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a b s t r a c t

Targeting at sparse multi-task learning, we consider regulariza-
tion models with an `1 penalty on the coefficients of kernel
functions. In order to provide a kernel method for this model,
we construct a class of vector-valued reproducing kernel Banach
spaces with the `1 norm. The notion of multi-task admissible
kernels is proposed so that the constructed spaces could have
desirable properties including the crucial linear representer the-
orem. Such kernels are related to bounded Lebesgue constants of
a kernel interpolation question. We study the Lebesgue constant
of multi-task kernels and provide examples of admissible ker-
nels. Furthermore, we present numerical experiments for both
synthetic data and real-world benchmark data to demonstrate
the advantages of the proposed construction and regularization
models.
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1. Introduction

Reproducing kernel Banach spaces (RKBSs) and their applications have attracted a lot of attention
in the machine learning community [8,14,15,17,29,30,35,36,38,39]. In particular, RKBSs with the
`1 norm [29,30] have proven to be useful in promoting sparsity in single task learning. The
regularization models with an `1 penalty on the coefficients of kernel functions centered at the
finite sample data were well understood in statistical learning theory [16,27–29]. It was proved
in [30] that under certain conditions the `1-norm coefficient-based regularization over the finite
sample-dependent space is equivalent to the one over the whole RKBSs with the `1 norm. On the
other hand, vector-valued function spaces [1,6,23] provide a solid foundation for many models in
multi-task learning. The purpose of this paper is to construct vector-valued RKBSs with the `1 norm
and study regularization methods for multi-task learning in such spaces.

Reproducing kernel Hilbert spaces (RKHSs) are Hilbert spaces of functions on which point
evaluation functionals are continuous [2]. In machine learning, RKHSs have been viewed as ideal
spaces for kernel-based learning algorithms [9,27,31,34]. Thanks to the existence of an inner
product, Hilbert spaces are well-understood in functional analysis. Most importantly, an RKHS has a
reproducing kernel, which measures similarity between inputs and gives birth to the ‘‘kernel trick’’
in machine learning that significantly saves computations. Celebrated machine learning methods
based on scalar-valued RKHSs include support vector machines and the regularization networks.

The RKBS is a recent and fast-growing research area. We mention two reasons that justify the
need of RKBSs here. On one hand, Banach spaces possess richer geometrical structures and norms.
It is standard knowledge in functional analysis that any two Hilbert spaces on a common number
field of the same dimension are isometrically isomorphic to each other, and hence share the same
norms and geometry. By contrast, for 1  p 6= q  +1, Lp([0, 1]) and Lq([0, 1]) are not isomorphic
to each other. On the other hand, many important problems such as p-norm coefficient-based
regularization [33], large-margin classification [12,36,37], lasso in statistics [32] and compressed
sensing [4] had better be studied in Banach spaces.

There are various approaches to constructing scalar-valued RKBSs in the literature. For exam-
ple, [37] employs the tool of semi-inner-products to build RKBSs and [35] constructs RKBSs based
on certain feature mappings. In particular, a bilinear form has been used to develop RKBSs with
the `1 norm in [30]. Moreover, a recent work [21] gives a unified definition of RKBSs that is more
general than the aforementioned specific ones. It also proposed a unified framework of constructing
scalar-valued RKBSs that covers all existing constructions [14,29,30,35,36,38,39] via a continuous
bilinear form and a pair of feature maps.

We consider multi-task learning in this paper. Many real-world applications involve learning
multiple tasks. A standard methodology in machine learning is to learn one task at a time. Large
problems are hence broken into small and reasonably independent subproblems that are learned
separately and then recombined. Multi-task learning where the unknown target function to be
learned from finite sample data is vector-valued appears more often in practice [23]. Learning
multiple related tasks simultaneously can be more beneficial. For instance, in certain circumstances,
data for each task are not enough to avoid over-fitting and hence results in poor generalization
ability. In this case, what is learned for each task can help other related tasks be learned better. There
are numerical experiments in the literature [1,7] which demonstrate that multi-task learning can
lead to better generalization performance than learning each task independently. Recent progress
about multi-task learning in vector-valued RKHSs can be found in [5,6]. In such a framework, both
the space of the candidate functions used for approximation and the output space are chosen as
Hilbert spaces. The mathematical theory of learning on vector-valued RKBSs based on semi-inner-
products has been proposed in [40]. The spaces considered there are reflexive and thus do not
accommodate the `1 norm.

Motivated by sparse multi-task learning, we shall construct vector-valued RKBSs with the
`1 norm in this paper. To ensure that the existence of a reproducing kernel, the construction
starts directly with an admissible multi-task kernel satisfying three assumptions: non-singularity,
boundedness, and independence. Then, we are able to obtain a vector-valued RKBS with the `1 norm
and its associated reproducing kernel.
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Moreover, we will investigate the regularization model in such spaces. The classical linear repre-
senter theorem is a key to the mathematical analysis of kernel methods in machine learning [27]. It
asserts that the minimizer is a linear combination of the kernel functions at the sampling points. The
representer theorem in scalar-valued RKHSs was initially established by Kimeldorf and Wahba [20].
The result was generalized to other regularizers in [26]. Recent Refs. [14,21,35–37,39] developed
representer theorems for various scalar-valued RKBSs. We shall present the representer theorem
for machine learning schemes in vector-valued RKBSs with the `1 norm. We shall see that this
is equivalent to requiring the Lebesgue constant of the admissible multi-task kernel to be exactly
bounded by 1. To accommodate more kernels, we consider a relaxed representer theorem.

The outline of the paper is as follows. In Section 2, we present definitions of vector-valued RKBSs,
the associated reproducing kernels, and admissible multi-task kernels. We next start constructing
RKBSs of vector-valued functions with the `1 norm. Section 3 establishes representer theorems for
minimal norm interpolation and regularization networks in the constructed spaces. Examples of
admissible multi-task kernels are given in Section 4. To accommodate more kernel functions, a
relaxed version of the linear representer theorem is discussed in Section 5. The relaxed representer
theorem plays an important role in learning rate estimates. This is illustrated in the section. In
Section 6, numerical experiments for both synthetic data and real-world benchmark data are
presented to demonstrate the advantages of the proposed construction and regularization models
in the vector-valued RKBSs with the Laplacian kernel and the exponential kernel.

2. Construction of vector-valued RKBSs with the `1 norm

We shall present the construction of vector-valued RKBSs with the `1 norm in this section.
Specifically, we will first introduce the definition of general vector-valued RKBSs and then construct
the specific vector-valued RKBSs with the `1 norm.

To give a formal definition of vector-valued RKBSs in our setting, we first review the definition of
Banach spaces of vector-valued functions. A normed vector space V of functions from X to Y ✓ Rd

is called a Banach space of vector-valued functions if it is a Banach space whose elements are vector-
valued functions on X and for each f 2 V , kf kV = 0 if and only if f (x) = 0 for all x 2 X . Here,
0 denotes the zero vector of Rd. For instance, Lp([0, 1]), 1  p < +1 is not a Banach space of
functions while C([0, 1]) is. The definition of general vector-valued RKBSs is presented below.

Definition 2.1 (Vector-valued RKBS). Let X be a prescribed nonempty set, and let Y be a Banach
space. A vector-valued RKBS B of functions from X to Y is a Banach space of certain vector-valued
functions f : X ! Y such that every point evaluation functional �x, x 2 X on B is continuous. That
is, for any x 2 X , there exists a constant Cx > 0 such that

k�x(f )kY = kf (x)kY  Cxkf kB for all f 2 B.

Definition 2.1 is a natural ‘‘vectorized’’ generalization of the scalar-valued RKHS [2,27] and the
scalar-valued RKBS in [21]. In [23], a Hilbert space H from X to a Hilbert space Y with inner product
h·, ·iY is called an RKHS of vector-valued functions if for any y 2 Y and x 2 X , the linear functional
which maps f 2 H to hy, f (x)iY is continuous. With the tool of semi-inner product, Ref. [40] initially
proposed the notion of vector-valued RKBS for multi-task learning in 2013. The prerequisite is that
B and Y are uniform Banach spaces. Those requirements more or less seem unnatural. We are able
to remove them by exploiting the definition of reproducing kernels via continuous bilinear forms.

We remark that there are no kernels directly mentioned in the above definition of the general
vector-valued RKBSs. We will introduce a definition of the associated reproducing kernel through
bilinear forms. Recall that a bilinear form between two normed vector spaces V1 and V2 is a function
(·, ·)V1⇥V2 from V1 ⇥V2 to R that is linear about both arguments. It is said to be a continuous bilinear
form if there exists a positive constant C such that

|(f , g)V1⇥V2 |  Ckf kV1kgkV2 for all f 2 V1, g 2 V2.

For practical applications, it is natural and sufficient to restrict the output space to be the multi-
dimensional Euclidean space. Thus, from now on, we assume the output space Y = Rd. For any
column vector c 2 Rd, we denote by c> its transpose.
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Definition 2.2 (Reproducing Kernel). Let X be a nonempty set, and let B be a vector-valued RKBS
from X to Rd. If there exist a Banach space B

# of vector-valued functions from X to Rd, a continuous
bilinear form (·, ·)

B⇥B# , and a matrix-valued function K : X ⇥ X ! Rd⇥d such that K(·, x)c 2 B
# for

all x 2 X and c 2 Rd, and

(f ,K(·, x)c)
B⇥B# = f (x)>c for all x 2 X, c 2 Rd, f 2 B, (2.1)

then we call K a reproducing kernel for B. If in addition, B# is also a vector-valued RKBS, K(x, ·)c 2 B

for all x 2 X and c 2 Rd, and

(K(x, ·)c, g)
B⇥B# = c>g(x) for all x 2 X, c 2 Rd, g 2 B

#, (2.2)

then we call B# an adjoint vector-valued RKBS of B, and call B and B
# a pair of vector-valued RKBSs.

In the latter case, K̃ (x, x0) := K (x0, x) for x, x0 2 X , is a reproducing kernel for B
#.

