep-
resented by the maximum wind speed at 10-m height.
Therefore, the intensity error is the maximum wind speed
error (SE). Meanwhile, the SE at any given time can be
influenced not only by earlier SE but also by forecast
cyclone maximum wind speed (SM) and the distance
from the cyclone center to land (D, which is positive
when the cyclone is over the ocean) at a given time. Con-
sidering the small influence of land when a cyclone is
sufficiently far away from land, DeMaria et al. (2009) set
D = 500 km when D > 500 km. Therefore, a linear rela-
tionship is assumed between the SE 12 h previous and
the forecasts of SM, D, and SE at time ¢ (DeMaria et al.,
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2009), thus:

SE; = ¢;SE;_12 + fiSM; + g;D; + hy, 2

where e, f, g, and & are least squares fitting coefficients,
determined by the historical SE, SM, and D, and the sub-
script ¢ is the forecast time. The historical SE at 12-120 h
is transformed into a residual SE by subtracting the cal-
culated SE (which represents the influence from the er-
ror in the previous 12 h) using Eq. (2). Similar to the
track realizations, at ¢ = 12, the final SE is equal to the
sum of the residual and the coefficient /4. The final SE at
t =12 is then input into Eq. (2) to calculate the SE at ¢ =
24. Then, this calculated SE is combined with randomly
sampled residual SE to generate the final SE at ¢ = 24.
Similar steps continue and generate the final SE at sub-
sequent forecast times, and these final SEs are then ad-
ded to the official (deterministic) forecast intensity to
produce 1000 hurricane intensity realizations for the
120-h forecast at 12-h intervals.

Furthermore, when the underlying surface, either
ocean or land, is different in the realization than in the
forecast, the difference can lead to an incorrect SE, and
consequently to poor intensity realizations. Therefore,
two methods are used to modify these poor intensity real-
izations produced by the mismatched underlying sur-
faces between realizations and forecasts. When the de-
terministic forecast position is inland and the MCP real-
izations are over the ocean, SM, in Eq. (2) will be re-
placed by the value over the ocean at the nearest forecast
time; when the forecast position is over the ocean and the
MCEP realizations are inland, SM, will be replaced by the
value from an empirical inland wind decay model, as
suggested by Kaplan and DeMaria (1995):

SM; =27 + (SMy —27)e %117, (3)

where SM,, is the MCP forecast intensity at the first time
when the TC moves inland.
2.1.3  Radius realizations

The radii-CLIPER model suggested by Knaff et al.
(2007) is used to generate radius realizations in the MCP
model:

V(r,0) = (Vim —A)(rTm)x+Acos(0—90) forr>rm,  (4)

where V' is the wind speed, r is the radial distance from
the cyclone center, 6 is the azimuth measured counter-
clockwise relative to 90° to the right of the cyclone’s mo-
tion direction, ¥, is the maximum wind speed, ,, is the
radius of the maximum wind, 4 is an asymmetry factor,
and 6, is a constant that allows the maximum wind speed
to be located at an azimuth other than 90° to the right of
the motion direction. The values of 4 (= 1.06) and 6, (=
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17) are both suggested by Knaff et al. (2007).
The cyclone size parameter x and r,, can be estimated
by a simple climatic model (Knaff et al., 2007):

Xe = 0.1147 +0.0055Viy, +0.001 (o — 25°),

5
Fine = 36.1 —0.0492V,, +0.574 (¢ — 25°), ®)

where ¢ is the latitude and the subscript ¢ denotes a cli-
matic estimate. With historical V, r, V,,, ry,, and 6, the
best fit x for each historical hurricane forecast record can
be produced with Eq. (4). After that, the best fit x is
transformed to residual x by subtracting the climatic-es-
timated x, from Eq. (5). Then, similar to the track and in-
tensity realizations, the final x for each forecast time can
be produced by adding the randomly sampled residual x
to the climatic-estimated x, in Eq. (5). Meanwhile, since
the climatic-estimated x, is often unequal to the real x at ¢
= 0, when there is no residual x for realizations, this mis-
match between climatic-estimated x, and real x may
transmit to subsequent realizations. Therefore, as sugges-
ted by DeMaria et al. (2009), exponential decay with an
e-folding time of 32 h is used in radius realizations for
each forecast time to cover the mismatch of climatic-es-
timated x, and simulated x at the forecast start time. Fi-
nally, after these transformations and modifications, the
final x for MCP is produced with climatic-estimated x,
randomly sampled residual x, and the start-time x error.
The azimuth-dependent wind profile for each realization
is produced through Eq. (4) with this final x, hurricane
maximum wind speed V,,,, maximum wind radius r,,, and
wind speed thresholds of interest (e.g., 34, 50, and 64 kt).

2.2  Adjustments to the MCP model

In this study, we use the NCEP GFS deterministic
forecasts as official forecasts in the MCP model to gener-
ate the 0—120-h probability forecasts near and during
landfalls of three major hurricanes: Hurricane Sandy, as
an extratropical cyclone during its landfall from 0000
UTC 27 to 0000 UTC 29 October 2012; Hurricane Har-
vey from 0000 UTC 25 to 0000 UTC 29 August 2017,
and Hurricane Irma from 0000 UTC 8 to 1200 UTC 10
September 2017. The GFS forecasts from the previous
five years for each case, provided by the Automated
Tropical Cyclone Forecast (ATCF) database, are used to
provide the historical forecast errors for the MCP model.

