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Mathematical morphology-based point cloud analysis techniques for geometry assessment 

of 3D printed concrete elements 
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Abstract 

In 3D printing of cement-based materials, it is imperative to ensure geometrical consistency of the print 

with the as-designed/modeled system. Time-dependent, deformable systems like concrete present multiple 

challenges in ensuring appropriate post-print quality. This paper presents a suite of point cloud comparison 

techniques, which can be used individually or in combination, to quantify the amount of mismatch between 

the as-designed and as-printed systems, using morphological analysis. A semi-quantitative error distance 

method is proposed, which can be easily accomplished using direct mapping of the actual and reference 

point clouds. A print accuracy index (PAI) based on centroidal distances is proposed as a global quantifier 

of the print quality. Furthermore, a topological set theory (TST)-based approach is used to determine layer-

wise overlap, which helps in isolating localized inconsistencies. The methods are tested on a variety of 

small cuboids, and further verified using a larger mortar print. It is expected that these methodologies can 

be suitably adapted to indicate the efficiency of the print, after the fact, or during printing. The latter 

facilitates in-line quality checks, that can in turn lead to real-time alterations in the materials or processes.  

Keywords: 3D printed concrete; Point cloud analysis; Print accuracy index; Error distance; Mathematical 

morphology; Quality control      

 

 

 

1 Graduate student, School of Sustainable Engineering and Built Environment, Arizona State University, Tempe AZ 

85287 

2 Professor and Henry Samueli Fellow, Department of Civil and Environmental Engineering, University of California 

Los Angeles, Los Angeles CA 90095 

3 Professor, School of Sustainable Engineering and Built Environment, Arizona State University, Tempe AZ 85287; 

Corresponding Author (Phone: +1-480-965-6023; Fax: +1-480965-0557; e-mail: Narayanan.Neithalath@asu.edu) 

mailto:Narayanan.Neithalath@asu.edu


 

 

2 

 

 

 

1 Introduction 

3D printing of concrete is an additive manufacturing technology that enables automated construction of 

buildings in a faster, cheaper, and sustainable manner [1,2]. Layer-wise extrusion is the most common 3D 

printing method for concrete [3,4]. Successful extrusion of cementitious binders, and its buildability (ability 

to build up successive layers without exaggerated deformation and loss of stability in the fresh state) are 

important attributes in concrete 3D printing, which are dependent on the material rheology, time-dependent 

property development, and the printing process [5,6]. It has been shown that the shaping and frictional 

stresses during extrusion, and the geometry of the extruder influences the evolution of particle packing and 

liquid filtration that impacts smooth and defect-free extrusion of the material [7,8]. Once extruded, the 

buildability of the system depends on the evolution of fresh properties, interlayer properties, and the printing 

process parameters including the time delay between successive layer printing [9–11]. It is thus evident that 

the quality of the printed structure in the hardened state is a function of the fresh properties of the mixture, 

the extrusion parameters, and the type of printer used. The process continuum in Figure 1 shows the 

properties of interest during and after printing, along with the characteristics relevant to the printing process. 

As has been elucidated in several recent works, printability and shape retention of the mixture in the fresh 

state, which translates to dimensional accuracy with respect to the design in the hardened state, are functions 

of the yield stress and thixotropy of the material [12–14]. In-line quantification of extrudability has been 

reported as a quality control technique for 3D printed concrete [15]. In general, the post-print 

characterization of 3D printed systems are carried out in terms of the hardened mechanical properties, i.e., 

compressive and flexural strengths determined with considerations of directional anisotropy of the printed 

structure [16,17], including real-time quantifications [18]. However, efforts to evaluate the surface quality 

and precision, which are influenced by a large array of factors in concrete 3D printing, have been limited.  

The sequential layering of the material, and the fact that the fresh concrete is bound to deform under self-

weight and imposed loading, creates variability in surface profiles, including what is commonly referred to 

as the staircase effect [19–21]. Minor variations in surface profile, while architecturally not desirable, might 

not be structurally detrimental, especially in the construction of walls. However, when 3D printed concrete 

is used in the fabrication of bespoke elements, dimensional accuracy and tolerances are critical. Some 3D 

concrete printers are equipped with trowels to ensure finished surfaces, providing improved tolerances [22]. 

There are several variables that influence the surface profile of a printed concrete element. They include 

(but are not limited to) layer height, filament size and shape, print path, material flow rate, material rheology 
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(influenced by mixture design), process time, and volume changes during setting and hardening. To ensure 

a sufficient level of post-print quality, the surface profile of the 3D printed element can be compared to that 

of the design input. As shown in Figure 1, a short-term (immediate) analysis can help in establishing a 

quality control procedure based on surface profile analysis, and refine the parameters related to printing 

described earlier. 

 

Figure 1: The process continuum in 3D printing with the parameters that are important at different 

times.  

3D model data is generally represented and saved as an array of cartesian co-ordinate data that constitutes 

the spatial positioning and surface (or volume) generation of the model, known as a point-clouds. These 

datasets define the three dimensional location, shape, and color of the model saved in various ASCII formats 

including ‘.xyz’, ‘.ptx’, and ‘.obj’. To generate the point cloud data to be used for geometrical analysis in 

prototypes before mass production, 3D scanners can be used. Such information is beneficially used in 

building information modeling (BIM) processes in construction. The process of 3D scanning and 

subsequent printing or reconstruction (using different printing methods) have been successfully employed 

in several engineering applications including architectural reconstruction and biomedical applications 

[23,24]. Point cloud data acquisition techniques have been used to acquire post-print surface profiles, which 

are then analyzed for conformance to the design model [25,26]. Octree comparison and cloud mapping 

techniques have been used to develop measures to qualify and quantify the output print quality [27]. The 