We call (2.1) and (2.2) the reproducing properties for the kernel K in vector-valued RKBSs B and
B
#.
We shall next construct the specific vector-valued RKBSs with the `1 norm satisfying the above

conditions of general vector-valued RKBSs. The construction is built on certain multi-task kernels. To
this end, we first introduce admissible multi-task kernels and some related notations. For any vector
u and p 2 [1, 1], we use kukp to denote the `p norm of u. For any matrix A and p 2 [1, 1], we
use kAkp to denote the `p-induced matrix norm of A. We denote for any nonempty set ⌦ by `1d(⌦)
the Banach space of vector-valued functions on ⌦ that is integrable with respect to the counting
measure on ⌦ . Specifically,

`1d(⌦) :=

n
c = (c t 2 Rd

: t 2 ⌦) : kck`1d(⌦) =

X

t2 supp c

kc tk1 < +1

o
. (2.3)

where supp c := {t 2 ⌦ : c t 6= 0} denotes the support of c 2 `1d(⌦). Note that ⌦ might be
uncountable, but for every c 2 `1d(⌦), the support supp c must be at most countable. Let us denote
Nm := {1, 2, . . . ,m} for any m 2 N.

Definition 2.3 (Admissible Multi-task Kernel). Let X be a nonempty set and let K : X ⇥ X ! Rd⇥d be
a matrix-valued function such that K> = K. Such a kernel is an admissible multi-task kernel if the
following assumptions are satisfied:
(A1) (Non-singularity) for all m 2 N and all pairwise distinct sampling points x = {xj : j 2 Nm} ✓ X ,

the matrix

K[x] :=

h
K(xk, xj) : j, k 2 Nm

i
2 Rmd⇥md

is non-singular;
(A2) (Boundedness) there exists  > 0 such that kK(x, x0)k1   for all x, x0 2 X;
(A3) (Independence) for all pairwise distinct points xj 2 X , j 2 N and (c j 2 Rd : j 2 N) 2 `1d(N), ifP

j2N K(xj, x)c j = 0 for all x 2 X then c j = 0 for all j 2 N.

We now present the construction of vector-valued RKBSs with the `1 norm based on admissible
multi-task kernels. Suppose that K : X⇥X ! Rd⇥d is an admissible multi-task kernel defined above.
We then define

BK :=

n X

x2 supp c

K(x, ·)cx : c = (cx 2 Rd
: x 2 X) 2 `1d(X)

o
(2.4)

with the norm���
X

x2 supp c

K(x, ·)cx
���
BK

:= kck`1d(X), (2.5)

where `1d(X) is given as in (2.3). Observe that BK defined by (2.5) is a Banach space since BK is
isometric to the Banach space `1d(X). By (A3), we should point out that the norm given by (2.5) is
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well-defined. In other words, for any f 2 BK, kf kBK = 0 if and only if f = 0 everywhere on X . It
follows that BK is a Banach space of functions on X .

We next show that the Banach space of functions BK defined above is a vector-valued RKBS on
X according to Definition 2.1.

Proposition 2.4. If K is an admissible multi-task kernel, then the space BK as defined in Eq. (2.4) is a
vector-valued RKBS on X in the sense that

kf (x)k1  kf kBK , for all x 2 X, f 2 BK.

Proof. Note that `1d(X) is a Banach space. By definition (2.5) of the norm on BK, BK is a vector-valued
Banach space on X . For any f 2 BK, there exists c 2 `1d(X) such that

f =

X

t2 supp c

K(t, ·)c t .

For any x 2 X , by Assumption (A2) and Eq. (2.5), we compute

k�x(f )k1 = kf (x)k1 

X

t2 supp c

���K(t, x)c t
���
1



X

t2 supp c

���K(t, x)
���
1
kc tk1  

X

t2 supp c

kc tk1 = kf kBK

for all f 2 BK. In other words, the point evaluation functional �x, x 2 X is continuous on BK in the
sense that k�x(f )k1  kf kBK for all f 2 BK. The proof is hence complete. ⇤

We next show that K is a reproducing kernel of BK through checking the conditions in
Definition 2.2. For this purpose, we introduce an adjoint vector-valued RKBS B

#
K below. Let

B
#
0 :=

n nX

k=1

K(·, xk)bk : xk 2 X, bk 2 Rd, k 2 Nn for all n 2 N
o

endowed with the supremum norm
���

nX

k=1

K(·, xk)bk

���
B

#
0

:= sup
t2X

���
nX

k=1

K(t, xk)bk

���
1

.

Generally, an abstract completion of B
#
0 might not consist of functions. We point out that the

completion of an incomplete Hilbert space of functions being RKHS was given in ([2], Pages 347–
349). Motivated by this, we present a Banach completion process that yields a space of vector-valued
functions. Suppose {gn : n 2 N} is a Cauchy sequence in B

#
0 . Observe that point evaluation

functionals �x, x 2 X are continuous on B
#
0 in the sense that

kg(x)k1  kgk
B

#
0
for all g 2 B

#
0 .

Consequently, for any x 2 X , the sequence {gn(x) : n 2 N} converges in Rd. We define the limit by
g(x), which is a vector-valued function on X . By definition of B#

0 , two equivalent Cauchy sequences
in B

#
0 give the same function. We let B#

K be consisting of all such limit functions g with the norm

kgk
B

#
K

:= lim
n!+1

kgnkB
#
0

= lim
n!+1

sup
x2X

kgn(x)k1.

It follows that B#
K is a Banach space of vector-valued functions and for any g 2 B

#
K ,

kgk
B

#
K

:= sup
x2X

kg(x)k1.

Based on the above construction, we immediately have that B
#
K defined above is also a vector-

valued RKBS.

Proposition 2.5. If K is an admissible multi-task kernel, then the space B
#
K is a vector-valued RKBSs in

the sense that

kg(x)k1  kgk
B

#
K
for all x 2 X, g 2 B

#
K.
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We next characterize the reproducing properties in BK and B
#
K via a bilinear form. To this end,

we define the linear space B0 by

B0 :=

n mX

j=1

K(xj, ·)c j : xj 2 X, c j 2 Rd,m 2 N
o
. (2.6)

By (2.4) and (2.6), B0 is dense in the Banach space BK. It follows that BK is a Banach completion of
B0 under the `1 norm. We define a bilinear form (·, ·)K on B0 ⇥ B

#
0 by

⇣ mX

j=1

K(xj, ·)c j,
nX

k=1

K(·, sk)bk

⌘

K
=

nX

k=1

mX

j=1

c>

j K(xj, sk)bk, sj, tk 2 X, c j, bk 2 Rd.

According to the norms on B0 and B
#
0 , we obtain

���
⇣ mX

j=1

K(xj, ·)c j,
nX

k=1

K(·, sk)bk

⌘

K

��� 

mX

j=1

���c>

j

⇣ nX

k=1

K(xj, sk)bk

⌘���



mX

j=1

kc jk1

���
nX

k=1

K(xj, sk)bk

���
1



⇣ mX

j=1

kc jk1

⌘⇣
sup
t2X

���
nX

k=1

K(t, sk)bk

���
1

⌘

=

���
mX

j=1

K(xj, ·)c j
���
B0

���
nX

k=1

K(·, sk)bk

���
B

#
0

.

It implies that the bilinear form (·, ·)K is continuous on B0 ⇥ B
#
0 . By applying the Hahn–Banach

extension theorem twice, the bilinear form can be extended to BK ⇥ B
#
K such that

|(f , g)K|  kf kBKkgk
B

#
K
for all f 2 BK, g 2 B

#
K.

Finally, we are ready to show that K is a reproducing kernel for BK.

Theorem 2.6. If K : X ⇥ X ! Rd⇥d is an admissible multi-task kernel then BK and B
#
K are a pair of

vector-valued RKBSs, and K is a reproducing kernel for BK and B
#
K .

Proof. It is sufficient to verify the reproducing properties for K in BK and B
#
K . Recall that (·, ·)K is

a continuous bilinear form on BK ⇥ B
#
K . For any f 2 BK, there exist distinct points xj 2 X , j 2 N and

c 2 `1d(N) such that f =
P

j2N K(xj, ·)c j. Since K = K>, it follows from a direct computation

(f ,K(·, x)b)K = lim
n!+1

⇣ nX

j=1

K(xj, ·)c j,K(·, x)b
⌘

K
= lim

n!+1

nX

j=1

c>

j K(xj, x)b

= lim
n!+1

⇣ nX

j=1

K(xj, x)c j
⌘>

b = f (x)>b

for any x 2 X . The reproducing property for K in B
#
K follows in a similar way. ⇤

3. Representer theorems

The linear representer theorems play a fundamental role in regularized learning schemes in
machine learning. It helps us to turn the infinite-dimensional optimization problem to an equivalent
optimization problem in a finite-dimensional subspace. We shall establish in this section repre-
senter theorems for the minimal norm interpolation problem and regularization networks in the
vector-valued RKBSs BK with the `1 norm constructed in Section 2.
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3.1. Minimal norm interpolation

A minimal norm interpolation problem in a vector-valued RKBS BK with respect to a set of
sampling data {(xj, y j) : j 2 Nm} ✓ X ⇥ Rd is to solve

min
f2Ix(y)

kf kBK , where Ix(y) :=

n
f 2 BK : f (x) = y

o
. (3.1)

We always assume the minimizer of the above problem exists in this paper.
We say the vector-valued RKBS BK has the linear representer theorem for minimal norm interpo-

lation if for any integer m 2 N and any choice of sampling data {(xj, y j) : j 2 Nm} ✓ X ⇥ Rd, there
always exists a minimizer of the problem (3.1) in the following finite-dimensional subspace:

S
x

:=

n mX

j=1

K(xj, ·)c j : c j 2 Rd, j 2 Nm

o
. (3.2)

We point out that the finite-dimensional subspace S
x has dimension md.