For track realizations, Table 1 shows the coefficients
a, b, ¢, and d in Eq. (1) obtained from the previous five
years, namely, 2012-2016 TC data for Hurricanes Har-
vey and Irma (2017). A determination coefficient (R?) is
also defined to measure the correlations between ATE,
(CTE,)) and ATE,, , (CTE,,). We found that there are
considerable small determination coefficients (R?) at
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some lead times, for example, R* < 0.5 at 24, 84, and 108
h in our case. This indicates that there might be some
track data that fail to satisfy Eq. (1). Namely, in some
cases, early ATE (CTE) may not affect the following
ATE (CTE). For instance, when a TC undergoes a large
change in moving direction during 24 h, the rapid change
in its track means that there is no significant relationship
between ATE (CTE) in the first 12 h and those in the
subsequent 12 h. Considering this problem, we divide the
TC tracks into two groups based on direction changes
(dy) between a certain time ¢ and ¢ + 12, namely, the
cases of dy < 45° or dy > 45°.

Table 2 shows the parameters obtained from the TC
data during 2012-2016 for cases of dy < 45° and dy >
45°. The determination coefficient for dy < 45° is larger
than that in Table 1, while it is close to zero for dy > 45°.
The results here confirm that Eq. (1) cannot be well ap-
plied in the track realizations when the subsequent fore-
cast track has large directional changes. For instance,
there are 21 times with dy > 45° from 5 x 120 h GFS
track forecasts, and the track realizations using Eq. (1)
based on these GFS tracks will lead to poor wind speed
probability forecasts. Therefore, we made an adjustment
to the MCP model to ensure that the final ATE and CTE
are randomly sampled directly from the past five years of
GFS ATE and CTE without applying Eq. (1) when dy >
45°.

Additionally, the moving speed of a TC at a certain
time is usually related to its speed at an earlier time, and
the forward speed will not increase quickly during a short
period. Thus, some randomly sampled ATE and CTE
could lead to track realizations with an unrealistic for-
ward speed. To mitigate these unrealistic track realiza-
tions, we introduce a coefficient ry, defined as the mo-
tion distance ratio, namely:

rdis = dis,12/dis, (6)

where dis, and dis,,;, are the distance traveled between
forecast intervals ¢ — 12 and ¢, and between ¢ and ¢ + 12,
respectively; ry;, denotes the ratio of TC motion distance

Table 1. Coefficients in Eq. (1) based on the 2012-2016 TC database

. Along track Cross track
Time (h) a b R? c d R?
12 0 5.52 0.00 0 -2.37  0.00
24 1.05 -—1.68 0.40 095 -0.81 038
36 .11 —2.69 0.56 096 -1.85 0.49
48 1.01 -2.17 0.54 0.88 —1.50 0.46
60 1.00 3.49 0.52 0.84 -1.50 0.47
72 1.14 -4.84 0.83 1.14 346 0.78
84 1.15 4.26 0.69 0.76 13.94  0.39
96 1.17  —-2.78 0.89 1.21 -1.98 0.86
108 0.96 10.49 0.55 0.59 4.04 026
120 1.16 3.94 0.92 1.11 -1.24  0.89
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Table 2. As in Table 1, but for different direction change angles. The “— denotes the null value due to nonexistent cases

. Along track [dy < 45° (dy > 45°)] Cross track [dy < 45° (dy > 45°)]
Time (h) p b Ig . p Ig
12 0.00 (0.00) 5.52(5.52) 0.00 (0.00) 0.00 (0.00) —2.37 (-2.37) 0.00 (0.00)
24 1.15 (0.36) —1.01 (-3.88) 0.48 (0.04) 1.08 (0.29) —1.10 (0.03) 0.47 (0.05)
36 1.17 (0.24) —2.57(1.93) 0.67 (0.01) 1.12 (0.23) —1.42 (-5.61) 0.59 (0.08)
48 1.21 (0.06) —4.46 (19.36) 0.75 (0.00) 1.05 (—0.04) —2.83 (13.40) 0.68 (0.00)
60 1.15(-) 0.07 (-) 0.72 (-) 1.03 () 1.88 () 0.65 (-)
72 1.14 (0.10) —4.84 (27.91) 0.83 (0.00) 1.14 (0.31) —3.46 (—14.32) 0.78 (0.09)
84 1.23 () 3.04 () 0.82 () 1.04 (-) 9.90 (-) 0.70 (-)
96 1.17 (0.56) —2.78 (5.38) 0.89 (0.13) 1.21 (0.03) —1.98 (15.76) 0.86 (0.00)
108 1.19 () 7.96 (-) 0.83 (-) 0.98 (-) 0.89 (-) 0.69 (-)
120 1.16 (0.18) 3.94 (45.07) 0.92 (0.02) 1.11 (-0.09) —1.24 (-0.52) 0.89 (0.01)

dis,.;, and dis,. Based on data from the previous five
years, we found that 4, has a maximum and changes
with dis,. The original MCP model generates some un-
realistic track realizations with 7y, over the maximum in
historical data. Therefore, in the adjusted MCP model, a
maximum 7y, limit is introduced into track realizations to
eliminate these unrealistic tracks. For each forecast time,
a series of maximum ry; in the past five years is determ-
ined at different dis,. The archived best track can be ac-
curate only at 0.1° for latitude and longitude, namely,
0.1° of the great circle for the cyclone around the equator.
Therefore, the dis, interval for which the maximum r; is
determined is set as 0.1° of the great circle on the earth
(11.13 km). Then for each MCP forecast, we calculate
the forecast g, and compare it with the corresponding
threshold of the maximum ry, to eliminate excessive
points. For example, for dis;, of 1.5° the realizations
with dis,, of 6.0° are eliminated by the maximum ry; of
2.4.

