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Abstract. Large fractions of online advertisements are sold via repeated second-price auc-
tions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues.
In this work, we investigate the following question: how can the auctioneer optimize reserve
prices by learning from the previous bids while accounting for the long-term incentives and
strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante
identical items via a second-price auction. Buyers’ valuations for each item are drawn in-
dependently and identically from a distribution F that is unknown to the seller. We find that if
the seller attempts to dynamically update a common reserve price based on the bidding
history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When
there is more than one buyer, incentive compatibility can be restored by using personalized
reserve prices, where the personal reserve price for each buyer is set using the historical bids of
other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under
the static Myerson optimal auction for F. Further, if valuation distributions differ across
bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such
differences. We extend our results to a contextual setting where the valuations of the buyers
depend on observed features of the items. When up-front fees are permitted, we show how the
seller can determine such payments based on the bids of others to obtain an approximately
incentive-compatible mechanism that extracts nearly all the surplus.
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1. Introduction

Advertising is the main component of the moneti-
zation strategy of most internet companies. Large
fractions of online advertisements are sold via auctions
where advertisers bid in real time for a chance to show
their ads to users. Examples of such auction platforms,
called advertisement exchanges (Muthukrishnan 2009,
McAfee 2011), include Google’s Doubleclick (AdX),
Facebook, AppNexus, and OpenX.

The second-price auction is a common mechanism
used by advertisement exchanges. It is a simple
mechanism that incentivizes advertisers to be truth-
ful in a static setting. The second-price auction can
maximize the social welfare (i.e., the value created
in the system) by allocating the item to the high-
est bidder.

To maximize the revenue earned in a second-price
auction, the auctioneer can set a reserve price and not
make any allocations when the bids are low. In fact,
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under symmetry and regularity assumptions (see
Section 2), the second-price auction with an appropri-
ately chosen reserve price is optimal and maximizes
revenue among all selling mechanisms (Myerson 1981,
Riley and Samuelson 1981).

However, to set the reserve price effectively, the
auctioneer requires information about the distribu-
tion of the valuations of the bidders. A natural idea,
which is widely used in practice, is to construct these
distributions using the history of the bids. This approach,
although intuitive, raises a major concern with regard
to the long-term (dynamic) incentives of the adver-
tisers. Because the bid of an advertiser may determine
the price she pays in future auctions, this approach
may lead the advertisers to shade their bids and ul-
timately result in a loss in revenue for the auctioneer.

To understand the effects of changing reserve prices
based on previous bids, we study a setting where the
auctioneer sells impressions (advertisement space) via
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repeated second-price auctions. More specifically, in
the main model we consider, the valuations of the
bidders are drawn independently and identically
from a distribution. The bidders are strategic and aim
to maximize their cumulative utility. We demonstrate
that the long-term incentives of advertisers play an im-
portant role in the performance of these repeated auctions.

We show that natural mechanisms that set a com-
mon reserve price using the history of the bids may
create substantial incentives for the buyers to shade
their bids. On the other hand, we propose an incentive-
compatible mechanism that sets a personal reserve
price for each agent based on the previous bids of other
agents." Our mechanism allocates the item to the
highest bidder if his bid exceeds his personal reserve
price. If the item is allocated, the price is equal to the
maximum of the second-highest bid and the personal
reserve price of the winner. This structure corre-
sponds to mechanisms used in practice, as described
in Paes Leme et al. (2016). By appropriately choosing
the function that maps historical bids of others to a
personal reserve price, we show that the expected
revenue per round is asymptotically as large as that
under the static Myerson optimal auction that a priori
knows the distribution of the bids.”?

We discussed earlier that only using the bids of
other buyers has the “first-order effect” of preventing
a bidder from lowering the reserve price she will see
in the future by misreporting her valuation. However,
we show that despite only using bids of other agents,
there is room for a “second-order effect” under which
a bidder could seek to benefit by affecting the future
reserve prices of others and thus, indirectly herself.
Hence, importantly, to prevent the second-order ef-
fect, our mechanism is “lazy” (see more on this in the
section on related work), in that it allocates the item
only to the highest bidder (if she exceeds her personal
reserve price) and otherwise leaves it unallocated. An
“eager” variant would allocate the item to the highest
bidder among those who exceed their reserve price;
in particular, the eager mechanism would allocate
the item as long as some bidder exceeds her personal
reserve price. The eager approach would create an
incentive for agents to overbid so as to increase the
personal reserve prices of other agents in the future,
thereby increasing the likelihood that those agents
are eliminated.’

As described earlier, our mechanism allocates the
item to the highest bidder if her bid exceeds her
personal reserve price. The personal reserve is chosen
to maximize revenue for a distribution estimated
using other agents’ bids. A natural concern with such
an approach is that if agents” valuation distributions
differ from each other, it may lead to a lower personal

reserve price for agents with a higher valuation dis-
tribution, and vice versa, thereby hurting revenue.
We show that this issue is not significant when dif-
ferences in valuation distributions are not too large
(our notion of the distance between two distributions
is the maximum absolute difference between their
virtual value functions). In particular, we show that
the loss relative to the Myerson benchmark is only
quadratic in the size of such differences and supplement
this theoretical result with numerical examples.

We also generalize our result along another di-
mension. Namely, we extend our results to a con-
textual setting with heterogeneous items that are
represented by a feature vector of covariates. The
valuations of the buyers are linear in the feature
vectors (with a priori unknown coefficients) plus an
idiosyncratic private component. We present a learning
algorithm that determines the reserve price for each
buyer using an ordinary least squares estimator for the
vector of feature coefficients. We show that the loss of
revenue is sublinear in the number of samples (previ-
ous auctions).

For the aforementioned results, we benchmarked
the performance of the mechanisms with respect to
the static Myerson optimal auction that knows the
distribution of the bids in advance. However, we note
that this static mechanism is not the optimal mech-
anism among the class of dynamic mechanisms. In
fact, we present a mechanism that can extract (almost
all of) the surplus of the agents. The basic idea is that
using the bids of other agents, the seller can construct
an estimate of the valuation distribution and hence,
of the expected utility per round of each agent when
individual items are allocated using second-price auc-
tions. Based on this estimate, the mechanism charges
a surplus-extracting up-front payment at the begin-
ning of each round. Because agents can influence the
up-front payments of other agents, they may have an
incentive to overbid so as to eliminate competing
agents from future auctions. We propose a solution
that asymptotically removes the incentive for agents to
deviate from truthfulness: the mechanism simulates
agents who choose not to pay the entrance fee. We
show that under our mechanism, truthfulness con-
stitutes an approximate equilibrium.

In each of our proposed mechanisms, we overcome
incentive issues using the same two key ideas: (i) we
eliminate incentives for underbidding by individually
choosing a pricing rule for each agent, based only on
the bids of other agents, and (ii) we disincentivize
overbidding by preventing an agent from benefiting
from suppressing the participation of other agents by
raising the prices they face; this has been achieved in
our setting by allocating the item only to the highest
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bidder in our mechanisms that achieve the Myerson
benchmark and by simulating nonparticipating agents
in our surplus-extracting mechanism. In a setting where
agents” valuation distributions are identical (or sim-
ilar to each other), this approach enables the seller to
obtain as much revenue as if she knew the valuation
distribution F while maintaining incentive compati-
bility. We believe that these design principles should
be broadly applicable to overcome the lack of knowledge
of F when there is competition between strategic
agents/buyers; see Section 9 for further discussion.

1.1. Related Work

In this section, we briefly discuss work closely related
to ours along two dimensions, behavior-based (per-
sonalized) pricing and reserve pricing optimization
for online advertising.

1.1.1. Behavior-Based Pricing. Our work is closely
related to the literature on behavior-based pricing
strategies where the seller changes the prices for one
buyer (or a segment of the buyers) based on her
previous behavior. For instance, the seller may in-
crease the price after a purchase or reduce the price in
the case of no purchase; see Fudenberg and Villas-
Boas (2007) and Esteves (2009) for surveys.