Iterative Closest Point (ICP) algorithm compares and predicts the closeness of a set of points of interest 

based on Hausdorff distance [28,29]. This technique is widely used in matching a pair of point clouds using 

specific topological information. Specific to concrete 3D printing, the surface profile depends on the 

rheological (static yield stress, viscosity, thixotropy, and rate of setting of the mixture), extrusion (pressure 
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and flow rate), and print-related (nozzle diameter, filament dimensions, and print speed) parameters as 

described earlier. Several non-contact techniques have been used to assess the fresh-state surface profiles 

and deformations during printing. Computer vision has been used to predict the extrusion rate of filaments 

using a coupled camera–nozzle system to determine under- or over-flow during extrusion [30]. The filament 

quality in terms of expected-to-actual filament flow have also been quantified using indices like solidity 

ratio, shape retention factor, and flow ratio [12,31,32]. Small-scale prints or segments of a larger print could 

be scanned using compact scanners to extract the surface profiles of the print. A 3D structured light scanning 

system has been used for scanning, along with characterization of the geometry using degree of distortion, 

surface roughness, and area deficiency [33]. Geometric dimensioning and tolerancing employed in 

traditional manufacturing processes have also been used to understand the effects of nozzle and layer 

dimensions on the overall print quality [19]. A more convenient printability index based on Hausdorff 

distances has been shown to quantify the suitability of the print medium, and relate the mixture 

characteristics to the print output quality [34,35]. Some of these methods employ point cloud comparison 

and derive parameters to define the print quality, while others employ image analysis and direct filament 

measurements as tools to evaluate the output filament quality. 

This paper puts forward analysis techniques based on fundamental concepts in point-set topology, coupled 

with acquired point data clouds to develop a robust surface profile quantification, that can be used for 

quality control during or immediately after printing of cement-based materials. In this work, we propose a 

two-level procedure for print output qualification, in terms of geometrical tolerances. The method is based 

on using a global and segmental (layer-wise) point cloud analysis. Level 1 analysis evaluates several scans 

of printed specimens subjected to conventional visual point cloud comparison methods to quantify the 

mismatch of the printed output to the design file. Level 2 analysis uses extended quantification of the print 

quality using a unique print accuracy index based on centroidal distances, and a topological set theory-

based surface comparison using reduced scan data. The modified set theory approach considers extended 

relations between data sets [36]. The combined approach is used to establish a quality control test procedure 

for in-situ post-print qualification.   

2 Experiments and Analysis Methods 

2.1 Materials and mixtures 

Ordinary portland cement (OPC; conforming to ASTM C 150), fine limestone powder (L; conforming to 

ASTM C 568), microsilica (M; conforming to ASTM C 1240), and metakaolin (K; conforming to ASTM 
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C 618) were used to proportion the pastes. The chemical compositions of the starting materials are shown 

in Table 1 and the mixture proportions of several paste mixtures are shown in Table 2. These proportions 

were selected such that the pastes were capable of being uniformly and homogeneously extruded. A detailed 

study on the rheological and extrusion characteristics of these mixtures were presented in an earlier work 

[5], and the important properties are reported in Table 2. In the acronyms for mixture identification, the 

letters denote the material used as cement replacement (see Table 1) and the numbers in subscripts 

correspond to the levels (by mass) at which they replace cement. A polycarboxylic ether based 

superplasticizer (suffix -s in Table 2) was used in several mixtures. The powders were dry-mixed, followed 

by wet mixing for 5 minutes, in a laboratory mixer.   

Table 1: Chemical composition and surface areas of the paste components 

Components of the 

binders 

Chemical composition (% by mass) BET specific 

surface area 

(m2/kg) SiO2 Al2O3 Fe2O3 CaO MgO SO3 LOI 

OPC  19.60 4.09 3.39 63.21 3.37 3.17 2.54 1,318 

Metakaolin (K) 51.70 43.20 0.50 - - - 0.16 14,915 

Micro silica (M) > 90.0 - - < 1.0 - - - 18,253 

Limestone (L), 1.5 µm CaCO3 > 99% 7,518 

Table 2: Binder combinations and proportions for the chosen mixtures 

Mixture ID 

Mass fraction of ingredients Water-

to-

powder 

ratio 

(w/p) 

Superpl-

asticizer 

(% by 

mass of 

powder) 

Shear 

Stress 

(Pa) 

Plastic 

Viscosity 

(Pa.s) 
OPC 

Limestone 

(L); d50 = 

1.5 µm 

Micro

silica 

(M) 

Metakaolin 

(K) 

L30 0.70 0.30 0 0 0.41 0 155.97 2.94 

M10L20 0.70 0.20 0.10 0 0.435 0 159.33 2.39 

M15L15 0.70 0.15 0.15 0 0.445 0 191.30 2.71 

M5K5L20 0.70 0.20 0.05 0.05 0.46 0 243.07 3.67 

L30-s 0.70 0.30 0 0 0.35 0.25 312.53 4.35 

M10L20-s 0.70 0.20 0.10 0 0.35 0.45 270.09 3.30 

M15L15-s 0.70 0.15 0.15 0 0.35 0.55 386.41 4.68 

M5K5L20-s 0.70 0.20 0.05 0.05 0.35 0.55 367.60 4.67 

2.2 3D printing and scanning of cement pastes 

A BCN-3D printer with a maximum allowable print dimensions of 210  300  210 mm was used in this 

study. The print head movement along the orthogonal axes (X, Y, Z) is assisted by stepper motors. A 

detachable, stepper-controlled ram extruder (100 cm3 volume) was mounted on the print head for controlled 
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material feed. Hollow cuboidal samples 45  45  30 mm in size were printed through an extruder having 

a nozzle diameter of 4 mm. Filaments, 3 mm high and 6 mm wide, were printed at a nozzle travel speed of 

