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Abstract

Recent results have shown unprecedented control over separation distances between

two metallic elements hundreds of nanometers in size, underlying the e↵ects of free-

electron nonlocal response also at mid-infrared wavelengths. Most of metallic systems

however, still su↵er from some degree of inhomogeneity due to fabrication-induced sur-

face roughness. Nanoscale roughness in such systems might hinder the understanding

of the role of microscopic interactions. Here we investigate the e↵ect of surface rough-

ness in coaxial nanoapertures resonating at mid-infrared frequencies. We show that
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although random roughness shifts the resonances in an unpredictable way, the impact

of nonlocal e↵ects can still be clearly observed. Roughness-induced perturbation on

the peak resonance of the system shows a strong correlation with the e↵ective gap

size of the individual samples. Fluctuations due to fabrication imperfections then can

be suppressed by performing measurements on structure ensembles in which averaging

over a large number of samples provides a precise measure of the ideal system’s optical

properties.
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Plasmonics allows the confinement of light well below the di↵raction limit by greatly

enhancing the electric field in the vicinity of metal surfaces. In the last decade, continuous

developments in nanofabrication techniques have made it possible to control the separation

distance between two metallic elements to a precision of a fraction of a nanometer.1–7 Such

systems, generally referred to as nanogap plasmonic structures, can squeeze light down to

deep sub-wavelength volumes, allowing for the optical radiation to probe sub-atomic inter-

actions.8–16 Most of metallic systems however, still su↵er from some degree of inhomogeneity

due to nanoscale surface roughness,17–19 which results in deviations of the optical proper-

ties with respect to ideally smooth systems.20,21 Recent publications have reported on the

important role of surface roughness on the far- and near-field as well as nonlinear optical

properties of nanoparticles.22–25

In an experiment published in 2012,26 it was shown that the resonance of a film-coupled

nanoparticle system undergoes a shift that cannot be explained by a simple local constitutive

relation between the electric field E and the polarization P of a metal: a more complex, non-

local ,27 relation accounting for electron-electron interactions had to be considered in order to
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predict the observed shifts. This experiment triggered a debate in the community, with some

reporting a classical behavior down to sub-nanometer gaps,28 other suggesting the anomalous

shift was simply due to the presence of roughness on the metallic film surface,29,30 although

similar shifts were observed in ultra-smooth gold films obtained using template-stripping

techniques.31 In general, however, observations beyond the classical response were reported

in many independent works.32–39 More recently, measurements on coaxial nanoapertures in

the mid-infrared40 have shown an even more consistent (⇠ 1 µm) shift in the resonance

compared to calculations performed within the local response approximation. This work

has reinvigorated the debate on whether the cause of the shift is due to sub-atomic electron-

electron nonlocal interactions or simply due to a nonlocal correlation introduced by nanoscale

surface roughness.41

In this letter, we perform numerical calculations taking into account random surface

roughness. In particular, we investigate the coaxial nanoaperture system and show that the

e↵ect of including roughness is to randomly shift the peak resonance towards higher or lower

frequencies. The impact of this randomness on an ensemble of systems is to broaden the

resonance without however a↵ecting the resonance center of mass.

Fabrication of coaxial nanoapertures involves four steps:40 first, gold nanopillars are pat-

terned via electron-beam lithography; the pillars are then coated by gap-filling insulator

(Al2O3) using atomic layer deposition (ALD); the resulting structure is covered with gold by

sputtering; finally, ion milling is used to planarize the top surface and expose the Al2O3-filled

nanocoaxial apertures. The lithography step introduces two di↵erent kind of irregularities:

a line-edge roughness (seen from the top) that prevents the apertures from being perfectly

circular, and a sidewall roughness. Because of the nature of the ALD process, the gap is

conformal to the sidewall irregularities. However, a fully random source for the gap rough-

ness cannot be excluded, so that in general the gap is a↵ected by some combination of both

types of irregularities. For clarity we have summarized all of the kinds of roughnesses in Fig.