The common insight from the literature is that the
optimal pricing strategy is to commit to a single price
over the length of the horizon (Stokey 1979, Hart and
Tirole 1988, Salant 1989). In fact, when customers
anticipate a future reduction in prices, dynamic pricing
may hurt the seller’s revenue (Taylor 2004, Villas-Boas
2004). Similar insights are obtained in environments
where the goal is to sell a fixed initial inventory of
products to unit-demand buyers who arrive over time
(Aviv and Pazgal 2008, Dasu and Tong 2010, Correa
et al. 2016, Aviv et al. 2019).

There has been renewed interest in behavior-based
pricing strategies, mainly motivated by the devel-
opment in e-commerce technologies that enable online
retailers and other internet companies to determine the
price for the buyer based on her previous purchases.
Acquisti and Varian (2005) show that when sufficient
proportions of customers are myopic or when the
valuations of customers increase (by providing en-
hanced services), dynamic pricing may increase the
revenue. Another setting where dynamic pricing can
boost the revenue is when the seller is more patient
than the buyer and discounts his utility over time at a
lower rate than the buyer (Bikhchandani and McCardle
2012, Aminetal. 2013, Mohriand Medina 2014a, Chen
and Wang 2016). See Taylor (2004) and Conitzer et al.
(2012) for privacy issues and anonymization ap-
proaches in this context. In contrast with these works,
our focus is on auction environments, and we study
the role of competition among strategic bidders who

remain in the system over a long horizon. We observe
that when there is competition, there is value in per-
sonalizing prices, in particular when the valuations are
drawn i.i.d. over time. In fact, the seller can extract
nearly all the surplus.

The problem of learning the distribution of valu-
ations and optimal pricing has also been studied in
the context of revenue management and pricing for
markets where each (infinitesimal) buyer does not
have an effect on future prices and the demand curve
can be learned with near-optimal regret (Baliga and
Vohra 2003, Segal 2003, Besbes and Zeevi 2009,
Harrison et al. 2012, Wang et al. 2014); see den Boer
(2015) for a survey. In this work, we consider a setting
where the goal is to learn the optimal reserve price
with a small number of strategic and forward-looking
buyers with multiunit demand, where the action of
each buyer can change the prices in the future.

1.1.2. Reserve Price Optimization. Several recent works
have studied reserve price optimization. Most of them
focused on algorithmic issues but ignored strategic
aspects and incentive-compatibility issues: cf. Cesa-
Bianchi et al. (2013, 2015), Mohri and Medina (2014b),
Roughgarden and Wang (2016), and Golrezaei et al.
(2019). Most closely related to our work is the work by
Paes Leme et al. (2016), who compare different gen-
eralizations of the second-price auction with a per-
sonalized reserve. In their “lazy” version, the item is
allocated only to the highest bidder. In their “eager”
version, first all the bidders below their personal
reserve are eliminated, and then, the item is allocated
to the highest surviving bidder. From an optimization/
learning perspective, they show that lazy reserves are
easy to optimize and A/B test in production, whereas
eager reserves lead to higher surplus; however, their
optimization is NP-complete, and naive A/B testing
leads to incorrect conclusions. The mechanism we pro-
pose corresponds to their lazy version. We show how
this mechanism—a lazy second-price auction with
personalized reserves—can be used to optimize re-
serve prices in an incentive-compatible way by ap-
propriately learning from the previous bids (the eager
version may create incentives to overbid).
Ostrovsky and Schwarz (2009) conducted a large-
scale field experiment at Yahoo! and showed that
choosing reserve prices guided by the theory of op-
timal auctions can significantly increase the revenue
of sponsored search auctions. To mitigate the afore-
mentioned incentive concerns, they drop the highest
bid from each auction when estimating the distri-
bution of the valuations. However, they do not for-
mally discuss the consequences of this approach.
Another common solution offered to mitigate in-
centive constraints is to bundle a large number of
impressions (or keywords) together so that the bid of
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each advertiser has little impact on the aggregate
distribution learned from the history of bids. How-
ever, this approach may lead to significant estimation
errors because a variety of different types of im-
pressions falls into the same bundle, resulting in a
suboptimal choice of reserve price: cf. Epasto et al.
(2018). To the best of our knowledge, the present work
is the first to rigorously study the long-term and
dynamic incentive issues in repeated auctions with
dynamic reserves.

1.2. Organization

The rest of the paper is organized as follows. We
formally present our model in Section 2. In Section 3,
we show that mechanisms that optimize a common
reserve price suffer from incentive issues, and this
may also hurt revenue. By contrast, in Section 4, we
present truthful mechanisms with personal reserve
prices, where the reserve prices are optimized based
on earlier bids by competing agents. In Section 5, we
show that our revenue guarantee is robust to differ-
ences in valuation distributions across buyers. Then,
in Section 6, we generalize our result to the case of
heterogeneous items. Finally, we present a truthful
surplus-extracting mechanism in Section 7. Proofs are
deferred to the online appendix.

2. Model and Preliminaries
A seller, using a second-price auction, sells items
over time to n > 1 agents. The valuation of agent i €
{1,...,n}foranitem at time t, denoted by v, is drawn
independently and identically from distribution F.
(Later, in Section 5, we will consider the case where
different agents have different valuation distribu-
tions.) There is exactly one item for sale at each time
t=1,2,---. In Section 6, we extend our results to a
contextual setting with heterogeneous items. For the
sake of simplicity, we assume that the length of the
horizon is infinite and that the seller and the agents
aim to maximize their average long-term revenue and
utility, respectively. This is a reasonable assump-
tion, given the very large number of impressions sold
in practice.

More specifically, the average per-round revenue
of the seller, denoted by REV, is equal to

1
REV = hm —><E
t=1 i=1

» Zml) )

where p;; denotes the payment of agentiat time t. Note
that if the limit exists, then the average revenue is
maximized. Otherwise, the seller aims to maximize
the worst-case average revenue. Similarly, for the

average per-round utility of buyer i, denoted by U;,
we have

u; = hm (—XE

T
Z Z)zi,‘qzt - plt l) (2)
t=1

where g;; = 1if the item at time f is allocated to agent i,
and otherwise, it is equal to zero. The expectations
are with respect to the realizations of the valuations
of the agents and any randomization in the mecha-
nism and agent strategies. Each agent aims to maxi-
mize the worst-case average utility. The mechanisms
we will introduce and the corresponding equilibria /
strategies of agents will be stationary in time (after
an initial transient), and hence, the aforementioned
limits will exist for our mechanisms.

We assume that the valuation distribution F is
unknown to the auctioneer/seller, who may not even
have a prior on F. The valuation v;; of agent i is pri-
vately known to agent i. To simplify the presentation,
we assume that the valuation distribution F is com-
mon knowledge among the agents. (We discuss our
informational assumptions later in this section.) We
assume that F is a monotone hazard rate (MHR)
distribution; that is, the hazard rate f(v)/(1 — F(v)) is
monotone nondecreasing in v. MHR distributions
include all sufficiently light-tailed distributions, in-
cluding uniform, exponential, and normal. For most
of our results, we provide versions that apply to the
larger class of regular distributions: that is, distribu-
tions for which the virtual value function ¢(v) = v —
(1 = F(v))/f (v) is monotone increasing in v. (For instance,
log-normal distributions are regular but not MHR.)

Let us now consider the seller’s problem. The seller
aims to maximize his expected revenue via a repeated
second-price auction, despite his lack of knowledge of F.
He can attempt to do this by dynamically updating
the reserve price based on the history of bids so far.

2.1. A “Generic” Dynamic Second-Price Mechanism
At time 0, the auctioneer announces the reserve price
function Q) : H — R* that maps the history observed
by the mechanism to a reserve price. The history
observed by the mechanism up to time 7, denoted by
Hq,. € H, consists of the reserve price, the agents par-
ticipating in round ¢ and their bids, and the allocation
and payments for each round t < 7. More precisely,

Hoyx = {(r1,01,91,01), ) (o1, bee, Gea1, Pea))s

where

* 1y is the reserve price at time f.

® by = (b, --,bw) where b; denotes the bid of
agent 7 at time .
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e g; corresponds to the allocation vector. If all the
bids are smaller than the reserve price r;, the item is
notallocated. Otherwise, the item is allocated to agent
i* = argmax;{b;;}, and we have g;+; = 1;in the case of a
tie, the item is allocated to a uniformly random agent
among those who bid highest. For all the agents who
do not receive the item, g; is equal to zero.