We shall next investigate the linear representer theorem for minimal norm interpolation. We
remark that the interpolation space Ix(y) is infinite-dimensional in general. We need to show the
minimal norm interpolation in BK is equivalent to that in the finite-dimensional subspace in S

x. To
this end, we first show the minimal norm interpolation in a finite-dimensional subspace containing
S
x could be reduced to that in S

x. We begin with the simplest case when a new point xm+1 is added
to x. In other words, we shall consider the finite-dimensional subspace S

x̃, where x̃ := x [ {xm+1}

and xm+1 2 X \ x. Observe that

Ix(y) \ S
x

✓ Ix(y) \ S
x̃

✓ Ix(y).

For notational simplicity, we denote

Kx(t) := (K(t, xj) : j 2 Nm)> 2 Rmd⇥d, Kx(t) := (K(xj, t) : j 2 Nm) 2 Rd⇥md, t 2 X .

It is worthwhile to point out that Kx is in general not the transpose of Kx. If, in addition, K is
symmetric in the sense that K(x, x0) = K(x0, x) for all x, x0 2 X then by K = K> we have K>

x = Kx.
We will present a necessary and sufficient condition for the equivalence of the minimal norm

interpolation in S
x̃ to that in S

x.

Lemma 3.1. Suppose the multi-task kernel K is admissible. Let x = {xj : j 2 Nm} be a set of pairwise
distinct points, let xm+1 be an arbitrary point in X \ x, and let x̃ = x [ {xm+1}. Then

min
f2Ix(y)\S x̄

kf kBK = min
f2Ix(y)\Sx

kf kBK , for all y 2 Rmd (3.3)

if and only if kK[x]�1Kx(xm+1)k1  1.

Proof. Notice that the set Ix(y) \ S
x possesses only one interpolant f (t) = Kx(t)K[x]�1y, t 2 X .

Let f̃ 2 Ix(y) \ S
x̃ and b := f̃ (xm+1). Note that f̃ is uniquely determined by b as it has already

satisfied the interpolation condition f̃ (x) = y. Specifically, by the admissible assumption (A1), we
get f̃ (t) = Kx̃(t)K[x̃]�1ỹ, t 2 X , where ỹ := (y>, b)> 2 R(m+1)d. It follows from a result (see for
instance, [25], pages 201–202) concerning the inversion of 2 ⇥ 2 blockwise invertible matrix that

K[x̃]�1ỹ =


K[x] Kx(xm+1)

Kx(xm+1) K(xm+1, xm+1)

��1 
y
b

�

=


K[x]�1 + K[x]�1Kx(xm+1)p�1Kx(xm+1)K[x]�1 �K[x]�1Kx(xm+1)p�1

�p�1Kx(xm+1)K[x]�1 p�1

�
y
b

�

=


K[x]�1y + K[x]�1Kx(xm+1)p�1q

�p�1q

�
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where the matrix

p :=

h
K(xm+1, xm+1) � Kx(xn+1)K[x]�1Kx(xm+1)

i
2 Rd⇥d

is non-singular and the column vector q is

q := Kx(xm+1)K[x]�1y � b 2 Rd.

We now show sufficiency. If kK[x]�1Kx(xm+1)k1  1, then

kf̃ kBK= kK[x̃]�1ỹk1 � kK[x]�1y + K[x]�1Kx(xn+1)p�1qk1 + kp�1qk1
� kK[x]�1yk1 � kK[x]�1Kx(xn+1)p�1qk1 + kp�1qk1
� kK[x]�1yk1 � kK[x]�1Kx(xn+1)k1kp�1qk1 + kp�1qk1
� kK[x]�1yk1
= kf kBK

which implies

min
f2Ix(y)\S x̃

kf kBK � min
f2Ix(y)\Sx

kf kBK , for all y ✓ Rmd.

Since S
x ✓ S

x̃, the reverse direction of this inequality holds. Thus, (3.3) holds true.
Conversely, if (3.3) is true for all y 2 Rmd then we must have

kK[x̃]�1ỹk1 � kK[x]�1yk1, for all y 2 Rmd and all b 2 Rd.

Fix j 2 Nd. In particular, if we choose

y := Kx(xm+1)ej, and b := Kx(xm+1)K[x]�1y + pej,

where ej is a column vector in Rd whose jth component is 1 and other components are 0, then

q = �pej, p�1q = �ej and K[x]�1y + K[x]�1Kx(xm+1)p�1q = 0md,

where 0md denotes the zero column vector in Rmd. Consequently

kK[x̃]�1ỹk1 =

����
0md
ej

����
1

= 1 and kK[x]�1yk1 = kK[x]�1Kx(xm+1)ejk1.

Recalling the definition of the `1 norm of matrices, we get kK[x]�1Kx(xm+1)k1  1. The proof is
complete. ⇤

We are now ready to present the following necessary and sufficient condition for the equivalence
of the minimal norm interpolation in BK to that in S

x:
(Lebesgue Constant Condition) For all m 2 N and all pairwise distinct sampling points x = {xj :

j 2 Nm} ✓ X ,

sup
t2X

kK[x]�1Kx(t)k1  1, (3.4)

where Kx(t) = (K(t, xj) : j 2 Nm)>, t 2 X .

Theorem 3.2. Suppose K is an admissible multi-task kernel. The space BK satisfies the linear representer
theorem for minimal norm interpolation if and only if the Lebesgue constant condition (3.4) holds.

Proof. We first prove the necessity. The space BK satisfies the linear representer theorem for
minimal norm interpolation if and only if for any integer m and any choice of sampling data {(xj,
y j) : j 2 Nm} ✓ X ⇥ Rd

min
g2Ix(y)

kgkBK = min
f2Ix(y)\Sx

kf kBK .

Choose a new point xm+1 2 X \ x. Observe Ix(y) \ S
x ✓ Ix(y) \ S

x̃ ✓ Ix(y). By Lemma 3.1, we
have kK[x]�1Kx(xm+1)k1  1. Observe that kK[x]�1Kx(t)k1 = 1 for any t 2 x. Since we can pick an
arbitrary integer m and an arbitrary point xm+1, this leads to (3.4).
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We next show the sufficiency. Suppose the Lebesgue constant condition (3.4) holds. Fix m 2 N.
Since Ix(y) \ S

x ✓ Ix(y),

min
g2Ix(y)

kgkBK  min
f2Ix(y)\Sx

kf kBK .

It remains to prove the reverse direction of this inequality. For this purpose, we shall first show
kgkBK � minf2Ix(y)\Sx kf kBK for all g 2 Ix(y) \ B0, where the space B0 is defined by (2.6). By
Ix(y)\S

x ✓ Ix(y)\B0, the set Ix(y)\B0 is non-empty. We write g as g =
Pn

j=1 K(xj, ·)c j for some
integer n � m and distinct points {xj : j 2 Nn}. This can always be done by adding some sampling
points, setting the corresponding coefficients to be zero, and relabeling if necessary. Let y j := g(xj),
j 2 Nn. Then set

ul := (y j : j 2 Nl)T , and vl := {xj : j 2 Nl} for l = m,m + 1, . . . , n.

Note that y = um and x = vm. By g 2 Ivn (un) \ S
vn , it follows that kgkBK � minf2Ivn (un)\Svn kf kBK .

Since Ivn (un) ✓ Ivn�1 (un�1), we apply Lemma 3.1 to get

min
f2Ivn (un)\Svn

kf kBK � min
f2Ivn�1 (un�1)\Svn

kf kBK = min
f2Ivn�1 (un�1)\S

vn�1
kf kBK .

It follows that kgkBK � minf2Ivn�1 (un�1)\S
vn�1 kf kBK . Repeating this process, we get

kgkBK � min
f2Ivm (um)\Svm

kf kBK = min
f2Ix(y)\Sx

kf kBK for all g 2 Ix(y) \ B0. (3.5)

Now let g 2 Ix(y) be arbitrary but fixed. Recall that the completion of B0 with respect to the `1
norm is BK. Then there exists a sequence of vector-valued functions gj 2 B0, j 2 N that converges
to g in BK. We let f and fj be the function in S

x such that f (x) = y and fj(x) = gj(x), j 2 N. They are
explicitly given by

f = Kx(·)K[x]�1g(x) and fj = Kx(·)K[x]�1gj(x), j 2 N.

Since gj converges to g in BK and point evaluation functionals are continuous on BK, gj(x) ! g(x)
as j ! +1. As a result,

lim
j!+1

kf � fjkBK = lim
j!+1

kK[x]�1(g(x) � gj(x))k1  kK[x]�1
k1 lim

j!+1

kg(x) � gj(x)k1 = 0.

By (3.5), kgjkBK � kfjkBK for all j 2 N. It follows that kgkBK � kf kBK and thus,

min
g2Ix(y)

kgkBK � min
f2Ix(y)\Sx

kf kBK .

The proof is complete. ⇤

3.2. Regularization networks

We will present a representer theorem for regularization network in the following form:

min
f2BK

L(f (x), y) + ��(kf kBK ), (3.6)

where L : Rmd ⇥ Rmd ! R+ is a continuous loss function with the property L(t, t) = 0 for any
t 2 Rmd, and � : R+ ! R+ a non-decreasing continuous regularizer with limt!+1 �(t) = +1.
We will always assume a minimizer of the above model (3.6) exists.

Similarly, we say the vector-valued RKBS BK has the linear representer theorem for regularization
network if for any integer m, any choice of sampling data {(xj, y j) : j 2 Nm} and any � > 0, there
exists a minimizer of (3.6) in the finite-dimensional subspace S

x as defined in (3.2).
We shall establish a necessary and sufficient condition such that the linear representer theorem

for the regularization network holds in the vector-valued RKBS BK. This is achieved by showing the
equivalence between the representer theorems for the minimal norm interpolation problem and
the regularization network problem.
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Theorem 3.3. Suppose K is an admissible multi-task kernel. The space BK satisfies the linear representer
theorem for regularization network (3.6) if and only if it does so for minimal norm interpolation (3.1).

Proof. Suppose we are given some sampling data {(xj, y j) : j 2 Nm} ✓ X ⇥ Rd for some m 2 N.
We first assume that the space BK satisfies the linear representer theorem for minimal norm
interpolation. We want to prove

min
f2BK

L(f (x), y) + ��(kf kBK ) = min
f2Sx

L(f (x), y) + ��(kf kBK ). (3.7)

Note that the left hand side above is always bounded above by the right hand side as S
x ✓ BK. We

only need to show the reverse inequality. For any f 2 BK, we consider the following minimal norm
interpolation problem

min
g2Ix(f (x))

kgkBK .

