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ABSTRACT

Recovering material properties of the subsurface using
ground-penetrating radar (GPR) data of finite bandwidth
with missing low frequencies and in the presence of strong
attenuation is a challenging problem. We have adopted three
nonlinear inverse methods for recovering electrical conduc-
tivity and permittivity of the subsurface by joining GPR
multioffset and electrical resistivity (ER) data acquired at
the surface. All of the methods use ER data to constrain
the low spatial frequency of the conductivity solution. The
first method uses the envelope of the GPR data to exploit
low-frequency content in full-waveform inversion and does
not assume structural similarities of the material properties.
The second method uses cross gradients to manage weak
amplitudes in the GPR data by assuming structural similar-
ities between permittivity and conductivity. The third
method uses the envelope of the GPR data and the cross gra-
dient of the model parameters. By joining ER and GPR data,
exploiting low-frequency content in the GPR data, and as-
suming structural similarities between the electrical permit-
tivity and conductivity, we are able to recover subsurface
parameters in regions where the GPR data have a signal-
to-noise ratio close to one.

INTRODUCTION

Electrical properties in the subsurface such as electrical permit-
tivity ε and conductivity σ hold relevant information regarding
short-, medium-, and long-term human needs. In many of these ap-
plications, surface-data acquisition of active source methods such as

electrical resistivity (ER) and ground-penetrating radar (GPR) can
prove to have a lower and more feasible deployment cost when
compared with borehole methods.
ER is only sensitive to electrical conductivity, whereas GPR is

sensitive to electrical permittivity by reflectivity and velocity and
conductivity by attenuation and reflection of the excited electromag-
netic wave. Full-waveform inversion (FWI) of GPR multioffset data
is an emerging technique for enhancing the resolution of electrical
properties with little a priori knowledge of the subsurface geometry
with the caveat of needing an initial ray-based tomography for robust
initial models (Ernst et al., 2007a, 2007b). However, inverting with
only surface-acquired GPR data remains a challenge and thus limits
most of the current applications in which GPR is commonly used.
Similar to seismic FWI, two main challenges that must be resolved

for GPR-FWI are the lack of low frequencies and the presence of
attenuation in the data. Fortunately, ER can be used to enhance
GPR because it is directly sensitive to low spatial frequencies in elec-
trical conductivity and is directly linked to the GPR governing phys-
ics by Maxwell’s equations. In this work, we combine the two
methods and make the assumption that electrical properties are
not frequency dependent. Although this is not true in general, in Do-
menzain et al. (2019), we note that for a variety of relevant earth ma-
terials, the (real) effective conductivity and the direct current (DC)
conductivity differ by a factor of less than five. Hence, assuming fre-
quency-independent electrical parameters serves as a starting point to
test the enhancement of the spatial resolution in our inversions.
In Domenzain et al. (2019), we developed a joint inversion

scheme of GPR and ER data that uses the full 2D physics of Max-
well’s equations. The inversion accounts for the sensitivities of GPR
and ER data in each iteration of an adjoint method-based inversion.
The GPR source wavelet is assumed known and kept constant
throughout the inversion. However, it is noted that existing methods
to solve for the GPR source wavelet (Pratt et al., 1998; Ernst et al.,

Manuscript received by the Editor 19 November 2019; revised manuscript received 18 June 2020; published ahead of production 25 August 2020; published
online 06 November 2020.

1Boise State University, Department of Geosciences, Boise, Idaho 83725-1535, USA. E-mail: diegodomenzain@u.boisestate.edu (corresponding author);
jmead@boisestate.edu.

2Colorado School of Mines, Department of Geophysics, Golden, Colorado 80401, USA. E-mail: jbradford@mines.edu.
© 2020 Society of Exploration Geophysicists. All rights reserved.

H115

GEOPHYSICS, VOL. 85, NO. 6 (NOVEMBER-DECEMBER 2020); P. H115–H132, 20 FIGS., 9 TABLES.
10.1190/GEO2019-0755.1

D
ow

nl
oa

de
d 

12
/1

4/
21

 to
 1

32
.1

78
.2

07
.2

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

19
-0

75
5.

1

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2019-0755.1&domain=pdf&date_stamp=2020-11-06


2007a) can easily be applied to our scheme. We tested our joint-
inversion scheme in two synthetic examples showing enhancements
when compared to individual GPR and ER inversions. The recov-
ered conductivity was improved through joint inversion because the
ER data enhanced amplitude detection and the GPR improved the
spatial resolution. Thus, the recovered conductivity benefits from
the complementary resolution of GPR and ER data. Moreover, nei-
ther data resolution is lost.
In this work, we address joint inversion of GPR and ER data

when the conductivity in the subsurface is strong, that is, for values
greater than 10 mS/m where GPR attenuation is high and the signal-
to-noise ratio (S/N) in the GPR data is close to one. Unfortunately, if
the attenuation is too strong, the GPR data will miss reflection
events that hold meaningful information of the subsurface. In this
situation (Domenzain et al., 2019), we find that even though the
recovered conductivity is better resolved by using GPR and ER
data, the recovered permittivity lacks the correct amplitude and
misses long-wavelength resolution. Fortunately, we can improve
our joint inversion scheme with existing inversion methods. Specifi-
cally, we use methods that (1) enhance the low-frequency content of
the GPR waveform and (2) exploit structural similarities of the sub-
surface parameters.
Methods developed for seismic FWI (Bozdağ et al., 2011; Liu

and Zhang, 2017) can be used to enhance low-frequency content
in GPR-FWI. In the context of seismic FWI, it is well known that
low frequencies in the waveform data help the inversion avoid local
minima (Virieux and Operto, 2009; Baeten et al., 2013). Bozdağ
et al. (2011) propose using the analytic signal of the observed wave-
form to isolate the instantaneous phase and amplitude (i.e.,
envelope) information of the data and modify the FWI objective
function accordingly. Liu and Zhang (2017) join the first-arrival
traveltime with early arrival envelope data to build a rich low-spa-
tial-frequency initial velocity model that is then used in the FWI
routine. Both works find that the low-frequency content of the
envelope waveform data is good for enhancing the low-frequency
spatial content of the recovered velocity. In this work, we use the
envelope waveform data of GPR and further join it with ER data to
alleviate low spatial frequencies in the electrical permittivity and
conductivity.
Inversion methods that assume structural similarities of the target

subsurface parameters (Haber and Oldenburg, 1997; Gallardo and
Meju, 2003) can be used to further improve our joint inversion al-
gorithm by letting the ER data inform the GPR data in regions of
high attenuation. Assuming structural similarities in target subsur-
face parameters allows different geophysical data with varying spa-
tial and physical sensitivities to inform each other where to look for
a solution that more accurately resembles reality if the structural
similarity holds true. In Gallardo and Meju (2003), the authors
choose the cross-gradient operator as a structural constraint and suc-
cessfully apply it to real seismic and ER data. In this work, we show
that by assuming structural similarities between electrical permittiv-
ity and conductivity, we can use the cross-gradient operator for fill-
ing in amplitude and spatial-frequency content to our solutions
while still using forward and inverse models that take into account
the full physics of Maxwell’s equations.
Since then, different types of geophysical data have been used in

this context (Gallardo and Meju, 2007; Fregoso and Gallardo, 2009;
Gross, 2019). Most relevant to our study are the works of Linde
et al. (2006) and Doetsch et al. (2010) that use borehole GPR

