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ABSTRACT

We have developed a memory and operation-count efficient
2.5D inversion algorithm of electrical resistivity (ER) data that
can handle fine discretization domains imposed by other geo-
physical (e.g, ground penetrating radar or seismic) data. Due to
numerical stability criteria and available computational memory,
joint inversion of different types of geophysical data can impose
different grid discretization constraints on the model parameters.
Our algorithm enables the ER data sensitivities to be directly
joined with other geophysical data without the need of interpo-
lating or coarsening the discretization. We have used the adjoint
method directly in the discretized Maxwell’s steady state equa-
tion to compute the data sensitivity to the conductivity. In doing
so, we make no finite-difference approximation on the Jacobian
of the data and avoid the need to store large and dense matrices.

Rather, we exploit matrix-vector multiplication of sparse matri-
ces and find successful convergence using gradient descent for
our inversion routine without having to resort to the Hessian of
the objective function. By assuming a 2.5D subsurface, we are
able to linearly reduce memory requirements when compared to
a 3D gradient descent inversion, and by a power of two when
compared to storing a 2D Hessian. Moreover, our method linearly
outperforms operation counts when compared with 3D Gauss-
Newton conjugate-gradient schemes, which scales cubically in
our favor with respect to the thickness of the 3D domain. We
physically appraise the domain of the recovered conductivity us-
ing a cutoff of the electric current density present in our survey.
We evaluate two case studies to assess the validity of our algo-
rithm. First, on a 2.5D synthetic example, and then on field data
acquired in a controlled alluvial aquifer, where we were able to
match the recovered conductivity to borehole observations.

INTRODUCTION

Electrical resistivity (ER) inversions that take into account the
full response of the observed data without assuming subsurface
geometry are useful tools for quantitatively characterizing subsur-
face properties. Moreover, joining ER data with other geophysical
methods can achieve higher accuracy on the recovered parameters.
For example, Gallardo and Meju (2003) join ER with traveltime
seismic data and Doetsch et al. (2010) join ER with traveltime
ground-penetrating radar (GPR) data. Both of these methods linear-
ize their respective wave-propagation method. In doing so, the do-
main discretization is relaxed. Emerging inversion methods that use
the full waveform of the data demand finer discretization constraints
(Courant et al., 1967). For example, Domenzain et al. (2020a) join

ER with GPR data by solving for the full physical response given by
Maxwell’s equations in 2D space.
Given that the discretization of the ER governing equations do

not require fine grid meshes along the entire computational domain,
using the second-order optimization methods (Kochenderfer and
Wheeler, 2019) is common practice in most ER inversion schemes
(Loke and Barker, 1996; Oldenburg and Li, 1999; Günther et al.,
2006; Pidlisecky et al., 2007). Although useful on ER data, emerg-
ing inversion algorithms that join sensitivities from other time-do-
main geophysical methods demand either (1) interpolation of the
subsurface parameters or (2) having both sensitivities on the same
computational grid (Domenzain et al., 2020a).
The benefit of joining time-domain methods (such as GPR or

seismic) with ER data is twofold: (1) allowing the low spatial fre-
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quency of the ER conductivity solution to constrain the GPR (or
seismic) velocity, and (2) letting the high-spatial-frequency sensi-
tivity of the GPR (or seismic data) enhance the ER resolution. Do-
menzain et al. (2020b) show that the GPR velocity and ER
conductivity recovered parameters can benefit from using structural
similarity constraints. They do so by directly joining the full-wave-
form inversion (FWI) GPR sensitivities with the ER sensitivities. It
is worth mentioning that FWI schemes can be computationally de-
manding in memory and operation count. Moreover, recent field-
data FWI inversions of GPR (Keskinen et al., 2017; Zhou et al.,
2020) and elastic-seismic (Groos et al., 2017; Pan et al., 2019) data
assume a 2D subsurface geometry. Furthermore, most multioffset
GPR surveys also assume a 2D subsurface geometry (Forte and Pi-
pan, 2017). This is due to acquisition and computation costs. There-
fore, it is desirable to use efficient ER sensitivity computations
when joining ER data to an FWI scheme.
To motivate the usefulness of our 2.5D ER inversion method, we

briefly discuss three possible field scenarios for GPR and elastic-
seismic FWI. Ernst et al. (2007) perform 2D FWI of GPR borehole
data on an alluvial aquifer, a setting with the usual electrical param-
eters found in the subsurface. Their inversion domain is 8 × 20 m,
and their slowest velocity is 0.07 m/ns. The number of pixels in
their domain is approximately 105. Groos et al. (2017) use 2D elas-
tic-seismic FWI to solve for pressure and S-wave velocities. In their
work, they consider S-wave velocities as low as 80 m/s. We con-
sider a 2D domain 200 m in length and 20 m in depth with a central
frequency of 80 Hz. In this case, the number of pixels in the domain
is 106. Brossier et al. (2009) also perform 2D elastic-seismic FWI
on a 20 × 5 km domain with S-wave velocities as low as 1.2 km/s.
Although they perform their inversion in the frequency domain, we
consider the time-domain scenario with a central frequency of
20 Hz, which yields 107 pixels in the domain. Figure 1a shows
the needed memory for the discussed GPR and elastic-seismic
FWI examples in the dashed vertical columns.