Since BK satisfies the linear representer theorem for minimal norm interpolation, there exists a
minimizer f0 2 S

x of the above problem. Note that f 2 Ix(f (x)). It follows that f0(x) = f (x) and
kf0kBK  kf kBK . As a result, L(f0(x), y) = L(f (x), y) but �(kf0kBK )  �(kf kBK ) as � is nondecreasing.
That is, for any f 2 BK, there exists a f0 2 S

x such that

L(f0(x), y) + ��(kf0kBK )  L(f (x), y) + ��(kf kBK ),

which implies the right hand side of (3.7) is bounded above by the left hand side of (3.7).
Moreover, we will prove the existence of the minimizer of right hand side of (3.7). Since

limt!+1 �(t) = +1, there exists a positive constant ↵ such that

min
f2Sx

L(f (x), y) + ��(kf kBK ) = min
f2Sx,kf kBK↵

L(f (x), y) + ��(kf kBK ).

For instance, we can choose any ↵ > 0 satisfying ��(↵)  L(0, y) + ��(0), where 0 is the zero
vector in Rmd. Note that the functional we are minimizing is continuous on BK by the assumption
on V , � and by the continuity of point evaluation functionals on BK. By the elementary fact that a
continuous function on a compact metric space attains its minimum in the space, the right hand
side of (3.7) has a minimizer that belongs to {f 2 S

x : kf kBK  ↵}.
We next show the contrary part. That is, assuming BK satisfies the linear representer theorem for

regularization networks, we need to show it also does so for minimal norm interpolation. We will
find a minimizer of the minimal norm interpolation problem (3.1) explicitly. To this end, consider
the regularization network (3.6) with the following choices of L and �:

L(f (x), y) = kf (x) � yk
2
2, and �(t) = t.

For any � > 0, let f0,� be a minimizer of (3.6) with the above choices of L and � in S
x. We could

then write f0,� = Kx(·)c� for some c� 2 Rmd. It follows

kK[x]c� � yk
2
2 = kf0,�(x) � yk

2
2  L(f0,�, y) + ��(kf0,�kBK )  L(0, y) + ��(k0kBK ) = kyk

2
2.

Since K[x] is nonsingular, the above inequality implies that {c� : � > 0} forms a bounded set in
Rmd. By restricting to a subsequence if necessary, we may hence assume that c� converges to some
c0 2 Rmd as � goes to infinity. We then define f0,0 := Kx(·)c0. It is clear that f0,0 2 S

x. We will show
that f0,0 is a minimizer of the minimal norm interpolation problem (3.1).

Assume g is an arbitrary interpolant in Ix(y). It is enough to show f0,0 2 Ix(y) and kf0,0kBK 

kgkBK . By the definition of f0,�, we have

kf0,�(x) � yk
2
2 + �kf0,�kBK  kg(x) � yk

2
2 + �kgkBK = �kgkBK . (3.8)

We observe that

lim
�!0

kf0,� � f0,0kBK = lim
�!0

kc� � c0k1 = 0. (3.9)

Since point evaluation functionals are continuous on BK, we have f0,0(xj) = lim�!0 f0,�(xj) for all j 2

Nm. Letting � ! 0 on both sides of the above inequality (3.8), we obtain kf0,0(x)� yk2
2 = 0. That is,
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f0,0 2 Ix(y). Moreover, it also follows from (3.8) that kf0,�kBK  kgkBK for all � > 0. This together
with (3.9) implies kf0,0kBK  kgkBK , which finishes the proof. ⇤

Corollary 3.4. Suppose that K is an admissible multi-task kernel. The space BK satisfies the linear
representer theorem for regularization network (3.6) if and only if K satisfies the Lebesgue constant
condition (3.4).

Proof. This is an immediate consequence of Theorems 3.2 and 3.3. ⇤

4. Examples of admissible multi-task kernels

We shall present a few examples of admissible multi-task kernels in this section. In particular,
we will investigate whether they satisfy the Lebesgue constant condition (3.4) such that the
corresponding vector-valued RKBSs have the linear representer theorems. Positive together with
some negative examples will both be given.

Consider a widely used class of multi-task kernels [1,5] in machine learning, which take the
following form:

K(x, x0) = K (x, x0)A, x, x0
2 X, (4.1)

where K : X ⇥ X ! R is a scalar-valued positive definite kernel and A denotes a d ⇥ d strictly
positive definite symmetric matrix. We reserve the notation K in boldface type to denote the d⇥ d
matrix-valued function and K the scalar-valued function as usual, respectively.

Theorem 4.1. The kernel K defined by (4.1) is an admissible multi-task kernel if and only if K is an
admissible single-task kernel.

Proof. Notice that K> = K as A is a symmetric matrix. We shall verify the non-singularity,
boundedness, and independence assumptions. By (4.1), the non-singularity condition holds by
noting that

K[x] = [K (xk, xj)A : j, k 2 Nm] = diag (A, . . . ,A)[K (xk, xj) : j, k 2 Nm].

Observe that kK(x, x0)k1 = |K (x, x0)|kAk1, x, x0 2 X . As a result, K is bounded on X ⇥ X if and only
if kK(x, x0)k1 is. To prove the independence assumption, we let xj 2 X , j 2 N be distinct points and
c = (c j : j 2 N) 2 `1d(N). One sees that

X

j2N

K(xj, x)c j =

X

j2N

K (xj, x)Ac j = A
X

j2N

K (xj, x)c j.

As A is nonsingular,
P

j2N K(xj, x)c j = 0 for all x 2 X if and only if
P

j2N K (xj, x)(c j)k = 0 for all
k 2 Nd and all x 2 X , where (c j)k denotes the kth component of the column vector c j. The proof is
complete. ⇤

The above theorem provides a way of constructing admissible multi-task kernels via their single-
task counterparts. So far there are two admissible single-task kernels found in the literature [30].
They are the Brownian bridge kernel K (x, x0) := min{x, x0} � xx0, x, x0 2 (0, 1) and the exponential
kernel K (x, x0) := e�|x�x0|, x, x0 2 R. Here we are able to contribute another one. Specifically, we
shall show that the covariance of Brownian motion ([24], Subsection 1.4) defined by

K (x, y) := min{x, y}, x, y 2 (0, 1), (4.2)

is an admissible single-task kernel. The corresponding RKHS HK , also called the Cameron–Martin–
Hilbert space, consists of continuous functions f on [0, 1] such that their distributional derivatives
f 0 2 L2([0, 1]) and f (0) = 0. The inner product on HK is defined by hf , giHK :=

R 1
0 f 0(x)g 0(x)dx,

where f , g 2 HK .
To verify the Lebesgue constant condition (3.4) for this kernel, we explore the connection

between the Lebesgue constants of kernels K and K.
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Lemma 4.2. Let x = {xj 2 X : j 2 Nm} be a set of distinct points, and ↵ > 0. Then

sup
t2X

kK [x]�1Kx(t)k1  ↵ if and only if sup
t2X

kK[x]�1Kx(t)k1  ↵.

Proof. For each t 2 X , set K [x]�1Kx(t) := (b1(t), b2(t), . . . , bd(t))>. By (4.1), we compute

K[x]�1Kx(·) =
⇥
K (xj, xk)A : k, j 2 Nm

⇤�1(K (xj, ·)A : j 2 Nm)>

=
⇥
K (xj, xk)I : k, j 2 Nm

⇤�1 diag (A, . . . ,A)�1 diag (A, . . . ,A)(K (xj, ·)I : j 2 Nm)>

=
⇥
K (xj, xk)I : k, j 2 Nm

⇤�1(K (xj, ·)I : j 2 Nm)> (4.3)

where diag (A, . . . ,A) is a block diagonal matrix with A as the diagonal entries. By (4.3), this leads
to

sup
t2X

kK[x]�1Kx(t)k1 = max
t2X

k(b1(t)I, b2(t)I, . . . , bd(t)I)>k1.

The proof is completed by noting the definition of the norm k · k1 for a matrices. ⇤

Now, we verify that the covariance of Brownian motion is an admissible kernel. The proof is
analogous to the one for the Brownian bride kernel in [30].

Theorem 4.3. The covariance of Brownian motion defined by (4.2) is an admissible single-task kernel
and satisfies the Lebesgue constant condition (3.4).

Proof. Obviously, |K (x, y)| is bounded by 1 for all x, y 2 (0, 1). Let m 2 N. Without loss of generality,
we choose 0 < x1 < x2 < · · · < xm < 1 and let x := {x1, x2, . . . , xm}. An easy computation shows
that the determinant of the kernel matrix

K [x] :=
⇥
min{xj, xk} : j, k 2 Nm

⇤
=

2

6666664

x1 x1 x1 . . . x1 x1
x1 x2 x2 . . . x2 x2
x1 x2 x3 . . . x3 x3
...

...
...

. . .
...

...
x1 x2 x3 . . . xm�1 xm�1
x1 x2 x3 . . . xm�1 xm

3

7777775

is x1(x2 � x1)(x3 � x1) · · · (xm � x1) 6= 0, and thus non-singularity assumption (A1) holds. Notice that
for any t 2 (0, 1),

K (x, t) := min{x, t} =

⇢
x 0 < x  t,
t t < x < 1, x 2 (0, 1).

It follows that K satisfies the independence assumption (A3).
There are three cases when we compute the Lebesgue constant:
Case 1: If 0 < t < x1 then Kx(t) = (t, t, . . . , t)> and K [x]�1Kx(t) = ( t

x1
, 0, . . . , 0)>.

Case 2: If xm < t < 1 then Kx(t) = (x1, x2, . . . , xm)> and K [x]�1Kx(t) = (0, 0, . . . , 0, 1)>.
Case 3: If xj  t < xj+1 for some j 2 Nm�1 then Kx(t) = (x1, x2, . . . , xj, t, . . . , t)> and

K [x]�1Kx(t) =

⇣
0, 0, . . . , 0,

xj+1 � t
xj+1 � xj

,
t � xj

xj+1 � xj
, 0, . . . , 0

⌘>

.