and ER data to solve for electrical permittivity and conductivity.
All of these works rely on a linearization of one or both forward
models and clear access to the sensitivity matrices of the data, which
in the case of time-domain FWI the latter is computationally expen-
sive. Hu et al. (2009) combine seismic and controlled-source
electromagnetic data to solve for compressional velocity and elec-
trical conductivity in a Gauss-Newton inversion while enforcing the
cross-gradient constraint. They use adjoint-based methods for com-
puting the sensitivity matrices of the data with the computational
burden of storing and inverting the Hessian of the objective func-
tions. In this work, we compute the gradients of the objective func-
tions using adjoint-based methods and relieve the need to store and
compute the Hessian of the objective functions.
We begin with a brief review of the 2D physics of the forward

models for GPR and ER and objective functions for the GPR and
ER inversions. Then, we review our joint inversion scheme from
Domenzain et al. (2019) and define three new joint inversion
schemes designed to manage attenuation and enhance low frequen-
cies. Finally, we test our joint inversions on three synthetic subsur-
face models designed to challenge the spatial and amplitude
resolution of the GPR and ER sensitivities. The first two models
illustrate our method with a centered box anomaly in which the im-
provements of our methods are clear. The third model is based on an
alluvial aquifer located at the Boise Hydrological Research Site
(Barrash and Clemo, 2002). This model contains realistic electrical
parameters and a subsurface geometry that loosely resembles pre-
vious GPR multioffset data imaging done on this site (Bradford
et al., 2009b). Testing the attributes and limitations of our method
on synthetic data is crucial for assessing the viability of our results
when used on field data.

GPR AND ER FORWARD MODELS AND
INVERSIONS

We briefly recall the governing equations, forward models, and
objective functions for the GPR and ER experiments. Our physical
models assume isotropic physical properties and a 2D subsurface
geometry in which the parameters are constant along the y-axis.
These assumptions are made for ease of computations of our for-
ward models and are not crucial for our inversion schemes. The
GPR and ER forward models are discretized on the same computa-
tional grid. Gradients of the objective function with respect to the
parameters are given in Appendix A, and a full discussion is found
in Domenzain et al. (2019).

GPR

The 2D physics of the GPR experiment are given by
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where u is the electric field component in the y-direction, ðHx;HzÞ
are the magnetic field components in the x- and z-directions, Jy is
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the source term, ε is the electric permittivity, σ is the electric con-
ductivity, and μo is the magnetic permeability that we assume is
constant and equal to the permeability of free space. Let εo denote
the electrical permittivity of free space. From now on, we will refer
to the relative permittivity εr ¼ ε∕εo as permittivity. We discretize
equation 1 by

u ¼ Lwsw;

dsw ¼ Mwu (2)

where Lw is the discretized differential (time marching) operator of
equation 1, u is the electric field y component defined in space and
time, sw is the source term,Mw is the measuring operator, and dsw ¼
Mwu is the data of the experiment, that is, a common-source gather.
The discretized solution of equation 2 is described in detail in
Domenzain et al. (2019).
We make note that, from this point forward, we will refer to op-

erators and variables in capital and lowercase letters, respectively,
and distinguish continuous and discrete mathematics in normal and
bold fonts, respectively. A complete table of relevant notation can
be found in Table 1.

ER

The 2D physics of the ER experiment are given by the steady-
state Maxwell’s equations where Ohm’s law holds (Pidlisecky et al.,
2007):

−∇ · σ∇φ ¼ iðδðx − sþÞ − δðx − s−ÞÞ; (3)

where φ is the electric potential, i is the current intensity, and s� is
the source-sink position. We write the discretized version of
equation 3 as

LDCφ ¼ sDC;

dsDC ¼ MDCφ; (4)

where LDC is the discretized differential operator of equation 3, φ is
the electric potential, sDC is the source term, MDC is the measuring
operator that computes observed voltages, and dsDC is the data of the
experiment for one source. The discretized solution of equation 4 is
described in detail in Domenzain et al. (2019).

GPR inversion

The GPR inversion algorithm finds parameters εr� and σ� that
satisfy

fεr�; σ�g ¼ argminΘwðεr; σ; dowÞ; (5)

where the subscript � denotes the imaged parameters and dow de-
notes all of the observed GPR data. From now on, we denote
the electrical permittivity and conductivity in a bold font to empha-
size that these parameters are discretized and in matrix form. We
have

Θw ¼ 1

ns

X
s

Θs
w; (6)

where s indexes the sources, ns denotes the total number of sources,
and

Θs
w ¼ kewk22

kdo;sw k22
; (7)

where do;sw is the observed data for one source and ew ¼ dsw − do;sw is
the residual of the modeled and observed data. The details for com-
puting the gradient of Θw with respect to εr and σ can be found in
Appendix A.

ER inversion

The ER inversion algorithm finds σ� that satisfies

σ� ¼ argminΘDCðσ; doDCÞ; (8)

where doDC is all of the ER data. We have

ΘDC ¼ 1

ns

X
s

Θs
DC; (9)

Table 1. Reference for the notation used in the discretized
inverse problems.

Symbol Meaning Note

εr Discretized relative permittivity Used for GPR
and ERσ Discretized conductivity

L Discretized differential operator

s Discretized source

M Discretized measuring operator

d Synthetic data

e Residual of synthetic versus observed data

Θ Objective function

v Discretized adjoint field

g Gradient of objective function

α Step size for g

u Electric wavefield on the y component Only GPR
_u Finite-difference time derivative of u

Δσw GPR conductivity update

Δεr GPR permittivity update

β GPR envelope weight

φ Electric potential Only ER
SDC The matrix −ðð∇σLDCÞφÞT
ΔσDC ER conductivity update

Δσ Joint conductivity update Used for the
joint updateaw; aDC Weights to regulate Δσw and ΔσDC

c Step size for Δσ
Δστ;° Cross-gradient conductivity update

Δεr;τ;° Cross-gradient permittivity update

bεr ; bσ Weights to regulate Δεr;τ;° and Δστ;°

3Symbols common in the GPR and ER experiments are stripped from their subscripts
to avoid clutter.
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where s indexes the source, ns denotes the total number of sources,
and

Θs
DC ¼ keDCk22

kdo;sDCk22
: (10)

We denote do;sDC as the observed data for one source and
eDC ¼ dsDC − do;sDC as the residual of the modeled and observed data.
The details for computing the gradient of ΘDC with respect to σ can
be found in Appendix A.

JOINT INVERSIONS

Joint inversion of ER and GPR data

The objective function for our joint inversion is

fεr�; σ�g ¼ argminΘwðεr; σ; dowÞ þ ΘDCðσ; doDCÞ: (11)

We optimize equation 11 using the gradient descent method by first
computing the descent directions for σ: Δσw and ΔσDC for Θw and
ΘDC, respectively, and then we take a weighted average of these
descent directions to update σ; we then compute the descent direc-
tion Δεr and update εr. Figure 1 shows a code-flow diagram of this
process. We follow Domenzain et al. (2019) and briefly explain how
these updates and joining weights are computed.
After all of the gradients for all sources are computed, the update

directions are

Δσw ¼ −
1

nw

Xnw
s¼1

αsσgsw;σ; (12)

ΔσDC ¼ −
1

nDC

XnDC
s¼1

αsDCg
s
DC; (13)

Δεr ¼ −
1

nw

Xnw
s¼1

αsεrg
s
εr ; (14)

where αsσ ; αsDC; and α
s
εr are computed as in Domenzain et al. (2019).