Second-order optimization methods such as quasi-Newton
schemes need to store in memory the Hessian of the objective func-
tion. In Figure 1a, we see the amount of double precision memory
needed to store the Hessian of the objective function for a range of
domain sizes in the dark gray:

3DHessianmemory ¼ ð# of 2D pixels · nyÞ2; (1)

where pixels refer to the discretized grid nodes of the computational
domain and ny denotes the number of 2D xz-planes in the y-direc-
tion of the 3D discretized domain. Values in Figure 1 are shown for
1 ≤ ny ≤ 104. Although memory requirements for the second-order
ER inversion schemes are feasible, incorporating time-domain sen-
sitivities from different geophysical methods can drastically in-
crease the amount of memory.
Loke and Barker (1996) and Pidlisecky et al. (2007) approximate

the Jacobian of the ER data with a finite-difference scheme at each
grid point. Alternatively, more efficient adjoint methods give direct
access to the sensitivity of the data in the entire computational
domain.
Ellis and Oldenburg (1994) and Günther et al. (2006) use the ad-

joint method for directly computing (and storing) the Jacobian of
the data. Marescot et al. (2008) use the adjoint method for comput-
ing the gradient of the objective function. All approaches use a 3D
geometry of the subsurface. The approach of Marescot et al. (2008)
for computing the gradient involves storing (1) one 3D electric po-
tential, (2) one 3D forward model matrix, and (3) one 3D adjoint
field. Using a rectangular grid, the 3D forward model matrix costs
roughly five copies of the domain. In total from (1) to (3), we have
1þ 5þ 1 ¼ 7 copies of the 3D domain. The greatest amount of
memory needed is

3D gradientmethod’s memory ¼ # of 2D pixels · ny · 7: (2)

Figure 1a shows the amount of needed memory
for this method with 1 ≤ ny ≤ 104 in translucent
light gray.
The adjoint method for computing ER sensi-

tivities can be applied by considering either the
continuous objective function (Ellis and Olden-
burg, 1994; Günther et al., 2006; Marescot et al.,
2008) or the discrete objective function (Tripp
et al., 1984; Zhang et al., 1995; Pratt et al.,
1998; Ha et al., 2006). Tripp et al. (1984) develop
a 2.5D ER inversion using a Gauss-Newton ap-
proach. Their method stores the Jacobian of the
2.5D data by numerically integrating a cubic
spline interpolation of eight 2D Jacobian matri-
ces. Ha et al. (2006) use the discrete adjoint
method similar to Pratt et al. (1998) (in the con-
text of acoustic FWI in the frequency domain) for
computing a gradient-descent direction in a 2D
ER inversion. However, their method does not
account for the 3D variability of the subsurface.
Moreover, their method requires a numerical
transform the observed data as an apparent elec-
tric field and does not account for dissolving
boundary conditions in the subsurface.

Figure 1. Efficiency in the double-precision memory storage and operation count for a
range of ny copies of the 2D xz-domain: 1 ≤ ny ≤ 104. The solid black for both panels
denotes our 2.5D method (ny ¼ 4). (a) The memory needed to compute the ER sensi-
tivities as a function of domain size for a single source-sink pair. The dark gray denotes
the Hessian of the objective function in 3D space. The light translucent gray denotes the
3D gradient descent using the adjoint method. The dashed lines mark the domain size
needed for relevant GPR and seismic surveys. (b) The operation count for the fixed GPR
domain size shown in (a). The light translucent gray denotes the 3D gradient descent
using the adjoint method. The dark gray denotes the 3D adjoint conjugate-gradient
method. The dotted line marks the number of source-sink pairs in our field experiment,
of which there are 342.
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Ha et al. (2006) count the number of operations for the gradient-
descent adjoint method inversion as

3D adjoint gradient count ¼ 2 · ns · ð# of 2D pixels · nyÞ3
þ 2 · ns · ð# of 2D pixels · nyÞ3;

(3)

where ns denotes the number of source-sink pairs in the survey. The
first term counts the computation of the forward model, and the sec-
ond term counts the computation of the adjoint field. Figure 1b shows
this operation count for 1 ≤ ny ≤ 104 in light translucent gray.
Zhang et al. (1995) present a 3D ER inversion that exploits ma-

trix-vector multiplication in a Gauss-Newton conjugate-gradient
scheme. Similarly, Newman and Hoversten (2000) compute data
sensitivities using the adjoint method for controlled-source electro-
magnetic data in the frequency domain. Most notably, their method
does not need to store nor directly invert the Hessian of the objective
function. Rather, their approximation of the Hessian exploits sparse
matrix-vector multiplications, and it relies on a conjugate-gradient
scheme for computing the model update. This allows their needed
memory to be similar to equation 2. However, when the domain and
the number of source-sink pairs is large, the conjugate gradient can
impose significantly larger computing times when compared with
gradient-descent methods. The computation of the Hessian times a
vector involves six forward model matrix inversions (without count-
ing the synthetic data and adjoint computations), which at each iter-
ation must be computed approximately 10 times for their conjugate-
gradient scheme to converge. In total, at each iteration their scheme
takes

3D adjoint conjugate-gradient count ¼ 4 · ns · ð# of 2D pixels · nyÞ3

þ 6 · 10 · 2 · ns · ð# of 2D pixels · nyÞ3;