In all three cases, it is straightforward to see that maxt2(0,1) kK [x]�1Kx(t)k1  1. Namely, the
Lebesgue constant condition (3.4) is satisfied. The proof is hence complete. ⇤

At the end of this section, we give three negative examples. We shall show that the Laplacian
kernel, the exponential kernel, and the Gaussian kernel are not admissible when the dimension is
higher than 1. This forces us to look for a relaxed linear representer theorem in the next section.
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Theorem 4.4. The Laplacian kernel K (x, x0) = e�kx�x0k2 , x, x0 2 Rn does not satisfy the Lebesgue
constant condition (3.4) for any n � 2.

Proof. We choose three distinct points x1 = (0, 0, 0, . . . , 0)>, x2 = (1/10, 0, 0, . . . , 0)>, and
x3 = (0, 1/10, 0, . . . , 0)> in Rd. Let x := {x1, x2, x3} and t0 = (1/10, 1/10, 0, . . . , 0). Then we
estimate

sup
t2X

kK [x]�1Kx(t)k1 � kK [x]�1Kx(t0)k1

=0.068064 + 0.517323 + 0.517323 = 1.102711 > 1,

which completes the proof. ⇤

Theorem 4.5. The multivariate exponential kernel K (x, x0) = e�kx�x0k1 , x, x0 2 Rn does not satisfy the
Lebesgue constant condition (3.4) when n � 2.

Proof. We begin with the proof of the special case when n = 2. Choose three distinct points
x1 = (0, 0)>, x2 = (1/2, 0)>, x3 = (0, 1/2)> in R2. Let x := {x1, x2, x3}. Then we estimate the
Lebesgue constant of bivariate exponential kernel

supp t2R2
��K [x]�1Kx(t)

��
1 �

���K [x]�1Kx((1/2, 1/2)>)
���
1

=

��������

2

664

1 e�
1
2 e�

1
2

e�
1
2 1 e�1

e�
1
2 e�1 1

3

775

�1 2

64

e�1

e�
1
2

e�
1
2

3

75

��������
1

=

��������

1
1 � e�1

2

664

1 + e�1 �e�
1
2 �e�

1
2

�e�
1
2 1 0

�e�
1
2 0 1

3

775

2

64

e�1

e�
1
2

e�
1
2

3

75

��������
1

= k(�e�1, e�
1
2 , e�

1
2 )>k1 = e�1

+ 2e�
1
2 > 1.

In general, for any n � 3, we choose n + 1 points, x1 = 0, xl+1 = el/2 in Rn for all l 2 Nn.
Here el is a column vector in Rn whose lth component is 1 and other components are 0. Let
x := {x1, x2, . . . , xn+1}. Then we compute

supp t2Rn
��K [x]�1Kx(t)

��
1 �

���K [x]�1Kx

⇣e1 + e2
2

⌘���
1

=
��(�e�1, e�

1
2 , e�

1
2 , 0, . . . , 0)>

��
1 = e�1

+ 2e�
1
2 > 1.

In other words, the vector Kx( e1+e2
2 ) can be exactly represented by the first three columns of K [x].

The proof is hence complete. ⇤

Theorem 4.6. The Gaussian kernel K (x, x0) = e�kx�x0k22 , x, x0 2 Rn does not satisfy the Lebesgue constant
condition (3.4) for any n � 1.

Proof. When n = 1, we choose two points x1 = 0 and x2 = 1/2 in R. Let x := {x1, x2}. Then we
compute the Lebesgue constant of the Gaussian kernel on R

supp t2R
��K [x]�1Kx(t)

��
1 � kK [x]�1Kx(1)k1 = k(�e�

1
2 , e�

1
4 +e�

3
4 )>k1 = e�

1
2 +e�

1
4 +e�

3
4 > 1.

Generally, for any n � 2, we choose n + 1 points, x1 = 0, xl+1 = el/2 in Rn for all l 2 Nn. Let
x := {x1, x2, . . . , xn+1}. Then we compute

supp t2Rn
��K [x]�1Kx(t)

��
1 �

���K [x]�1Kx

⇣e1 + e2
2

⌘���
1

=
��(�e�

1
2 , e�

1
4 , e�

1
4 , 0, . . . , 0)>

��
1 = e�

1
2 + 2e�

1
4 > 1.
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In other words, the vector Kx( e1+e2
2 ) can be exactly represented by the first three columns of K [x].

The proof is hence complete. ⇤

We remark that the Lebesgue constant for the kernel interpolation always satisfies

supp t2X
��K [x]�1Kx(t)

��
1 � supp t2x

��K [x]�1Kx(t)
��
1 = 1.

Therefore, asking it to be exactly bounded below by 1 is a very strong condition and only a few
kernels satisfy it. To address this problem, we are devoted to investigating a relaxed version of the
representer theorem and the Lebesgue constant condition in the next section.

5. A relaxed representer theorem

As shown in Section 4, the Lebesgue constant condition (3.4) is a very strong condition and only
a few commonly used kernels satisfy it. We will derive in this section relaxed representer theorems
that need a weaker condition on the Lebesgue constant. We will also present a rich class of kernels
that satisfy this weaker condition.

In particular, we will consider the relaxed linear representer theorem in the constructed vector-
valued RKBS BK in the following form

min
f2Sx

L(f (x), y) + �kf kBK  min
f2BK

L(f (x), y) + ��mkf kBK , (5.1)

where �m � 1 is a constant depending on the number m of sampling points, the kernel K and
the input space X . By the arguments in the proof of Theorem 3.3, we see that the left-hand side
of (5.1) possesses a solution. The relaxed representer theorem tells that we can get a near-optimal
minimizer of the regularization network over the finite sample-dependent function space in the
sense of (5.1).

We point out that if we require �m = 1 for all m, then it is exactly the same as the Lebesgue
constant condition (3.4). Once allowing �m > 1, there would be a large class of kernels included in
our framework. On the other hand side, as long as �m is bounded on m or does not increase too
fast with respect to m, we will still get a reasonable learning rate estimate for the minimizer of the
regularization network (3.6). This will be shown in Section 5.1. In Section 5.2, we present a weaker
condition on the Lebesgue constant for the relaxed representer theorem (5.1).

5.1. Learning rate estimate under the relaxed representer theorem

We shall explain the important role of the relaxed representer theorem (5.1) by presenting
an learning rate estimate for the regularization network (3.6). The scalar-valued case has been
investigated in [29,30]. Here we shall work with the vector-valued RKBS BK with the `1 norm
satisfying the relaxed representer theorem (5.1). We shall prove that after relaxing the requirement
on the representer theorem, the generalization ability of the minimizer will not be much affected
as long as the constant �m is under control.

Before moving on, let us recall some existing work about the error analysis (or learning rate)
for regularization networks in scalar-valued reproducing kernel spaces. The error analysis for
regularization networks has been given in the scalar-valued RKHS [9], in the data dependent
hypothesis space with `1 regularizer [28], and in the scalar-valued RKBS with the `1 norm satisfying
the representer theorem (Theorem 3.5 of [29]) or satisfying the relaxed representer theorem (Page
113 of [30]).

To start with, some assumptions are needed. We let the loss function L in (5.1) be the least
squared function and let X be a compact metric space. Suppose that K : X ⇥ X ! Rd⇥d is a
continuous positive definite kernel on X such that the relaxed representer theorem (5.1) is satisfied.
For any matrix A 2 Rd⇥d, we let kAk2 := sup{kAyk2 : y 2 Rd, kyk2  1} be the operator norm. We
assume that there exists C > 0 such that kK(x, t)k2  C for all x, t 2 X .
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Following a commonly used assumption in learning theory [9], we assume that the sample data
z := {(xj, yj) : j 2 Nm} ✓ X ⇥ Rd is formed by independent and identically distributed instances of
a random variable (x, y) 2 X ⇥ Rd subject to an unknown probability measure ⇢ on X ⇥ Rd. The
minimizer fz,� of the left-hand side of (5.1) takes the form

fz,� :=

mX

j=1

K(xj, ·)cj, cj 2 Rd. (5.2)

We hope that fz,� will well predict the outputs of new inputs from X . The performance of a general
predictor f : X ! Rd is measured by

E(f ) :=

Z

X⇥Rd
kf (x) � yk2

2d⇢(x, y),

where k · k2 denotes the standard Euclidean norm in Rd. Suppose the probability measure ⇢ on
X ⇥ Rd can be factored as the product of the conditional probability measure ⇢(·|x) at x and the
marginal probability measure ⇢X on X . Then ⇢(x, y) = ⇢(y|x)⇢X (x) for all x 2 X and y 2 Rd. The
vector-valued function f⇢ : X ! Rd minimizing E(f ) is called the regression function defined by

f⇢(x) =

Z

Rd
yd⇢(y|x) =

⇣Z

Rd
yjd⇢(y|x) : j 2 Nd

⌘>

2 Rd, x 2 X, (5.3)

where yj the jth component of y 2 Rd. The definition and basic properties of vector integration can
be found in [13]. Eq. (5.3) says that the function value f⇢(x) is the mean of the random variable
y 2 Rd with respect to the conditional probability measure ⇢(·|x) at x. Equivalently, we have

Z

Rd
v>(f⇢(x) � y)d⇢(y|x) = 0 for all x 2 X and v 2 Rd.

A direct computation yields that

E(f ) � E(f⇢) = kf � f⇢k2
L2(X,⇢X ;Rd), (5.4)

where L2(X, ⇢X ;Rd) denotes the Banach space of square-integrable vector-valued functions f : X !

Rd with respect to the measure ⇢X , that is,

kf kL2(X,⇢X ;Rd) :=

⇣Z

X
kf (x)k2

2d⇢X (x)
⌘1/2

< +1.