20 mm/s, up to a total of 10 layers. A typical print design and a printed sample (using the L30 mixture from 

Table 2) are shown in Figure 3(a) and (b) respectively. The samples were printed within 10 minutes of 

mixing and cured in a moist environment for 24 h. In addition, reference samples were printed to compare 

with the extrusion printed specimen as shown in Figure 3(c) to 2(e). Figure 3(c) shows a fused deposition 

model (FDM) print of similar dimensions using polylactic acid (PLA; thermoplastic polymer) filaments 

(0.75 mm diameter) with a layer height of 0.2 mm, layer width of 0.4 mm, and nozzle travel speed of 30 

mm/s. Figure 3(d) shows an L30 paste (similar to those in Figures 2(a) and (b)) printed using a Deltabot 

printer equipped with a screw extruder (as opposed to ram extruder for the other pastes), with a layer height 

of 3 mm, layer width of 6 mm, and a nozzle travel speed of 20 mm/s. Note that the PLA and deltabot print 

data are used even though the material, nozzle and layer dimensions, and printer type are different, to 

demonstrate the differences in post-print quality and geometric tolerances. Figure 3(e) shows a failed print 

of the L30 mixture due to structural instability. In real-world construction printing, mortars or concrete are 

used, which display better shape retention in the fresh state than cement pastes (because of the presence of 

stiffer aggregates). Paste specimens are used in this work to ensure that exaggerated deviations from the 

3D model sometimes exist in the printed sample, to properly analyze the efficiency of the point cloud 

comparison techniques.   
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(c) (d) (e) 

Figure 2: Layered cuboidal elements of size 45 × 45 × 30 mm: (a) layered design view in Slic3r© 

software, (b) typical printed sample using a paste mixture in a desktop cartesian printer mounted with a 

ram extruder, (c) FDM printed cuboid with PLA filament, (d) 3D printed cuboid using a deltabot 

printer mounted with screw extruder, and (e) a failed specimen due to lack of buildability. Note that 

cases (c) – (e) are reference cases for comparison with the extrusion printed samples. 

The samples scanned using a desktop 3D Scanner as shown in Figure 4. The scanner is equipped with a 

high-definition camera supported by dual lasers that helps in laser triangulation of points in 3D space. The 

sample stage constitutes a turntable of 150 mm diameter above which the specimen is placed. A black 

background is placed to create contrast between the specimen and the environment for better scan output. 

The scanner can take models up to a height of 300 mm with a scan resolution of 0.25 mm and a rotational 

step resolution of 0.25o. The data acquisition software is used to execute the scan and import the raw 

cartesian coordinate data. The noise in the scanned data is cleaned using coarse and fine filters by radial 

threshold distance detection of discontinuous points. The filtered point cloud data is saved as ASCII format 

(.xyz or .ptx) with a typical cloud sample size of 170,000 points with around 83,000 to 86,000 points per 

scan step. 
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Figure 3: Desktop 3D scanner with components marked and a printed sample mounted and illuminated  

on the sample stage while scanning 

2.3 Point cloud analysis 

A 3D object can be mathematically and computationally represented as a set of cartesian co-ordinate ‘point-

cloud’ data acquired using 3D scanners, as explained earlier. The scanned cloud data is used to compute 

the mismatch with the design file by using several point cloud analysis techniques as discussed in this paper. 

The quantification approaches utilize mathematical morphology to process the geometrical structures. A 

reference hollow cuboid design file (wall thickness of 0.03 mm) is used as a surface mesh format. The mesh 

was converted into a point cloud data generated by sampling 200,000 points for cloud-to-cloud alignment 

and distance measurements. 

2.3.1 Error distance distribution 

This approach uses an open-source software, CloudcompareTM to carry out the analysis and compare the 

output cloud with the reference point cloud data. The software inputs the scanned point cloud data along 

with the reference mesh, followed by transformations and point-cloud alignment as shown in Figure 4. The 

outlier points are removed by segmentation and noise filters. The mesh and cloud are coarse-aligned using 

‘point pairs picking’ to select pairs of similar points in both the clouds for at least three points to orient the 

data. The alignment was restrained to the necessary boundary condition that the base planes (Z=0) should 

align. This is followed by fine registration of the scanned cloud using the iterative closest point (ICP) 

algorithm [29] to fine-register the position of the scanned cloud over the reference mesh. Both coarse and 

fine alignment involves translational and rotational transformation of the coordinate data. The difference in 

target root mean square (RMS) error and percentage of final overlap for the iterations are fixed at 1 x 10-5 



 

 

9 

 

 

 

units and 100% respectively. The cloud-to-mesh distance is analyzed for the registered scanned cloud with 

reference to the mesh at a fixed octree level of 6 to compute the mean and maximum error distance. A 

typical post-analysis error distribution histogram is shown in Figure 4.  The error distance generally follows 

a normal distribution which is used to estimate its mean and standard deviation. The overall cloud can also 

be compared in a region-wise fashion using segmentation by isolating each faces of the cuboid separately 

to obtain finer resolution. The overlapped data can also be used as a preliminary qualification tool to analyze 

the error distances between the reference cloud and the scanned cloud. A lower error distance indicates 

better dimensional tolerance and similarity between the 3D design and the printed sample. 