(4)

where the first term corresponds to computing the gradient and the
second term corresponds to computing the model update using con-
jugate gradient. Figure 1b shows this operation count for 1 ≤ ny ≤
104 in dark gray.
For our ER adjoint method inversion, we adapt the acoustic FWI

of Pratt et al. (1998) to a 2D ER inversion that does not need to
transform the observed data into an apparent electric field (Ellis

and Oldenburg, 1994; Zhang et al., 1995; Domenzain et al., 2020a).
Using the approximation of Pidlisecky and Knight (2008), we
approximate the 3D subsurface with a linear combination of 2D
electric potentials for a 2.5D solution. This linear combination
in the continuous case is the inverse Fourier transform in the ky
domain of the 3D solution, which is the physically accurate 2.5D
solution. We then use this 2.5D electric potential approximation to
compute the 2.5D conductivity sensitivity as a linear combination of
the 2D sensitivities. We use a gradient-descent algorithm that re-
lieves the need to store the Jacobian of the data (by exploiting sparse
matrix-vector multiplication) or to approximate the Hessian of the
objective function. Furthermore, assuming a 2.5D subsurface ena-
bles us to further reduce memory requirements compared with 3D
adjoint methods using the gradient descent (Marescot et al., 2008).
For our 2D forward model, we use dissolving boundary conditions
in the subsurface (Dey and Morrison, 1979), which relaxes the need
to do extra padding of the domain.
At most, the amount of memory for computing the 2.5D ER sen-

sitivities with our method is given by the memory needed to store
(1) the 2D electric potentials, (2) one 2D adjoint field, and (3) one
2D forward model matrix. We use four 2D electric potentials as do
Pidlisecky and Knight (2008). Using a rectangular grid discretiza-
tion, each forward model matrix costs roughly five copies of the
domain. In total, from (1) to (3), we have 4 + 1 + 5 = 10 copies
of the domain:

Our 2.5Dmethod’s memory ¼ # of 2D pixels · 10: (5)

Figure 1a shows the amount of memory needed with our method for
a range in domain size in black. Our use of the adjoint method and
the 2.5D approximation exponentially outperforms memory re-
quirements for the 2D and 3D Hessian. Compared to storing the
2D Jacobian of the data (of size number of pixels × number of data
points), our algorithm costs significantly less memory when the
number of data points is larger than 10. Moreover, a linear reduction
in memory is achieved when compared to the 3D gradient adjoint
method. In this case, the amount of memory gained is ny · 7∕10.
We use a similar version of equation 3 to count the operations

needed in our method. However, we use ny ¼ 1 because our com-
putations are only in the 2D domain. We then multiply for the four
copies of our 2D domain, which are needed to approximate the 2.5D
subsurface:

Table 1. Double-precision memory in units of gigabytes needed for the ER sensitivities on the domains given by the GPR and
seismic surveys depicted in Figure 1a.

Method

Domain size

GPR Shallow seismic Exploration seismic

3D Hessian 8 × 109 8 × 1011 8 × 1013

2D Hessian 8 × 10 8 × 103 8 × 105

3D adjoint gradient descent 5 × 10 5 × 102 5 × 103

2.5D adjoint gradient descent 8 × 10−3 8 × 10−2 8 × 10−1

2D adjoint gradient descent 5 × 10−3 5 × 10−2 5 × 10−1

Bold font denotes the values found by our method described in the manuscript.

The values for the 3D Hessian and 3D adjoint gradient descent were taken with ny ¼ 104.
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our 2.5Dmethod’s count ¼ 16 · ð# of 2D pixelsÞ3: (6)

Figure 1b shows our method’s operation count in solid black. We
note a linear reduction in operation count by a factor of n3y for the
3D adjoint conjugate gradient and the 3D adjoint gradient methods.
In Table 1, we show specific values of how much memory is

needed for each relevant field data example considered and for each
method in Figure 1a. Assuming a 2.5D subsurface geometry, an
increase of less than an order of magnitude from the best 2D sce-
nario gives a more accurate physical model with our 2.5D method.
Conversely, up to four orders of magnitude can be gained with our
method when compared with the least memory-consuming 3D
method. In Table 2, we show the operation counts taken from Fig-
ure 1b along the dotted line, which marks the fixed number of
source-sink pairs that we used in our field data example. We again
note a benefit for using our 2.5D method. In this case, the cost in-
crease compared with 2D is still less than an order of magnitude,
whereas the cost increase from using a 3D method is more than one
order of magnitude in the operation count.
Given the low memory storage and modest operation count, our

algorithm can be used for joint inversion with data whose forward
models impose finer grid constraints without the need to interpolate
the parameters. Furthermore, our algorithm accomplishes this task
with less computation cost than using a 3D method.
We assess the accuracy of the recovered conductivity at depth

using a measure of electric current density in our survey throughout
all iterations. Our method relies on the physical principle that the
sensitivity of surface-acquired ER data is given by electric current
lines that return to the surface. Although other methods exist
(Oldenburg and Li, 1999) and have been successful in field surveys
(Oldenborger et al., 2007b), they are costly to compute because
more than one inversion is needed for their construction. However,
the (costly) exploration of the parameter space given by multiple
inversions of the data give a reliable region for appraising the so-
lution. Rather than presenting a substitute for existing methods, we
present ours as a computationally cheap alternative that takes into
account the physics of the ER survey and the different sensitivities
of the data throughout the inversion. We show that, at worst, our
approach is conservative in appraising the solution domain.
We show the usefulness of our work with a synthetic example and

field data acquired at an alluvial aquifer near Boise, Idaho, USA.