After Δσw and ΔσDC have been computed, they are joined by
weights aw and aDC

Δσ ¼ awΔσw þ aDCΔσDC; (15)

we then normalize Δσ by its largest amplitude and finally write

Δσ←cΔσ; (16)

where c is the geometric mean of the maximum amplitudes of
Δσw and ΔσDC prior to normalization. The driving purpose of
the weights aw and aDC is of letting both updates Δσw and
ΔσDC and always contribute to Δσ in proportion to their objective
function value at a given iteration. Figure 2 shows the shape as a
function of iterations of the weights aw and aDC should have: a bow-
tie shape where at early iterations aw dominates and at later itera-
tions aDC takes over. For a full discussion on the weights aw and
aDC, see Domenzain et al. (2019).
To enforce the positivity constraints, the parameters are updated

as (Meles et al., 2010)

Figure 1. Inversion algorithm for joint and JEN. We differentiate
joint and JEN by how we compute Δσw and Δεr.

Figure 2. Qualitative optimal shape for weights throughout itera-
tions for all inversion schemes (joint, JEN, JOIX, and JENX). Be-
cause the ER data struggle to resolve the conductivity at depth in
early iterations and the GPR data first resolve the structure of the
model, the weight aw is given a larger value than aDC at early iter-
ations. Once the GPR data have resolved enough structure, the roles
of aw and aDC are reversed. The envelope weights βεr and βσ remain
constant through the inversion. The cross-gradient weights bεr and
bσ increase their contribution through the inversion because the
parameters are better resolved.
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σ←σ⊙ expðσ⊙ΔσÞ; (17)

εr←εr⊙ expðεr⊙ΔεrÞ: (18)

We will refer to this inversion method (i.e., optimizing equa-
tion 11) as joint.

Joint inversion of the GPR envelope and ER data

We begin with a description of GPR envelope inversion, which
exploits the low-frequency content of the GPR data. Similar to GPR
inversion, we find εr� and σ� but with the objective function ~Θw

(Bozdağ et al., 2011; Liu and Zhang, 2017)

fεr�; σ�g ¼ argmin ~Θwðεr; σ; dow; dow;aÞ;
~Θw ¼ Θwðεr; σ; dowÞ þ Θw;aðεr; σ; dow;aÞ; (19)

where dow;a is the envelope of the observed data using the Hilbert
transform and

Θw;a ¼
1

ns

X
s

Θs
w;a; Θs

w;a ¼
kew;ak22
kdo;sw;ak22

; (20)

where s indexes the sources. We optimize ~Θw using the gradient
descent method and regulate how much information Θw;a contrib-
utes to the inversion by weighting the gradients of Θw and Θw;a

differently. The gradients of Θw;a with respect to the parameters
εr and σ are computed using a full-waveform approach in which
a different adjoint source has to be used for Θw;a as explained in
Bozdağ et al. (2011) and reproduced in Appendix B for com-
pleteness.
For the sake of clarity, we illustrate the optimization procedure

for just εr. For one source, let ~gsεr , g
s
εr , and gsεr;a be the gradients of

~Θs
w, Θs

w, and Θs
w;a, where the last two are computed as in equations

A-3 and B-10, respectively. We have

~gsεr ¼ gsεr þ βεrg
s
εr;a; (21)

where gradients gsεr and gsεr;a are assumed normalized in amplitude
and βεr is a fixed scalar quantity for all sources and all iterations.
The weight βεr regulates how much we boost the low-frequency
content of the observed GPR data. Our numerical results show that
a larger value of βεr gives better depth resolution with the caveat of
losing spatial resolution. However, if the value of βεr is too large, the
inversion might strongly favor the low-spatial-frequency content
over the high-spatial-frequency content, thus not giving accurate
results.
Once ~gsεr has been computed, we find the step size αsεr as detailed

in Domenzain et al. (2019). After ~gsεr and αsεr have been computed
for all sources, the permittivity update is

Δεr ¼ −
1

nw

Xnw
s¼1

αsεr ~g
s
εr : (22)

Analogous to εr, the update for σ is

~gσ ¼ gsw;σ þ βσgsσ;a; (23)

Δσw ¼ −
1

nw

Xnw
s¼1

ασ ~gσ; (24)

where βσ is a fixed scalar quantity, gsw;σ and gsσ;a are computed as in
equations A-2 and B-9, respectively, and ~gσ is assumed to be nor-
malized in amplitude. Similarly to βεr , a larger value of βσ will re-
sult in better depth resolution.
The weights βεr and βσ play an important role in recovering the

subsurface parameters. In our numerical results, we have found that
when the GPR data have a small S/N, it is beneficial to use values
close to one and when the S/N is large, values smaller than one give
better results. However, regardless of how good the S/N is in the
GPR data, using the ER data in a joint inversion proves to have
better results with comparatively stronger results when the GPR
data exhibit strong attenuation.
We define our joint inversion of GPR envelope and ER data by

minimizing the following objective function:

fεr�;σ�g¼argmin ~Θwðεr;σ;dow;dow;aÞþΘDCðσ;doDCÞ: (25)

At a given iteration of our joint inversion (whose workflow is as in
Figure 1), we replace Δεr and Δσw by those computed in equa-
tions 22 and 24. The updated values for σ and εr are made as in
equations 17 and 18.
We will refer to this inversion method (i.e., optimizing equa-

tion 25) as JEN.

Joint inversion with cross gradients

In this section, we assume that the electrical permittivity and con-
ductivity share structural properties. At a given iteration, we want
the structure of εr to be shared onto σ and vice versa, and we want to
do so by respecting the different concavities that εr and σ may have.
For this reason, we choose the discrete cross-gradient operator τ as a
measure of structure (Gallardo and Meju, 2003)

τðεr; σÞ ¼ ∇xεr ×∇xσ; (26)

where ∇x denotes the discretized finite-difference spatial operator
ð∂x; ∂zÞ, and we minimize the objective function Θτ

Θτðεr; σÞ ¼
1

2
kτk22: (27)

Because we are modeling the full physics of the GPR and ER ex-
periments and we compute the gradients of our objective functions
using an FWI and adjoint method approach, our method differs
from the original method of Gallardo and Meju (2003) because
we choose not to compute the sensitivity matrices of our data.
The result is that at each iteration of our joint inversion (whose
workflow is shown in Figure 2), we optimize equation 27 using
a Gauss-Newton approach from which we only use the master up-
dates Δστ;° and Δεr;τ;°. These updates are the cumulative sum of all
the updates done in the Gauss-Newton optimization routine. For
example, let Δεr;τ;° and Δεr;τ be the Gauss-Newton updates of
the first and second iteration, respectively, for optimizing Θτ with

Joint inversion of GPR and ER Data H119
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respect to εr. Before the third iteration, the master update Δεr;τ;°
takes the form

Δεr;τ;°←Δεr;τ;° þ Δεr;τ: (28)

This procedure is then repeated at each iteration. The full details
of optimizing equation 27 and computing Δστ;° and Δεr;τ;° are
explained in Appendix C.