 

Figure 4: Process flow in using error distance distribution for post-print analysis 

2.3.2 Print accuracy index based on centroidal method 

The centroidal method is based on the idea of error in distance between the reference and scanned cloud 

based on the centroid of the aligned clouds.  A schematic that illustrates the centroidal method is shown in 

Figure 5. The scanned cloud and reference mesh are registered with respect to the centroid. Centroidal 

distance is the magnitude of the vector from the centroid (the dot in the center of the figure) to a point on 

the scanned cloud or the reference mesh. A vector drawn from the centroid to a given point of interest on 

the scanned cloud (dot on the face of the cube) is shown with a magnitude of ‘dcs’. The vector is extended 

to the reference mesh to measure the incremental distance ‘Δ’ which signifies the error in mismatch.  
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The ratio of distance from the centroid to the scanned cloud (dcs) over the distance from the centroid to the 

reference mesh (Dcr) is cumulatively averaged for ‘n’ points in the cloud, to define a print accuracy index 

(PAI) given by: 

𝑃𝐴𝐼 =

∑
dcs (centroid → point on the scanned cloud)

Dcr (centroid → extrapolated point on the reference mesh)

𝑛

𝑖=1

𝑛
 

Eq. 1 

This ratio for a typical point in the scanned cloud is an indication of the position of the point with respect 

to the reference cloud. A PAI value greater than 1.0 implies that the actual point is outside the reference 

cloud’s bounds, and vice-versa. Note that tangential extrapolation is used for the calculation, and the normal 

vector to the points in the scanned cloud are not considered for nearest point calculation. A similar 

procedure has been established in another work, which reported the comparison in terms of the Hausdorff 

distance to calculate an output quality index [34]. The centroidal method algorithm is employed in a 

MATLAB environment that takes in the input and reference cloud data, and provides a single value that 

can be used as a first-order quantifier to assess the print accuracy. 

 

Figure 5: Schematic showing the centroidal method with the registered scanned cloud overlapped with 

the reference mesh.   

Dcr = dcs + Δ

Scanned cloud 

(with bounds 

marked by lines)

Reference mesh

(plane of interest) 

X
Y

ZCentroid
Point of interest

Δ
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2.4 Topological set theory analysis 

The centroidal method gives an average point cloud mismatch quantifier, which is easier for global 

evaluation of printability. However, for an in-depth analysis using an in-line scanning procedure or analysis 

with respect to the buildable height, a segmental cloud matching algorithm is required, which is 

accomplished in this work by utilizing elements of topological set theory (TST). This method is based on 

the physical overlap of segmented clouds to a specified octree level and a tolerable error in overlap [27]. 

Figure 6 shows the relationship between a pair of point sets (points(x) → points(y)) and the selected 

relations used in the point cloud comparison algorithm employed in this paper [36]. Depending on the 

overlap conditions, points(x) is categorized as equal, not-equal, inside, outside, overlays, or neighbor to 

points(y) (shown to the left) while these are translated in terms of the reference and scanned cloud points 

(shown to the right) in Figure 6. However, the necessary condition that is used for cloud comparison is the 

overlapping bounds of points from different clouds as shown within boxes in the figure. If the bounding 

boxes around two different set of points overlap, the mismatch is considered negligible while distant 

bounding boxes signify a definite mismatch. 

 

Figure 6: The topological set theory instances used in point cloud comparison. The general conditions 

in the set theory is shown to the left while the necessary conditions selected for analysis is shown to the 

right. Points(x) and points(y) corresponds to two different set of points in comparison while xi (ref) and 

xi (scan) corresponds to the boundary coordintes of bounding boxes around set of points in the 

reference and registered clouds respectively, where i = 1,2,3 corresponds to the 3 orthogal directions. 

The TST analysis algorithm is implemented in a custom-made MATLAB program which takes in the 

reference and scanned cloud data as cartesian coordinate inputs.  The process flow is shown in Figure 7. 

The scanned cloud is subjected to coarse and fine alignment transformations using CloudcompareTM and 

the aligned clouds are exported in the standard point cloud data format. The Z-directional coordinates are 

transformed such that the minimum values of Z lie in the Z = 0 plane. In this way, the output is aligned with 

Topological set theory conditions Scan overlap conditions
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the original print base as a necessary boundary condition, and the point cloud is easy to interpret with 

respect to the magnitude and direction from the base (where printing started) to subsequent layers (as the 

printing progresses). The registered cloud data is binned to the nth level using an octree binning algorithm 

to subdivide the point cloud volume into discrete bounding elements [37]. This data is stored in a structure 

variable with hierarchical variables that define the octree element’s bounds and the number of points held 

by the element. The level of octree binning is similar for both the clouds which results in the same number 

of bin elements (23n bin elements per nth level). The kth level octree bin data is isolated for further analysis. 

This depends on the size of the scan and the resolution in the analysis that is desired. This work considers 

bins in an octree level of 6 to be sufficient for the analysis. A lower ‘k’ value will result in an approximation 

of data and loss of detail in the analysis. The octree bins from the kth level are sorted with respect to the 

height for a layer-wise comparison of the scans. Each layer may also be subdivided based on the overall 

height, layer height, and the octree binning level. TST is applied to identify and index the overlapping and 

non-overlapping octree bins. The TST method here identifies the total number of elements and the 

overlapping elements per layer or height step that is defined by the user. The percent overlap is calculated 

as the ratio of number of overlapping bins to the total number of bins in each level. A tolerable overlap for 

individual bins could be defined based on the level of conformance with the design model expected for 

print output. This user-defined measure allows for degrees of quality control with respect to the profile, for 

the printed element depending on the type of application. In this study,  a threshold overlap condition is not 

defined explicitly, and a binary condition on the overlap (whether overlapping or not) is used for 

comparison of print quality, since this measure was found to work well as can be seen in a forthcoming 

section. 
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Figure 7: Steps in the implementation of the TST algorithm for post-print analysis using octree division 

binning and overlap check. The acceptability comparison is based on the tolerable overlap input by the 

user.  

