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A B S T R A C T

Monte Carlo simulations are widely used in nuclear physics to model experimental systems. In cases where
there are significant unknown quantities, such as energies of states, an iterative process of simulating and fitting
is often required to describe experimental data. We describe a Bayesian approach to fitting experimental data,
designed for data from a 12Be(d,p) reaction measurement, using simulations made with GEANT4. Q-values
from the 12C(d,p) reaction to well-known states in 13C are compared with simulations using BayesOpt. The
energies of the states were not included in the simulation to reproduce the situation for 13Be where the states
are poorly known. Both cases had low statistics and significant resolution broadening owing to large proton
energy losses in the solid deuterium target. Excitation energies of the lowest three excited states in 13C were
extracted to better than 90 keV, paving a way for extracting information on 13Be.

1. Introduction

One of the main goals in nuclear physics is to expand the limits
of observation of nuclear structure through reactions involving exotic
nuclei. Direct reactions, such as the (d,p) one-neutron transfer reaction,
have been used extensively to study the structure of nuclei. With the
limited beam time available at radioactive ion beam facilities, and
the associated cost of running these experiments, it is incumbent on
experimentalists to extract the maximum information from the data
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obtained. There is also a need to account for sources of background
and assess uncertainties in experimental data. Simulations can be used
to understand the experimental resolution, which is commonly a com-
bination of interactions of the beam and final-state particles with both
the target and other materials such as detectors. They can also account
for the effects of incomplete acceptances, which can complicate data
analyses.
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The GEANT4 toolkit is commonly used to simulate the passage
of particles through matter by taking into account both electromag-
netic and nuclear processes using Monte Carlo (MC) methods [1].
GEANT4 provides a general framework for MC simulations of particles
with support for detector construction, particle transportation, source
generation, and particle detection. These simulations allow the user
to understand the detector response for their specific conditions and
reactions for a given experiment. This paper reports on the use of
GEANT4 in combination with Bayesian Optimization for understanding
reaction data and thereby extracting nuclear structure information.

A study using the 12C(d,p)13C transfer reaction was performed im-
mediately before the experiment to study the structure of the unbound
nucleus 13Be via the 12Be(d, p) reaction and was used to check the
detectors and provide calibration points. As 12Be has a half life of
21 ms [2], the experiment necessarily was run in inverse kinematics,
with a beam of 12Be and a solid deuterium target, as discussed in detail
below in Section 2. The 12C(d,p) reaction was run in inverse kinematics
to mimic the reaction with the radioactive ion beam, and both had
much lower statistics than usually obtained with stable ion beams. The
12C beam had to be reduced in intensity to avoid damaging the forward
angle silicon detectors.

The nucleus 13C has a very well-known structure and provides an
excellent benchmark for testing these methods. The first four states in
13C have been observed several times through 12C(d, p)13C transfer re-
actions with excitation energies of: 0, 3.089, 3.685, and 3.854 MeV [2].
Here we describe the benchmarking of a GEANT4 simulation of the
experimental setup with Bayesian Optimization (discussed in Section 3)
using experimental data to extract the underlying nuclear structure.

2. Experiment and simulation description

The 12C(d, p) reaction was performed using the IRIS facility at
the ISAC II experimental area of TRIUMF. IRIS was designed for the
study of nucleon transfer reactions and inelastic scattering of exotic
nuclei in inverse kinematics [3]. The central component of the IRIS
facility is a thin, solid hydrogen, or deuterium, target, which avoids the
significant amounts of carbon present in polyethylene foils (CH2)n and
(CD2)n, which are commonly used in direct reactions measurements.
The carbon in CD2 targets can create fusion evaporation background
and is a large source of energy loss and thereby uncertainty in energy.
To create the solid deuterium target, a thin Ag foil (4.64 μm) is cooled
via a helium compressor to a temperature around ∼4 K. The target
gas (hydrogen or deuterium) is then sprayed onto the foil where the
gas solidifies. The thickness of the target is controlled by adjusting the
amount of gas sprayed on the foil. The IRIS facility incorporates
a suite of detectors upstream and downstream from the cryogenic
target. The specific configuration used in this experiment included an
ionization chamber (IC), upstream of the target, filled with 19.4 Torr
of isobutane (C4H10) to measure the energy losses of beam particles,
providing beam particle identification. The entrance and exit windows
of the IC were 30 μm and 50 μm thick silicon nitride (SiN3), respectively.
Annular silicon detectors (MICRON Semiconductor YY1 type) faced
the target from the upstream and downstream sides and measured the
angles and energies of light reaction particles. The YY1 detectors have
8 azimuthal detector sectors where each detector is segmented into
16 rings. The upstream YY1 detector, with a thickness of 500 μm, was
placed 80.8 mm from the target, while the downstream YY1 detector
with the 100 μm thickness was placed 86 mm from the target. The
downstream YY1 detector was backed by a 12 mm-thick cesium-iodide
(CsI) scintillator forming a telescope for reaction particles emitted in
the forward direction. The telescope provides dE-E particle identifi-
cation for particles that do not stop in the silicon detector. Located
600 mm and 690 mm downstream from the target were two smaller
annular silicon detectors (MICRON S3 type) used for dE-E particle
identification of the heavy recoil. The transmission S3 detector (dE) had
a thickness of 61 μm, the S3 stopping (E) detector, further downstream,