We observe that minimizing Θτ in this way (1) has good potential
for a well-posed problem because the number of data points is equal
to the number of unknowns (all of the points in our model domain),
(2) is relatively cheap in computation time and memory, (3) can be
done by modifying εr and σ or by keeping one fixed and only modi-
fying the other, and (4) enables us to port the information of min-
imizing Θτ into our scheme for optimizing Θw and ΘDC without
having to use second-order optimization methods, that is, the Hes-

sians of Θw and ΘDC.
Figure 3 gives an example of the different pos-

sibilities for minimizing Θτ outlined in observa-
tion 3. Given hypothetical values for εr and σ in
Figure 3a and 3b, at a given iteration we mini-
mize Θτ in three different ways. In Figure 3c
and 3d, we update εr and σ, in Figure 3e we
fix σ and update εr, and in Figure 3f we fix εr
and update σ. Note that in this example εr and
σ have different concavities and different shapes;
that is, σ is wider than εr, mimicking the different
resolutions that our joint inversion is able to ob-
tain from these two different parameters. The
dashed circles are of fixed radii in all panels
and serve as markers for the underlying shapes.
When optimizing Θτ for σ and εr as shown in

Figure 3c and 3d, σ and εr are modified and re-
shaped to look more like one another because
they are jointly updated. Figure 3e shows εr ex-
panding toward the outer circle, appearing even
more similar to σ in Figure 3b than that of Fig-

ure 3c. Figure 3f shows σ contracting into the inner circle, appearing
even more similar to εr in Figure 3a than that of Figure 3d.
Depending on the subsurface material properties, the sensitivities

of the GPR and ER data might resolve better at earlier iterations
either εr or σ. Whichever subsurface parameter is best resolved first
should inform the other about its structural properties. Because of
this reason and observations 1–4 above, we choose to optimize Θτ

twice per iteration: once modifying σ and keeping εr fixed and a
second time modifying εr and keeping σ fixed. Each optimization
has unique weights bσ and bεr that identify how much confidence
we give to the current solutions of either εr or σ.
We define our joint GPR and ER with the cross gradient by min-

imizing the following objective function:

fεr�;σ�g¼argminΘwðεr;σ;dowÞþΘDCðσ;doDCÞþΘτðεr;σÞ:
(29)

At each iteration of our joint inversion, we begin with estimates of
εr and σ. The joint update for the conductivity first involves keeping
εr fixed and computing the update Δστ;° given by equation C-7 that
optimizes Θτ. Then, we compute the weight bσ and scale Δστ;°

bσ ¼
�
hσ

aDC
aw

− ðhσ − dσÞaDC•
�
aw;

Δστ;°←bσΔστ;°; (30)

where aDC• is the value of aDC in the first iteration and Δστ;° is
assumed normalized in amplitude. The scalars dσ and hσ control
how early and how much in the joint inversion should the structural
information of εr be imprinted in σ.

Figure 3. Illustration of cross-gradient possibilities. (a and b) Given estimates of εr and
σ, (c and d) Θτ is minimized by updating εr and σ, (e) updating εr and keeping σ fixed,
and (f) updating σ keeping εr fixed. The dashed circles are constant markers for the
widths and centers of the Gaussian shapes in the given estimates of εr and σ.

Figure 4. Inversion algorithm for JOIX and JENX. We differentiate
JOIX and JENX by how we compute Δσw and Δεr.
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Figure 2 depicts the optimal path of bσ throughout the iterations.
During early iterations, bσ is small because not enough structure has
been recovered on εr, but at late iterations, bσ is larger because εr
is closer to its true solution. The value of bσ at a given iteration is a
measure of how much confidence we have on the structure of the cur-
rent solution for εr: The larger bσ is, the more confidencewe have of εr.
We note that the upward trend of bσ over iterations can only be

achieved if

hσ ≥ dσ > 0; (31)

which also forces bσ to plateau to the value hσ in late iterations so as
to inhibit dominance of the structural assumption and let the physics
of our inversions assume control. The purpose of dσ is to control the
value of bσ for the first iteration: bσ ¼ dσaDC•.
The new update Δστ;° is now passed to the GPR and ER optimi-

zation routines before the step sizes of the gradients are computed

gsw;σ←gsw;σ þ Δστ;°;

gsDC←gsDC þ Δστ;°; (32)

where gsw;σ and gsDC are assumed to be normalized in amplitude. The
step sizes of the gradients gsw;σ and gsDC are computed as described in
Domenzain et al. (2019), and the updates Δσw and ΔσDC are com-
puted as in equations 12 and 13. Finally, the updated value for σ is
calculated as in equation 17.
Figure 2 shows a code-flow diagram of our joint inversion with

the cross gradient. The next step in our joint inversion is the struc-
tural update to εr, which is analogous to the update that we just
computed for σ. We keep σ fixed, compute Δεr;τ;° given by equation
C-6, and compute the weight bεr and scale Δεr;τ;°

bεr ¼
�
hεr

aDC
aw

− ðhεr − dεrÞaDC•
�
aw;

Δεr;τ;°←bεrΔεr;τ;°; (33)

where Δεr;τ;° is normalized in amplitude. The new update Δεr;τ;° is
now passed to the GPR optimization routine before the step size of
the gradient is computed by

gsεr←gsεr þ Δεr;τ;°; (34)

where gsεr is assumed normalized in amplitude. The updated value
for εr is calculated by equation 18 where the update Δεr is given in
equation 14.
The weights hεr and dεr are not necessarily equal to hσ and dσ , but

bεr must follow a similar shape as bσ (see Figure 2). Similar to bσ ,
the value of bεr at a given iteration is a measure of how much con-
fidence we have on the structure of the current solution for σ: The
larger bεr is, the more confidence we have of σ.
Because hσ and hεr regulate how large bσ and bεr can become

over the course of the iterations, we propose two general rules
on choosing hσ and hεr based on how much conductivity is present
in the subsurface:

1) If conductivity is low, hεr should be small and hσ large.
2) If conductivity is high, hσ should be small and hεr large.

We recognize that in a real scenario we might not know a priori
the conductivity of the subsurface; however, we can obtain a good

enough approximation for determining hσ and hεr by observing the
ER pseudosections and assessing how many reflection events are
visible in the GPR shot gathers.
We will refer to this inversion method (i.e., optimizing equa-

tion 29) as JOIX. We present this algorithm in Figure 4.

Joint inversion of GPR envelope and ER data with
cross gradient

Now that we have enhanced our joint inversion of the GPR and
ER data (Domenzain et al., 2019) with an envelope objective func-
tion for the GPR data and with structural similarities of subsurface
electrical properties, we develop a third method that joins these two
enhancements into a single inversion procedure. The joint GPR
envelope and ER data with cross-gradient inversion minimize the
following objective function:

fεr�; σ�g ¼ argmin ~Θwðεr; σ; dow; dow;aÞ
þ ΘDCðσ; doDCÞ þ Θτðεr; σÞ: (35)

At a given iteration, we first compute Δστ;° as in equation 30, and
then we add this information to the gradients gsw;σ and gsDC normal-
ized in amplitude given by equations A-2 and A-4,

gsw;σ←gsw;σ þ βσgsσ;a þ Δστ;°;

gsDC←gsDC þ Δστ;°: (36)

Once the gradients from all sources have been computed, we find
the updates Δσw and ΔσDC as given by equations 12 and 13. Then,
we can computeΔσ with equation 16 and update σ as in equation 17.

To compute Δεr, we first compute Δεr;τ;° as in equation 33, and
then we add this information to gsεr and gsεr;a normalized in ampli-
tude as given by equations A-3 and B-10,

gsεr←gsεr þ βεrg
s
εr;a þ Δεr;τ;°: (37)

Once all gradients for all sources have been computed, we find Δεr
as given by equation 14. Finally, we update εr as in equation 18. The
code-flow diagram in Figure 2 also describes this procedure with
gradients computed by equations 36 and 37.
We will refer to this inversion method (i.e., optimizing equa-

tion 35) as JENX. We present this algorithm in Figure 4.