3 Results and Discussion 

3.1 Average and maximum error distances of scanned clouds 

The error distance profiles indicating the level of mismatch of a point with respect to the reference can be 

used as a rapid post-print qualification tool. Figure 8 shows a typical post-processed scanned cloud in 

comparison with the reference cloud. The overlaid clouds and the error distance profile are shown in Figure 

8(a). The color jet shows the absolute error distance profile of the scanned cloud with respect to the 

reference cloud. The red color in Figure 8(a) indicates points that are at a higher distance from the reference 

cloud. Due to the corrugations on the surface resulting from the outward flow of paste through the circular 

nozzle, and the enlargement in the projected distances when layers are overlaid, the convex edges are mostly 

highlighted red while the layer interfaces are closer to the reference cloud, as expected. Figures 8(b) and 

(c) show the plan and side views indicating the base plane alignment used as a necessary boundary 

condition. The degrees of freedom in the iterative alignment were allowed only for translation in X and Y 

directions, and rotation around Z axis. Figure 8(d) shows the histogram of the error distances, fitted with a 

Gaussian distribution to extract the mean and standard deviation. The value corresponding to a 99% 

confidence interval is considered as an estimated maximum error distance in this work, while the mean of 

the Gaussian distribution can also be  used as a single-value quantifier for print output quality. 
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Figure 8: Images from cloud registration showing: (a) scanned cloud transformed and registered in 

position with the reference cloud and colorjet indicating the cloud to cloud distance, (b) plan view of 

the cloud with the dotted reference cloud and scanned clouds along the global bounding box, (c) the 

side view showing the alignment along the print base prior to registration, and (d) the error distance 

profile represented as a histogram and overlaid with a gaussain distribution to estimate the mean and 

standard deviation of the error distance along with the 99% error distance for comparison. 

The spread of the distribution indicated by its standard deviation is a function of the width of the cloud 

surface (see the cloud in Figure 8(b); which depends on the nozzle size and chosen filament width). The 

maximum distance corresponds to the farthest points in the concave surface of the layers formed by the 

rounding of filament at the boundaries. The maximum distance could also correspond to the corners where 

the scanned points would be at the maximum distance from the reference cloud, provided the outliers have 

been removed, and only minimally influences the analysis. With the statistical parameters defined, it is also 

convenient to visually qualify defects or the effects of erroneous printing behavior. Although Figure 8(a) 

does not show too many visible error regions (red colored regions), it is because of a higher threshold error 

distance for the scalar fields shown. When the threshold is set close to the mean of the error distribution, as 

is shown in Figure 9, noticeable defects are visible including local print gaps and over-feed filaments. The 
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corner of the print where the print path changes is prone to a higher error because of abrupt changes in 

filament shape at the corners that results in a distorted shape, to maintain the flow rate. There is extra 

material deposition during the loop completion, which also results in print distortion. A close-up of the 

scanned surface (Figure 9(b)) shows the convex outer profile of the filament near its center, and a sharper 

joint at the inter-layer interface. The point clouds are expected to have the largest number of points in 

between these bounds, while local maxima could appear corresponding to the bounds as explained later. 

 

Figure 9: Typical scanned clouds showing: (a) the scalar field for cloud-to-cloud error distance with a 

reduced upper threshold value (set closer to the average of the gaussian distribution), showing specific 

regions of defects, and (b) close-up of a profile showing the rounding of filament surface. 

Figure 10 shows the error distance distribution for the scanned clouds, separated for mixtures with or 

without superplasticizer (SP and non-SP mixtures respectively). The presence of superplasticizer enables 

the use of a reduced water-to-powder ratio in the mixtures, and also improves the mixture consistency. As 

can be noticed from Table 2, the rheology of the mixtures, and hence the buildability, which is captured 

indirectly by the point clouds, will be also influenced by the presence of superplasticizers. The PLA and 

the deltabot print data are included for comparisons in this figure, even though the details of the printer and 

the print process are different from those of the ram-extruded cementitious pastes. The distance data was 

split into 256 bins with a step value between 0.015 and 0.017 mm. Figures 10(a) and 10(c) show the error 

distance and probability of error in the scanned clouds for non-SP and SP mixtures respectively. The overall 

mean and spread of the distribution do not show visible differences between the two, even though the 

probability of error is higher for the non-SP mixtures. The mean error distance from the scans corresponding 

to the ram-extruded mixtures are generally shifted to the right of the PLA and delta print mixtures, showing 
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that the ram-extruded prints show a relatively higher error. Some cases show points of inflection below and 

above the most probable error (around the central peak) which is a characteristic of the farthest outer and 

inner points of the rounded filament (cluster of points appearing due to the curvature and sharp edge of the 

profile in each layer, as shown in Figure 9(b)).  

An alternate analysis can be derived using the cumulative error distribution as shown in Figures 10(b) and 

10(d). A shift in the distribution to the right shows a larger deviation from the original design surface. 

Typically, the graphs converge and are close (typically within the range of 1.5-2.0 mm error distance). 

However, larger errors are indicative of the differences in output quality of the print. The PLA print shows 

the least deviation while the others show errors that are approximately 4 times higher than that of the PLA 

print. This is due to the uniqueness in the PLA print - rheology being markedly different from that of the 

cement-based pastes, and the small layer thickness and flow diameter resulting in smaller and more 

organized layers. For the cementitious pastes, the outward flow of the material under a higher layer width 

influences the tolerance. The L30 deltabot-printed mixture has a relatively lower error distribution when 

compared to the other paste prints, which is an indication of better flow control in a screw-extrusion process. 