Both experiments consist of only surface-acquired ER data. We per-
form our inversions on finely discretized grids in which each pixel is
square and has a side length equal to 0.05 m. These discretization
values comply with numerical stability criteria for a GPR 2D FWI
on commonly encountered scenarios. For example, Ernst et al.
(2007) use a 0.14 m spacing for their inversion and 0.04 m for their
forward modeling on the same alluvial aquifer. Furthermore, the
physical size of our entire domain for the ER field data inversion
is also relevant for GPR exploration (15 m in depth and 45 m
across). This enables our algorithm to potentially join ER and
GPR sensitivities of the subsurface without the need for interpolat-
ing their respective domains. We compare our results with previous
borehole low-frequency conductivity studies at the same site (Old-
enborger et al., 2007a; Mwenifumbo et al., 2009) and find similar
results for the petrophysical parameters and conductivity values.
Finally, we compare our finely recovered conductivity with that

of the commercially available software Res2DInv (Loke, 2006) on
the smallest possible horizontal grid size allowed by the software.
Although both conductivities exhibit similar features, our algorithm
is capable of handling grid sizes of at least an order of magnitude
smaller.

METHODS

ER 2D forward model

Assuming Ohm’s law, the 2D physics of the ER experiment are
given by the steady-state Maxwell’s equations (Pidlisecky et al.,
2007):

−∇ · σðx; zÞ∇φðx; zÞ ¼ iðδðx − sþÞ − δðx − s−ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sðx;zÞ

; (7)

where φ is the electric potential, i is the current intensity, s� is the
source-sink location, and σ is the electrical conductivity. Because
we are assuming a 1D survey line perpendicular to the y-axis, the

Figure 2. Algorithm for computing the 2.5D electric potential given
a source s and conductivity σ.

Table 2. Operation count needed for computing ER
sensitivities on the domain given by the GPR survey depicted
in Figure 1b.

Operation count

3D adjoint conjugate gradient 5 × 1031

3D adjoint gradient descent 1 × 1030

2D adjoint conjugate gradient 5 × 1019

2.5D adjoint gradient descent 5 × 1018

2D adjoint gradient descent 1 × 1018

Bold font denotes the values found by our method described in the manuscript.

The number of source-receiver pairs is taken from our field data example, of which
there are 342. The values for the 3D adjoint conjugate-gradient scheme and 3D adjoint
gradient descent were taken with ny ¼ 104.
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source term s does not depend on y. Moreover, because we are con-
sidering source-sink locations only at the surface (z ¼ 0), the source
and sink locations (sþ and s−) only depend on x.
We discretize equation 7 using a finite-volume method with the

Neumann and Robin boundary conditions at the air-ground inter-
face and in the subsurface, respectively. The discretization is
adapted from Dey and Morrison (1979) for our 2D case. We express
our discretization as a matrix-vector product,

Lφ2D ¼ s;

d2D ¼ Mφ2D; (8)

where L is the discretized differential operator of equation 7, φ2D is
the 2D electric potential, s is the source term, M is the measuring
operator that computes observed voltages, and d2D is the data of the
experiment for one source-sink location. For every pixel in the do-
main, the matrix L has as many nonzero entries as neighbors and
another entry for itself. Because an inner pixel has four neighbors,
an upper bound for the nonzero bands of L is five, with each band
having as many elements as pixels that are in the domain.

Inversion of 2D ER data

In this section, we follow Domenzain et al. (2020a) and briefly
review the 2D discrete adjoint method. In the “Inversion of 2.5D ER
data” section, we will generalize this method for our 2.5D solution.
We optimize the objective function

Θ2Dðσ;do2DÞ ¼
����d2D − do2D|fflfflfflfflfflffl{zfflfflfflfflfflffl}

e2D

����2
2

; (9)

with respect to the conductivity, where e2D is the residual of the data
in the 2D space. Domenzain et al. (2020a) show that the gradient
g2D of the objective function Θ2D with respect to σ for one source
can be expressed as

L⊤v2D ¼ M⊤e2D;

g2D ¼ Sv2D; (10)

where

S ¼ −ðð∇σLÞφ2DÞ⊤ (11)

is a sparse banded matrix whose entries are explicitly calculated.
Equations 10 and 11 can also be expressed as

g2D ¼ J⊤2De2D;

J2D ¼ ML−1S⊤: (12)

We note that, because we are computing the derivative with respect
to σ on the discrete operator L, the boundary conditions of L are
also taken into account in S. The number of nonzero entries in S is
the same as L. Each column of S accounts for one virtual source
(Pratt et al., 1998; Ha et al., 2006), and in a given iteration it is
computed once per source s.

ER 2.5D forward model

Equation 7 disregards the 3D nature of the earth that is present in
field data. To account for 3D structure while still assuming no sig-
nificant change in the y-direction, we can express the governing
physics of the ER experiment as

−∇ · σðx; zÞ∇φðx; y; zÞ ¼ sðx; zÞ: (13)

To solve equation 13, we use the Fourier-cosine transform in the ky
domain (Pidlisecky and Knight, 2008),

−∇ · σ∇ ~φðx; ky; zÞ þ k2yσ ~φðx; ky; zÞ ¼
1

2
sðx; zÞ; (14)

and then we use the inverse Fourier-cosine transform to get the elec-
tric potential solution in the xz-plane,

φðx; y ¼ 0; zÞ ¼ 2

π

Z
∞

0

~φdky: (15)

As explained by Pidlisecky and Knight (2008), discretizing equa-
tion 15 amounts to optimizing for an array k of ky values and a
corresponding array ω of weights ω. For completeness, we include
the details of this optimization in Appendix A. The terms k and ω
do not depend on the subsurface conductivity. They only depend on
the source-receiver geometry.
Once k and ω have been computed, we discretize equation 14 for

each weight ki in k as

Li ¼ Li þ k2i σ; (16)

where Li is very similar as in equation 8 but the Robin boundary
conditions in the subsurface are now different, as dictated in equa-
tion A-2. The ith 2D forward model is

Li ~φi ¼
s
2
;

~di ¼ M ~φi: (17)Figure 3. Algorithm for finding the 2.5D gradient g.
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The full 2.5D forward model, i.e., the discretized expression of
equation 15, is

φ ¼ 2

π

X
i

~φiωi: (18)

In Figure 2, we give all of the steps of the algorithm for comput-
ing φ.