With the mentioned adjustment, the final ATE (CTE)
is determined through the MCP model and added to the
GFS deterministic track forecasts to generate the 0—120-h
track realizations for each hurricane with time intervals
of 12 h. For the intensity realizations, there is no adjust-
ment to the MCP model. The final SE is determined by
the MCP model with GFS forecast data from the previ-
ous five years. It is then combined with the GFS determ-
inistic track, intensity forecasts, and track realizations to
produce the intensity realizations.

For radius realizations, there are negative x residuals
in the GFS data from the past five years that can lead to a
small final x and large unrealistic radii. To eliminate
these excessive radii, in the modified model, radius real-
izations are limited by maximum radii of 34, 50, and 64
kt at different forecast times based on cyclone samples
from the past five years. Furthermore, due to the underly-
ing surface friction of land, the wind speeds of major
hurricanes such as Sandy, Irma, and Harvey decrease
very quickly during landfall. Data for standard radii of

34, 50, and 64 kt are not available, resulting in a lack of
data for evaluation. To better assess the MCP forecast,
we also forecast the impact radii for lower wind speeds,
such as 20 and 27 kt. Similar to 34-64 kt, the radii for 20
and 27 kt are limited by the maximum radii that are de-
termined by the regression with radii data for 34, 50, and
64 kt. With this correction, the final x is applied to the
GFS track and intensity realizations to generate radius
realizations for each hurricane. For convenience, the ad-
justed MCP model is referred to hereafter as the AMCP
model.

2.3 Combined AMCP and ensemble probability: A modi-
fied AMCP

Considering that hurricanes can move several hun-
dred kilometers within 12 h, directly assessing wind
speed probability with 10 AMCP forecasts (12—120 h
with 12-h intervals) could miss the influence of cyclone
motion during the 12-h time period. For instance, the
radii for 64-kt wind usually measure less than 40 km
from the cyclone center. If we directly use the 12-h inter-
val realizations, such as 12-24 h, to calculate the probab-
ilities of 64-kt wind for any point outside the radius of 40
km, the probability will be zero and these points will be
omitted in the calculation. Therefore, to reduce this omis-
sion, DeMaria et al. (2009) linearly interpolated the real-
izations into 2-h intervals, during which the cyclones, es-
pecially after landfall, usually do not move far. Follow-
ing DeMaria et al. (2009), the realizations here including
track, intensity, and radii are linearly interpolated at 2-h
intervals within the realizations at 12-h intervals. For in-
stance, the track, intensity, and radii at 12 and 24 h are
used to linearly interpolate the track, intensity, and radii
at 14, 16, 18, 20, and 22 h. Then, AMCP at any given
location and for any forecast interval to 120 h can be es-
timated by counting the number of realizations for which
the point is inside the radius of the wind speed threshold
of interest, relative to the total number of realizations.
For example, the wind probability for 34 kt at a given
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location from 0 to 120 h is the proportion of the number
of realizations in the area covered by the radius of 34 kt
during 0-120 h, to the total number of realizations.

Because MCP and AMCP are based on official fore-
casts (e.g., GFS) with random samples, a poor track fore-
cast may introduce large errors to wind speed realiza-
tions. Therefore, additional wind speed probabilistic
forecasts are needed to supply MCP or AMCP forecasts
and generate a combined wind speed probability forecast.
Given the availability of ensemble forecasting at large
operational centers and its usefulness in improving oper-
ational TC forecasts, it seems natural to combine AMCP
with ensemble members for improved forecasts. In this
study, we attempt to evaluate whether including en-
semble probability will improve MCP forecasts.

Major operational centers make probability forecasts
through their ensemble forecast systems with multiple
forecasts from numerical weather prediction models with
either different initial conditions or varying numerical
representations of the model physics (Toth and Kalnay,
1997; Palmer et al., 2009; Barkmeijer et al., 2013;
Buizza, 2014). In this study, we use wind speed probabil-
ity maps from ensemble forecasts, obtained from The In-
ternational Grand Global Ensemble (TIGGE; https://con-
fluence.ecmwf.int/display/TIGGE), for three major oper-
ational centers: ECMWF (with 50 ensemble members),
UKMO (with 23 members for Hurricane Sandy and 17
members for Hurricanes Irma and Harvey), and NCEP
(with 20 ensemble members). While these ensemble
forecasts of TCs provide the uncertainties in the fore-
casts (Swinbank et al., 2016), we can also make probabil-
ity maps by counting the occurrence percentage of a cer-
tain forecast variable among all ensemble forecasts. The
ensemble wind speed probabilities are calculated similar
to the method used in the AMCP model, namely, by
counting the total number of ensemble members for each
of the forecasts that exceed the prescribed threshold
(20-64 kt) and dividing by the total number of ensemble
forecasts.
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By combining the probability maps from both AMCP
and the ensemble forecasts as in the following, a modi-
fied AMCP (AMCP,) is produced:

0.5AMCP +0.5/3(Pncep + PECMWFE
+ PUKMO) over sea

0.1AMCP + 0.9/3(PncEp + PECMWE
+ Pykmo) inland

AMCP,; = (7)

where Pgceyviwrs Pukmo> and Pycgp are wind speed prob-
abilities of the ECMWF, UKMO, and NCEP ensemble
forecasts, respectively. With TIGGE, the ECMWF,
UKMO, and NCEP ensemble forecast data are all avail-
able at a grid size of 0.5° x 0.5°. Therefore, the AMCP,¢
probability result is also calculated at a grid size of 0.5° x
0.5° for easy processing in Eq. (7).