Choice of weights

To join the objective functions ~Θw;ΘDC, and Θτ, we have intro-
duced 11 weights: Our joint inversion requires 5 (equation 15), the
envelope inversion requires 2 (equations 21 and 23), and the cross-
gradient inversion requires 4 (equations 30 and 33). Aside from the
considerations given for each inversion routine, our numerical re-
sults show that when all weights are nonzero, they all influence each
other. In some cases, the influence the weights exert on each other
can lead to a different behavior in the inversion than what was ex-
plained in the previous sections.
We observe that the conductivity solution influences the permit-

tivity solution in a stronger way than the permittivity solution
influences the conductivity solution. Moreover, because of the weak
sensitivity the GPR data have on the conductivity, obtaining a good
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solution for the conductivity is most efficiently achieved by joining
the ER data (Domenzain et al., 2019). Therefore, we assume that we
are already satisfied with the joint weights of equation 15 and focus
on improving the permittivity and conductivity solution with
weights for ~Θw or Θτ.
Let us first assume that the conductivity of the subsurface is low

and the GPR data hold enough information for a good solution of
the permittivity. If we increase βσ or hσ (in equations 30 and 36) for
a better depth or spatial resolution of σ, we pay the price of degrad-
ing the spatial and amplitude resolution of εr.
Let us now assume that the conductivity in the subsurface is high

and the GPR data do not hold enough information for a good es-
timate of the permittivity but the ER data are enough for a good
solution of the conductivity. Contrary to the above scenario, in this
case, it is possible to exploit the good solution of σ and the low-
frequency content of the GPR data to improve εr. Our approach
consists of overweighting the envelope of the GPR data and relying
on the cross gradients to regulate the excess of the low-frequency
content. We choose negative weights bεr and bσ for the cross gra-
dient updates to trim off the low-frequency overfit. The use of neg-
ative weights on Θτ to counteract an overfit due to ~Θw is a novel
approach to effectively using the cross gradients and the envelope
transform because it takes into account the sensitivities of the ob-
jective functions at each iteration. The descent direction for the εr

solution is ensured by computing the step size for the updates with a
parabolic line search as explained in Domenzain et al. (2019).
We recognize that all 11 weights were found by trial and error.

In the low-conductivity scenario, we followed the qualitative guide-
lines explained in the previous sections and shown in Figure 2. For
the high-conductivity scenario, the negative weights (hεr ; dεr ; hσ ,
and dσ) were chosen in order for bεr and bσ to smoothly decrease
magnitude in absolute value as the iterations progressed. This
choice results in more low-frequency content trim off at early iter-
ations and less at later iterations.

SUBSURFACE SIMULATIONS

Recovering the electrical permittivity and conductivity of the
subsurface using FWI of one-sided acquired GPR data can be chal-
lenging if low frequencies are sparse and attenuation is high. Fur-
thermore, if the subsurface geometry has velocity and attenuation
anomalies larger than a wavelength of the GPR signal, the data
might miss amplitude information to accurately recover said
anomalies. Recovering the electrical conductivity of the subsurface
at depth using one-sided acquired ER data is limited by needing
large offsets. Furthermore, if the subsurface has electrical conduc-
tivity anomalies smaller than the receiver electrode distance, the ER
data cannot spatially resolve said anomaly.
Joining GPR and ER data (whose different sensitivities comple-

ment each other by sharing electrical conductivity) can better re-
solve subsurface electrical properties given that the GPR and ER
data hold enough information about the subsurface. However, if
the subsurface is poorly conductive, the ER data might have little
sensitivity to changes in the conductivity when compared to the
GPR data. Conversely, if the subsurface is highly conductive, the
ER data might have a larger sensitivity to changes in the conduc-
tivity when compared to the GPR data.
In view of these observations and in an effort to keep our analysis

as simple as possible, we choose to test our algorithms on two syn-
thetically designed subsurface scenarios: one with low and one with
high electrical conductivity as shown in Figure 5a and 5b and Fig-
ure 5a and 5c, respectively. Both scenarios have the same subsur-
face geometry: an electrical velocity and conductive box-anomaly
in the center and a velocity reflector at depth. The box is 1 × 1 m
wide: two wavelengths long but just within the limit of our chosen
ER experiment spatial resolution.
Finally, we implement our algorithm with all of the objective

functions in a realistic scenario resembling an alluvial aquifer as
shown in Figure 6a and 6c. Our synthetic aquifer loosely follows
the subsurface geometry of the Boise Hydrogeophysical Research
Site as imaged by Bradford et al. (2009a) and mapped by Barrash
and Clemo (2002). The electrical parameters resemble those of dry
gravel on the shallow layer and a variety of moist sands in the
deeper layers, with wetter sands (but not saturated) to the left of
the model. The dipping shallow layer is at most two wavelengths
deep and just within our ER spatial resolution. The wet region acts
as a strong reflector and as attenuative media for the radar data. We
note that by choosing this synthetic model, our data resemble a real-
istic field acquisition scenario.
In an effort to clarify our method, all inversions assume that the

GPR source wavelet is known. Moreover, our scheme can easily
incorporate radar source estimation schemes such as those by Pratt
et al. (1998) and Ernst et al. (2007a).

Figure 5. (a) True permittivity and conductivity for the (b) low-con-
ductivity and (c) high-conductivity scenario. In (a), an example of
GPR receivers (cyan) and source (red). The ER electrodes are
shown by purple in (b).
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In the remainder of this section, we address each of our three
synthetic scenarios: (1) low conductivity, (2) high conductivity,
and (3) the synthetic alluvial aquifer. For each of our synthetic mod-
els, (1) we explain the experiment design and choice of the initial
models used in our inversions, (2) show results for each of our in-
version schemes, and (3) discuss our results.

Experiments

Low and high conductivity

We model 250 MHz GPR antennas with a
Ricker wavelet source. We apply 20 equally
spaced sources on the air-ground interface with
a source-receiver near-offset of 0.5 m (approxi-
mately one wavelength) and the receiver-receiver
distance a quarter of a wavelength as shown in
Figure 5a. For the ER experiment, we use 17
electrodes placed 1 m away from each other
on the air-ground interface (see Figure 5b) and
perform all possible dipole-dipole and Wenner-
array configurations.
The synthetic GPR and ER data are then given

random white noise with amplitude of 10% of
their standard deviation as explained in Domen-
zain et al. (2019). See Figures 7 and 8 for the
acquired data in both scenarios. Note that for the
high-conductivity scenario, the signal in the GPR
data is very weak, and near where the box reflec-
tion event should be, the S/N is almost one,
whereas for the low-conductivity scenario, the
GPR data show strong reflections.
All inversions have a starting homogeneous

model for permittivity and conductivity: a value
of four for permittivity and values of 1 mS/m and
5 mS/m for the low- and high-conductivity sce-
narios, respectively.

Synthetic alluvial aquifer

We use the same acquisition geometry as for
the low- and high-conductivity experiments (see

Figure 5a and 5b). Given the complicated subsurface geometry, we
enhance the ER experiment with all of the possible Schlumberger
arrays. All of our data are given random white noise analogous to
the low- and high-conductivity scenarios. To aid our analysis, we
place boreholes B1, B2, and B3 as shown in Figure 6a and 6c.
Figure 6b shows the initial permittivity, and Figure 6d shows the

initial conductivity used in our inversions. Our numerical experiments
suggest a very strong sensitivity to the first layer in our initial models
throughout our inversions. We choose a smooth initial model that ac-

Figure 6. Synthetic alluvial aquifer true and initial parameters. (a) True and (b) initial permittivities. (c) True and (d) initial conductivities. The
cyan lines represent boreholes B1, B2, and B3 from left to right.