1a.
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Figure 1: The coaxial nanoaperture surface roughness. In (a) a summary of the di↵erent types of

roughness involved in the fabrication process. (b) shows the coaxial nanogap geometry obtained

by revolving a roughened cross-section; the resulting top view is depicted in (c). (d) Random

roughness is created using a sampling distance p and a maximum nominal height h (or e↵ective

height h0).
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Numerically modeling random nanoscale surface roughness can be challenging for two

reasons. On one hand, it requires extended computational resources, since for example one

cannot use periodic conditions and would need to discretize much more finely the com-

putational space in order to resolve the roughness details. On the other hand, it is not

straightforward creating randomness along an arbitrary surface. In order to overcome these

issues, we consider isolated structures, i.e. a single annular aperture in an infinitely extended

metallic film, and we solve Maxwell’s equations using the so called 2.5D technique.42,43 This

technique consists in expanding all the fields in cylindrical harmonics by exploiting the axis

symmetry of the geometry. In this way one needs to solve just few two-dimensional problems

while still maintaining the three-dimensionality of the original one (see Methods section for

more details). The drawback of this approach is that roughness can be created only in the

cross-sectional plane, that is, the structure will still be smooth along the azimuthal direction

as shown in Fig. 1b-c. A more general implementation could be in principle obtained by em-

ploying more complex numerical schemes that allow curvilinear elements.44–46 Such schemes,

however, go beyond the scope of this work. In this letter, we neglect line-edge roughness and

consider the apertures to be perfectly circular. Moreover, because of the nature of the ALD

process, we analyze irregular structures with perfectly conformal gaps or fully random gap

roughness. In realistic cases, in fact, a mixture of the two type of gap roughness is expected.

So, understanding the role of individual contributions is critical.

Although roughness can be readily measured on planar thin films47 using an atomic force

microscope, it is not straightforward to do the same for sidewalls of gold pillars. However,

because in both cases roughness has an analogous origin we assume a roughness amplitude

of the same order. Conventionally, one would use the root-mean-square (RMS) height and

correlation distance to characterize a rough surface.48 These parameters however are not

ideal for generating random geometries. We use instead the following two parameters: the

roughness maximum height, h0, and the sampling step or average period of the roughness,

p, as shown in Fig. 1d.
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Figure 2: Absorption spectra of a single nanoring aperture for di↵erent nominal gap sizes. The light

curves refers to di↵erent random roughened geometries. The thick curve is obtained by averaging

all di↵erent spectra for each gap size. In (a) a conformal gap roughness, as sketched in the inset,

with h = 1.8 nm (h0 ' 2.5 nm) is considered. In (b) a fully random roughness, as sketched in the

inset, with h = 1.4 nm (h0 ' 2.0 nm) has been considered. In (c) nonlocal response e↵ects are

included for the same numerical samples as in (b).
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In our 2.5D approach it is in fact possible to draw the geometry cross-section by randomly

displacing each point of the curve by a distance |d| <= h/2, following steps of p, where h  h
0

is the nominal maximum roughness height. The displacement d of each point in the curve

is independent of the displacement of their neighbors, and is drawn according to a uniform

distribution, hence the roughness we prescribe exhibits no correlation length. The nominal

maximum roughness values that we use are h = 1, 1.4, 1.8 nm, which correspond to a RMS

error of 0.29, 0.40, 0.52 nm respectively. The result is a set of points that are interpolated

using a cubic spline in order to smooth the curve and avoid numerical artifacts. Note that

by using spline interpolation we may get displacements between the nominal and e↵ective

maximum height, that is h/2 < |d| <= h
0
/2. Throughout the manuscript, we consider

p = 7.5 nm. An example of the result of this process is depicted in Fig. 1d. We have

implemented the 2.5D solver in a commercially available finite-element method software,

Comsol Multiphysics. The geometry is created using a Matlab script in order to produce a

set of points that are then interpolated directly in Comsol.

We consider coaxial nanoapertures drawn on an infinitely extended gold film of thickness

H = 150 nm, characterized by an internal diameter D = 250 nm and a nominal gap g

varying from 2 to 10 nm, as depicted in Fig. 1b-c. The structure is excited by a plane

wave impinging at normal incidence through an infinite sapphire substrate. The apertures

are filled with Al2O3. The permittivity of sapphire is obtained using the Sellmeier’s formula

with parameters as in Ref. 40, while the dispersive dielectric constant of Al2O3 is extracted

from the experimental measurements.49 Gold local permittivity is approximated by a Drude

formula with ~!p = 8.45 eV and ~� = 0.047 eV. For completeness, we have also calculated

the response of system when the electron pressure is taken into account, that is, when the

metal response is nonlocal.27,46,50This is taken into account adding a correction of the form

�
2rr ·P to the Drude model,27 where � is proportional to the Fermi velocity. Here we take

� ' 1.3⇥ 106 m/s. In order to characterize the optical response of the systems, we compute

the absorption e�ciency as qabs = (Wabs�Wfilm)/(�I0), where Wabs is the power dissipated in
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the entire structure,Wfilm is the power dissipated by a continuous film (i.e. without aperture),

I0 is the input intensity and � = ⇡ [(D/2 + g)2 � (D/2)2] is the geometrical cross-section of

the aperture. This definition removes all dependencies on the film extension.