* p;isthe vector of payments. If g;; = 0, thenp;; = 0,
and if g; = 1, then

pir = max{mﬁx{bjt}, rt}.
] 1

In our notation, Q) specifies a reserve price function
for each period t. Note that the auctioneer commits
beforehand to a reserve price function Q. It is well
known that in the absence of commitment, the seller
earns less revenue (see, e.g., Devanur et al. 2014).

An important subclass of the mechanisms is static
mechanisms where the reserve price does not depend
on the history or time. Another important subclass is
window-based mechanisms, with window length W,
which use only the bids received in the previous W
periods to determine the reserve price in the next
period.* A window-based mechanism is stationary
if the rule that maps bids in the last W periods to
the reserve price in period ¢ does not depend on t.
When considering stationary window-based mech-
anisms, we call the function (a close cousin of Q) that
maps the history of bids in the last W periods to the
reserve price in the next period the reserve optimization
function (ROF).

The seller aims to choose a reserve price function ()
that maximizes the average revenue, defined in Equa-
tion (1), when the buyers play an equilibrium with
respect to the choice of Q. To define the utility of the
agents and the information available to them, let H;,
denote the history observed by agent i up to time 7,
consisting of her valuations, bids, allocations, and
payments. Namely,

Hi. = ((vn, b, g0, pin), -+ (030-1, Bije—1, Gie-1, Pie-1) )-

We refer to H; . as the personal history of agent i.

We assume that agents do not see the reserve price
before they bid® but that they know the reserve price
function Q.

The bidding strategy B;:H; xR — R of agent i
maps the valuation of the agent v;;, the history H;,
and the reserve r; at time 7 to a bid b;;. Here, H; is the
set of possible histories observed by agent i.

Finally, we define the history of the game up to time
T as

H’l’ = <(rllvll bl/ ‘11/ pl)/ Tty (rT—ll UT—ll b’(—ll 5]1—1/ pT—1)>'

Note that compared with Hq ., which is the history
observed by the seller, H; also includes the valuations
of the agents.

We say that an agent plays the always truthful
strategy, or we simply call the agent truthful, if at
every time t, we have b;; = v;; irrespective of the his-
tory Hi and the reserve r,. We now formalize our
definition of incentive compatibility. We define the
inf-utility and sup-utility of agent i when each agent i’
plays strategy By, respectively, as follows:

T
Z Oitdit — Pitl) ’
=1

T
Z Uitit — pitl) .
t=1

We say that a mechanism is incentive compatible (1C)
if, for each agent i, other agents are always truthful;
then, the inf-utility under the always truthful strategy
(weakly) exceeds the sup-utility under any other strat-
egy. Formally, we require

.1
U(B;,B-;) = thl g\f (f xE

_ 1
U;(Bi, B-i) = limsup (T X E

T—o0

(B, B™) = T (B, B

for any strategy B;, where B[® denotes the truthful
strategy. Intuitively, a mechanism is IC if all agents
using the always truthful strategy constitute a Nash
equilibrium. We emphasize that because our envi-
ronment and proposed mechanisms are time invari-
ant (after an initial transient), and always truthful
is also a time-invariant strategy, the right-hand side
of the definition of utility (2) has a limiting value
as T — oo when all agents are always truthful. More
precisely, U;(B%,B™}) is well defined and equal to
(B, B,

The notion of incentive compatibility is static in the
sense that the strategies that agents choose before the
game starts define an equilibrium. We now define a
stronger and dynamic notion. We say that a mecha-
nism is dynamic incentive compatible or more precisely,
periodic ex post incentive compatible if at every time 7,
for every history H,, each agent i’s best-response
strategy to her personal history H; . is to be truthful
assuming that all the other agents will be truthful in
the future (Bergemann and Valiméki 2010). More
precisely, define the future inf-utility of an agent as

1
Uy, (Bi, BLY) = h%?l g}f (f X En,.

T
Z Uitqit — Pitl)} ®3)
t=t

that is, it is the (worst-case) future per-auction utility
of agent i at time 7, assuming all other agents will be
truthful and agent i plays strategy B;. Again, this limit
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will exist for the mechanisms we consider when B; = Bl.TR.
Also, define the future sup-utility as

Z Oitit — Pztl) . (4

U, (Bi, BIY) = limsup (— X Ep,,

T—o0

A mechanism is dynamic incentive compatible if, for
each agent i, we have

Uy, (B, BL) = Ui, (Bi, BLY)

for any time 7, any personal history H;., and any
strategy B; where B® denotes the truthful strategy. As
discussed earlier, when all agents follow a truthful
strategy in our setting, we have

Qi,Hi,T (B;FR’ BE?) = uirHi,T (B;'FR’ BE?)

Z vlfqlt pztl)

In Section 7, we present an approximate notion of
dynamic incentive compatibility.

= lim ( x En,,

T—c0

2.2. Discussion on Informational Assumptions
Our results are not sensitive to our informational
assumptions. Our main results (Theorems 1, 2, and 4)
are for incentive-compatible mechanisms, and hence,
they hold even if the agents do not have perfect in-
formation regarding the valuation distribution(s) and/
or the reserve price function (). Theorems 1-4 (and their
proofs) remain valid if agents obtain information
regarding past reserve prices and past bids, alloca-
tions, and payments of other agents.® Regarding the
seller, our mechanisms use prior-free learning algo-
rithms. Of course, the revenue guarantees remain
valid if the seller does know something about the
valuation distribution(s).

Finally, consider our negative results in Section 3
(Example 1 and Proposition 1in the online appendix).
Providing additional information to agents can only
make things (weakly) worse. On the other hand, strategic
bid shading by an agent does rely on knowledge of the
valuation distribution; note that if an agent initially lacks
this knowledge, she can acquire it over time.

2.3. Benchmark

In the first part of the paper, we restrict ourselves
to dynamic second-price mechanisms. We use as a
benchmark the average revenue that could have been
achieved via the optimal static mechanism if F had
been known to the seller (i.e., the average revenue per
round under the static Myerson auction with the
optimal reserve for distribution F). (Note that because
F is an MHR distribution, Myerson’s result says that

the optimal static mechanism s, in fact, a second-price
auction with a reserve price. This extends to the case
where F is a regular distribution.) Let REV« denote
the benchmark average revenue. We demonstrate an
incentive-compatible second-price mechanism (with
personal reserve prices) that asymptotically achieves
the benchmark revenue (see Section 4). Later, in
Section 7, we go beyond dynamic second-price mech-
anisms to allow additional mechanism features such as
up-front payments. We show how, using a modifica-
tion of the same ideas, the seller can approximately
achieve the largest possible revenue, namely the rev-
enue corresponding to full surplus extraction, while
retaining (approximate) incentive compatibility.

3. Incentive Problems with Learning a

Common Reserve Price
In this section, we argue that if the seller attempts to
learn a common reserve price using historical bids,
this leads to incentive issues; specifically, agents may
shade their bids in order to reduce the reserve prices
they face in the future, and such shading may in turn
reduce the revenue earned by the seller.

For simplicity, we start by analyzing a simple re-
serve price optimization approach, which we call the
histogram method, that is the basis of a lot of nonpara-
metric approaches used in practice (see Nazerzadeh
et al. 2016) and find significant issues. (In Online
Appendix A.2, we argue that these issues are typical
in mechanisms that attempt to learn a common re-
serve price from historical bids.) Throughout this
section, we will consider stationary mechanisms and
time-invariant strategies, and we look for a non-
truthful agent strategy such that if other agents are
always truthful, the limiting agent’s utility (as defined
in (2); note that the limit exists) is strictly larger than
that resulting from being always truthful.

3.1. Histogram Method

For simplicity, we consider a setting with n = 2 bid-
ders and demonstrate the issue with incentives and
the resulting revenue impact. (The problem is even
more acute when there is just one buyer/agent, in
which case the agent can drive the reserve price, and
hence, the seller’s revenue, down to zero while still
winning the item each time. We comment on this
case later.)