Figure 7. GPR shot gather #7 of the low- and high-conductivity scenarios and their
respective best-recovered parameters as given by Figures 10 and 11 for the low-con-
ductivity scenario and Figures 12 and 13 for the high-conductivity scenario. Amplitudes
are clipped to 1.5% of the maximum amplitude in the data.
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curately resolves the first airwave refraction in the GPR data and
qualitatively follows the shape of the low-velocity region in length.
Figure 9a gives the residual of the initial and observed GPR data:
All reflection events below the first airwave refraction are present.
In Appendix D, we give the details for choosing and building our

initial models. The strategy consists in perturbing the true model in
two different ways. First, we smooth it enough to lose the depth
resolution of the first layer and lateral resolution of the low-velocity
region. As a second approach, we smooth the true model below the
first layer but retain the true model for the first layer. The smoothing
is done with a Gaussian low-pass filter in the space-frequency do-
main with a half-width of 0.8 1/m. The initial model in Figure 6b
and 6d is an intermediate step between the first and second pertur-
bations. It is described in Appendix D. We note that, although de-
manding, these initial models are representations of the long-
wavelength structure that could realistically be obtained from re-
flection tomography and careful analysis of direct arrivals.

Results

Low conductivity

Figures 10a and 11a show the recovered parameters for the low-
conductivity case using joint inversion of GPR and ER data and

using the weights in the first column of Table 2. We see the shape
and amplitude of the box recovered in the permittivity solution to-
gether with high-spatial-frequency artifacts around the box mainly
due to one-sided acquisition and noise in the data. The recovered
conductivity also exhibits high-spatial-frequency artifacts around
the box and a strong amplitude from the permittivity bottom reflec-
tor due to the GPR data being unable to distinguish permittivity
from conductivity reflections.
Figures 10b and 11b show the recovered parameters for the low-

conductivity case using joint inversion of the GPR envelope and ER
data and using the weights in the second column of Table 2. In the
recovered permittivity, we note fewer high spatial-frequency arti-
facts than in the joint inversion case (see Figure 10a), at the cost
of a lower resolution of the box. The recovered conductivity shows
better amplitude resolution, although the bottom permittivity reflec-
tor is now thicker than in the joint inversion case (see Figure 11a)
due to the larger weighting of the GPR low frequency.
Figures 10c and 11c show the recovered parameters for the low-

conductivity case using joint inversion of GPR and ER data with
cross gradients and using the weights in the third column of Table 2.
We see that the permittivity solution is very similar to the joint in-
version result (Figure 10a). However, the recovered conductivity
has a more even spread in amplitude resolution compared to the

joint and envelope inversion and the artifact am-
plitude of the permittivity reflector is now less
when compared with Figure 11a and 11b.
Figures 10d and 11d show the recovered

parameters for the low-conductivity case using
joint inversion of GPR envelope and ER data
with cross gradients and using the weights in
the fourth column of Table 2. The permittivity
solution is again very similar to the results of Fig-
ure 10a and 10c, but the conductivity solution is
now slightly better than the rest of the inversion
results by having a more localized resolution
around the box.

High conductivity

Figures 12a and 13a show the recovered
parameters for the high-conductivity case using
joint inversion of GPR and ER data with weights
as in the first column of Table 3. We note the very
weak amplitude and low-spatial-frequency reso-
lution on the recovered permittivity due to strong
attenuation and an S/N almost equal to one in the
region of the box reflection event. The recovered
conductivity exhibits better low-spatial-fre-
quency content than the low-conductivity case;
however, there are stronger amplitudes near
the top of the box than at depth.
Figures 12b and 13b show the recovered

parameters for the high-conductivity case using
joint inversion of the GPR envelope and ER data
with weights as in the second column of Table 3.
The recovered permittivity now exhibits less
high-spatial frequency content than in the joint
inversion of the GPR and ER cases (see Fig-
ure 12a) and a small increase in amplitude reso-
lution near the box anomaly. For the recovered

Figure 8. ER data of the (a) low- and (b) high-conductivity scenarios and their respec-
tive best-recovered parameters.

Figure 9. Residuals of GPR shot gather #7 for the synthetic alluvial aquifer. Residual of
(a) the initial model and observed, and of (b) recovered and observed. Recovered data
correspond to the JOIX method. Amplitudes are clipped to 1.5% of the maximum am-
plitude in the data.
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conductivity, we note a slight increase in amplitude resolution
at depth.
Figures 12c and 13c show the recovered parameters for the high-

conductivity case using joint inversion of GPR and ER data with
cross gradients and weights as in the third column of Table 3.
We see the improved amplitude resolution in the region where
the permittivity box lies, although the overall shape is missing
low-spatial-frequency information. The recovered conductivity now
has a better depth amplitude resolution as compared with the joint
GPR and ER and joint GPR envelope and ER inversions (see
Figure 13a and 13b).
Figures 12d and 13d show the recovered parameters for the high-

conductivity case using joint inversion of GPR envelope and ER
data with cross gradients and weights as in the fourth column of
Table 3. The permittivity anomaly is now recovered with accurate
amplitude and overall correct shape; however, we observe an over-
shoot of low spatial-frequency content as a remanent artifact from
the conductivity solution and the smoothing factor in the gradients.
The recovered conductivity, however, is now more accurate at depth
with a better overall spatial resolution than the rest of the inversions.

Synthetic alluvial aquifer

In Lavoué et al. (2014), the authors invert GPR surface-acquired
data of a synthetic realistic subsurface scenario. The authors use a
full-waveform approach, and they note that regularization is needed

for constraining the conductivity solution. In this work, we apply no
additional regularization of the inversion beyond the joint objective
function itself and the cross-gradient constraint.
Similar to our discussion for low and high conductivity, we per-

formed all our inversions (joint, JEN, JOIX, and JENX) on the

Figure 10. Recovered permittivity with low conductivity using
(a) joint, (b) JEN, (c) JOIX, and (d) JENX.

Figure 11. Recovered low conductivity using (a) joint, (b) JEN,
(c) JOIX, and (d) JENX.

Table 2. Inversion parameters for the low-conductivity
scenario.

Low σ Joint JEN JOIX JENX

aDC• 0.85 0.85 0.85 0.85

_aDC 3 3 3 3
_ΘDC 2 2 2 2

_aw 4 4 4 4
_Θw 0.9 0.9 0.9 0.9

βεr — 0.25 — —
βσ — 0.25 — 1e−5
hεr — — 0.01 —
dεr — — 0.1 —
hσ — — — 1e−3
dσ — — — —

Joint inversion of GPR and ER Data H125
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synthetic alluvial aquifer with the inversion parameters as in Table 4.
Figure 14 shows the recovered permittivity, and Figure 15 shows the
recovered conductivity for all inversions.
In Figure 14 for all inversions, we see artifact ripples in the first

layer. These ripples are due to the small discrepancy between values
of the true and initial model (approximately 2.5% in the first layer).
Similar lower space-frequency artifacts are also present in the re-
covered conductivity (see Figure 15).
Throughout Figure 14, we see the effect of having such a high

impedance contrast between the first layer and the low-velocity re-
gion: One-sided acquisition struggles to resolve the immediate sec-
tion of the region below the first layer. As seen in Appendix D, this
effect can be drastically reduced in the entire domain if the first
layer of our model is more accurately resolved in the initial models.
If the subsurface anomalies are larger than a wavelength, resolv-

ing the region of the intrusion below the first layer can be very chal-
lenging to resolve using only GPR data. Relying on the envelope of
the GPR data (Figure 14b and 14d) to correct it can cause over-
shooting the solution. However, by using the ER sensitivity of
the conductivity and the cross-gradient constraint, we help mitigate
this effect. By doing so, we retain the right values of permittivity
and resolve the corner of the low-velocity region; see Figures 14c
and 15c. The cross-gradient constraint also helps stabilize the inver-
sion by enabling us to run more iterations without strong artifacts
appearing in the recovered parameters.