In general, the optimal predictor f⇢ is unknown. Hence, we shall approximate the regression function
f⇢ with fz,� defined by (5.2). By (5.4), we expect with a large confidence that the approximation error

E(fz,�) � E(f⇢) = kfz,� � f⇢k2
L2(X,⇢X ;Rd)

would converge to zero rapidly as the number m of sampling points increases.
Similar to the scalar-valued case [9,29], the regression function f⇢ is assumed in the range ran(LsK)

of LsK for some s > 0, where s represents the regularity of f⇢ . Here, LK is the compact positive
operator [11] on L2(X, ⇢X ;Rd) defined by

LK(f ) :=

Z

X
K(·, t)f (t)d⇢X (t), f 2 L2(X, ⇢X ;Rd). (5.5)

By the Mercer theorem (see Theorem 3.4 and Theorem A.1 in [11]) for matrix-valued kernels, there
exists a sequence of orthonormal basis {�j : j 2 N} for L2(X, ⇢X ;Rd) consisting of eigenfunctions of
LK with the corresponding eigenvalues �j � �j+1, j 2 N. It follows that

K(x, t) =

X

j2N

�j�j(x) · �j(t)> 2 Rd⇥d, x, t 2 X
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where the series convergent absolutely and uniformly on X⇥X . The assumption f⇢ 2 ran(LsK) implies
that there exists h =

P
j2N aj�j 2 L2(X, ⇢X ;Rd) such that

f⇢ = LsK(h) =

X

j2N

�sj aj�j. (5.6)

We shall construct a new RKBS BK with the reproducing kernel K to accommodate ranLK.
Moreover, we will have BK ✓ BK. To do so, the last requirement we needed is that K satisfies
the denseness condition

span{K(x, ·)y : x 2 X, y 2 Rd
} = C(X;Rd), (5.7)

where C(X;Rd) denotes the Banach space of bounded and continuous vector-valued functions on
the compact metric space X with the maximum norm

kf kC(X;Rd) := sup
x2X

kf (x)k2, f 2 C(X;Rd).

The matrix-valued positive definite kernel K satisfying (5.7) is called a universal multi-task ker-
nel [5]. Denote by M(X;Rd) the Banach space of regular vector measures of bounded variation
on X (see, for instance, [22]). By the Riesz representation theorem [22], every continuous linear
functional T on C(X;Rd) is represented by a unique regular vector measure µ 2 M(X;Rd) in the
sense that

T (f ) =

Z

X
hf (x), dµ(x)i for all f 2 C(X;Rd),

and

sup
f2C(X;Rd),kf kC(X;Rd)1

|T (f )| = kµk
M(X;Rd)

where kµk
M(X;Rd) denotes the total variation of the vector measure µ.

For every µ 2 M(X;Rd), we define the vector-valued function Kµ : X ! Rd by

y>Kµ(x) :=

Z

X
hK(x, t)y, dµ(t)i. x 2 X, y 2 Rd. (5.8)

Notice that for every x 2 X and µ 2 M(X;Rd), the functional

y 2 Rd
7!

Z

X
hK(x, t)y, dµ(t)i 2 R

is continuous on Rd. By (5.7) and the Riesz representation theorem for the Hilbert space Rd, there
exists a unique element denoted by Kµ(x) in Rd such that (5.8) is satisfied. The vector-valued
function Kµ can also be described by the weak-Bochner integral [13]

Kµ(x) =

Z

X
K(x, t)dµ(t), x 2 X, µ 2 M(X;Rd). (5.9)

We introduce the following linear space

BK :=

n
Kµ : µ 2 M(X;Rd)

o
with the norm kKµkBK := kµk

M(X;Rd), (5.10)

where Kµ is defined by (5.8) or (5.9). By the denseness condition (5.7), the norm k·kB is well-defined.
Furthermore, BK is a Banach space as it is isometrically isomorphic to the Banach space M(X;Rd).
By (5.8), we compute for all x 2 X and µ 2 M(X;Rd)

kKµ(x)k2 = sup
kyk2=1

y>Kµ(x) = sup
kyk2=1

Z

X
hK(x, t)y, dµ(t)i  sup

kyk2=1
kK (x, ·)ykC(X;Rd)kµk

M(X;Rd).

It follows that for all x 2 X and µ 2 M(X;Rd)

kKµ(x)k2  sup
t2X

kK(x, t)k2kKµkBK .
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By Definition 2.1, BK is an RKBS of vector-valued functions from X to Rd as every point evaluation
functional on the space is continuous. Clearly, we obtain the inclusion relation

BK ✓ BK

as `1d(X) defined by (2.3) is a subset of M(X;Rd).
For any function f : X ! Rd, we denote the empirical risk with respect to the sample data

z = {(xj, yj) : j 2 Nm} by

Ez (f ) :=
1
m

mX

j=1

kf (xj) � yjk2
2.

Let g be an appropriate function in BK which will be specified later. Then the approximation error
E(fz,�) � E(f⇢) can be decomposed into the sum of four quantities

E(fz,�) � E(f⇢) = S(z, �, g) + P(z, �, g) + D(�, g) � �kfz,�kBK ,

where the sampling error, the hypothesis error and the regularization error are respectively defined
by

S(z, �, g) := E(fz,�) � Ez (fz,�) + Ez (g) � E(g),
P(z, �, g) := (Ez (fz,�) + �kfz,�kBK ) � (Ez (g) + ��mkgkBK ),
D(�, g) := E(g) � E(f⇢) + ��mkgkBK .

By the relaxed representer theorem (5.1) in BK, we can choose g 2 BK such that P(z, �, g)  0. As
a result, we have

E(fz,�) � E(f⇢)  S(z, �, g) + D(�, g). (5.11)

We restrict our attention to the case when 0 < s < 1 as the other case s � 1 can be handled
in a slightly different way. The estimation of the regularization error D(�, g) in BK is similar to the
one for Lemma 3.2 in [29].

Lemma 5.1. If 0 < s < 1 then

inf
g2BK

D(�, g) 
p
d
⇣
khkL2(X,⇢X ;Rd) + khk2

L2(X,⇢X ;Rd)

⌘
(��m)

2s
1+s . (5.12)

Proof. By (5.5) and (5.9), we have for each  2 L2(X, ⇢;Rd) that LK( ) 2 BK and by the
Cauchy–Schwartz inequality that

kLK kBK =

Z

X
k (x)k1d⇢X (x) 

⇣Z

X
k (x)k2

1d⇢X (x)
⌘1/2


p
d
⇣Z

X
k (x)k2

2d⇢X (x)
⌘1/2

=
p
dk kL2(X,⇢X ;Rd).

(5.13)

Note that khk2
L2(X,⇢X ;Rd) =

P
j2N a2j , where h =

P
j2N aj�j. If �1  (��m)

1
1+s then by (5.4) and (5.6)

D(�, 0) = E(0) � E(f⇢) = kf⇢k2
L2(X,⇢X ;Rd) =

X

j2N

�2sj a2j  (��m)
2s
1+s

X

j2N

a2j = (��m)
2s
1+s khk2

L2(X,⇢X ;Rd),

which implies (5.12), where we have used the fact that {�j : j 2 N} is an orthonormal basis for
L2(X, ⇢X ;Rd) in the last equality.

If �1 > (��m)
1

1+s then there exists some N 2 N such that �N+1 < (��m)
1

1+s  �N  �N�1 

· · ·  �1 as the eigenvalue �j decreases to zero as j tends to infinity. Notice that s � 1 < 0 for any
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0 < s < 1. Letting  :=
P

j2NN
�s�1
j aj�j, we have by (5.4), (5.6) and (5.13)

D(�, LK )  kLK � f⇢k2
L2(X,⇢X ;Rd) + ��m

p
dk kL2(X,⇢X ;Rd)

=

���
1X

j=N+1

�jaj�j

���
2

L2(X,⇢X ;Rd)

+ ��m
p
d
���

X

j2NN

�s�1
j aj�j

���
L2(X,⇢X ;Rd)

=

1X

j=N+1

�2sj a2j + ��m
p
d
⇣X

j2Nm

�
2(s�1)
j a2j

⌘1/2

 (��m)
2s
1+s

1X

j=N+1

a2j +
p
d��m(��m)

s�1
1+s

⇣X

j2NN

a2j
⌘1/2

 (��m)
2s
1+s khk2

L2(X,⇢X ;Rd) +
p
d(��m)

2s
1+s khkL2(X,⇢X ;Rd).

which implies (5.12). The proof is hence complete. ⇤
The sampling error S(z, �, g) can be obtained by following the approach in [29]. Combining

Lemma 5.1 and Lemmas 3.3 and 3.4 in [29], we are able to present an error estimate for (5.11).

Theorem 5.2. For all 0 < � < 1 and 0 < s < 1, there exists a positive constant C� such that with confi-
dence 1 � �, we have

kfz,��f⇢k2
L2(X,⇢X ;Rd)  C�

⇣p
d(��m)

2s
1+s +

log 2
�

m
(��m)

2s�2
1+s +

log 2
�

p
m

(��m)
2s�1
1+s +

log 2
�

+ log(1 + m)
(��m)2

m�
1

1+✓

⌘
,

where ✓ > 0 is a positive constant related to the assumptions on the kernel K and the input space.

We make some comments. If �2
m does not cancel the decay of the term m�

1
1+✓ , one can get a

satisfactory learning rate when � is appropriately chosen. We discuss two cases below:

(i) If �m is uniformly bounded, then with a large confidence 1 � � we have

kfz,� � f⇢k2
L2(X,⇢X ;Rd)  C�

p
dm�

s
1+2s

1
1+✓ log

2 + 2m
�

.

(ii) If �m  cm↵ for some positive constants c and ↵ < 1
2+2✓ , then with a large confidence 1 � �

we have

kfz,� � f⇢k2
L2(X,⇢X ;Rd)  C�

p
dm�

s
1+2s (

1
1+✓ �2↵) log

2 + 2m
�

.

5.2. Characterization

We shall prove a weaker condition on the Lebesgue constant for the relaxed representer theorem
(5.1). To this end, we first show a connection between the relaxed representer theorem for
regularization networks and that for the minimal norm interpolation problem.