Let F; be the joint empirical distribution of all the
bids submitted during the last W periods (we will
consider the limit W — oo in our analysis). The his-
togram method is a window-based stationary second-
price mechanism with a very simple ROF. The re-
serve price at time t is chosen to be the one that
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maximizes expected revenue when the bid vector is
from F;. Formally,

1y = arg m,aX{E(bl,bz%E [max{(max{b1, by}
— max{r, min{b1, b>}}), 0}]} ; (5)

in the case of a tie, r; is the smallest reserve price in
the argmax.

As described in Section 2, the seller allocates the
item to a buyer with the highest bid larger than the
reserve price. If no bid is above r;, the item is not
allocated. In the case of a tie, the item is allocated at
random to one of the highest bidders.

To convey intuition about the incentive issues as-
sociated with this approach to reserve price optimi-
zation, we start with a simple model. Assume that the
valuations of the bidders are drawn ii.d. from a
Uniform(0, 1) distribution.

Let us see how an agent may react in response to
this mechanism. Intuitively, an agent may want to
shade her bid. We present a simple shading strategy
where an agent shades her bid if her valuation is
between two parameters r and 7 and bids truthfully
otherwise. More specifically,

e [f0<v,<ror7<v <1, then b; =v;.

o Ifr<uv, <7 thenb =r.

We observe that by playing the strategy, an agent
can increase her utility by reducing the reserve, even
if the other agent is truthful.” More importantly, shading
can significantly increase the agent’s utility. Further,
such strategic shading by an agent reduces the rev-
enue of the seller.®

Example 1 (Learning a Common Reserve Price Using the
Histogram Method Is Not IC). Assume that the valuations
of the agents are i.i.d. Uniform(0,1) and that the seller
uses histogram-based reserve optimization, using bids
from the last W rounds, and consider W — co. If one of
the agents follows the shading strategy for values of
r=0.378 and ¥ = 2/3 = 0.667, whereas the other agent
is always truthful, then the reserve price converges to’
r = 0.378, with the following consequences.

¢ Revenue. The limiting average revenue obtained
by the seller is close to 0.383. By contrast, if both
agents are truthful, the limiting average revenue is
equal to 5 = 0.417. If the seller does not use any re-
serve price, the average revenue is equal to 1 = 0.333.
Therefore, more than 40% of the benefit from reserve
price optimization is lost even if one of the agents
shades her bid strategically.

e Incentives. The limiting expected utility of the
agent from the always truthful strategy is close to
0.083. On the other hand, the limiting expected utility
from the aforementioned shading strategy is close to

0.109. Therefore, the agent can increase her utility by
more than 30% via shading.

See Online Appendix A.1 for details. A little re-
flection immediately reveals that in the absence of
competition between agents, the incentive issues asso-
ciated with the histogram method are even more acute.

Remark 1. If, instead, there is only n = 1 agent, then the
agent can employ the shading strategy with r =€ €
(0,1/2) and 7 = oo (or equivalently, 7 = 1). Under such
an agent strategy, as W — oo, the seller’s estimated F;
has an atom of mass exceeding 1/2 at €, leading to
limw e ¢ = € for all t > W. By choosing € close enough
to zero, the agent can win the item in almost all rounds
while making arbitrarily small payments; thus, this
is a best response for the agent as € — 0*. The result
is that the seller’s revenue is vanishing when she uses the
histogram method when selling to a single strategic agent.

We note that our example extends to general val-
uation distributions F.

Remark 2. Although we fixed F to Uniform(0,1) in
Example 1, the idea easily extends to general regular F
with continuous density f, when the seller sets the
reserve using the histogram method. Let r+ be the
Myerson optimal reserve price, and consider the static
mechanism that uses common reserve price r+ in each
round. (As the window length W — oo, under truth-
ful bidding by all agents, the reserve price set by the
seller converges to r+.) Suppose that agents other than i
are always truthful. Then, for sufficiently small €, a
shading strategy based on r =r« —€ and 7 = r+ + 1.1e
constitutes a profitable deviation for agent i, by causing
the seller to set a reserve price of r = r« — € with high
probability in steady state. Such shading leads to a
myopic loss of O(€?) in expected utility from the current
round—because of losing the item, although i would
have won it under truthful bidding—which occurs
with probability O(e) and causes a loss of O(¢) in utility
in each case. However, there is a (larger) ()(e) increase
in expected utility because of the reserve price being
lower by € because of bid shading in the past. This bid
shading by agent i causes a loss of ()(e) in revenue for
the seller.

In Online Appendix A.2, we show that incentive
concerns apply not just to the histogram method but
to a broad class of dynamic reserve price mechanisms
that set a common reserve price based on histori-
cal bids.

4. Incentive-Compatible Optimization of

Personal Reserve Prices
In the previous section, we identified significant incen-
tive concerns associated with optimizing the reserve
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price when all agents face exactly the same reserve
price and bidders are strategic. Specifically, natural
mechanisms for optimizing the reserve price that are
based on historical bids encourage bidders to shade
their bids, which in turn, reduces the revenue earned
by the seller.

In this section, we present a mechanism that elim-
inates incentives for agents to misreport their valua-
tions. As mentioned earlier, we overcome incentive
issues using two key ideas: (i) we personalize reserve
prices by choosing a pricing rule'” for each agent,
based only on the bids of other agents (hence, agents
do not benefit from underbidding); and (ii) we do so
by allocating the item only to the highest bidder
(hence, agents do not benefit from overbidding so as
to prevent others from participating in future auctions).

4.1. Highest-Only Self-Excluding Reserve
Price Mechanisms

A second-price auction with personal reserve prices
is a highest-only self-excluding reserve price (HO-SERP)
mechanism if it satisfies the following two properties.

¢ Highest only: The mechanism allocates the item
only to the highest bidder. If the highest bidder i does
notmeet his reserve price (b < i), then the item is not
allocated. If by > r;, the highest bidder i is charged a
price equal to max{r;, max;zi{bj}}.

¢ Self-excluding reserve price (SERP): The reserve
price for agent i is determined using only the bids of
other bidders and does not depend on the bids of
agent i herself.'’ Let F_; be the empirical distribution
of the bids by agents other than i in the relevant
rounds (a window-based mechanism will consider
the last W rounds).'? Then, the personal reserve price
i of agent i is set based on F.

Personal reserve prices may appear more complex
than a mechanism with a common reserve price.
However, we note that they have been widely used in
practice (see, e.g., see Paes Leme et al. 2016). More-
over, we establish strong incentive properties for
HO-SERP mechanisms.

To (approximately) maximize the revenue earned,
we set 7; to be the optimal monopoly price for costless
goods when buyers have this valuation distribution:
that is, '

ry = argmax r(1- F_i(r)). (6)

This allows us to approximately achieve the revenue
benchmark. The latter is proved using convergence
rate bounds from Dhangwatnotai et al. (2015); other
related papers on learning the optimal reserve price
from samples include Cole and Roughgarden (2014),
Huang et al. (2015), and Devanur et al. (2016).

Theorem 1. Any HO-SERP mechanism is periodic ex post
incentive compatible. In particular, all agents following the
always truthful strategy constitute an equilibrium. Further,
there exists C < oo that does not depend on the waluation
distribution F, such that for any F that is MHR and any
€ €(0,1), the HO-SERP mechanism with window length
W > Clog(1/€)/€? and personal reserve prices set as per (6)
achieves an average per-round revenue that is at least
(1 — €)REV«, where REV= is the expected revenue under the
optimal static mechanism (i.e., the second-price auction
with a Myerson-optimal reserve price).

Theorem 1 is proved in Online Appendix B. The
rapid decay of revenue loss with window length W
suggests that our approach should do well with as
few as thousands of items/impressions. We remark
that a similar result can be established under the
weaker requirement of a regular valuation distribu-
tion F, for a window length bounded as'* W > Clog
(1/e)/€d.

In Online Appendix B, we provide a finite horizon
version of Theorem 2 (Corollary 1 in the online ap-
pendix), showing that the revenue loss under our HO-
SERP mechanism (using all samples so far) is OWT
log T) over a horizon of length T for MHR F. We
further show that the revenue loss under our mech-
anism is lower bounded by Q(T'/*-€) (Theorem 5 in
the online appendix) for a standard (exponential)
distribution. The lower bound in our key supporting
lemma (Lemma 4 in the online appendix, leading to
Theorem 5 in the online appendix) contributes to the
agenda pursued in Dhangwatnotai et al. (2015) re-
garding choosing a price to optimize revenue based
on a limited number of samples from the valuation
distribution and may be of independent interest.