We show the borehole data for the JOIX inversion (see
Figures 14c and 15c) in Figures 16 and 17 for permittivity and con-
ductivity, respectively. In Figure 16, we see that despite underesti-
mating the parameters in the initial model, the permittivity solution
accurately approximates the correct values. We also note that per-

Figure 12. Recovered permittivity with high conductivity using
(a) joint, (b) JEN, (c) JOIX, and (d) JENX.

Figure 13. Recovered high conductivity using (a) joint, (b) JEN,
(c) JOIX, and (d) JENX.

Table 3. Inversion parameters for the high-conductivity
scenario.

High σ Joint JEN JOIX JENX

aDC• 0.85 0.85 0.85 0.87

_aDC 1.5 1.5 1.5 1.5
_ΘDC 1.5 1.5 1.5 1.5

_aw 2.5 2.5 2.5 2.5
_Θw 0.9 0.9 0.9 0.9

βεr — 1 — 0.5

βσ — 1 — 0.5

hεr — — 0.2 −0.3
dεr — — 0.6 −3
hσ — — — −0.16
dσ — — — −0.6
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mittivity values at depth lack precision. However, the inversion
accurately locates the location of boundaries, and it does so approxi-
mating the right impedance value.
In Figure 17, we also note a lack of accuracy at depth for the

recovered conductivity. Similar to the inherent lack of sensitivity
in the GPR data due to two-way travel, the ER data are mostly sen-
sitive in an upside-down trapezoid region below the survey line. The
sensitivity of the ER data is mostly appreciated in Figure 15, where
the conductivity is mostly resolved in a trapezoid region. Figure 17c
also exhibits the lack of GPR and ER sensitivity at depth, where,
although the data are sensitive to impedance contrasts, they are not
capable of resolving the correct magnitude for the conductivity.
Figure 18b gives the recovered GPR data for shot gather 7, and

Figure 18c gives the observed and recovered ER data. We note that

most of the reflection events of the observed GPR data below the
airwave refraction are recovered in Figure 18b. Figure 9b shows the
residual of the recovered and observed GPR data. We see that the
first and second airwave refractions are recovered and the corner of
the low-velocity region is resolved up to the noise level. At early
times, we also note in Figure 9b the artifact ripples in the first layer
that the inversion has introduced.

Discussion

Low and high conductivity

Our numerical results show that all of the different objective
functions ~Θw;ΘDC, and Θτ influence each other when compared
to their individual inversions. For the low- and high-conductivity

Table 4. Inversion parameters for the synthetic alluvial aquifer.

aDC• _aDC _ΘDC _aw _Θw βεr βσ hεr dεr hσ dσ Iterations

Joint 0.2 3 2 1.5 0.3 — — — — — — 129

JEN 0.2 3 2 1.5 0.3 0.5 0.5 — — — — 89

JOIX 0.2 3 2 1.5 0.3 — — −10−3 −0.4 −10−4 −0.1 400

JENX 0.2 3 2 1.5 0.3 0.5 0.5 −10−3 −0.2 −10−4 −0.1 155

Figure 14. Recovered permittivity for the synthetic alluvial aquifer
using (a) joint, (b) JEN, (c) JOIX, and (c) JENX.

Figure 15. Recovered conductivity for the synthetic alluvial aquifer
using (a) joint, (b) JEN, (c) JOIX, and (d) JENX.
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scenarios, we find the best results when combining all of the ob-
jective functions noting improvements in the high and low spatial
frequencies and enhancing the amplitude resolution of the box
anomaly and at depth.
In all cases, we find that the conductivity solutions are signifi-

cantly of lower spatial resolution when compared to the permittivity
solutions. This is due to the inherent spatial resolution limitations of
the ER data and the attenuation-driven sensitivity of the GPR data to
conductivity.
In the low-conductivity scenario, we observe a gradual improve-

ment in the conductivity solution by introducing the objective
functions ~Θw;ΘDC, and Θτ. We quantify this improvement by com-
puting the absolute root-mean-square (rms) error of the true and
recovered conductivity for each method in a region around the
box anomaly and shown in the second column of Table 5. However,
the improvement in the conductivity solution slightly degrades the
best result for the permittivity solution as shown in the first column
of Table 5. The average of the permittivity and conductivity rms
absolute errors is displayed in the third column of Table 5, indicat-
ing that the joint inversion of the GPR and ER data with cross gra-
dients gives the best overall result.
In the high-conductivity case, it is clearer how the permittivity

and conductivity solutions improve when introducing all objective
functions. We quantify our inversion results in Table 6, which is
analogous to Table 5 but for the high-conductivity scenario. The
smallest rms errors for both parameters are given by introducing
all ~Θw;ΘDC, and Θτ objective functions.
We conclude that in the low-conductivity scenario in which the

GPR data are strongly sensitive to permittivity, improving the con-
ductivity solution costs a slight degradation of the permittivity sol-
ution. In the high-conductivity scenario in which the GPR data are
strongly affected by attenuation (and thus having a lower S/N), we
can improve the permittivity solution by directly using data that are
not directly sensitive to permittivity, that is, ER data using cross
gradients.
Because on average for the low and high-conductivity scenarios

the best recovered parameters are obtained using all of the objective
functions (see the third column of Tables 5 and 6), given the field
GPR and ER data that we recommend using all objective functions.
In the case in which the GPR data are strongly sensitive to permit-
tivity, we advise caution with overweighting the envelope gradients
of ~Θw whereas more leeway can be given to Θτ to improve the con-
ductivity solution. In case the GPR data are weakly sensitive to per-
mittivity, we recommend strong weighting on Θτ to exploit the ER
data for the benefit of the permittivity solution.

Synthetic alluvial aquifer

Compared to the low- and high-conductivity
examples, the initial model that we used for
the synthetic alluvial aquifer holds much more
low-spatial-frequency content of the subsurface.
This mostly impacts two aspects of the inversion:
(1) The initial conductivity model already de-
scribes the ER data pretty well, yielding that
the sensitivity of the ER is weak. (2) Using
the envelope of the GPR data inhibits the FWI
gradient to fully exploit high spatial-frequency
features. In this case, the permittivity sensitivity
given by the GPR data can be exploited to im-

Figure 16. (a-c) Recovered permittivity of the synthetic alluvial
aquifer using the JOIX method on boreholes B1, B2, and B3, re-
spectively. True is in solid black, and the initial model is in dashed
blue.

Figure 17. (a-c) Recovered conductivity of the synthetic alluvial
aquifer using the JOIX method on boreholes B1, B2, and B3, re-
spectively. True is in solid black and the initial model is in dashed
blue.

Figure 18. Synthetic alluvial aquifer data. (a) Observed and (b) recovered GPR data for
shot gather #7. (c) Observed and recovered ER data. Recovered data correspond to the
JOIX method. Amplitudes are clipped to 1.5% of the maximum amplitude in the data.
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prove the spatial resolution of the recovered conductivity with the
cross-gradient constraint. We find better results by completely mut-
ing the envelope weighting. This weighting strategy is in accor-
dance with the low- and high-conductivity discussion above. The
cross-gradient constraint on the permittivity enhances low-spa-
tial-frequency content on the GPR sensitivity, keeping the inversion
artifact-free for more iterations.
Figure 19a shows the weights aw and aDC as a function of iter-

ations. We choose a very small starting value for aDC to let the GPR
sensitivity resolve the missing high spatial-frequency content. In
Figure 19b, we see that most of the model is resolved in the first
50 iterations. The next 50 iterations resolve mostly the ER data.
After 150 iterations, the parameters are resolved within the resolu-
tion of our methods because no relevant change occurs. Later iter-
ations keep improving the permittivity and conductivity solutions
by filling high-spatial-frequency details such as, for example, the
corner of the low-velocity region.