The L15M15 paste shows a better profile due to its finer particle packing in the presence of microsilica. The 

L20M10 paste consistently shows a higher error distance, specifically at the higher end of the profile. With 

the addition of the superplasticizer, the water demand for the otherwise finer particle distribution is limited 

and a better rheological flow and extrusion behavior is obtained [5,38]. This results in an overall shift of 

the cumulative distributions to the left as seen in Figure 10(d). Figure 10(e) shows the absolute average 

error distances with the standard deviation (spread of the error) and the maximum error for a confidence 

level of 99%. The maximum error distances are lower for the SP mixtures as shown in Figure 10(e). The 

average error is generally in between 1.8-2.1 mm with a spread of ±0.58-0.72 mm for the ram-extruded 

prints, while it is 1.7 mm for the deltabot prints with a spread of ±0.6 mm. The PLA printed specimen 

shows the smallest average error of around 0.3 mm; while the reason for such low errors were described 

earlier, the observed error is also attributed to thermal effects (warping while printing) which is within the 

typical tolerable error of around 5% of the overall dimension for PLA filaments [39,40]. The collapsed 

specimen shows a significantly larger error, unsurprisingly, of around 8-12 mm. The average error in this 

case was around 2.8 mm which indicates that the print accuracy should not be read solely in terms of the 

average error distance. The standard deviation was a high value of 2.7 mm, along with a cumulative spread 

that was shifted well to the right, which indicates an unacceptable print quality. 
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Figure 10: Cloud-to-cloud error distance analysis showing: (a-b) discrete and cumulative error 

distribution for non-SP mixtures, (c-d) discrete and cumulative error distribution for SP mixtures, and 

(e) average, standard deviation, and 99% maximum error distances for all the mixtures. PLA print is 

shown as the same in all the figures since it does not belong to the SP or non-SP mixtures.  
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3.2 Print accuracy index (PAI) and relationship with average error distance 

The error distance analysis explained in the previous section provides just a single quantifiable parameter 

that describes whether the overall print is acceptable or not. The centroidal method defined in an earlier 

section can be used to generate the print accuracy index (PAI), which is shown in Figure 11. PAI close to 

1.0 indicates a scanned cloud that is very close to the reference cloud. This index can be used to compare 

between different prints. A PAI is deemed acceptable if the average mismatch of the scanned cloud with 

the reference cloud is reasonable within a user-defined tolerance limit. Figure 11(a) shows the PAIs 

extracted using the method as detailed in the previous sections. It is found that the PAIs for the prints are 

generally about 1.08 to 1.09, which indicates that the prints are generally slightly larger than the designed 

model, and that the error distances are within 8-9% of the overall dimensions. In this case, for a 22.5 mm 

envelope around the centroid (45 mm length and width of the cuboid), the error distance would translate to 

~1.9-2.0 mm which is consistent with the observations from the error distance analysis explained earlier 

(see Figure 10(e)). The PLA cloud has an index of 0.975 indicative of the print’s closeness to the model. 

The slight mismatch is due to the overall size reduction due to inward warping along the edges. The L30 

deltabot-printed mixture has a slightly lower PAI of 1.07 as compared to the ram-extruded prints. The failed 

cube shows a significantly low PAI value of 0.85 because of the larger number of points well outside the 

reference cloud. This mixture failed due to its lack of buildability and eventually buckled at the outer faces 

of the cuboid. However, the average PAI is still around 0.85 because of the failed points lying close to, and 

sometimes coinciding with, the reference envelope. The PAI is not highly sensitive to significant visual 

mismatch and hence, must be used in conjunction with a higher sensitivity, i.e., of the order of 0.005. This 

is clear from Figure 11(b) which shows that the PAI is proportional to the average error distance despite 

the minor changes in PAI across the scanned clouds of different mixtures. PAI is shown to vary at the rate 

of 0.05 per unit change in the mean error distance, which translates to a resolution of 0.005 for 0.1 mm 

error distance. It is seen that PAI is not sensitive enough to distinguish between the non-SP and SP mixtures. 

The close correspondence between error distances and PAI indicates that either one of these parameters can 

be satisfactorily used in print accuracy quantification.  
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Figure 11: (a) Print accuracy index (PAI) from the centroidal method for all the prints, and (b) 

comparison of PAI with respect to the average error distance from the error distance analysis 

3.3 Print acceptability and its variation with respect to print height using TST analysis 

TST facilitates a detailed layer-wise analysis, as opposed to global analyses that were described using error 

distance and PAI. The method, which is dependent on the size of the input cloud data, is relatively slower 

and more cumbersome during the octree division stage. However, the subsequent analysis is much faster 

due the reduction in data units (discretization of the scanned cloud into bounding octants) that are used in 

the cloud comparison algorithm. This enables the overall bounding envelope to be split into finer octants. 

A plan view of a typical case is shown in Figure 12(a). A higher octree level (k) results in a finer division 

and smaller octants, increasing the accuracy of the analysis while compromising on the process speed. An 

octree level of 6 is used consistently for analysis within the scope of this study, and the empty octants are 

automatically removed after the recursive subdivision. As shown in Figure 12(a), the non-empty finer 

octants are predominantly clustered near the outer edges of the bounding envelope where the scanned points 

are mostly concentrated (see Figure 12(a)). Since a kth level octree outputs 23k bounding elements, the empty 

octants (mostly near the centroidal Z-axis) are omitted in the analysis. The bounding elements are checked 

for overlap within a geometric tolerance of 3 mm from the reference point cloud (or design surface) and 

assigned a binary unit of 0 or 1 corresponding to no-overlap or overlapped cases respectively. In this case, 

a tolerable overlap has been considered for any octree bins overlapping within 45  3 mm where 45 mm is 

the length and width of the print design and 3 mm corresponds to half the filament width. 
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Figure 12: TST analysis output showing (a) a plan view of the octree division of the bounding box 

around the scanned cloud wherein the octree6 elements are used for overlap check and analysis, and (b) 

the average precent overlap evaluated using the TST analysis. 