Note that the HO-SERP mechanism makes use of
all bids by agents other than i, including those that
do not exceed that agent’s own reserve price. How-
ever, unlike static settings, using other agents’ bids
to determine the payments may not be enough to
yield robust incentive compatibility. Whereas truth-
fulness is a best response when agent i’s valuation
vy < 1y, it is also a best response to submit any other
bid by €[0,7;). In order to make truthfulness the
unique best-response strategy, we can tweak the
mechanism such that with a small probability y in
each round, all the reserve prices are set to zero, i.i.d.
across rounds.'” Agents are told of this tweak, but
they do not know if the reserve prices are zero in the
current round at the time they submit their bids. This
makes truthfulness the unique dominant strategy
best response to other agents following the always
truthful strategy, a more robust form of incentive
compatibility. The loss in expected revenue because
of occasionally setting the reserve prices to zero is
bounded from above by a y fraction of the benchmark.
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A seeming disadvantage of the HO-SERP mecha-
nism is that if the highest bidder’s valuation does not
exceed her reserve price, the item goes unallocated
even though there may be other bidders who exceed
their reserve prices. (The reserve prices may differ
from each other because of statistical variation and/
or differences in valuation distributions across bid-
ders.) An “eager” variation of self-excluding reserve
price is the following: allocate the item to the highest
bidder among all the agents whose bids “survive” by
being above their personal reserve price,'® and charge
her the larger of her personal reserve price and the
second-highest surviving bid. Unfortunately, this vari-
ation of the SERP auction creates an incentive to deviate
from truthfulness. The intuition is that an agent can
benefit from increasing the likelihood that a competing
agent is eliminated (because of bidding below her per-
sonal reserve price), and this creates an incentive to
overbid so as to raise the personal reserve price faced by
competing agents in the future. The example illustrates
this phenomenon.

Example 2 (“Eager” SERP Is Not IC). Let us consider a
setting with two agents whose valuations are drawn
iid. from uniform distribution [0,1]. The item is al-
located as follows. First, remove all the agents whose
bid is less than their personal reserve price, set as
per (6). If no agents remain, the item will not be allo-
cated. If only one agent survives, the item will be al-
located at a price equal to her personal reserve price.
If two agents remain, the item will be allocated to the
highest agent at a price equal to the maximum of her
personal reserve price and the other bid.

Suppose that the first agent is truthful. We present a
profitable deviation for the second agent as follows:

Ui <
Vi <

—_ ol

=

|
—_—
= &
Ni= O
IN A

Note that the second agent overbids if her valuation
is larger than J and is truthful otherwise. Hence, the
limiting reserve price for the firstagent is equal to one.
Therefore, the first agent would be eliminated from all
the auctions. In the online appendix, we present a
family of profitable deviation strategies including this
one and show that the expected per-round utility of
the second agent will be increased by 3; under the
strategy. In other words, the second agent can in-
crease her utility by 50% because her utility under the
truthful strategy is equal to .

In the next section, we will show the robustness of
the near optimality of the HO-SERP mechanism to
small differences in the valuation distributions across
agents. In particular, this will imply that revenue
losses caused by the item going unallocated, even
though some agents exceed their reserve price, are

small in expectation when valuation distributions are
similar across agents.

5. Robustness to Asymmetry
Among Bidders

We have so far assumed that the agents have the same
distributions of valuations. In this section, we discuss
the robustness of our results with respect to the
asymmetry among bidders. We first would like to
note that when the valuations are heterogeneous, then
the second-price auction, even with optimized per-
sonal reserve prices, may not be the optimal static
mechanism and that the revenue-maximizing Myer-
son auction takes a somewhat more complicated
form when the item is allocated to an agent with the
highest virtual value.'” Nevertheless, we show that
when agents have different valuation distributions,
the loss in limiting revenue per round of HO-SERP
compared with the static Myerson optimal auction
can be bounded.

Consider a case with two agents i and j. Suppose
that agent 7 has a higher valuation distribution than
that of j, in the sense that the optimal monopoly price
for F;is larger than the optimal monopoly price for F;.
Then, an HO-SERP mechanism with personal reserve
prices set as per (6) sets r; > r; instead. As a result,
losses are incurred for two reasons. (i) The reserve
price of each agent is not suitable for the valuation
distribution of that agent. (Further, the static Myerson
optimal auction allocates to the bidder with the
highest virtual value,'® which HO-SERP does not
do.) (ii) The fact that the reserve prices of the two
agents are different from each other means that the
realized pair of valuations in a round could be such
that r; > v; > v; > r;. If this occurs, the item is not al-
located because the highest valuation agent (agent j)
fell short of her reserve price, although a different
agent (agent i) did exceed his reserve price. In this
section, we will show that if the valuation distribu-
tions are not too different from each other, the loss in
revenue under our mechanism relative to the static
Myerson optimal auction is small (specifically, it is
quadratic in the size of the difference between valu-
ation distributions).

Consider a setting with two agents whose valuation
distributions are 6 different from each other. (We
formally define a notion of distance.) We claim that
the loss in revenue, relative to repeating the Myerson
optimal mechanism for known valuation distribu-
tions, is typically O(6?). The rough reason is that each
of the two problems causes a loss of this order.
Having a reserve price for each agent that is wrong
by O(6), or related to this, not mapping the reported
valuation appropriately to a virtual value, causes a
loss of order O(5%) because we are at a distance O(5)
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from the global maximum of a well-behaved opti-
mization problem. The chance that i exceeds his re-
serve price but the item is not allocated to anyone is
bounded by

Pr(r, > vy > v1 > r1) < Pr(vy € (r1,72) AND
0y € (r1,12)) = O() - O(8) = O(5?).

Hence, this issue also causes a loss of order O(5?).
Let us begin with an example before we make
this rigorous.

Example 3. Suppose that agent 1 has a Uniform(0, 1)
valuation distribution, whereas agent 2 has a Uniform
(6,1 + 0) valuation distribution for some (small) 6 > 0.
Then, the mechanism we introduced sets r; = (1 +6)/2
and r, = 1/2. The expected revenue it earns is

E[Revenue from agent 1] + E[Revenue from agent 2]
_5—66—363+453+5+156
24 24
10+ 96 — 36% + 46°
B 24 ’

On the other hand, consider the Myerson optimal
mechanism that uses virtual values ¢,(v;) = 20; — 1
and ¢,(v2) = 20, — 1 - 0, allocates the item to the agent
with the highest virtual value, if it is positive, and
charges that agent the smallest bid/valuation for
which she would still have been awarded the item.
This mechanism produces revenue 10+90+30+30°
follows that the revenue under the Myerson optimal
mechanism is % = O(6%) more than that under our
mechanism. For 6 = 0.1, the revenue loss is just 0.0025
or 0.54%; for 6 = 0.2, the revenue loss is just 0.0097 or
1.9%, and even for large 6 = 0.3, the revenue loss is
0.021 or 3.9%.

We now formalize this. Let agent i have valuation
distribution F;, which is once again assumed to be
MHR (i.e., to have an increasing hazard rate).’” We
define the distance ||F; — Fj|| between distributions F;
and F; as

IFi = Ejll = max [¢;(v) ~ ¢,(0)], @)

where ¢,(v) = v — (1 — Fi(v))/fi(v) is the virtual value
function.?’

Theorem 2. Consider a setting with n agents where agent
i’s wvaluation distribution is F;. Again, any HO-SERP
mechanism is periodic ex post incentive compatible. Sup-
pose that for each agent i, the waluation distribution F; is
MHR and has density bounded above by fmax. Suppose also
that ||F; — Fj|| = o for all pairs of agents i and j, for some
O < co. We have that the limiting average per-round revenue
under HO-SERP with personal reserve prices set as per (6)
is at least REVs — 2(11 — 1)fmax0? as W — oo, where REV« is

the expected revenue achieved by the static Myerson opti-
mal auction. Equivalently, HO-SERP with these reserve
prices achieves a fraction (1 —2(n — 1) fmax®*/REVx) of the
benchmark revenue in the limit W — oo.