As shown in Section 3, AMCP overestimates wind
speed probability over land (Splitt et al., 2010). Based on
tests of various weights for the ensemble and AMCP
combinations shown in Table 3, we use a larger weight
coefficient (0.9, which leads to a multiplicative bias that
is closer to 1) for the ensemble forecast probability res-
ults in Eq. (7). Over the ocean, we use weight coeffi-
cients of 0.5 for both AMCP and ensemble forecasts to
compensate the confidence for each. For consistence, the
NCEP GFS final analysis (FNL) data, which are pub-
licly available at a grid size of 0.5° % 0.5°, are used to ob-
tain the analysis (or “truth”) of wind speed frequency by
counting the frequency of wind speeds greater than a cer-
tain threshold of interest at a given location for the fore-
cast time period. For instance, the frequency of wind
speed of 34 kt for a given location is the number of im-
pacted times with wind speed over 34 kt divided by the
total number of analysis times of FNL. Namely, for a
certain time that has wind over 34 kt over a given area,
the frequency should be 1/60 (120-h analysis interpol-
ated into 2-h intervals). The cyclone center is determ-
ined by the minimum surface pressure in both ensemble
products and NCEP FNL. The ensemble mean track is
generated by averaging the cyclone centers from all

Table 3. The multiplicative bias in Eq. (8) of the 120-h and 34-kt inland wind probability forecast with different inland weight coefficients of

the ensemble products in Eq. (7)

Inland weight coefficient of ensemble products

Lead time (h) 0.1 02 03 0.4 05 0.6 0.7 0.8 0.9

W 1.00 .15 131 1.47 1.63 1.79 1.95 2.11 227
24 381 5.43 7.05 8.67 10.29 11.92 13.54 15.16 16.78
36 4.15 5.69 722 8.76 10.30 11.84 13.37 14.91 16.45
48 4.19 5.67 7.16 8.64 10.13 11.61 13.10 14.58 16.07
60 5.03 6.61 8.20 9.79 11.38 12.96 14.55 16.14 17.72
7 3.87 4.98 6.09 7.19 8.30 9.40 10.51 11.62 12.72
84 3.93 521 6.48 776 9.04 10.31 11.59 12.87 14.14
96 1.99 2.88 377 4.66 5.55 6.45 734 8.23 9.12
108 2.17 3.23 4.8 534 6.39 7.45 8.50 9.56 10.61
120 2.62 4.61 6.59 8.57 10.55 12.54 14.52 16.50 18.48
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members. The AMCP,¢ track is the average of the AM-
CP track and the mean ensemble track. Similar to the
AMCP,; model, the track, intensity, and radii from en-
semble forecasts and FNL analysis are also linearly inter-
polated at 2-h intervals from their 6-h data.

2.4 Verification method

Because the change in forecast wind speed probability
from MCP to AMCP is small (commonly less than 2%),
we emphasize the comparison between AMCP and AM-
CP,,r in the evaluation. Statistical methods are applied.
First, a multiplicative bias is assessed:

% Zﬁil Fi
% Zﬁil Oi
where F; is the forecasted probability, O, is the fre-
quency from the FNL analysis, and N is the total number
of forecasted/observed points over the entire domain.

To assess the accuracy of the above binary determin-
istic forecast, namely, whether the specific wind speed
(e.g., 20 or 34 kt) of a hurricane does or does not affect a

certain area based on the AMCP/AMCP,,; probability
forecasts, the threat score (TS) is calculated:

_ H
T H+M+FA’

Bias =

: ®)

TS 9)

where H is the number of hits (forecasted and observed),
M is the number of misses (not forecasted but observed),
and FA is the number of false alarms (forecasted but not
observed). To determine the TS, a threat probability (TP)
is defined based on the probability map of whether an
event is forecasted with accuracy varying from 1% to
100%. The forecasted event is defined as a location with
the wind speed probability over the given TP. Otherwise,
it is not a forecasted event. With this definition of TP and
observations, the hits, misses, and false alarms are gener-
ated. From the perspective of the TS, a larger maximum
implies a better deterministic forecast. Thus, TS and TP
are used to assess the improvement in AMCP, ;. To as-
sess the coverage of the wind speed warning map, the
missing score (MS) and false score (FS) are calculated:

M

MS = o TA” (19)
FA

B =g m (an

The increased MS (FS) indicates an increasing num-
ber of missed alarms (false alarms). Since missed alarms
and false alarms are also critical for public disaster warn-
ings, the MS and FS are used to assess the improvement
in AMCP,,; from ensemble forecasts, which likely lead to
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large MS because of the limited ensemble members. Fur-
thermore, a bootstrap method (Efron and Tibshirani,
1994) is used to evaluate the significance of the modific-
ation from AMCP to AMCP,.

3. Hurricane case studies

3.1 Probability forecasts

In this section, probability products for Hurricanes
Irma, Harvey, and Sandy are discussed to characterize
the performance of AMCP,; compared with AMCP. Fig-
ures la—d illustrate the 34-kt cumulative wind speed
probability forecast generated by AMCP, mean en-
semble forecasts (global average forecasts from ECM-
WEF, UKMO, and NCEP probability forecasts), AMCP,,y,
and FNL analysis, respectively, for Hurricane Irma for
120-h forecasts at 0000 UTC 9 September 2017. Figures
le—g show the corresponding 120-h and 34-kt probabil-
ity differences between the forecasts and FNL analysis
cumulative wind speed probability map for Hurricane
Irma at 0000 UTC 9 September 2017.