Fig. 1. Experimental setup as represented in GEANT4. Two YY1 detectors, one located
upstream and one downstream from the target were used to measure the ejected protons
from the (d, p) reaction. Downstream from the second YY1 detector are two S3 detectors
to measure the heavy recoil.

had a thickness of 500 μm. The IRIS facility is described in more detail
in Ref. [3].

A 111.4 ± 2.2 MeV beam of 12C at a rate of 1.5 × 103 pps impinged
on the solid deuterium target, which had an average thickness of 56 μm.

The experimental setup was reproduced in GEANT4 as shown in
Fig. 1. The beam energy reproduction was tested in the simulation
by comparison with data without the solid deuterium target. A short
run with the 12C beam and no target was performed, where only the
silver foil was in the target location. The total energy of the 12C ions
was measured in the S3 telescope. The comparison of the data from
the S3 detectors and the simulation is shown in Fig. 2. The simulation
reproduces the peak energy seen in the S3 telescope. The low-energy
tail below the 102-MeV peak was due to incomplete charge collection
in the silicon detector as also observed in alpha source calibrations.

Only the upstream YY1 detector was considered for the measure-
ment of the (d,p) reaction. As the light reaction products from (d,d)
and (d,t) reactions in inverse kinematics are constrained to the forward
hemisphere in the laboratory frame, these reactions cannot be mea-
sured in the upstream YY1 detector. The only direct reaction products
that can be detected at backward angles in this experiment are protons
from the (d,p) reaction. Based on alpha calibrations, these detectors
had an intrinsic FWHM resolution of 35 keV, which was implemented
in the GEANT4 simulation. The energy and angle of the proton, as
measured in the YY1 detector, were used to reconstruct the Q value
of the reaction. Internal GEANT4 energy loss tables for the proton and
the 12C beam in the solid deuterium target were extracted and used
to calculate energy losses. The Q value was reconstructed from the
detected energies, assuming the reaction occurred at the center of the
target. For consistency in the comparison of the data and simulation,
the analysis of the experimental data also used the internal GEANT4
energy-loss tables for reconstructing the reaction Q-value.

The experimental resolution, which is dominated by the intrinsic
detector resolutions, the energy straggling of the beam, and the energy
straggling of the emergent light ion, is sometimes assumed to be
Gaussian, and is included in fits as such. This approach does not work
in cases with low beam energy and energy-dependent resolutions, as
demonstrated in the example discussed below and shown in Fig. 3. The
12C(d,p) reaction was simulated for a hypothetical state at an excitation
energy of 3.0 MeV (Q value of −0.278 MeV). The red histogram shows
the Q-value spectrum from the simulation at the nominal beam energy
of 111.4 MeV. At this energy, the average proton energy for the most
backward ring in the YY1 detector is 1.79 MeV. The blue histogram
shows the Q-value spectrum from a similar simulation with a beam en-
ergy of 80 MeV, where the average proton energy of the most backward
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Fig. 2. Total energy measured in the S3 detectors with no solid deuterium target as
simulated (red curve) compared with that measured in the experiment (blue bins). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

ring in the YY1 detector is 1.25 MeV. At lower proton energies, the
resolution of the detected proton worsens owing to the larger energy
loss, as shown in Fig. 3 as the blue histogram is much wider than the
red histogram. The second effect occurs as the total energy and proton
energy decrease, the detector resolution when extracting the Q value
changes from a Gaussian distribution to a non-Gaussian distribution.
The Q value for these lower energies becomes skewed towards higher
Q values, that is high proton energies at the center of the target.
This effect comes from protons generated at the furthest downstream
position in the target having such a low energy that they either do not
make it out of the target, or do not have enough energy when they hit
the detector to make it above the noise threshold. The proton energy at
the center of the target is reconstructed by adding on the energy losses
in the target and the dead layer of the detector. The Q value in the case
of a (d,p) reaction is subsequently found using Eq. (1).