Using the techniques described above we have generated 20 di↵erent numerical samples

for each nominal gap size, for both types of gap roughness, conformal with h = 1.8 nm

(h0 ' 2.5) and fully random with h = 1.4 nm (h0 ' 2). In Fig. 2, we show a set of absorption

spectra around the zero-th-order mode resonance,40,46,51 as well as the mean curve obtained

by averaging the results from all the random samples. As expected, the resonance of the

system undergoes a shift towards longer wavelengths as the average gap size is reduced. It

is interesting to note the di↵erence between conformal (Fig. 2a) and random (Fig. 2b) gap

roughness. While in the first case (Fig. 2a) the impact of roughness is minimal, producing

small oscillations of the peak resonance even for the smallest gap, in the second case (Fig.

2b), the impact of roughness is substantial and variations of the peak resonance increase

as the gap size shrinks. It is clear from these simulations that the e↵ect of the roughness

is to randomly shift (towards higher or lower frequencies) the resonance of the system.

An analogous behavior can be observed for other resonances (i.e. the first order Fabry-

Pérot mode resonance, not reported here). In Fig. 2c, we report calculations for the same

numerical samples of Fig. 2b when the nonlocal response of gold free electrons is considered.

As expected the average resonance results in an increasing blue-shift compared to the local

case, as the gap is reduced. More interestingly however is the fact that for each nominal gap

size the spectra are more tightly packed compared to the local case. This is especially visible

for smaller gaps. The e↵ect of the electron pressure is to spread the electron accumulation

charge induced by an external field inward with respect to the metal surface. This can in

some cases—for example when roughness produces sub-nanometer asperities—even mitigate

the detrimental impact of surface roughness on the propagation length of surface plasmons.52

Analogously, in this case the e↵ect of the electron pressure is to smooth out some roughness

features so that the global e↵ect is a reduced random oscillation of the peak resonance caused
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by the randomness of the roughness. Note that we set the minimum gap g ⇠ 2 nm in order

to avoid quantum tunneling e↵ects, which are not accounted for by our model. Generally

quantum tunneling occurs of for gaps < 0.5 nm.
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Figure 3: Field enhancement (|E|/E0) maps for gap sizes g = 10, 7, 5, 3, 2 nm for structures with

random surface roughness with h = 1.4 nm (h0 ' 2.0 nm). The maps are taken in correspondence

of the peak resonance for each structure.

The impact of roughness on the near-field is shown in Fig. 3, where we show the electric

field enhancement, |E|/E0, at resonance, propagating through the aperture obtained for a

typical sample for each gap size. The resonance corresponds to an e↵ective epsilon-near-

zero mode, which is characterized by a constant phase, and hence norm, of the field along

its propagation through the gap.51 For large gaps (> 5 nm) this is still the case, while for

smaller gaps (< 3 nm) the randomness of the structure creates local hot spots where the

field is strongly enhanced.

To understand the global impact of roughness on di↵erent gap sizes, in Fig. 4a we

show the epsilon-near-zero mode resonance as a function of the nominal gap size g. The

shaded regions represent the maximum deviation introduced by the fully random roughness.

As already seen in Fig. 2, the smaller the gap the larger the variance. The mean value

(indicated by triangles and squares) is mostly unchanged with respect to the perfectly smooth

structure for all gaps except the smallest. In this case, the averaged resonance results are

slightly shifted toward longer wavelengths compared to the smooth structure. Fig. 4a shows

more clearly that the impact of electron pressure on coaxial nanoapertures is to slightly
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reduce (with respect to local calculations) the shift caused by the reduction of the gap size.

This is consistent with numerical results obtained for smooth structures.46 Together with our

numerical data, we report in Fig. 4a the experimental data measured in Ref. 40. Note that

the experimental data remain within the roughness deviation of the nonlocal calculations,

and are clearly outside the span of local results.