From the probability map, there is a significant de-
crease in wind speed probability in AMCP,,; inland that
is closer to FNL, compared with AMCP. The results im-
ply that the combination with the ensemble forecasts will
improve wind speed probability forecasts, especially for
TCs inland. To qualify this improvement, Figs. le—g also
give the probability differences between the forecasts and
FNL. Since there are areas with zero probabilities for the
forecast maps from each probability forecast model, dir-
ectly subtracting the FNL analysis from these probabil-
ity maps will generate a lot of invalid points for the as-
sessment. Therefore, these points (or locations) with zero
probabilities in all maps, including AMCP, the ensemble,
and AMCP,, are ignored during the comparison in this
section. After eliminating these zero points, the mean
(standard deviation) probability difference is 1.34%
(3.32%) for AMCP, 0.72% (2.26%) for the ensemble,
and 0.66% (1.94%) for AMCP,,;. From the perspective of
the mean and standard deviation probability difference, a
mean and standard deviation probability difference close
to zero implies a small forecast bias. It is obvious that
after modification, AMCP,,; provides a better wind prob-
ability forecast with minimum bias. For forecasts over
the ocean, the mean (standard deviation) probability dif-
ference is 0.37% (1.96%) for AMCP, 0.66% (2.07%) for
the ensemble, and 0.51% (1.72%) for AMCP,,;. For in-
land forecasts, the mean (standard deviation) probability
difference is 0.98% (2.82%) for AMCP, 0.06% (0.95%)
for the ensemble, and 0.15% (0.98%) for AMCP,,,;. With
a lower mean probability difference, we found that AM-
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Fig. 1. The 34-kt cumulative wind speed probability for Hurricane Irma from (a) AMCP, (b) the ensemble mean (ENS), (c¢) AMCP,,;, and (d)
FNL analysis for 120 h at 0000 UTC 9 September 2017. (e-g) The 34-kt cumulative wind speed probability difference for Hurricane Irma
between AMCP, the mean ensemble forecast, and AMCP,,, respectively, and FNL analysis for the 120-h forecast at 0000 UTC 9 September
2017. The red, green, magenta, cyan, and black lines (points) represent the hurricane track (positions every 12 h; there are only 10 position points
for the best track because of the dissipation of Irma) from GFS, AMCP, the mean ensemble model, AMCP,,;, and NHC best track, respectively.

CP provides a better probability forecast over the ocean
compared to the ensemble. For the probabilities inland,
AMCP overestimates the probabilities despite the wind
speed decay model contained in the AMCP model (Ka-
plan and DeMaria, 1995), and the ensemble provides a
better forecast inland. During this forecast period, a
single model, either AMCP or the ensemble, is not good
enough. In contrast, in combination they provide better
probability forecasts compared to a single model.

Figures 2a—c illustrate the 27-kt cumulative wind
speed probability forecast generated by AMCP, mean en-
semble forecasts (global average forecasts from ECM-
WEF, UKMO, and NCEP probability forecasts), and AM-
CP,,s, respectively, for Hurricane Harvey for 120-h fore-
casts at 0000 UTC 27 August 2017. Figure 2d shows the
corresponding 120-h and 27-kt FNL analysis cumulative
wind speed probability map for Hurricane Harvey at
0000 UTC 27 August 2017. Similarly, the false forecast

of AMCEP inland is significantly reduced after combined
with the ensemble forecast. To qualify this improvement,
Figs. 2e—g show the probability difference between the
forecast and FNL. Similar to the analysis with Hurricane
Irma, after ignoring the zero probability points as dis-
cussed above, the mean (standard deviation) probability
difference is 5.73% (11.67%) for AMCP, 0.17% (1.27%)
for the ensemble, and 1.18% (3.24%) for AMCP,.
While the GFS track moves northwest inland and the best
track moves northeast, AMCP produces a poor track real-
ization and a poor wind speed probability forecast inland
with a large bias. After modification, AMCP,¢ provides a
better wind probability forecast with a lower bias com-
pared to AMCP. This indicates that combining AMCP
with the ensemble forecasts improves the forecast ability
for Hurricane Harvey. For forecasts over the ocean, the
mean (standard deviation) probability difference is
1.30% (5.26%) for AMCP, 0.15% (1.24%) for the en-
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Fig. 2. Asin Fig. 1, but for 27-kt cumulative wind speed probability and probability difference for Hurricane Harvey during 120 h at 0000 UTC

27 August 2017.

semble, and 0.72% (3.12%) for AMCP,; For inland
forecasts, the mean (standard deviation) probability dif-
ference is 4.43% (10.96%) for AMCP, 0.01% (0.27%)
for the ensemble, and 0.46% (1.18%) for AMCP, ;. We
found that the ensemble can improve not only inland
forecasts but also forecasts over the ocean. Considering
that there is a larger error for the GFS forecast track, the
ensemble model can modify the AMCP forecast based on
that poor track from the GFS.

Figures 3a—c show the 34-kt cumulative wind speed
probability maps for Hurricane Sandy from AMCP,
mean ensemble forecasts, and AMCP,, respectively, for
the 108-h forecast at 0000 UTC 28 October 2012. Figure
3d shows the 108-h and 34-kt FNL analysis cumulative
wind speed probability map for Hurricane Sandy at 0000
UTC 28 October 2012. We found that the combination
not only eliminates the false inland forecast of AMCP
but also improves the forecast over the ocean, as AMCP,¢
provides better location forecasts of maximum probabil-
ity. Figures 3e—g show the differences between the fore-
casts and FNL. After ignoring the zero points, the mean
(standard deviation) probability difference is —3.29%
(8.54%) for AMCP, 1.75% (4.36%) for the ensemble,

and —0.97% (4.77%) for AMCP,,;. For forecasts over the
ocean, the mean (standard deviation) probability differ-
ence is —3.96% (7.90%) for AMCP, 1.59% (4.36%) for
the ensemble, and —1.19% (4.65%) for AMCP,. For in-
land forecasts, the mean (standard deviation) probability
difference is 0.67% (2.32%) for AMCP, 0.17% (0.78%)
for the ensemble, and 0.22% (0.80%) for AMCP,;. Com-
pared to AMCP, similar to Hurricanes Irma and Harvey,
the AMCP,,¢ probability forecast is also improved by the
ensemble forecast with lower bias. Meanwhile, similar to
Fig. 1, AMCP, provides the best wind probability fore-
cast with minimum bias compared to AMCP and the en-
semble. This again confirms that this combination (AM-
CP,,¢) performs better than either single model, namely,
AMCEP or the ensemble, in some cases.