Thus, if agent valuation distributions are not too
different from each other, our proposed mechanism
approximately achieves the benchmark revenue. The
proof (see Online Appendix C) formalizes the intui-
tion by using Myerson’s lemma (Myerson 1981),
which says that the expected revenue of a truthful
mechanism is equal to the expected virtual value of
the winning bidder (defined as zero if the item is not
allocated). The revenue-maximizing static mecha-
nism allocates to the bidder with the largest virtual
value, if this virtual value is nonnegative. We show
that our mechanism deviates from this allocation
with probability no more than 2(n — 1) fmaxd = O(0)
and further chooses an allocation that is within 6 of
the ideal allocation in terms of virtual value in cases
where it allocates wrongly. These bounds then enable
us to obtain a 2(1 — 1) fmax®?> = O(6?) bound on the loss
in expected revenue.

As an illustration, we can apply this result to the
setting in Example 3. We have n=2, f=1, and
[|F1 — F>|| = 6, and so, we obtain from Theorem 2 that
the revenue loss relative to the Myerson benchmark is
bounded above by 262. The actual loss turns out to
be 622-0°

2

We conclude this section with a discussion of a by-
product of our results that could be of independent
interest. Hartline and Roughgarden (2009) show that
where the valuation of each agent is drawn indepen-
dently from a different regular distribution, second-price
auctions with personalized reserve prices obtain a 1
approximation of the optimal revenue. As a corollary
of the analysis leading to Theorem 2, we obtain a
complementary result: namely, that using a second-
price auction in the asymmetric valuations case, the
seller can obtain an expected revenue within O(6%) of
the optimal, where 6 is the maximum “distance”
between valuation distributions; see Remark 3 in
Online Appendix C for details.

6. Heterogeneous ltems
In this section, we provide guidance on how het-
erogeneity between items can be incorporated into
our proposed HO-SERP mechanism described in The-
orem 1. (A similar approach can be used to extend the
surplus-extracting self-excluding (SESE) mechanism
from Section 7 to a heterogeneous items setting.) Our
model of valuations may be interpreted as one way to
incorporate correlation between agents” valuations
for an item; see McAfee and Vincent (1992).

We generalize the model in Section 2 as follows.
Eachitem has m attributes, where m is a fixed constant.
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We denote attributes of the tth item by x; = (x4,
Xp,...,Xm)! and henceforth, call x; the context in
period t. We model the valuation v; of each agent i for
the tth item as

=BTx + 9, (8)

where 7; ~ F is drawn independently across agents
and items, and § € R™ is the vector of context coef-
ficients (common across agents and items). Thus, the
context causes an additive translation in valuations;
the amount of translation has a linear functional form
in the attributes and is common across agents. We
assume that the contexts (x;);2; are drawn i.i.d. from
some distribution G. Our technical development in
this section draws upon the work of Golrezaei et al.
(2019) on contextual auctions. Two key high-level
differences from that paper are as follows. (i) Our
agents are patient, and hence, to obtain good incen-
tive properties, we stay with our proposal to choose a
personal price for agent i based on the past bids of
other agents. In the aforementioned paper, agents are
impatient, and so, the mechanism is able to set a
personal price for i based on the past bids of agent i
herself. (ii) We assume that valuation distribution F is
time invariant and obtain revenue guarantees for any
F in a class F, whereas the aforementioned paper
solves a robust optimization problem where F can
vary arbitrarily over time within F.

6.1. Assumptions on F, G, and p

We assume that F is MHR as before but in addition,
assume that Fhas bounded support (—Br, Br) for some
Br < c0. We absorb the mean of distribution F into ﬁTxT
(we can include an attribute that always takes the
value 1 so that its coefficient will be the intercept that
includes the mean of F) and hence, assume that
Es-¢[0] = 0. (This implies E[vy.] = fTx;.) We assume
that distribution G has bounded support; without loss
of generality, we assume that it is supported on {x:
|lx]| < 1} (we use the Euclidean norm throughout). We
further assume that G has a second-moment matrix
¥ = Ey-g[xxT] that is strictly positive definite with a
smallest eigenvalue at least 1/By for some By < c0. We
also assume that [|g|| < Bg for some Bg < co.

6.2. Auctioneer’s Knowledge

The auctioneer observes the context x; before each
period t and knows the bounds Br, By, and Bg but does
not know F, G, or  beforehand. As before, the auc-
tioneer wants to set personal reserve prices to max-
imize long-run average revenue (1) while accounting
for the strategic response of the agents who aim to
maximize the average per-round utility (2). (All ex-
pectations now include expectation over the contexts

~ G i.i.d. across periods t.)

The reserve price function Q:H — R" maps the
history observed by the mechanism up to ¢, including
the current context x; to reserve prices (ry)i;. The
history observed by the mechanism, and by each
agent, up to time f now includes the contexts in each
period so far including period t:

(xt—ll T-1, bt—ll qt—llpt—l)/xt>/

©)

HQ,t = <(x1/711b1,Q1/P1),' “ty

Hi,t = <(x1/vi1/biqui1/pi1)/ Tty (xtflfvi,tfl/bi,tfll
Qi,t—lrpi,t—l)/xt>- (10)

We include x; in H;; to clarify that the agents know
the current context x; before they submit their bids b;.
The auctioneer commits beforehand to Q. The defi-
nition of dynamic incentive compatibility remains as
before. As in Theorem 1, we will provide a stationary
window-based Q with good properties and average
revenue approaching that under the static Myerson
auction. Note that the reserve price of the benchmark
static Myerson auction will be dependent on the
context, and correspondingly, the reserve price set by
our mechanism in period ¢ will account for x;.

Let REV«(x) be, for context x € R, the expected
revenue under the Myerson optimal auction for agents
with valuations drawn i.i.d. from the contextual valua-
tion distribution F* given by

F(v)£F(v - B"x). (11)
In an effort to obtain a revenue close to REVx(x;) in
period t, but while retaining incentive compatibility,
our proposed mechanism proceeds as follows. Fix the
window length W. For every agent i, the mechanism
sets the personal price r; using (i) the current context
x¢and (ii) the bids of other agents in the last W periods
(treating those bids as truthful) and the contexts in
those periods.

To properly account for the context x; in the choice
of reserve prices ry, our mechanism needs to learn the
coefficient vector f. We proceed as follows. Recall that
the expected valuation of item 7 is E[vy.] = T,
allowing us to treat each period 7 bid by = vy, by
agent i’ # i as a noisy observation of flx,, corrupted
by zero mean “noise” ¥y, ~ Fthatisi.i.d. across agents
and periods. We use these observed bids to obtain an
ordinary least squares estimate of f3:

p-i e argmin E_,-(ﬁ) ,  Where
B:lIBll<By
A= G mw 1>W§“Zw ~F)

This estimate converges rapidly to the true f.
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Lemma 1. Fix the constants m, Br, By, and Bg. There
exists a constant Cy = C1(m, Br, By, Bg) < oo such that, for
any F, G, and B (satisfying Br, By, and Bg, respectively),
for any window length W > 1, and each agent i, the esti-
mated coefficients are close to the true ones: with probability
1-1/W, we have

log W
W

We then deploy this estimate to “translate” the past
bids to the current context x;: a bid of by, submitted
under context x; maps to the translated bid E,vT,_i 2 b+
BT.(x; — x;). The empirical distribution F*; of trans-
lated bids serves as an estimate of the true contextual
distribution

B = Bl < C1 (12)

F*(v) = F(v - B'xy). (13)

We need to be careful here because our estimate of
f-"‘f’i(v) is imperfect for two reasons. First, as in Section 4,
itis based on a finite number of samples. Second (and
this is an issue we did not encounter before), our
estimate 5_; is imperfect. As a result, the samples upon
which IA-"f‘l- is based are not drawn from F* itself: in-
stead, the samples based on bids in period 7 corre-
spond to sampling from F* and then adding (-; —
B) (x; —x;) to the realization. To ensure that this
additional source of error does not inadvertently lead
to a large reduction in the probability of selling (e.g.,
this could happen if F* has an atom at the Myerson
optimal reserve price), our mechanism sets the price
by making a small reduction to the estimated optimal
reserve price. Accordingly, we set the personal re-
serve price as per the following modification of (6):

ra = =0 +argmax r(1 — F¥(r)). (14)

Here, we set 0 = 2Cy+/log W/W, where C; is the con-
stant in Lemma 1. Informally, this is to ensure that
with probability 1 —1/W, errors in bid translation do
not cause us to unintentionally price out an agent.
As a result of this adjustment to the mechanism, we
now obtain an additive approximation to the revenue
instead of a multiplicative approximation.?