It is interesting at this point to understand the nature of the shift induced by the gap

roughness. In order to do so, we have evaluated the e↵ective gap size corresponding to 3

sets of samples obtained for h = 1, 1.4, 1.8 nm (h0 ' 1.4, 2.0, 2.5 nm). The e↵ective gap

for each sample —one sample corresponds to a realization of random roughness for a given

nominal gap and h— is evaluated by numerically integrating the gap surface on a vertical

cross-section, see Fig. 1b, and dividing it by the gold film thickness H. The epsilon-near-zero

mode resonance for each sample is plotted against the e↵ective gap size in Fig. 4b, for both

local and nonlocal cases. It is surprising how well the single samples follow the trajectory of

the smooth structure. This clearly shows that the resonance shift due to roughness is mostly

driven by the variation that the roughness induces in the e↵ective gap size. It is interesting

finally to note two outliers for g ⇠ 2 nm with resonances below 5 µm. These two points are

associated to the formation of conductive gaps where the roughness produces one point of

contact between the two gap sides. Interestingly, in the nonlocal calculations these e↵ects

are attenuated. Such behavior however is expected to depend on the spatial extension and

on the number of the points of contact. These e↵ects are of course absent in the case of

conformal roughness, where the e↵ective gap always corresponds to the nominal gap.

In conclusion, we have analyzed the impact of nanoscale surface roughness on single

coaxial nanoapertures characterized by gaps of few nanometers. Although our approach was

limited to roughness on the cross-sectional plane of the systems, we are confident similar

results will hold in the general case. It is very unlikely in fact that full three-dimensional

surface roughness might lead to di↵erent conclusions. We have shown that while the im-

pact of conformal gap roughness is negligible, fully random roughness might strongly a↵ect
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the resonance shift of individual samples. Moreover, the roughness-induced perturbation on

the peak resonance has a strong correlation with the e↵ective gap size for each individual

sample. A large number of samples then can average out the fluctuations due to fabrication

imperfections and still provide a precise measure of the ideal system’s optical properties.

Experimentally, this is naturally achieved by performing measurements on structure ensem-

bles.
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Figure 4: The resonant wavelength is tracked for the di↵erent models as a function of gap size. In

(a) the shaded areas represents the maximum deviation introduced by the purely random roughness.

Nonlocality (in red) always blue-shifts resonances relatively to local response calculations (in blue);

the continuous lines refer to a perfectly smooth structure; experimental data from Ref. 40 are also

reported. In (b) the resonance wavelength of individual structures is plotted against the e↵ective

gap size; smooth structures curves are shown for reference.

Methods

Numerical calculations are performed by solving the following system of equations in fre-

quency domain:26,27,53

r⇥r⇥ E� !
2

c2
E� µ0!

2
P = 0, (1)

�
2rr ·P+

�
!
2 + i�!

�
P+ "0!

2
p(E+ Einc) = 0, (2)
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where µ0 and "0 are the permeability and permittivity of free-space, c is the speed of light in

vacuum, !p is the plasma frequency, and � is the speed of sound in the plasma associated to

the quantum pressure. E and P are the scattered electric field and the polarization vector

respectively, while Einc is the incident field.

In order to take advantage from the symmetry of the geometry, we implemented our

equations assuming an azimuthal dependence of the form e
�im� with m 2 Z. That is, for

a vector field v, we have v(⇢,�, z) =
P

m2Z v
(m)(⇢, z)e�im�.42,53 Eqs. (2) are solved using

a commercially available software based on Finite-element method (FEM). This method

requires to re-write the di↵erential problem (2) in the corresponding variational weak formu-

lation, where some of the derivatives are distributed to the test functions. After integrating

over �, the initially three-dimensional problem is reduced into (2mmax + 1) two-dimensional

problems, characterized by the following weak form:

2⇡

Z �
r⇥ E

(m)
�
·
⇣
r⇥ Ẽ

(m)
⌘
�
�
k
2
0E

(m) + µ0!
2
P

(m)
�
· Ẽ(m)

⇢d⇢dz = 0, (3)

2⇡

Z
��

2
�
r ·P(m)

� ⇣
r · P̃(m)

⌘
+
h�
!
2 + i�!

�
P

(m) + "0!
2
p

⇣
E

(m) + E
(m)
inc

⌘i
· P̃(m)

⇢d⇢dz = 0,

(4)

where:42,53

r · E(m) ⌘
✓
1

⇢
+

@

@⇢

◆
E

(m)
⇢ � im

⇢
E

(m)
� +

@E
(m)
z

@z
, (5)

r⇥P
(m) ⌘ ⇢̂

 
�
@P
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�

@z
� i

m

⇢
P
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!
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(m)
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P

(m)
�

⇢
+

@P
(m)
�

@⇢
+ i

m

⇢
P

(m)
⇢

!
,

(6)

with analogous expression for the test functions. Note that for the case of an incident plane

wave propagating along the z axis, one has to solve the problem just for m = ±1. Moreover

by taking into account field parities, the solution for m = 1 can be related to the solution

for m = �1, so that a single two-dimensional calculation becomes necessary.42,53 Perfectly
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matched layers have been used in order to emulate an infinite domain and avoid unwanted

reflections.
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