Inversion of 2.5D ER data

Now that we have formulated the 2D gradient computation (see
equation 10) and the 2.5D forward model (see equations 17 and 18),
we explain how to compute the 2.5D gradients for a 2.5D conduc-
tivity solution. We now want to optimize the objective function,

Θðσ; doÞ ¼
����d − do|fflfflffl{zfflfflffl}

e

����2
2

; (19)

with respect to the conductivity where e is the residual of the data in
2.5D space. We compute the gradient g of Θ by

g ¼ J⊤e; (20)

where J ¼ ∇σd. The gradient operator ∇σ is a row vector with the
ith entry being the partial derivative ∂σi

. To find an expression for J,
we first write d in terms of ~di,

d ¼ Mφ ¼ M
2

π

X
i

ωi ~φi

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
φ

;¼ 2

π

X
i

ωi M ~φi|ffl{zffl}
~di

¼ 2

π

X
i

ωi
~di:

(21)

We can now apply ∇σ to equation 21,

∇σd ¼ 2

π

X
i

ωi∇σ ~di|ffl{zffl}
Ji

¼ 2

π

X
i

ωiJi
|fflfflfflfflffl{zfflfflfflfflffl}

J

: (22)

Equation 22 is a method for computing J. By substituting equa-
tion 22 into equation 20, we have

g ¼ 2

π

�X
i

ωiJi

�
⊤
e

¼ 2

π

X
i

ωi J⊤i e|{z}
~gi

: (23)

In the last equality, we write ~gi ¼ J⊤i e, because with a similar
approach as equation 10, from equation 17 we have

L⊤
i ~vi ¼ M⊤e;

~gi ¼ Si ~vi; (24)

where

Si ¼ −ðð∇σLiÞ ~φiÞ⊤ − k2i diagð ~φiÞ⊤; (25)

and similar to equation 12, we have Ji ¼ ML−1
i S⊤i . In conclusion,

we compute the gradient g of equation 19 by

g ¼ 2

π

X
i

ωi ~gi: (26)

Figure 3 gives a summary for computing g.

Updating the conductivity

Equation 26 gives the gradient g for equation 19 with respect to σ
for one source. We regularize g by adding the normalized residual
of a reference conductivity .σo and then smoothing in the space-
frequency domain. After computing gwith equation 26 and normal-
izing by its largest magnitude, we have

g←gþ β
σ − σo

maxðabsðσ − σoÞÞ
; (27)

where β is a fixed number smaller than one. The gradient g exhibits
large values near the receiver locations. To suppress these artifacts,
we smooth g using a space-frequency low-pass filter (Taillandier
et al., 2009; Groos et al., 2017; Domenzain et al., 2020a). In prac-
tice, we use a Gaussian of width λ,

λ ¼ 1

Δr · a
; (28)

where Δr is the minimum electrode spacing in meters and a is close
to one, loosely 0.5 ≤ a ≤ 1.5. Although similar to the conventional
spatial-derivative matrix used for smoothing data sensitivities, this
approach proves more effective in removing receiver artifacts when
using the adjoint method. As with any smoothing or regularization
operator, a compromise is made between the spatial resolution of
the solution and the resulting fit to the data. Ideally, a filter of width
1∕Δr should suffice. However, as with any regularization param-
eter, λ depends on the true subsurface parameters and the initial
conductivity model. Therefore, a fixed value of λ ranging more
and less than 1∕Δr has to be found for each specific case.
To enforce positivity constraints on σ, we do a logarithmic

change of variable on the objective function ΘðσÞ ¼ ΘðlnðσÞÞ
(Meles et al., 2010). Using the chain rule, we have

gσ ¼ 1

σ
⊙gln σ; (29)

where the subscript denotes the variable under consideration and
⊙ denotes the element-wise multiplication. Computing the update,
using equation 29 and taking the inverse of the logarithm, we have

lnðσiþ1Þ ¼ lnðσiÞ − αgln σ;

σiþ1 ¼ σi⊙ expð−α · σi⊙gσÞ: (30)

Equation 30 holds true for one source-sink location. In practice,
however, we update σ once all update directions −αg for all sources
in our survey have been computed. The step size α is found as
proposed by Pica et al. (1990) and adapted for our ER inversion
by Domenzain et al. (2020a). This step-size computation also
constrains the range of possible values for σ by an arbitrary user-
defined interval. In practice, we define this interval by the minimum
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and maximum values of the observed apparent resistivities. The en-
tire process of computing the step-size only costs one 2.5D forward
model computation.
The global update Δσ is the average of all update directions over

all source-sink pairs. At late iterations when the sensitivity of our
data is weak,Δσmight struggle to find a true descent direction. This
issue can be addressed by using momentum (Rumelhart et al.,
1986), which only costs the storage of the previous iteration update,
Δσ. The final update for the conductivity is given by

Δσ←Δσþ β
•
Δσ

•
;

σ←σ⊙ expðσ⊙ΔσÞ; (31)

where β
•
is a fixed number smaller than one. Figure 4 shows the full

algorithm for our inversion.

Solution appraisal

Physically, the sensitivity at the depth of the ER survey is related
to the electric current density of all source-sink pairs in the survey.