𝑄 =
𝑀𝑝 +𝑀𝑟

𝑀𝑟
𝐸𝑝 −

𝑀𝑟 −𝑀𝑏
𝑀𝑟

𝐸𝑏 −
2
√

𝑀𝑏𝑀𝑝𝐸𝑏𝐸𝑝

𝑀𝑟
cos 𝜃 (1)

where 𝑀𝑏, 𝑀𝑝, and 𝑀𝑟 are the masses of the beam, emergent proton,
and heavy recoil respectively, 𝐸𝑏 is the beam energy at the center of the
target, 𝐸𝑝 is the proton energy at the center of the target, and 𝜃 is the
angle of the light recoil particle. The analysis of the simulated data is
performed in the same way as for the experimental data to allow direct
comparisons.

3. Bayesian optimization

Bayesian Optimization (BayesOpt) is a sequential optimization strat-
egy for finding the global maximum of black-box functions, known
as objective functions [4–6]. A benefit of using BayesOpt is that it
is not necessary to know the derivative of the function that is being
maximized. BayesOpt adopts a sequential approach where all previous
knowledge about the function 𝑓 (𝐱) is used for selecting data points
creating a convergence towards the global maximum. First, a surrogate
model of the function to be maximized is built, which is updated as new
data points are evaluated, while also suggesting the next evaluation
point. The most popular surrogate model used in BayesOpt is the
Gaussian process ().

 uses the multivariate Gaussian distribution over the previous
evaluated data points, described by a mean function 𝜇(𝐱) = E[𝑓 (𝐱)] and
a covariance function, or kernel, 𝑘(𝑥, 𝑥′) = E[(𝑓 (𝑥)−𝜇(𝑥))(𝑓 (𝑥′)−𝜇(𝑥′))].
The kernel used in this study was the Matérn kernel, whose form
and details can be found in Ref. [7]. The second main component of
BayesOpt is the acquisition function. This is calculated using the 
and implements trade-offs between exploration of the parameter space

Fig. 3. Q value spectrum for the 12C(d, p) reaction simulated with GEANT4 for a
hypothetical state at 3.0 MeV. The red histogram is for a beam energy of 111.4 MeV
corresponding to proton energies in the most backward angle of the YY1 detector
of 1.79 MeV. The blue histogram shows the same spectrum but for a beam energy
of 80 MeV with proton energies in the most backward angle of the YY1 detector of
1.25 MeV. The red histogram shows a Gaussian distribution while the blue histogram
has a somewhat skewed detector response function. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

and exploitation in BayesOpt. The acquisition function optimizes the
search for the maximum, while exploring regions where the  is more
uncertain. Two common traditional types of acquisition functions are
expected improvement (EI) and upper confidence-bound (UCB). The EI
acquisition function measures the expectation of improvement in the
objective function based on the predicted distribution of the  . When
exploring the parameter in EI, points associated with high uncertainty
are more likely to be chosen, while during exploitation, parameters
with high values of the mean are selected. The next point to evaluate
is chosen by 𝑥𝑛+1 = max𝑥∈𝑋 (EI(𝑥)) using 𝑥+, the best parameter found
so far. EI(𝑥) is defined as:

EI(x) = 𝑓 (𝑥+ − 𝜇(𝑥))𝛷(𝑍) + 𝜎(𝑥)𝜙(𝑍) (2)

where 𝑓 (𝑥+) has the highest value and is thereby the best observed
value of the objective function, 𝜇(𝑥) and 𝜎(𝑥) are the mean and stan-
dard deviation of the  and 𝜙(𝑍) and 𝛷(𝑍) are the probability and
cumulative normal distributions where

𝑍 =
𝑓 (𝑥+) − 𝜇(𝑥)

𝜎(𝑥)
. (3)

The UCB acquisition function is defined as:

UCB(𝑥) = 𝜇(𝑥) + 𝜉𝜎(𝑥) (4)

where 𝜉 ≥ 0 controls the balance between exploration of the parameter
space (𝜉 ∼ 1) and exploitation (𝜉 ∼ 0). This acquisition function
can be described as the maximum value across all solutions of the
weighted sum of the mean of the  and the standard deviation of
the  . The next point to evaluate is chosen by the maximum of the
acquisition function, 𝑥𝑛+1 = max𝑥∈𝑋 (UCB(𝑥)), in a similar fashion to the
EI acquisition function.