Lemma 5.3. If there exists some �m � 1 such that for all y 2 Rmd

min
f2Ix(y)

kf kBK �
1
�m

min
Ix(y)\Sx

kf kBK (5.14)

then the relaxed linear representer theorem (5.1) holds true for any continuous loss function L and any
regularization parameter �.

Proof. Suppose f0 is a minimizer of minf2BK L(f (x), y)+ ��mkf kBK . Let g be the unique function in
S
x that interpolates f0 at x, namely, g(x) = f0(x). By (5.14), kgkBK  �mkf0kBK . It implies

L(g(x), y) + �kgkBK  L(f0(x), y) + ��mkf0kBK ,

which finishes the proof. ⇤
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The next result gives a characterization for condition (5.14). It is a weaker version of the Lebesgue
constant condition (3.4).

Theorem 5.4. Eq. (5.14) holds true for all y 2 Rmd if and only if

sup
t2X

kK[x]�1Kx(t)k1  �m. (5.15)

Proof. Remember that the set Ix(y) \ S
x consists of only one function f0 := Kx(·)K[x]�1y. Let g

be an arbitrary function in Ix(y) \ B0, where B0 is defined in (2.6). By adding sampling points and
assigning the corresponding coefficients to be zero if necessary, we may assume g 2 S

x[t \ Ix(y)
for a set of new points t := {tk 2 X : k 2 Nn} disjoint with x. Let b := g(t), and denote by K[t, x]
and K[x, t] the md ⇥ nd and nd ⇥ md matrices given by

(K[t, x])jk := K(tk, xj), j 2 Nm, k 2 Nn, and (K[x, t])jk := K(xk, tj) : j 2 Nn, k 2 Nm.

It then follows

kgkBK =

�����


K[x] K[t, x]

K[x, t] K[t]

��1 
y
b

������
1

=

����


K[x]�1y � K[x]�1K[t, x]b̃

b̃

�����
1
, (5.16)

where

b̃ :=

⇣
K[t] � K[x, t]K[x]�1K[t, x]

⌘�1
(b � K[x, t]K[x]�1y).

Note that as b is allowed to take any vector in Rnd, so is b̃.
If (5.14) holds true for all y 2 Rmd then we choose t to be a singleton {t1}, b̃ = ej, and

y = K[t1, x]ej = Kx(t1)ej for some j 2 Nd. It follows

1 =

����


0md
ej

�����
1

�
1
�m

kf0kBK =
1
�m

��K[x]�1y
��
1 =

1
�m

��K[x]�1Kx(t1)ej
��
1 .

As j 2 Nd is arbitrary, we get (5.15).
Conversely, suppose that (5.15) is satisfied. We need to show that for all g 2 Ix(y)

kgkBK �
1
�m

kf0kBK =
1
�m

��K[x]�1y
��
1 .

We shall discuss the case when g 2 Ix(y) \ B0 only, as the general case will then follow from the
same arguments as those in the last paragraph of the proof of Theorem 3.2. Let g 2 Ix(y)\B0 with
the norm in Eq. (5.16). If kK[x]�1yk1  �mkb̃k1, it is direct to observe that

kgkBK � kb̃k1 �
1
�m

��K[x]�1y
��
1 .

On the other hand, if kK[x]�1yk1 � �mkb̃k1, then by (5.15) we have

kgkBK � kK[x]�1yk1 � kK[x]�1K[t, x]b̃k1 + kb̃k1

� kK[x]�1yk1 �

✓
max
k2Nn

kK[x]�1Kx(tk)k1

◆
kb̃k1 + kb̃k1

� kK[x]�1yk1 � (�m � 1)kb̃k1

> kK[x]�1yk1 � (�m � 1)
1
�m

kK[x]�1yk1

=
1
�m

kK[x]�1yk1.

The proof is hence complete. ⇤
In the rest of this section, we discuss examples of admissible kernels that satisfy the weaker

Lebesgue constant condition (5.15). The Lebesgue constants can measure the stability of kernel-
based interpolation. Toward this research interest, it was proved in [18] that the Lebesgue constant
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associated with surface splines and Sobolev splines on a compact domain is uniformly bounded
for quasi-uniform input points (see, Theorem 4.6 therein). A set S of points in a compact domain
⌦ ✓ Rn is said to be quasi-uniform with uniformity constant � > 1 if

1
�
qS  hS,⌦  � qS

where

hS,⌦ := sup
x2⌦

min
xj2S

kx � xjk2 and qS :=
1
2

min
xi,xj2S,xi 6=xj

kxi � xjk2

denote the fill distance and the separation distance, respectively. For a class of translation invariant
kernels K (x, x0) = �(x � x0), x, x0 2 Rn, the paper [10] showed that if the Fourier transform �̂ of �
satisfies

0 < c1(1 + k⇠k2
2)

�⌧
 �̂(⇠ )  c2(1 + k⇠k2

2)
�⌧

at infinity for some positive constants c1, c2,M and ⌧ > n
2 , then the Lebesgue constant of K for

quasi-uniform inputs is bounded by a multiple of
p
m. This includes, for example, Poisson radial

functions, Matérn kernels and Wendland’s compactly supported kernels [10,34]. In particular, the
RKHS with the Laplacian kernel K (x, x0) = e�kx�x0k2 , x, x0 2 Rn is norm equivalent to the Sobolev
space of the smooth order (n + 1)/2 [34].

6. Numerical experiments

We shall perform four numerical experiments to show that the regularization network (3.6) in
vector-valued RKBSs (VVRKBS) with the `1 norm is indeed able to yield sparsity compared to the
one in vector-valued RKHSs (VVRKHS). Moreover, we can achieve better numerical performance for
multi-task learning in the constructed spaces.

To begin with, let us compare the Lebesgue constant of the three aforementioned kernels in
Section 4. They are the Laplacian kernel e�kx�x0k2 , the exponential kernel e�kx�x0k1 , and the Gaussian
kernel e�kx�x0k22 , x, x0 2 Rn. Fix n = 2. Notice that grid points

n⇣
�1 +

2
M � 1

i, �1 +
2

M � 1
j
⌘

: i, j = 0, 1, . . . ,M � 1
o
, M 2 N, (6.1)

in [�1, 1]2 are a rather extreme class of quasi-uniform points. Hence, to obtain a set of m quasi-
uniform points in [�1, 1]2, we randomly sample half of M2 grid points defined by (6.1). In this
case, we have m = M2/2. We repeat the above sampling process 10 times. The average Lebesgue
constant of the Gaussian kernel is not available for m � 200 as the corresponding kernel matrix is
close to singular. We use N/A to indicate those cases. The average Lebesgue constant of three kernels
was listed in Table 6.1 when M = 10, 20, 30, 40, 50, 60 or m = 50, 200, 450, 800, 1250, 1800.
The numerical results in Table 6.1 show that Lebesgue constants of the Laplacian kernel and the
exponential kernel grow moderately as the number of points increases. Hence, both of them are
appropriate kernels admissible for the construction of vector-valued RKBSs with the `1 norm. By
contrast, Lebesgue constants of the Gaussian kernel are quite large even for a small number of
points. The same observations were mentioned in [10] that Lebesgue constants of the Gaussian
kernel do not seem to be uniformly bounded. This results from the infinite smoothness of the
Gaussian kernel.

Here and subsequently, we choose both the scaled Laplacian kernel and the scaled expo-
nential kernel for the sparse multitask learning. Specifically, the multi-task kernel for numerical
experiments takes the form

K(x, x0) = Kr (x, x0)A, x, x0
2 Rn, (6.2)

where A denotes a d ⇥ d positive definite symmetric matrix, and Kr in (6.2) stands for the scaled
Laplacian kernel Kr (x, x0) = e�kx�x0k2/r , x, x0 2 Rn or the scaled exponential kernel e�kx�x0k1/r ,
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Table 6.1
Lebesgue constants of the Laplacian kernel e�kx�x0k2 , the exponential kernel e�kx�x0k1 , and the Gaussian kernel e�kx�x0k22

on a set of m quasi-uniform distributed points of [�1, 1]2.
Kernels m = 50 m = 200 m = 450 m = 800 m = 1250 m = 1800
Laplacian Kernel 1.401243 1.912003 2.482223 2.850599 3.262301 3.632585
Exponential Kernel 3.155898 4.770347 6.138831 6.291278 6.374352 7.512769
Gaussian Kernel 490.870640 N/A N/A N/A N/A N/A

x, x0 2 Rn, where r > 0. Observe that the function value of Kr (x, x0), x, x0 2 Rn decays rapidly
for a large kx � x0k2 or kx � x0k1. Hence, the choice of r should depend upon the data.

Let BK be the associated vector-valued RKBS with the `1 norm and HK the vector-valued RKHS
with reproducing kernel K taking the form (6.2). For the sake of simplicity, the square loss function
will be used. We compare the following regularization network models

min
f2BK

kf (x) � yk
2
2 + �kf kBK

and

min
f2HK

kf (x) � yk
2
2 + �kf k2

HK
.

By the relaxed linear representer theorem for BK and the linear representer theorem for HK, the
minimizers of the previous models are

Kx(·)b = A
mX

j=1

Kr (x, xj)bj with b := arg min
c2Rmd

n
kK[x]c � yk

2
2 + �kck1

o

and

Kx(·)h = A
mX

j=1

Kr (x, xj)hj with h := arg min
c2Rmd

n
kK[x]c � yk

2
2 + �c>K[x]c

o
,

respectively. The `1-regularized least square regression problem about b does not have a closed form
solution. We employ the alternating direction method of multipliers (ADMM) [3] to solve it. We refer
to the link (https://web.stanford.edu/⇠boyd/papers/admm/lasso/lasso.html) for the corresponding
code of ADMM. The number of maximum iterations for ADMM is 5000. The coefficient vector h
has the closed form h = (K[x] + �Imd)�1y. The regularization parameter � for each model will be
optimally chosen from {10j : j = �4, �3, . . . , 1} so that the mean square error (MSE) between
predicted values and the observed values y will be minimized. We run all the experiments on a
computer with a single NVIDIA Quadro P2000.