Depending on our initial model, each forward model in the ER in-
version might have different electric current densities throughout
iterations. Therefore, throughout the inversion, the illumination of
the subsurface changes as a function of the observed data and the
initial conductivity model.
At each iteration i, we quantify the total electric current density in

our inversion by summing the absolute value of the electric poten-
tials φ given by our forward models (see equation 18),

Ψi ¼
X
j

jφjj; (32)

where j runs through all forward models. As iterations proceed, we
keep adding the previousΨi to the new one to obtain a final measure
of electric current density Ψ, then we normalize Ψ by its largest
amplitude,

Ψ ¼
X
i

Ψi

Ψ←
Ψ

maxðΨÞ : (33)

Given the harmonic nature of the electric potential, the field Ψ will
have a level curve beyond which the electric current lines will no
longer return to the surface. We choose this level curve as a cutoff
forΨ from which all level curves below this cutoff are considered to
not contain relevant information. The resulting image forΨ is then a
collection of ones in the xz-plane above the cutoff value.

Figure 4. The 2.5D inversion algorithm.

Figure 5. (a) True, (b) recovered, and (c) appraised conductivity for
the synthetic example. The dashed cyan line represents a borehole
location. The dashed black line represents the contour of the cyl-
inder. The pixel size is 0.05 m on each side.
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EXAMPLES

In this section, we verify the validity of our algorithm on two
scenarios: a synthetic 2.5D example and on field data aquired in
a controlled alluvial aquifer.

Synthetic data example

We test our algorithm on a synthetic scenario as shown in Fig-
ure 5a. The model consists of a 20 × 4 m subsurface domain with a
10 mS/m cylindrical anomaly embedded in a 5 mS/m background.
We use 17 electrodes spaced 1 m apart with all possible dipole-
dipole, Wenner, and Schlumberger arrays. The full discretized do-
main is of size 81 × 401 with a square pixel size of 0.05 m.
Our initial model is a homogeneous conductivity equal to the

background of our model. Besides smoothing the gradients g,

for this example, we do not impose regularization on the inversion.
We choose a smoothing factor of a ¼ 1.1 (see equation 28) and a
value of β ¼ 0.02.
In Figure 5b, we see the recovered conductivity in the entire com-

putational domain, and in Figure 5c, we see the recovered conduc-
tivity with a current density cutoff of 0.025% of the maximum value
of Ψ (see equation 33). Our solution-appraisal technique is able to
remove parts of the domain in which we have a poor constraint in
our solution (the bottom of the domain) but keep parts of the domain
in which the recovered conductivity remains close to the true model.
We note that by choosing a cutoff that eliminates the electric current
leaving the domain, we are conservatively assessing our solution.

Field data example

We acquired field data at the Boise Hydrological Research Site
(BHRS) in May 2019. The site is an alluvial aquifer next to the
Boise river as shown in Figure 6 (modified from Barrash et al.,
1999). The water flow in the river is controlled by a nearby dam
and is increased throughout spring as warmer temperatures thaw
the snowpack in the nearby Sawtooth Mountain Range (Barrash
et al., 1999). We planned for our experiment to take place when
the water table was at its highest point without the site being
flooded. This choice was made to increase the electric current of
our survey past the water table boundary and improve our depth
sensitivity. We used an IRIS Syscal Pro resistivity system with a
total of 36 electrodes spaced 1 m apart in a 1D line perpendicular
to the river as shown in Figure 6. Our survey consisted of all pos-
sible dipole-dipole and Wenner arrays for a total of 1175 source-
receiver pairs. Although approximately planar, the ground surface
dips slightly (0.4 m over 36 m) toward the river.
Based on the knowledge of site stratigraphy (e.g., Bradford et al.,

2009), the position of the line perpendicular to the river was chosen
to enhance the variability of conductivity in the xz-plane while
keeping the y-coordinate variability of the conductivity approxi-
mately constant. For each source-receiver pair, the raw data re-
corded by the Syscal Pro are in units of volts, paired with readings
of source current magnitude (positive and in units of amperes), ap-
parent resistivites computed by the system (in units of ohms per
meter), and a measure of standard deviation (each source was per-
formed eight times).

Preprocessing

For our inversion, we use only the voltage
readings. However, before performing our in-
version, we use all of the Syscal Pro data to en-
hance the quality of our inversion in three steps.
(1) Remove the negative apparent resistivities
given by the Syscal Pro system because these
data points are not physical and are contaminated
by noise. (2) Eliminate data points whose stan-
dard deviation is more than a fixed cutoff. In this
case, the cutoff was five standard deviations.
(3) Divide the voltage readings by their respec-
tive source current magnitude. This last step is
done to enable multi-source-receiver pairs in
each forward model of our inversion. Our data
consist of 342 different source-sink positions
and a total of 1175 data points. The next step

Figure 6. Geographic location of the BHRS. The red dots denote
the existing boreholes. Our survey line crossed boreholes B5, A1,
and B2 as shown by the green line.

Figure 7. Dipole-dipole pseudosection with a-spacing equal to 1 m from the BHRS.
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is to compute the weights k and ω (see Figure A-1). Figures 7a and
8a show the observed but preprocessed apparent resistivities of
the dipole-dipole with a-spacing equal to 1 m and Wenner arrays,
respectively.