Theorem 3. Consider the setting with item attributes de-
scribed, with constants n, m, Br, By, and Bg. Any HO-SERP
mechanism is periodic ex post incentive compatible. In
particular, all agents following the always truthful strateqy
constitute an equilibrium. Further, there exists C = C(n,
m, Br, By, Bg) < oo, such that for any F that is MHR, G, and
B (satisfying Br, By, and Bg, respectively), any € € (0, 1),
and any context x; : ||x;|| <1, the HO-SERP mechanism
with window length W > Clog(1/€)/€e* and personal re-
serve prices set as per (14) achieves an ex]z)eci,‘ed22 revenue in
period t that is at least REV«(x;) — €, where REV«(x;) is the

expected revenue under the optimal static mechanism (a
second-price auction with the Myerson optimal reserve price)
for the true bid distribution F* given by (13).

The proofs for this section are presented in Online
Appendix D.

7. Incentive-Compatible

Surplus Extraction

Although the second-price auction can be revenue
maximizing in static settings, it may not be the op-
timal mechanism in dynamic environments. To convey
intuition, let us first consider a setting with n agents
and a horizon of length T where the seller knows the
distribution of the valuations of agents. Consider the
following mechanism. (i) The mechanism charges
each agent i an up-front payment equal to XL, E[uy],
where u;; denotes the random variable corresponding
to the utility of agent i at time f: namely,

Uiy = max{v,-t - mgx{bit},O}. (15)
] 1

The expectation is calculated assuming that all agents
are truthful. (ii) The mechanism runs a second-price
auction (with no reserve) in each of the T rounds.
Notice that Equation (15) is consistent with this design.

Note that by using the up-front payments, the
mechanism extracts the whole surplus of the buyers
and obtains an average revenue of E[max;{v}]. As-
suming only individual rationality on the part of
the agents, this is the maximum-achievable average
revenue per round for any mechanism. This mecha-
nism, although revenue optimal, is not directly ap-
plicable to the current online ad markets because
it charges an up-front payment; see Mirrokni and
Nazerzadeh (2017).*> However, ignoring this prac-
tical consideration, we show how the ideas can be
used to design an essentially optimal mechanism in
our setting.

The surplus-extracting mechanism can also be
implemented as follows (when the distribution of the
valuations, F, is known): see Arrow (1979), d’Aspre-
mont and Gérard-Varet (1979), Baron and Besanko
(1984), and Eso and Szentes (2007). In each round ¢,
the mechanism charges an entrance fee of

i = Br[us] = Br [max{vit - rrj}zx{vjt}, 0” (16)

The agent may accept the entrance fee. Agents who
pay the entrance fee then learn their valuation v; and
can bid in the auction. The item is allocated via a
second-price auction with no reserve, and therefore,
the agents will bid truthfully. Note that in the desired
equilibrium, the agents are indifferent between par-
ticipating or leaving, but the mechanism can always
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nudge the agents to participate by slightly reducing
the entrance fee. Building on these ideas, we propose
the following mechanism.

7.1. SESE Mechanism
The mechanism consists of two phases.

e In the first phase, which lasts for N rounds
(where N is a parameter chosen by the seller), the item
is allocated via a second-price auction with no re-
serve. At the end of the first phase, for each agent i,
define fi; as follows:

11 5
fi = nN/ZZZk' (17)

and z;'sfor 1 < k < N/2are constructed as follows. We
repeatedly sample without replacement n bids from
the set of bids in the first phase from all the bidders
exceptagent i. Let Z; be the kth sampled set, and let z
be the difference between the highest and the second-
highest bid in Z;. Note that because n > 2, the total
number of sampled bids is nN/2 < (n — 1)N, ensuring
feasibility.

® In each round ¢ > N in the second phase, the

seller offers an entrance fee of (fI; — 21(1’\‘?1\]) to agent i.

Note that the entrance fee is determined using the
other agents’ bids in the first phase.

The item is allocated using a second-price auction
withno reserve. Let S be the set of agents who pay the
entrance fee (and subsequently learn their valuation
vi), and let S represent the set of agents who refuse to
participate in this round. The mechanism simulates the
agents in S. More specifically, the mechanism ran-
domly chooses around 7 < N and uses the bids in that
round for each agentj € S. At time t, if a simulated bid
is the highest, the item will not be allocated. Other-
wise, it will go to the highest bidder at the price equal
to the second-highest bid among agents in S and S.

Here is the intuition behind the mechanism. Ob-
serve that by the definition, when all the agents are
truthful and have the same valuation distribution,
we have

where p; denotes E[u;] for agent i; see Equation (16).
Hence, we have E[[1;] = p;.

Our mechanism achieves (approximate) incentive
compatibility by leveraging the same two key ideas
that led to Theorems 1 and 3. (i) The entrance fee
charged to each agent (in the second phase) depends
only on the bids of the other agents in the first phase;
thus, an agent’s bids do not affect the entrance fee that
the agent herself faces. We further deduce that the

Z ui = ny;, (18)

E[z] =

agents bid truthfully in the second phase because
their bids have no future impact whatsoever.
Hence, they would pay the entrance fee if** E[u;] >

fi— wIZIOTgN. (ii) Using simulated bids, we bound the
gain from overbidding for the agents: note that the
bids of the agents in the first phase can influence
the outcomes in the second phase. More specifically,
agents can overbid and inflate the entrance fee of
other agents, which may resultin the latter’s refusal to
participate in the auctions in the second phase. Our
mechanism that simulates nonparticipating agents’
bids significantly lessens the benefit that may be
obtained from such deviations.

Note that our mechanism that simulates nonpar-
ticipating agents does not entirely eliminate the in-
centive to deviate. For example, suppose that there
are two agents, and during the first (learning) phase,
the first agent’s bids are lower than usual. In this case,
the second agent may prefer to compete against the
“simulated version” of the first agent and can ensure
this by overbidding to force the first agent out of the
auction. In addition, an agent may be eliminated by
mistake. Revisiting the scenario with two agents,
suppose that in the first phase, the first agent’s bids
are higher than usual. This may result in a high en-
trance fee for the second bidder and may lead to
elimination of the second bidder from all the subse-
quent auctions. We include a small slack in the chosen
entrance fees to ensure that the likelihood of such
mistaken elimination is small.

We can now state the main result of this section.
Note that we do not need F to be an MHR or even a
regular distribution. A bounded support suffices;
any other conditions under which a Hoeffding-type
bound holds uniformly would serve just as well
(Hoeffding 1963).

Theorem 4 (Surplus-Extracting Mechanism). Suppose that
the waluations of all agents are drawn i.i.d. from distribution F
over [0,1]. Distribution F is a priori unknown to the seller,
but it is known to the agents. If all the agents are truthful, the
SESE mechanism with an exploration phase of length N ob-
tains an expected per-auction revenie” of E[maxi{v;}]-
O(y/log N/N).

In addition, under this mechanism, for any agent i and
time t, if all the other agents are always truthful, then
with probability 1 — O(N™2), the increase in per-auction
utility that can be obtained by deviating from the truthful

strategy is bounded by O(y/log N/N).