The ratio of the number of overlapping cases to the total number of non-empty octree-6 elements gives the 

total percentage overlap as shown in Figure 12(b). The average percent overlap is between 80-100% for all 

the scanned clouds in this study, except for the failed print. Physically, this signifies the percentage of the 

scanned surface that is overlapping with the design envelope while the difference corresponds to regions in 

the print where local failures (overburden pressure or buckling) or inadequate material flow (underflow or 

overflow) occurs. The sensitivity of the percent overlap to the type of mixture is relatively higher (more 

variability noticed in percent overlap than in PAI or mean error distance), and thus, this parameter is more 

physically relatable as a print qualification/quantification criterion.  The PLA print output shows a 100% 

overlap while the deltabot-printed specimen shows an overlap close to 98% (likely due to minor mismatches 

observed in the topmost layers) as seen in Figure 12. A detailed analysis of the overlap is further possible 

in terms of the print height (or layers) by plotting the average octant overlap with respect to the height as 

shown in Figure 13. A 100% overlap for all the layers is the ideal scenario which is observed in the case of 

a PLA print (Figure 13(a)), while most of the prints show an 80-100% overlap which varies across the layer 

height. With minor flaws in a few layers, the deltabot-printed specimen showed better output quality when 

compared to the ram-extrusion based prints, because of better control during screw extrusion. The SP 

mixtures tend to deviate less from the target geometric tolerance when compared to the non-SP mixtures, 

as shown in Figure 13, because of the better printability of such mixtures. It has been shown that pastes 

made with a lower water-to-powder ratio, augmented by the use of SP, enables better shape retention [38]. 

It is also possible to enhance the printability and thus the tolerance levels using improved mixture 
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proportioning for the non-SP mixtures. The binary and ternary blended mixtures (containing cement and 

more than one replacement material) used here are based on such an idea, but further mixture modifications 

can likely enhance the overlap profile, and thus the tolerance.  The failed cube shows a very low overall 

percent overlap and enhanced scatter along the height, and hence is not shown in Figure 13. 

 

Figure 13: Overlap profile with respect to the print height estimated from TST method for the scanned 

clouds for: (a-b) PLA and deltabot prints, and (c-j) limestone-based pastes. Plots to the left (in blue) are 

the mixtures without superplasticizer (SP) and to the right (in red) are the corresponding SP mixtures. 

The specific 3 mm steps (height of a single layer) showing a deviation from 100% (in the case of Figure 

13) indicates a local or global flaw that has occurred in the specific layer. Thus, developing real-time layer-

based overlap profiles can help identify defects during filament placing (i.e., printing). As an example, 
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Figure 14 shows a few cases with the point clouds imported and analyzed in CloudcompareTM. The red 

arrows in the image indicate local features that cause the percent overlap in the TST method (shown in 

Figure 13) to deviate from close to 100%. Figure 13(d) shows a lower overlap near layers 7 and 8 due to 

the local bulge in a filament stretch, which is visually demonstrated in Figure 14(a). A few scans show 

lower percent overlap in the lower layers (Figure 13(c), 13(g), and 13(i)), which can be attributed to the 

overburden-induced expansion of the bottom layers, which results in them becoming wider while the top 

layers approach 100% overlap. This is clearly shown in Figure 14(b). In contrast, a few printed specimens 

show lower percent overlap in the upper layers (Figure 13(h)), which likely indicates slight offset in print 

paths, which exacerbates as the number of layers increases, as shown in Figure 14(c). It is thus shown that 

the TST method applied to an octree-divided point cloud can estimate the local changes in surface profile 

or overall quality of print with respect to the height or time of print. This is especially advantageous as an 

in-line quality control check, and can be used to dynamically adjust the material or process parameters to 

ensure a quality print. Layered systems could be better evaluated in segments as the printing progresses. 

Further progress on enhancing imaging speeds and faster analysis algorithms could bring this powerful 

method to the mainstream, as a versatile in-line print quality analysis tool for 3D printed elements.   

 

Figure 14: Point clouds from CloudcompareTM showing defects, which accurately show up in the layer 

analysis in the TST method for: (a) L30-s (b) L20M10-s, and (c) L20M10 mixtures. The arrows indicate the 

features that cause a reduction in the percent overlap with the reference cloud. 

3.4 Scaled-up model and validation 

The methods established were validated using a scaled-up 3D printed model using a limestone-based mortar 

(L30-s, with 35% medium sand by volume of the mortar), printed using a gantry printer [41]. The printed 

specimen (cylinder; 150 mm in diameter and 600 mm high) and the scanning setup are shown in Figure 

15(a). A handheld scanner (3DSystems SenseTM) with a resolution of 0.9 mm, capable of scanning objects 

up to 3 m (size in orthogonal directions) was used to generate the output scanned object. Fine details below 

0.9 mm may not be appropriately captured by this setup, but it is anticipated to be sufficient to demonstrate 

the efficacy of the approach for the chosen size of the scanned specimen. Figure 15(b) shows the finished 
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output from the scan after post-processing, with the region of interest marked (red outline). The external 

regions are removed and noise is filtered using CloudcompareTM. The mesh data is used to sample the cloud 

of 500,000 points for further analysis. Figure 15(c) shows the error distance profile from the visual analysis 

showing an average error distance of 5.5 mm and a standard deviation of 2.60 mm. This corresponds to 

approximately 3.67% error for the 150 mm diameter specimen, and is consistent with the cuboidal scan 

results which showed around 4.4% error (average error around 2 mm for 45 mm length). The outward flow 

of filaments (the layer width being larger than the nozzle size, and the effect of overburden pressure for the 