6.1. Experiment 1

The first numerical experiment is for synthetic data. In this experiment, we set r = 1 in (6.2).
The training data is generated by a function f : R2 ! R3 defined as

f (x) := A
5X

j=1

Kr (x, xj)cj, x 2 R2,

where x1 = (�1/3, �1/3), x2 = (�1/2, 1/2), x3 = (0, 0), x4 = (1/3, 2/3), x5 = (2/3, 2/3),

[c1, c2, c3, c4, c5] :=

" 1 1 1 1 1
1 2 1 2 1
2 1 1 1 2

#
and A :=

2

4
1 e�1 e�2

e�1 1 e�1

e�2 e�1 1

3

5 .

Let x be the set of 400 grid points in [�1, 1]2 defined by (6.1) when M = 20, and use the output
vector y at x which are then disturbed by some noise. We then compare the performance measured
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Table 6.2
Comparison of the least square regularization for synthetic data in the vector-valued RKBS with the `1 norm and in the
vector-valued RKHS.
Kernels Models Gaussian noise Uniform noise

MSE Sparsity (Max) MSE Sparsity (Max)
Laplacian VVRKBS 0.0020 68.5 (105) 0.0013 96.4 (102)
Kernel VVRKHS 0.0039 1200 (1200) 0.0024 1200 (1200)
Exponential VVRKBS 0.0020 59.8 (97) 0.0012 83.9 (90)
Kernel VVRKHS 0.0040 1200 (1200) 0.0028 1200 (1200)

Table 6.3
Comparison of the classification for digits 6, 8, 9 in the VVRKBS with the `1 norm
and in the VVRKHS for the Laplacian kernel with r = 10 and the exponential kernel
with r = 70.
Kernels Models Training accuracy Sparsity Testing accuracy
Laplacian VVRKBS 100% 1735 98.05%
Kernel VVRKHS 100% 5550 98.44%
Exponential VVRKBS 100% 1455 98.44%
Kernel VVRKHS 100% 5550 98.44%

by the MSE and the sparsity for two regularization models. The sparsity is measured by the number
of nonzero components in the coefficient vectors b and h. We test both models with two types of
noise: Gaussian noise with variance 0.01, and uniform noise in [�0.1, 0.1]. For each type of noise,
we run 10 times of numerical experiments and compute the average MSE, the average sparsity, and
the maximum sparsity in the 10 experiments. We conclude that the regularization network in the
vector-valued RKBS with the `1 norm outperforms the classical one for synthetic data. At the same
time, the sparsity of data representation can be substantially promoted in our constructed spaces
with the Laplacian kernel and the exponential kernel. The results are listed in Table 6.2.

6.2. Experiment 2

The second experiment is for the MNIST database (http://yann.lecun.com/exdb/mnist/) of hand-
written digits from the machine learning repository. It possesses a training set of 7291 examples
and a testing set of 2007 examples. Each digit is a vector in [0, 1]255. Limited by the computation
resource, we choose two classes {6, 8, 9} and {2, 3, 7} of handwritten digits which are relatively
difficult to distinguish. For a set z ✓ x of 100 randomly chosen examples, {kx � x0k2 : x, x0 2 z}
has mean 7.37 and standard deviation 1.50 and {kx� x0k1 : x, x0 2 z} has mean 74.60 and standard
deviation 21.34. Therefore, we choose the r = 10 for the scaled Laplacian kernel and r = 70 for the
scaled exponential kernel in the second experiment.

We first consider three digits 6,8, and 9. In this case, we have a set x of 1850 examples for
training, and a set of 513 examples for testing. For the multi-task learning, three labels 6, 8, and
9 are transferred to the vectors (1, 0, 0)>, (0, 1, 0)>, and (0, 0, 1)>, respectively. We compute the
prediction accuracy for training data and the sparsity of coefficients for both models. Then we apply
learned coefficients of both models to testing data. The accuracy is measured by labels that are
correctly predicted by models. The results are listed in Table 6.3. To be more specific, we pick out
the digits from the testing data that are misclassified by models. We number the testing data with
numbers from 1 to 513. For instance, the numbers of 8 misclassified digits, predicted labels, and
true labels for each model with the exponential kernel are listed in Table 6.4. Both regularization
models classify the numbers 56, 58, 73, 113, 212, 430, and 480 incorrectly. But the number 255
is misclassified only in VVRKBS and the number 64 is misclassified only in VVRKHS. The original
images of 9 misclassified digits for both models with the scaled exponential kernel are displayed in
Fig. 6.1. The numerical performances for both models are comparable.

Next, we study another class of three digits 2, 3, and 7. In this case, we have a set x of 2034
examples for training, and a set of 511 examples for testing. The results are listed in Table 6.5. Again,
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Fig. 6.1. Misclassified digits 6, 8, 9 for both regularization network models with the exponential kernel.

Table 6.4
Misclassified digits 6, 8, 9 in the VVRKBS with the `1 norm and in the VVRKHS for
the exponential kernel with r = 70.
VVRKBS VVRKHS
Numbers True labels Predicted labels Numbers True labels Predicted labels
56 6 8 56 6 8
58 8 6 58 8 6
73 9 8 64 8 6
113 8 9 73 9 8
212 8 9 113 8 9
255 8 9 212 8 9
430 8 9 430 8 9
480 9 8 480 9 8

Table 6.5
Comparison of the classification for digits 2, 3, 7 in the VVRKBS with the `1 norm
and in the VVRKHS for the Laplacian kernel with r = 10 and the exponential kernel
with r = 70.
Kernels Models Training accuracy Sparsity Testing accuracy
Laplacian VVRKBS 100% 1778 97.46%
Kernel VVRKHS 100% 6102 97.46%
Exponential VVRKBS 100% 1607 97.26%
Kernel VVRKHS 100% 6102 97.06%

we only present the misclassified examples for two models with the scaled exponential kernel. We
number the testing data with numbers from 1 to 511. Both regularization models misclassify the
numbers 38, 68, 119, 122, 203, 226, 232, 251, 277, 287, 392, 413, 419, 506. In addition, the VVRKHS
classifies one more number 365 incorrectly. The original images of 15 misclassified digits for both
models with the scaled exponential kernel are displayed in Fig. 6.2. Numerical results demonstrate
that both models are comparable.

6.3. Experiment 3

The third experiment is for the Iris database (http://archive.ics.uci.edu/ml/datasets/Iris). This is
the best known database to be found in the pattern recognition literature. The data set contains
three classes of 50 instances each, where each class refers to a type of Iris plant. For each class,
we choose 40 instances as the training set and the remaining 10 instances as the testing set. As a
result, we have a training set of 120 instances and a testing set of 30 instances. Each Iris plant is
measured by four attributes, namely, sepal length, sepal width, petal length, and petal width.

For the multi-task learning, the three classes, Iris setosa, Iris versicolor, and Iris virginica are
transferred to the vectors (1, 0, 0)>, (0, 1, 0)>, and (0, 0, 1)>, respectively. For the Iris training set
x, {kx � x0k2 : x, x0 2 x} has mean 2.56 and standard deviation 1.66 and {kx � x0k1 : x, x0 2 x}
has mean 4.29 and standard deviation 2.77. Therefore, we simply choose r = 5 for both the scaled
Laplacian kernel and the scaled exponential kernel. The numerical results are listed in Table 6.6.
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Fig. 6.2. Misclassified digits 2, 3, 7 for both regularization network models with the exponential kernel.

Table 6.6
Comparison of the classification for Iris database in the VVRKBS with the `1 norm
and in the VVRKHS for the Laplacian kernel and the exponential kernel with r = 5.
Kernels Models Training accuracy Sparsity Testing accuracy
Laplacian VVRKBS 100% 142 100%
Kernel VVRKHS 100% 360 100%
Exponential VVRKBS 100% 149 100%
Kernel VVRKHS 100% 360 100%

6.4. Experiment 4

The last experiment is to classify an email as spam or non-spam. The database possesses 4601
instances (http://archive.ics.uci.edu/ml/datasets/Spambase). Among them, 1813 emails are spam.
Each instance is a row vector in R58. The last component of the vector indicates whether the email is
considered spam or not. For the multi-task learning, we coded spam as the vector (1, 0)> and non-
spam as (0, 1)>. A test set of size 1536 was randomly chosen, leaving the rest 3065 observations in
the training set. The positive definite matrix A in (6.2) is given by

A :=


1 0.1
0.1 1

�
.

Note that the scalar r in (6.2) is again determined by the data set. Let us set r = 500 for the scaled
exponential kernel.

The numerical results are listed in Tables 6.7 and 6.8. We should mention the number of training
set is the same as the one in numerical experiments for the spam dataset in [19]. The numerical
results in [19] show that the test error rates of the linear logistic regression, the additive logistic
regression, and the tree-based method for the spam dataset are 7.6%, 5.5% and 9.3%, respectively.
By comparison, the testing accuracy of regularization networks for the spam dataset in the VVRKBS
with the `1 norm and in the VVRKHS are 6.05% and 5.66%, respectively. The error analysis is
presented in Table 6.8. Clearly, the accuracy of our kernel-based method is comparable to the
aforementioned three methods. Furthermore, the numerical result in Table 6.7 implies that the spam
predictor possesses a sparse representation in the VVRKBS with the `1 norm.
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Table 6.7
Comparison of the classification for spam database in the VVRKBS with the `1 norm
and in the VVRKHS for the exponential kernel with r = 500.
Kernels Models Training accuracy Sparsity Testing accuracy
Exponential VVRKBS 96.08% 1659 93.95%
Kernel VVRKHS 99.09% 6130 94.34%

Table 6.8
Test data confusion matrix for the spam database in the VVRKBS with
the `1 norm and in the VVRKHS. The overall test error rates of these two
models are 6.05% and 5.66%, respectively.

VVRKBS VVRKHS
True class Predicted class Predicted class

non-spam spam non-spam spam
Non-spam 59.57% 1.56% 59.64% 1.50%
Spam 4.49% 34.38% 4.16% 34.70%

To sum up, numerical experiments for both synthetic data and real-world benchmark data have
shown us the advantages of multi-task learning in the vector-valued RKBSs with the `1 norm.
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