Inversion

Our initial model is a homogeneous subsurface with conductivity
equal to 2 mS/m. We regularize the inversion us-
ing a homogeneous reference conductivity equal
to our initial model and weighting factors of β ¼
0.001 and β ¼ 0.5. The full discretized domain is
of size 301 × 901 with a square pixel size of
0.05 m, i.e., 15 m deep and 45 m across. Figure 9
shows the recovered conductivity corrected for
topography and with a current density cutoff
equal to 0.002%. Figure 10 shows the observed
versus recovered data.
We evaluate our results with the water table

depth, neutron porosity (Barrash and Clemo,
2002), and capacitive conductivity (Mweni-
fumbo et al., 2009) taken from borehole mea-
surements. For our borehole analysis, we choose
to use the full domain of our solution. We do this
because, as explained next, we are still able to
extract meaningful physical information of the
subsurface and, as noted in the synthetic exam-
ple, our cutoff criteria can be overly conservative.
The water table depth was 1 m and was measured
the same day the survey was done. Figure 9 shows that our recov-
ered conductivity accurately images the water table boundary. We
further note that the higher conductivity, sand-filled paleochannel
that deepens toward the river is accurately represented.
Figure 11 shows the normalized porosity and recovered con-

ductivity along the entire computational domain. Qualitatively, our
recovered conductivity and measured porosity follow the same low-
frequency trend. This trend is mostly appreciated in Figure 11a for
borehole B5, where the peak-trough-peak shape of the porosity is
closely followed by the recovered conductivity beyond our solution
appraisal cutoff.
Quantitatively, we compare our inversion results following

Oldenborger et al. (2007a) who perform a time-lapse borehole ER
monitoring of the same site in the summer of 2004. Their analysis
uses Archie’s law (Archie et al., 1942) to compare the formation
factor derived by ER recovered conductivity
and the formation factor derived by the neutron
porosity. For each borehole B5, A1, and B2, we
compute the formation factor with our recovered
conductivity,

FER ¼ σf

σz
; (34)

where σz denotes our recovered conductivity
along the borehole and σf is the fluid conduc-
tivity. We take σf ¼ 20 mS/m as given by Old-
enborger et al. (2007a). We then invert in depth
for the cementation factor m using the neutron
porosity ϕ and the porosity derived from FER,

ϕER ¼
�

1

FER

�
1∕m

: (35)

This gives us a depth profile for m. Using m, we compute the for-
mation factor from the neutron porosity as

Fϕ ¼ 1

ϕm : (36)

Figure 9. Recovered conductivity from the BHRS with topographic
correction. The river is located toward the beginning of the survey
line. The dashed cyan line represents the water table depth as mea-
sured on site (1 m deep). The solid cyan lines represent the borehole
positions. Note the higher conductivity, sand-filled paleochannel
that deepens toward the river. The pixel size is 0.05 m on each side.

Figure 10. Observed versus recovered ER data acquired at the BHRS.

Figure 8. Wenner pseudosection of the BHRS.
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Oldenborger et al. (2007a) give average values of FER ¼ 13� 4,
m ¼ 1.7, and Fϕ ¼ 13� 4. In Table 3, we find similar values
(within �1 standard deviation) for FER; Fϕ, and m with our recov-
ered conductivity.
Figure 12 shows our recovered conductivity next to the capacitive

conductivity as measured by Mwenifumbo et al. (2009). Their experi-
ment was performed in the month of November, when the river water
flow had significantly decreased to a 2 m deep water table. Even
though our experiments were performed with different ground water
conditions, our recovered conductivity is within the same order of
magnitude and follows close resemblance (to the capacitive conduc-
tivity logs) inside our appraised solution. Beyond our appraised sol-
ution near 10 m in depth, both conductivity profiles show an upward
trend that is also present in the neutron porosity (Figure 11).
Finally, we compare our recovered conductivity with the result of

the commercial software Res2DInv in Figure 13. Although the pur-
pose of Res2DInv is not to recover subsurface conductivity on a
very fine discretized domain, we choose to compare our results with
those of this software because of its wide use in the geophysics
community. Res2DInv uses a Gauss-Newton minimization scheme
that stores an approximation of the Hessian at each iteration (Sasaki,
1992; Loke and Barker, 1996; Loke, 2006). The amount of memory

needed for this method is shown in dark gray in Figure 1a as a func-
tion of the domain size, and in Table 1 for different domain sizes
based on relevant field data scenarios. In the Res2DInv manual
(Loke, 2006), it is noted that a fine discretization can significantly
increase memory requirements and is not recommended. The inver-
sion parameters for the Res2DInv result were taken equal to those of
our inversion: minimizing the L2 norm and a reference conductivity
model of 2 mS/m weighed by a regularization parameter of 0.001.
The horizontal grid size for the Res2DInv result was chosen as the
minimum possible value allowed by the software, which is half the
receiver spacing (in this case, 0.5 m). The vertical grid spacing was
chosen to be 0.25 m, and the entire computational domain was set to
the full rectangular xz-plane.

Figure 11. Normalized recovered conductivities (red) and borehole
neutron porosity (black) at borehole locations in the BHRS. The
dashed gray line shows the cutoff for our appraised solution.

Table 3. Formation and cementation factor appraisal for
each borehole using recovered conductivity and neutron
porosities.

B5 A1 B2

m 1.8� 0.4 1.8� 0.3 1.5� 0.2

FER 11.9� 3 12.7� 4 13.5� 4

Fϕ 14.3� 3 13.3� 4 13.4� 3

Our results correlate well to a previous borehole ER survey at the same site up to a
standard deviation of at most �1.

Figure 12. Recovered ER (with our method — in red) and capaci-
tive conductivities (black) at borehole locations in the BHRS. The
dashed gray line shows the cutoff for our appraised solution. Below
the cutoff, the solution returns to the reference model.