Based on the probability maps above, we can con-
clude that the AMCP model may produce poor forecasts
with a poor essential cyclone track. The ensemble fore-
cast results are useful in modifying the AMCP results,
not only for track direction but also for inland probabil-
ity distribution. To further explore the characteristics of
the AMCP, AMCP,,;, and ensemble forecast wind speed
probability, Fig. 4 shows three scatter diagrams that in-
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Fig. 3. As in Fig. 1, but for 34-kt cumulative wind speed probability an
28 October 2012.

dicate the relationship of AMCP, ensemble forecasts, and
AMCP,; to the FNL analysis for the 34-kt and 120-h
(108 h for Sandy) cumulative probability forecasts for
Hurricanes Irma, Harvey, and Sandy. Considering the
small intercept (< 1%), we focus only on the slope of lin-
ear fitting in this section. From the perspective of the
slope and the determination coefficient (R?) in fitting, a
slope close to 1 implies a better forecast and a larger R*
implies a small dispersion for the wind speed probability
forecast. For Hurricane Irma, the slope (R?) for AMCP,
the ensemble, and AMCP,¢ is 0.83 (0.75), 1.66 (0.89),
and 1.29 (0.89), respectively. Compared to the FNL ana-
lysis, AMCP overestimates while the ensemble underes-
timates the wind speed probability. After modification,
AMCP,; produces a more concentrated probability dis-
tribution with increased R’. For Hurricane Harvey, the
slope (R?) for AMCP, the ensemble, and AMCP,;is 0.14
(0.22), 0.74 (0.63), and 0.5 (0.53), respectively. Com-
pared to the FNL analysis, both AMCP and the en-
semble underestimate the wind speed probability. Similar
to Hurricane Irma, after modification, AMCP ¢ produces
a more concentrated probability distribution with in-

d probability difference for Hurricane Sandy during 108 h at 0000 UTC

creased R? and a lower bias with slope closer to 1. For
Hurricane Sandy, the slope (R?) for AMCP, the en-
semble, and AMCP,ris 1.47 (0.70), 0.96 (0.94), and 1.27
(0.93), respectively. Again, combined with the ensemble,
AMCP,¢ provides a more concentrated probability fore-
cast and is more likely to distribute along the “x = y” line.
Through the above analysis, it can be concluded that
combining AMCP with the ensemble can decrease the
dispersion of the AMCP probability forecast. In some
cases, AMCP, is better than the ensemble forecast,
proving that the combination of AMCP and ensemble
forecasts can provide a better forecast than any of these
single models. To further clarify the reliability of AMCP,,
statistical evaluation is provided in the next section.

3.2 Statistical evaluation

In this section, AMCP and AMCP,,; are quantitatively
compared to assess the improvement by introducing the
ensemble model. First, the multiplicative bias based on
cumulative wind speed probability is examined as a func-
tion of lead time, as shown in Fig. 5. According to Eq.
(8), multiplicative bias > 1 (< 1) implies an overestima-
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kt cumulative wind speed probability contrasted with the frequency from the FNL analysis for Hurricanes (a) Irma, (b) Harvey, and (c) Sandy.

The fitting functions are also added.

tion (underestimation) of the averaged forecast probabil-
ity. Figure 5a shows the averaged multiplicative biases of
AMCP and AMCP,; for Hurricane Irma at different fore-
cast cycles (0000 UTC 8 September 2017 for the 0—120-
h forecast; 0000 UTC 9 September 2017 for the 0—108-h
forecast; and 1200 UTC 10 September 2017 for the 0—72-h
forecast; the forecast times are limited by hurricane dis-
sipation time from the GFS forecast). According to Fig.
Sa, the differences between AMCP and the analysis are
significantly reduced by adding the ensemble forecasts.
After modification, for the 36-72-h forecast, the multi-
plicative bias for each wind speed threshold is closer to
1, meaning that AMCP,,,; produces a wind speed probab-
ility closer to the analysis. During this forecast period,
the hurricane is in its landfall, and the wind speed in the
inland part of the hurricane does not decrease. This
causes AMCP to overestimate probabilities for inland
areas. At the same time, the ensemble forecast gives a
more accurate wind speed and probability forecast.
Therefore, the combination with the ensemble can
provide better probability forecasts with reduced multi-
plicative bias. The significant decrease in multiplicative
bias for AMCP at the 84—120-h forecast might be caused
by wind speed decay through Eq. (3) after hurricane
landfall (based on the GFS track, Hurricane Irma’s land-
fall occurred at 0000 UTC 11 September 2017). The de-
creased wind speed leads to smaller probability and re-
duces the difference between AMCP and the analysis, es-
pecially for a wind speed of 64 kt, in which the multiplic-
ative bias decreases from 2.57 (for the 72-h forecast) to
1.36 (for the 84-h forecast).

For Hurricane Harvey, the averaged multiplicative bi-
ases of AMCP and AMCP, for different forecasts (0000
UTC 25-28 August 2017 for the 0-120-h forecast, and
29 August 2017 for the 0—108-h forecast; the forecast
times are limited by the hurricane dissipation time from
the GFS forecast) are shown in Fig. 5b. Because of the
lower wind speeds of Hurricane Harvey at landfall (see
Fig. 2d), only the multiplicative biases for AMCP and
AMCP, ¢ at 20-34 kt are displayed here. Errors in both
the GFS forecast track and inland AMCP intensity realiz-
ations produce higher probabilities inland compared with
the FNL analysis. These higher probabilities from the
AMCEP forecast lead to a very large multiplicative bias,
with a maximum of about 9.66 for 20-kt wind, 26.21 for
27-kt wind, and 103.89 for 34-kt wind. After modifica-
tion, all multiplicative bias decreases, and the largest
multiplicative bias at 20, 27, and 34 kt is reduced to
about 2.76, 6.25, and 23.00, respectively.