BayesOpt has the benefit of reducing the amount of parameter space
searched to find the maximum compared to other methods, such as a
basic grid search, or a random search. Since past evaluations are taken
into account, BayesOpt tries to focus on the parameter space area where
the maximum of the black-box function occurs while not wasting much
time in those parameter space areas that are not solutions. This greatly
reduces the time required to fit complex functions, such as the GEANT4
simulations in this study.

An example that demonstrates this iterative process with BayesOpt
for the function 𝑓 (𝑥) = (1∕(𝑥2 + 1) + 𝑒−(𝑥−4)2∕2) sin(𝑥) is shown in Fig. 4.
This figure starts with three random points shown as red filled markers
in the top left panel. The target function is displayed as a solid green
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Fig. 4. A series of BayesOpt iterations to find the maximum of the test function 𝑓 (𝑥) =
(

1∕(𝑥2 + 1) + 𝑒−(𝑥−4)2∕2
)

sin(𝑥) (green solid line) over the range 𝑥 ∈ [−2, 8.5]. In the first
panel, three randomly selected points were used to evaluate the function shown as red filled markers. The acquisition function for the expected improvement is shown by the red
solid line and the next point for evaluation by a yellow star. The mean and the 66% and 95% confidence intervals of the  are shown by the black dashed line, and the dark and
light blue shaded regions, respectively. The following panels show subsequent iterations in the Bayesian Optimization process, where the last panel shows the algorithm honing in
on the maximum value of f(x) around 𝑥 = 0.6. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Algorithm 1: A pseudo-code for Bayesian Optimization
Define prior bounds on function 𝑓
Observe 𝑓 at 𝑛0 initial points
while 𝑛 ≤ 𝑁 do

Update the posterior distribution (GP) on 𝑓 based on all previous data points
Find the maximizer of the acquisition function, 𝑥𝑛, using the posterior distribution
Find 𝑓 (𝑥𝑛)
Increment 𝑛

end
Return: The point with the highest evaluated 𝑓 (𝑥) or the point with the largest posterior mean.

line while the mean of the  is displayed as a dashed black line.
The confidence intervals of the  are shown as dark blue (1𝜎) and
light blue (2𝜎) shaded regions. An acquisition function using the upper
confidence bound is shown as the solid red curve while the next point
selected for evaluation is displayed as a yellow star on the acquisition
function curve. As the number of evaluations increases, the  quickly
improves its description of the function and hones in on the global
maximum. A basic BayesOpt pseudo-code is found in Algorithm 1.

Bayesian Optimization has been used extensively in recent years
for hyper-parameter tuning in machine learning models [6,8,9], and
also in a wide range of fields for scientific studies such as choosing
experimental techniques in drug discovery [10], improving quantum
annealing [11] and tuning free-electron lasers [12]. An example from
nuclear structure theory is given in a work by Ekström et al. [13]
where it has been used to constrain the coupling constants in chiral
effective field theory descriptions of the strong interaction. In a recent
work [14], a Bayesian Analysis was used to fit the angular distributions
from a transfer reaction and extract spectroscopic factors.

In the current work, Bayesian methods incorporating GEANT4 sim-
ulations and experimental data are used to extract energies and inten-
sities of states populated in a transfer reaction. For this work, we have
chosen to use BayesOpt and the Python package BayesianOptimization
for the BayesOpt algorithm [15].

4. Results

The 12C(d,p) Q-value spectrum was produced both from the ex-
perimental data and in the GEANT4 simulation, assuming the ground

state and three excited states were populated. The GEANT4 energy loss
tables were used to calculate the energy of the proton and the 12C at
the center of the target for both the experimental and the simulated
data. The experimental data were used in the Bayesian Optimization
for comparison and to provide the best fit. A recent paper [14] shows
how Bayesian optimization can be used with GEANT4 simulations to fit
angular distributions from low-energy direct reactions. We performed
BayesOpt for two different acquisition functions: EI and UCB, shown
in Eqs. (2) and (4), respectively. The inverse of 𝜒2 between the exper-
imental Q-value and that from the simulation was maximized in order
to find the best (lowest) 𝜒2 fit to the data. The lowest value of 𝜒2, 𝜒2

𝑚𝑖𝑛,
was stored and used for the extraction of error bars. For each state, the
energy was changed by a step, dE, and a Bayesian optimization was
performed allowing the other states to vary until a best fit was found.
The dE that produced 𝜒2 = 𝜒2