Figure 13. Comparison of (a) our result and (b) the result of the
commercial Res2DInv software. The results are shown in the com-
putational domain without applying a topographic correction. The
grid size for (a) is 0.05 m in width and length, whereas for (b) it is
0.5 m long × 0.25 m wide. The smallest possible horizontal spacing
in Res2DInv is half of the receiver spacing (in this case, 0.5 m).
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We note that both results in Figure 13 follow the same low spa-
tial-frequency trend: the water table is placed at approximately the
same depth, and the sand channel exhibits a similar shape. However,
the scheme used by Res2DInv fails to comply with time-domain
finely discretized domains.

CONCLUSION

We have developed an efficient discrete adjoint-based method for
inverting 2.5D ER data. We directly obtain the sensitivity of the data in
the entire domain, and we do not need to approximate the Jacobian of
the data using finite differences. Moreover, we take into account dis-
sipating boundary conditions in the subsurface and do not need to store
large dense matrices (such as the Jacobian of the data and the Hessian
of the objective function). In geologic scenarios in which a 2.5D sub-
surface holds true, our algorithm linearly outperforms memory re-
quirements for 3D gradient-descent adjoint methods. Compared
with computing the 2D Jacobian of the data, our 2.5D algorithm is
also linearly less memory intensive. Moreover, compared with storing
a 2D Hessian matrix, our algorithm uses exponentially less memory.
Regarding the operation count, our algorithm linearly outperforms 3D
Gauss-Newton conjugate-gradient schemes by a factor equal to the
cubed width of the 3D domain. This enables us to very finely discretize
the subsurface with feasible memory requirements and a modest op-
eration count. As a result, our algorithm can be used for joint inversion
with data whose forward models impose finer grid constraints
(e.g., GPR) without the need to interpolate the model parameters.
Regarding field-relevant applications that aim to join time-do-

main methods, our algorithm provides a memory gain of four orders
of magnitude over the cheapest 3D inversion method (which is the
3D extension of the method presented here) and only a linear in-
crease in memory over the cheapest 2D inversion method. Looking
ahead as greater 3D computational capabilities become ever more
possible, our algorithm can still provide an efficient alternative for
2.5D solutions.
The practical utility of our work lies in improving the efficiency

and resolution of ER methods in application of joint inversions with
2.5D FWI-GPR and other geophysical data. It is a good stand-alone
inversion tool in settings in which the 2.5D approximation for real
earth geology is valid.
To assess the quality of the recovered parameters, we use a mea-

sure of the electric current density present in our domain throughout
the iterations. This method for quality assessment takes into account
the physics of the ER survey, the data, and the model parameters
throughout the iterations, and it does not require extra inversions
with different initial models. At worst, our method is conservative
in assessing the quality of the recovered parameters. However, it is
less accurate than other existing methods that explore the model
space in a more exhaustive way.
We tested our algorithm on a synthetic example and on field data

acquired at an alluvial aquifer near Boise, Idaho, USA. Our inver-
sions were done on a finely discretized grid in which each square
pixel had 0.05 m in side length. These discretization values comply
with numerical stability requirements for GPR 2D FWI on the same
field site and common geologic scenarios. Moreover, the field data
inversion was performed on a domain of size relevant for GPR ex-
ploration of the subsurface (15 m deep and 45 m in length). Such a
fine discretization is not supported in widely used commercially
available software. This enables our algorithm to directly join
the ER sensitivity of the subsurface with GPR sensitivities without

the need to interpolate the domain. We find good correlation of our
field data results with neutron porosity and capacitive conductivity
borehole measurements taken on the site in previous surveys.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be
obtained by contacting the corresponding author.

APPENDIX A

FOURIER COEFFICIENTS FOR THE
2.5D TRANSFORM

To solve equation 18, we must find weights k and ω to accurately
approximate the integral in equation 15. We follow Pidlisecky and
Knight (2008) and note that the Green’s function solution for homo-
geneous σ of equation 13 on the half xz-plane is

φðx; y ¼ 0; zÞ ¼ i
2πσ

�
1

kx − sþk2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
rþ

−
1

kx − s−k2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
r−

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1∕R

: (A-1)

We apply the forward Fourier-cosine transform,

~φ ¼
Z

∞

0

φ cosðykyÞdy ¼ i
2πσ

ðBoðkyrþÞ − Boðkyr−ÞÞ;
(A-2)

where Bo is the zero-order modified Bessel function of the second
kind. By plugging equations A-1 and A-2 into equation 18, we
discretize by

Figure A-1. Algorithm for finding the 2.5D transformation weights ω.

Efficient 2.5D ER inversion E235

D
ow

nl
oa

de
d 

12
/1

4/
21

 to
 1

32
.1

78
.2

07
.2

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

37
3.

1



1≍X
j

2R
π

fBoðkjrþÞ − Boðkjr−Þg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Kij

ωj;

K ¼ 2R
π

fBoðkrþÞ − Boðkr−Þg;
f≍Kω; (A-3)

where K ¼ Kðk; sÞ is a matrix of size nR × nk, nR and nk are the
size of R and k, respectively, f is a vector of length nR whose entries
should approximate 1, and k ¼ ðkyiÞ,ω ¼ ðωiÞ are vectors of length
nk. We minimize

ΦðkÞ ¼ k1 −KðK⊤KÞ−1K⊤|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ω|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

fðkÞ

k22 ¼ k1 − fðkÞk22 (A-4)

using a regularized Newton method. The vector of all ones is de-
noted as 1. Note that k and ω are geometry-dependent and not
parameter-dependent. Finally, we follow Pidlisecky and Knight
(2008) and use a small number for nk, usually nk ¼ 4. Figure A-1
provides the full optimization algorithm (Pidlisecky and Knight,
2008) for computing k and ω.
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