For Hurricane Sandy, the averaged multiplicative bi-
ases of AMCP and AMCP,,; for different forecast cycles
(0000 UTC 27 October for the 0—108-h forecast; 28 Oc-
tober for the 0—84-h forecast; and 29 October 2012 for
the 0—60-h forecast; the forecast times are limited by the
hurricane dissipation time from the GFS forecast) are
shown in Fig. 5c. Considering that there are many lower
probability forecasts in AMCP (see Fig. 3a), the multi-
plicative bias is less than 1 for wind speeds of 20, 27, and
34 kt. The probability at 50 and 64 kt has a multiplicat-
ive bias over 1 because of the lower frequency of the
FNL high wind speed. That is, AMCP overestimates high
wind speeds and leads to large multiplicative bias. After
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Fig. 5. Averaged multiplicative biases of AMCP (bars) and AMCP,; (black points) at different wind speeds for Hurricanes (a) Irma, (b) Harvey,
and (c) Sandy based on cumulative probability. The error bars for AMCP and AMCP, ¢ are shown as gray and black whiskers, respectively.

modification including the ensemble forecasts, the multi-
plicative bias increases at 20, 27, and 34 kt, while it de-
creases at 50 and 64 kt, leading to a better probability
forecast for multiplicative bias close to 1.

Based on the cumulative forecast data depicted in Fig.
5, Fig. 6 shows the maximum TS and corresponding TP
variation before and after the modification for the com-
bined datasets of Hurricanes Irma, Harvey, and Sandy.
Because the maximum TSs for Hurricanes Irma, Harvey,
and Sandy are all higher in the AMCP,,; than in the AM-
CP forecast, the maximum TS shows an increase of
about 0.18-0.33 at 20-34 kt, as shown in Fig. 6a. This
indicates an improvement in binary deterministic fore-
casts for the modified method. Meanwhile, the corres-
ponding TP is lower except at 27 kt for the 12-h forecast.
The larger TS and smaller TP indicate a better binary
(TC affects or does not affect) forecast map for disaster

warnings.

To determine the significance of these changes in TS,
a bootstrap #-test is used here. The bootstrap #-test is a
useful method to assess the difference between two sets
of small-sample data, as it randomly samples from the
small sample to verify whether or not a change in the
small-sample data is significant (Efron and Tibshirani,
1994). At a specific lead time from different forecast
cycles, the threat score is first transformed according to
Efron and Tibshirani (1994) and then randomly sampled
to generate the samples for the bootstrap #-test. The prob-
ability of T (test statistic from new samples) larger than ¢
(test statistic from original data) is compared to the signi-
ficance level to determine the improvement. Through the
bootstrap #-test, we found that the maximum TS improve-
ment for forecast wind speed of 20-27 kt is significant at
the 0.05 significance level at each forecast time. Some
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from the bootstrap #-test for the TS and TP change between AMCP and AMCP, .

forecasts (at 24 and 48—120 h) at 34 kt produce signific-
ant improvements at the 0.15 significance level, and at
the 0.05 significance level for some forecast times. The
improvement is not significant for wind speeds of 50—64
kt at a significance level greater than 0.3. The maximum
TS indicates the skill of the deterministic forecasts, that
is, the binary forecast of whether or not the hurricane can
affect a specific location. Therefore, the increased max-
imum TS at 27-34 kt implies the skill of AMCP, in de-
terministic forecasts, namely, the coverage area for the
AMCP,,¢ probability map is closer to that from the FNL
analysis. As indicated by the discussion in Section 3.1,
the AMCP coverage area is controlled mainly by the ba-
sic forecast track. Therefore, the introduction of the en-
semble model results in the AMCP model modifies the
poor track forecast and improves the wind speed probab-
ility deterministic forecast at low wind speeds. For TP,
the bootstrap #-test implies that almost all of the change
in TP is significant at significance levels less than 0.1,
and less than 0.05 except for the 64-kt forecast at 72, 84,
and 108 h. Usually, the lower probabilities always dis-
tribute along the edge of the probability map. Therefore,
the decreased TP implies that a more accurate probabil-
ity map can be used to produce binary deterministic
(TC affects or does not affect) forecasts. Overall, the
AMCP, s model can provide a better deterministic fore-
cast wind speed probability map at 20—34 kt and is more

accurate at all wind thresholds.
4. Major hurricanes during the 2018 season

In this section, 120-h wind speed probability forecasts
are conducted for two major landfalling hurricanes over
the Atlantic Ocean in the 2018 season. Forecasts at 120 h
for Hurricane Florence (first and last realization case ini-
tialized at 0000 UTC 10 and 1200 UTC 16 September
2018) and Hurricane Michael (first and last realization
case initialized at 0000 UTC 8 and 0000 UTC 11 Octo-
ber 2018) are conducted at 0000 and 1200 UTC every
day. The improvements of AMCP,; over the ensemble
forecasts and AMCP model are quantified.

Similarly, the multiplicative bias for major hurricane
cases in 2018 based on the cumulative wind speed prob-
ability is examined as a function of lead times (Fig. 7).
Similar to the case study for Hurricanes Irma, Harvey,
and Sandy, the multiplicative bias is significantly re-
duced by adding the ensemble forecasts. After modifica-
tion, especially for the 36—120-h forecast, the multiplicat-
ive bias for each wind speed threshold is closer to 1,
meaning that AMCP,¢ produces a wind speed probabil-
ity closer to the analysis, consisting of the above case
study.