Note that the loss decreases as the length of the first
phase increases. However, the mechanism loses reve-
nue in the first phase. The theorem shows that SESE
is approximately incentive compatible. In the proof
presented in Online Appendix E, we show that for
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any strategy B and every period 7, with probability
1 - O(N™?) when all agents are always truthful, the
personal history H; . seen by agent i so far is such that

QilHi,T (B;FR’ BE?) + O (\/IOg—N/N) > Ui,Hm (Bi/ BE?)/

see (3) and (4). With the remaining probability, O(N~2),
the benefit from deviating might be larger but is
nevertheless bounded by one. Hence, the expected
benefit of deviating from truthfulness is O(y/log N/N).
In other words, truthfulness is an approximate best
response to the other agents being always truthful.
The notion of approximate incentive compatibility
implies that agents do not deviate from the truthful
strategy when the benefit from such a deviation is
insignificant. The notion of approximate incentive
compatibility is appealing when characterizing or
computing the best-response strategy is challenging,
and several works moreover use an additive notion of
approximate IC similar to ours (Schummer 2004,
McSherry and Talwar 2007, Daskalakis et al. 2009,
Nazerzadeh et al. 2013). In online ad auctions, find-
ing profitable deviation strategies requires solving
complicated dynamic programs in a highly uncertain
environment. Thus, agents can plausibly be expected
to bid truthfully under an approximately incentive-
compatible mechanism.

We remark that our notion of approximate incen-
tive compatibility is additive in the sense that the
absolute increase in utility from a deviation is small.
An alternative definition would be multiplicative
approximate incentive compatibility where the rela-
tive gain from a deviation is small. Note that these two
notions differ when the utility of a bidder is small
(close to zero).?®

The first and second phases can be interpreted as
exploration and exploitation phases, respectively. In an
environment where valuations may change slightly over
time, the seller can continue to explore occasionally in
order to adjust for the change in valuations. For instance,
with a small probability, any round ¢t > N can be des-
ignated an exploration round, and the entrance fees
can be set to zero. Stale exploration data can be dis-
carded as new data are generated. (This will also
ensure that the long-run average revenue converges
to the ex ante expected value with probability 1.)

8. Conclusion

Designing data-driven incentive-compatible mecha-
nisms has become an important research agenda,
motivated in part by the rapid growth of online mar-
ketplaces. In this work, we showed that the revenue
of repeated auctions can be optimized when the val-
uations of each bidder can be estimated from the
valuations of other bidders. The main goal of the paper
was to study the tension between learning and

incentive properties. The model is set up to study the
hardest case of this tension, namely when all the
bidders participatein all the auctions. If some bidders
do not participate in an auction, their previous bids
can be used to learn and set prices without causing
any incentive issues, in addition to previous bids
by bidders who are participating. Even though we
have not explicitly modeled participation, our re-
sults would extend to such environments because we
proposed mechanisms based on the following two
principles: (i) the personal price for each agent should be
based only on the historical bids of other agents, and (ii)
anagent should not benefit from preventing other agents
from participating by raising the prices they face.

We showed that our work can be practically useful
by showing that there is only a small revenue loss in
case of limited heterogeneity in bidder valuation
distributions and by extending our ideas to a con-
textual setting with heterogeneous items that allows
for correlation between valuations of buyers. A nat-
ural research direction is to explore the optimal trade-
off between incentive compatibility and learning,
as a function of heterogeneity among bidders; see
Golrezaei et al. (2018). Another interesting direction
would be the case where the auctions are connected
via budget constraints; see Balseiro and Gur (2019).

Furthermore, we believe that the ideas developed
here can be applied to other repeated auction mecha-
nisms that were designed under the assumption that the
valuation distributions are known. For instance, Balseiro
et al. (2018) propose a repeated auction mechanism that
is a hybrid of first-price and second-price auctions and
can extract almost the entire surplus of the buyers. We
believe that similar incentive-compatible approximately
surplus-extracting mechanisms can be constructed
for an unknown distribution using our approach.
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Endnotes

'In the case of unlimited supply, incentive compatibility directly
follows if the price of each buyer depends only on the previous bids of
other buyers; see Balcan et al. (2008). With limited supply, obtaining
incentive compatibility is more challenging because of “competition”
among buyers.

2From a technical perspective, we build on prior work that inves-
tigates how samples from a distribution can be used to set a near-
optimal reserve price; see Dhangwatnotai et al. (2015).

$The first paper on the topic was an earlier conference paper by us
(Kanoria and Nazerzadeh 2014), which studied a different model,
namely one in which each bidder draws her valuation just once and
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retains that valuation for all rounds (time periods), and introduced
the idea of exploiting competition to manage bidder incentives in
repeated auctions. Subsequently, Immorlica et al. (2017) studied a
repeated sales setting and developed a mechanism that is similar in
spirit in that it exploits competition to manage buyer incentives.

*We allow such a mechanism to use only the bids and not the reserve
prices (nor the allocations and payments) because the entire history
can be “encoded” in the decimal representation of reserve price v,
with vanishing impact on revenues, and this would defeat the
purpose of defining window length W.

®This is similar to the common practice in ad exchanges, where the
bidder may not see the reserve. Often, the exchange communicates a
(possibly lower) reserve price, which may be different from the re-
serve price that is applied to the payments.

®This informational robustness is in contrast to repeated first-price
auction settings (see, e.g., Bergemann and Horner 2010) where in-
formation revelation can significantly change the outcome.

"If both agents shade, the resulting equilibrium (or limit cycle) may
involve further loss in revenue for the seller.

& A more general class of strategies involves bidding some 7y € [r, 7]
for all valuations in [r, 7] and bidding truthfully otherwise. We expect
that a best response in this class would yield a larger benefit from
deviation while still hurting the revenue earned by the seller.

®The numbers in this example are rounded to three decimal points;
see Online Appendix A.1 for details.

" Formally, the reserve price function Q now outputs an 1 vector of
reserve prices, one for each agent.

" Goldberg et al. (2001) and follow-up works broadly inspired this
approach, although the setting and results are quite different; there, a
digital good (which can be reproduced costlessly) is sold simulta-
neously to multiple buyers, and the seller does not know the valu-
ation distribution.

2To clarify this definition, suppose that there are three bidders i, ,
and k. Then, the bids b;; and b, for relevant < tA are regarded as two
separate, scalar data points in the definition of F_;. Thus, if window
length W is used, the empirical distribution is based on (1 — 1)W data
points/bids by other bidders during the last W rounds.

Bwe adopt the definition F(r) = Pr(v < r) with a strict inequality so
that the arg max exists.

"In this case, the mechanism should compute the so-called “guarded
empirical reserve” from the empirical distribution of historical bids,
which eliminates the largest bids from consideration as potential
reserve prices; see Dhangwatnotai et al. (2015, equation 12 and
lemma 4.1).

5 Because F is an MHR distribution, it has positive density every-
where in the support, making truthful bidding the unique myopic
best response whenever there are two or more bidders.

"®These variations are sometimes called lazy and eager; see
Dhangwatnotai et al. (2015) and Paes Leme et al. (2016).

7See Golrezaei et al. (2018) for a discussion on the challenges of
implementing the Myerson auction in practical settings.

8 The virtual value of agent i is ¢,(v;) = v; = (1 = Fi(vy))/fi(vs).

YWe should be able to extend our analysis to a-strongly regular
distributions (Cole and Roughgarden 2014), where the virtual value
functions increase at rate at least a everywhere in the support. The
lower bound a on the rate of increase (we have @ =1 for MHR
distributions) will be a part of the upper bound on revenue loss.
21n fact, in definition (7), we can ignore values of v below min(ry, ;)
(the smaller of the Myerson optimal reserve prices for F; and F)).
Theorem 2 still holds, and the proof is unaffected.

% Note that a multiplicative approximation would be a stronger result:
given our boundedness assumptions, a multiplicative approximation

implies an additive approximation but not vice versa. However, as a
result of estimation errors in learning 8, we obtain only an additive
approximation here.

2The expectation is over the past contexts, past valuations, and
period t valuations.

B Reservation (guaranteed delivery) contracts for selling display
advertising specify the number of impressions to be allocated under
the contract in advance. The allocation is determined by the publisher
and not by an auction.

#To simplify the presentation, we assume that the agents know
the distribution of valuations because agents may learn the dis-
tributions over time. Note that incentive compatibility clearly
continues to hold even if agents do not know the distributions
of valuations.

5 The limiting revenue (1) as well as the limiting per-round utility (2)
are well defined under SESE when agents are always truthful.

% However, note that technically, the mechanism can share some of
the surplus with the bidders.
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