lower layers) and the rounding of edges results in an average error of less than 5%. Majority of the mismatch 

is observed near the bottom layers (error regions in the upper end of the scale) which is attributed to 

deformations from the overburden pressure. The PAI is 1.069 for this case, which is also in the lower end 

of the observed indices as discussed earlier. The corresponding TST output is shown in Figure 15(c) which 

shows higher local deformations in the bottom layers, while the percent overlap is close to perfect (an 

average global overlap of 99%) beyond 12 layers. The information shown here is a proof-of-concept in 

using the error distance and TST approach in macroscale 3D-printed specimens to execute the post-print 

quality check in a discretized and speedy manner. The size of the scan envelope and the scanner 

specifications will influence the output and thus the decisions arrived at. This aspect needs to be further 

evaluated, with an emphasis on scanner selection and defining the process in a large-scale construction 

setting.  
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Figure 15: (a) Cylindrical printed specimens used for scaled-up scanning validation showing the 

dimensions and components of the setup, (b) scanned object after meshing and exported as 3D object 

(.stl/.obj) format, and (c) visual error distance profiles extracted using Cloudcompare© with the global 

error distribution and layer-wise TST profile shown for comparison. The distances are shown in cm in 

the percent overlap, while it is in mm in the error distance color map.   

3.5 Proposed quality assessment protocol: Some comments to guide selection 

The benefits and limitations of each of the aforementioned techniques have to be evaluated carefully before 

arriving at an appropriate quality evaluation tool. The error distance analysis is an easy tool for a layman 

to identify error/inconsistency hotspots in a printed specimen, and rectify them in a fast manner. However, 

this is a visual qualification, and the output could depend from person-to-person unless a rubric on the 

average and maximum mismatch is provided. Hence this method is, at best, a semi-quantitative method. 

Centroidal method (that defines PAI) in association with visual analysis can therefore serve as a composite 

quantifier to decide if a printed structure passes the geometric tolerance set beforehand. PAI is an averaged 

quantity that could be disadvantageous if there are a few outliers that show large discrepancies. To avoid 

this bias and for a detailed layer-wise analysis, the TST analysis is proposed. The TST method implements 

a segmental analysis of the point cloud overlap, and is a more robust approach, though the analysis time 

could be longer. Here, we propose a two-level quality control protocol as shown in Figure 16, wherein the 

error distance analysis could be used as Level 1 qualifier. Level 2 is further classified into the simplified 

centroidal method for PAI on a global print scale, and a segmental TST-based analysis to understand the 
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layer effects and to track the mismatch with respect to the print height. This sequence could be improved 

with additional data in each of the levels, and can prove to be a useful mode in evaluating the print tolerance, 

during or after printing. 

 

Figure 16: A two-level point cloud analysis approach to assess the print output tolerances using visual 

qualification, and further quantified using PAI or layer-wise TST analysis. 

4 Summary and Conclusions 

Evaluating the print quality in terms of the surface tolerances is important towards optimizing the process 

parameters and materials in 3D concrete printing. A suitably designed approach could also aid as an in-line 

quality control tool during the process of printing. This study describes a suite of print quality assessment 

protocols based on both visual qualification/quantification as well as global and layer-wise quantifiable 

parameters. Several small-scale printed paste specimens were subjected to 3D scanning to extract the point 

clouds to be used as input data for three different print quality assessment methods. These methods were 

used to evaluate how closely the printed specimens matched the 3D design. A visual point cloud analysis 

that outputs a subjective error distance profile was used as a semi-quantitative analysis method, while 

mathematical morphology-based approaches including the centroidal and topological set theory methods 

were employed for quantification of tolerances and print accuracy. 

In the first (semi-quantitative) method, an error distance comparison technique that uses the best-fit 

registration of the reference and scanned clouds to estimate the mismatch in terms of the error distances, 

was used. The maximum and average error distances were used to evaluate different test-cases printed with 

FDM-based PLA, and cement pastes printed under screw extrusion and ram extrusion processes 

respectively. All the prints except the failed cuboid showed average error distances within 5% of the overall 

design dimension (i.e., in the range of 1.5 to 2 mm). The error distances were found to be in agreement with 

the print accuracy index (PAI) derived from a centroidal distance-based morphological approach. The PAI 

values for the printed cuboids ranged from 1.07 to 1.09. The error distances and PAIs were found to be 

linearly related, providing the capability to replace one with the other if sufficient calibrations are carried 
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out. The abovementioned methods provide the overall (global) geometrical accuracy of the print, which 

while being very useful, sometimes misses the critical inconsistences (if any) present at a local (layer-wise) 

scale. To overcome this drawback, this work used a morphological analysis method based on topological 

set theory (TST) that uses the octree division of the point cloud to determine the percent overlap between 

the scanned and reference clouds in a layer-wise manner. All the test print cases showed a global percentage 

overlap between 80-100% while the layer-wise overlap profile pinpoints localized inconsistencies in 

printing, either due to material property variations, process changes, or layer misalignment (print path 

changes). Deformation of the lower layers under overburden pressure results in lower percent overlap for 

the lower layers, while cumulative changes in print path from layer-to-layer results in misalignment of the 

upper layers and consequently a lower percent overlap. The chosen methodologies were verified by printing 

a 150 mm diameter  600 mm high hollow mortar column. It is suggested that the proposed techniques can 

be used as a two-level quality control/evaluation procedure wherein: (a) a first-level analysis is made up of 

global error distance distribution, which can be accomplished rather quickly, and (b) a second level analysis 

comprised of PAI determination (for global quantification) and/or TST approach to determine layer-wise 

percent overlap (for localized error detection). This approach is expected to be beneficial for both post-print 

and in-line quality control, to identify materials- or process-related issues during or after printing.   
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