Figures 8a and 8b show the TS and TP for the major
hurricane cases in the 2018 season based on the cumulat-
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Fig. 7. Asin Fig. 5, but for major hurricanes in the 2018 season. The dotted line indicates that the multiplicative bias is equal to 1.

ive wind speed probability at each forecast lead time. As
in the case studies in the previous section, for the major
hurricanes in the 2018 season, AMCP,; provides larger
TS (except that of 64-kt wind speed at 120 h) and smal-
ler TP at each lead time. The bootstrap z-test implies that
the increased TS is significant at the 0.05 significance
level (0.3 significance level) at the 36—120-h forecast for
the wind speed threshold of 20-34 kt (50 kt). Simultan-
eously, the decreased TP at 36-120 h is significant at the
0.05 significance level except for 64-kt wind at 36 and
120 h. Significantly increased TS and/or notably de-
creased TP indicate a strong enhanced binary determin-
istic forecast for 20-64-kt wind. Overall, adding the en-
semble forecast can provide a more accurate probability

(2)

map that can be used to produce binary deterministic (TC
affects or does not affect) forecasts.

According to the case studies, to some extent, the en-
semble forecast is possibly more accurate than AMCP
and AMCP,.. However, for a public disaster warning
system such as MCP/AMCP/AMCP,; missing alarms
are more disastrous than false alarms. Considering that
the MS and FS of high wind are more critical for public
disaster warnings, Fig. 9 shows the false and missing
scores (at the TP that generates the largest TS) of the en-
semble and AMCP,,; based on the cumulative wind
speed probability at high wind (50-64 kt) thresholds.
Figure 9 indicates that MS is always larger, while FS is
often smaller in the ensemble forecasts. Compared to the
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Fig. 8. As in Fig. 6, but for the combined cumulative forecast sets of the major hurricanes in the 2018 season.
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strong reduced MS of AMCP,,;, especially for the wind
speed of 64 kt, FS often increases slightly. The combina-
tion of AMCP and the ensemble forecasts could extend
the wind speed probability map (see Figs. 1-3) and re-
duce MS from the ensemble forecasts. Figure 9 also in-
dicates that the reduced missed alarms will not all be-
come false alarms after the combination, and some will
become hits. Therefore, with decreased MS and slightly
increased TS, the extended wind speed probability map
from AMCP,; can provide useful hit warning informa-
tion that the ensemble forecasts miss. Due to the sample
size issue, namely, the limited size of ensemble mem-
bers, the probability map from the ensemble forecasts is
often smaller than that from AMCP,;. The smaller dis-
aster warning map could lead to many missed alarms and
thus result in a severe disaster. Therefore, the combina-
tion of AMCP and ensemble forecasts would be better
than either one alone for providing a public disaster
warning (see Fig. 2).

5. Concluding remarks

In this study, we first made a slight adjustment to the
Monte Carlo hurricane wind speed probability model by
adding limits to the direction angle and motion distance.
Then, we introduced ensemble probability results de-
rived from ECMWEF, UKMO, and NCEP ensemble fore-
casts to this model to improve the predictions based on
GFS model forecasts. Hurricanes Irma (2017), Harvey

(@
1.0
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(2017), and Sandy (2012) and the major hurricanes in the
2018 season are used to evaluate the effectiveness of the
modification.

The probability map indicates that the ensemble fore-
casts can improve not only inland forecasts but also fore-
casts over the ocean, and this combination (AMCP,) is
better than either single model result. With 1000 random
samples, the realizations generate a large number of pos-
sible tracks and cover larger areas, and this poor forecast,
especially inland, can be corrected by the ensemble fore-
casts. Meanwhile, the AMCP model can be a good com-
plement to the ensemble forecasts due to the limited
sample size of the ensemble members.

The significant improvement in the maximum threat
score, as well as the significantly decreased correspond-
ing threat probability, implies that the AMCP,; model
can provide a better deterministic forecast wind speed
probability map at 20—64 kt. The scatter diagram shows
that AMCP,; for all cases is close to the “x = y” line,
which indicates a better wind speed probability forecast
during the 120-h forecasts.

Overall results from this study prove the benefits of
combining the MCP model with ensemble forecasting in
potential applications for improved TC forecasts. For dis-
aster warnings to the public, the increased accuracy of
AMCP,¢ could provide accurate wind speed probability
forecasts. The increased deterministic forecast ability
means more information from AMCP,,; can be used to
provide a disaster warning. The larger threat score and
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Fig. 9. (a) False score (FS) and (b) missing score (MS) of AMCP,¢ (bars) and ensemble (black points) at wind speeds of 50-64 kt for the com-
bined cumulative forecast sets of the 2018 major hurricane season. MS and FS are collected at the threat probability corresponding to the maximum

threat score in each model.



622

smaller threat probability imply a larger map to determ-
ine which places TCs can or cannot affect. Although the
ensemble is often more accurate than AMCP,,;, missed
alarms (not forecasted but observed) are more disastrous
than false alarms (forecasted but not observed) for pub-
lic warnings. Direct application of the ensemble fore-
casts would miss some early warnings for high wind,
which would go against the purpose of the AMCP.
Therefore, the combination of MCP and the ensemble
could produce better wind speed probability forecasts.
Acknowledgments. Archived hurricane data and en-
semble forecast data are obtained from the public web-
site hosted by the University Corporation for Atmospheric
Research (UCAR; https://rda.ucar.edu/) and the National
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