𝑚𝑖𝑛 + 1 was used to define 1𝜎 errors.
To smooth out fluctuations from the simulation, 200,000 events

were simulated for each iteration step of the BayesOpt process. Since
only the upstream YY1 detector was used to generate the Q-value
spectrum, the simulation was set to only populate light ions uniformly
in the laboratory angular range of 150◦–175◦. This allows for a large
increase in efficiency of the simulation as ∼35% of the simulated events
are measured in the YY1 detector. Before the 𝜒2 was calculated, the
simulated data was scaled to the intensity in the experimental Q-value
plot using a 𝜒2 fit. The results using the EI acquisition function are
shown in Fig. 5(a) and using the UCB acquisition function in Fig. 5(b).
For the BayesOpt process for both acquisition functions, the number of
random iterations taken was set to 300. After these random iterations,
the exploitation phase of BayesOpt was initiated for a total of 300
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Table 1
Table of excitation energies from the BayesOpt process fitting of the 12C(d, p) reaction
data compared to known values from literature. The energy is quoted in MeV and
errors are 1𝜎. I/I(G.S) is the intensity of the state relative to the intensity of the ground
state.

BayesOpt energy (MeV) I/I(G.S.) Fit (MeV) Known energy (MeV)

0.009+0.007−0.009 1 −0.078 0

3.126+0.084−0.060 1.115 2.993 3.089

3.713+0.057−0.042 4.087 3.642 3.685

3.894+0.032−0.053 2.768 4.112 3.854

Fig. 5. Progression of the Bayesian Optimization for two acquisition functions: (a) EI
and (b) UCB. The BayesOpt method was used with up to four states in 13C in the
region below 5 MeV in excitation energy. The first 300 iterations of the BayesOpt
process used random iteration with an additional 300 iterations to find the optimal
solution. For each iteration, the 𝜒2∕𝑁 was calculated while the inverse was used as
the objective function to be maximized. Plotted as vertical dashed lines are the first
four states of 13C: 0.00, 3.09, 3.68 and 3.85 MeV. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

more iterations. The excitation energies of four states as a function of
iteration number are plotted in Fig. 5 along with the known values,
plotted as dashed vertical lines. The value of 𝜒2∕𝑁 is denoted by color
going from red (low 𝜒2∕𝑁 for a good fit) to blue (high 𝜒2∕𝑁 for a
bad fit). During the exploration phase for both acquisition functions,
the 𝜒2∕𝑁 remains mostly above 10. When the  switches over to the
exploitation function, the 𝜒2∕𝑁 remains below 15 for both acquisition
functions. The line between the random exploration phase and the
exploitation phase is clearly visible by an almost discrete change in
color from blue to red.

The UCB method was more successful at converging quickly than
the EI method, as illustrated by the number of low (red) 𝜒2∕𝑁 points
starting at 300 iterations.

The Q-value spectrum from the best fit is shown in Fig. 6. The
excitation energies from the Bayesian optimization are 3.126, 3.713,
and 3.894 MeV. As the excited states of 13C are well known, it is
possible to make meaningful comparisons, as shown in Table 1. There
is good agreement between the fitted and known energies within error
bars that are all less than 90 keV. This best fit from BayesOpt has a
𝜒2∕𝑁 of 2.4.

Fig. 6. Q-value spectrum comparing the best fit from 300 random exploration iterations
and 300 exploitation iterations with the UCB acquisition function (red solid line) to the
experimental data (black points with error bars). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

5. Conclusions

The GEANT4 toolkit with Bayesian Optimization study has been
completed for the test run of the 12C(d, p) reaction. The results obtained
from BayesOpt agree with the known states in 13C, within error bars,
and all within 90 keV. The structure of 13C is well known in the region
below 5 MeV in excitation, providing a suitable benchmark for the
12Be(d,p) experiment that followed the run with 12C and populated
poorly-known states in 13Be.

Other techniques, such as Markov Chain Monte Carlo (MCMC),
provide alternate Bayesian methods to analyze the spectrum using
GEANT4. The MCMC method would require significant numbers of
walkers and steps per walker to fit to the data, resulting in 1000’s to
10,000’s of individual simulations. In this work only 600 simulations
were required.

BayesOpt has the benefit of reducing computation time extensively
for these measurements when compared to other methods such as
Markov Chain Monte Carlo and can be used to extract spectroscopic
information from experimental data relevant to nuclear structure stud-
ies.
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