CONCLUSION

We have developed a joint inversion algorithm for one-sided ac-
quired full-waveform GPR and ER data. The algorithm directly
joins GPR and ER data, the envelope of the GPR data, and structural
information of the parameters using a modified cross-gradient ap-
proach. Our three-for-one algorithm manages how much informa-
tion from each sensitivity is used in the inversion. This algorithm
manages the effects of strong attenuation and enhances low-spatial-
frequency content in the recovered electrical permittivity and con-
ductivity.
We tested our inversion scheme on synthetic noisy data and

found that even in regions of high attenuation where the GPR data
have an S/N close to one, we are able to recover accurate enough
subsurface electrical properties. In regions where the attenuation is
present but not strong, we are able to improve the low-spatial-fre-
quency content and accurately resolve sharp boundaries of the re-
covered parameters.
By joining GPR with ER data, we exploit the linkage given by

Maxwell’s equations of electrical conductivity in the GPR and ER
experiments. Borrowing from seismic FWI, we use the envelope of
the GPR data to better resolve amplitudes at depth and improve the
low-spatial-frequency content. We have modified the original cross-
gradient scheme to fit with our full-physics inversion without the
need for computing sensitivity matrices of the data or Hessians
of the objective functions.
We note that, with field data scenarios, it might be the case that

the more attenuation in the GPR data, the more sensitive to the sub-
surface the ER data might be (the high-conductivity scenario), and
the less attenuation in the GPR data, the less sensitive to the subsur-
face the ER data might be (the low-conductivity scenario). How-
ever, our algorithm accounts for both scenarios.
We tested our algorithm on a realistic scenario based on an allu-

vial aquifer deposit. We find that the choice for an initial model
greatly impacts the recovered parameters. The best results were
found using a smooth velocity model accurate in shallow depths.
We note that although demanding, our initial models may be pos-
sible to realize with field data using existing workflows such as re-
flection-traveltime and ER tomography. Our regularization strategy
relies on letting the GPR and ER data regularize each other, together
with cross-gradient constraints on permittivity and conductivity.
Being an initial model, no further a priori information is needed.

Figure 19. Inversion weights of the synthetic alluvial aquifer using
the JOIX method. (a) Values of weights aw and aDC over iterations.
(b) Objective function values for Θw;σ and ΘDC.

Table 5. The rms error and the average of the rms errors
for all inversion methods of the true and recovered
parameters for the low-conductivity scenario.

Low σ εr σ Average

Joint 0.3691 0.4927 0.4309

JEN 0.3742 0.4972 0.4357

JOIX 0.3682 0.4912 0.4297

JENX 0.3697 0.4908 0.4303

4The region where the errors were calculated is the band between 8 and 12 m in
length. The boxed results are the smallest value of each column.

Table 6. The rms error and the average of the rms errors
for all inversion methods of the true and recovered
parameters for the high-conductivity scenario.

High σ εr σ Average

Joint 0.3708 0.5012 0.4360

JEN 0.3644 0.4992 0.4318

JOIX 0.3666 0.4976 0.4321

JENX 0.3642 0.4915 0.4278

5The region where the errors were calculated is the band between 8 and 12 m in
length. The boxed results are the smallest value of each column.
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Even though we have presented 2D results, our algorithm can
take into account the 3D structure by using 3D GPR and ER for-
ward models. An important caveat of our scheme is assuming that
ER and GPR are sensitive to a unique electrical conductivity, and in
doing so we do not account for frequency-dependent conductivity.
Although in some limited types of materials this approximation is
reasonable, in general, it is not adequate. Future work will be fo-
cused on accounting for apparent conductivity differences at DC
and radar frequencies.
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APPENDIX A

GPR AND ER GRADIENTS

We obtain the gradients gsw;σ and gsεr of Θ
s
w with respect to σ and

εr following Meles et al. (2010) and Domenzain et al. (2019) using
an FWI approach:

vw ¼ Lwewð−tÞ; (A-1)

gsw;σ ¼ −
X
t

uð−tÞ⊙vwðtÞ · Δt; (A-2)

gsεr ¼ −
X
t

_uð−tÞ⊙vwðtÞ · Δt; (A-3)

where t denotes time, ð−tÞ denotes time reversed, ⊙ denotes
element-wise multiplication, _u denotes the time derivative of u
(computed with a numerical finite-difference scheme), vw is the ad-
joint wavefield (the back propagation of errors), and Δt denotes the
discretized time interval.
We compute gsDC using the adjoint potential field vDC

(Domenzain et al., 2019):

LT
DCvDC ¼ MT

DCeDC;

gsDC ¼ SDCvDC; (A-4)

where gsDC and vDC are vectors of size nxnz × 1 and
SDC ¼ −ðð∇σLDCÞφÞT.

APPENDIX B

ENVELOPE GPR GRADIENT

To apply the FWI scheme with the modified envelope data, we
first need to deduce a new adjoint source as a result of the chain rule
on our objective function. We follow Bozdağ et al. (2011) and de-
fine the adjoint source of equation A-1 in the continuous case and
then bring it back to the discrete case. Let u denote the y component
of the electromagnetic wavefield defined in space and time for a
given source. We denote the analytical representation of u by

~u ¼ uþ iû; (B-1)

where the hat denotes the Hilbert transform of u. We will also refer
to the Hilbert transform of u by fugH. We will modify the objective
function Θw, and that will modify the adjoint source because of the
chain rule on Θw.
The instantaneous amplitude of the wavefield (i.e., envelope) is

ua ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ û2

p
: (B-2)

In what follows, we will define new objective functions and find the
new adjoint source for them. We will denote as du the derivative
with respect to u and use this identity derived from the definition
of the Hilbert transformZ

f · duĝdt ¼ −
Z

f̂ · dugdt: (B-3)

Let the instantaneous amplitude objective function be

Θw;a ¼
1

2

Z
T

0

e2w;adt; ew;a ¼ ua − uoa; (B-4)

where the superscript o denotes observed data. We need the deriva-
tive ofΘw;a with respect to the parameters, and for that we also need
duΘw;a because u depends on the parameters. We have

duΘw;a ¼
Z

T

0

ew;a · duew;adt;

duew;a ¼ duua;

¼ uþ û · duû
u2a

: (B-5)

We now invoke identity equation B-3 in duΘw;a

duΘw;a ¼
Z

T

0

ew;a · u
ua

−
�
ew;a · û
ua

�
H|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

adjoint source

dt: (B-6)

From equation B-6, we have that in the discrete case for an observed
shot gather do;sw the adjoint source for the envelope-transformed data is

sw;a ¼
ew;a · d

o;s
w

do;sw;a
−
�
ew;a · fdo;sw gH

do;sw;a

�
H
; (B-7)

where do;sw;a denotes the envelope of the observed data and ew;a denotes
the residual of the observed envelope data and the synthetic envelope
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data. The gradients gsσ;a and gsεr;a are

vw ¼ Lwsw;að−tÞ; (B-8)

gsσ;a ¼ −
X
t

uð−tÞ⊙vwðtÞ · Δt; (B-9)

gsεr;a ¼ −
X
t

_uð−tÞ⊙vwðtÞ · Δt: (B-10)

APPENDIX C

MINIMIZING Θτ

We present a Gauss-Newton algorithm for optimizing Θτ that en-
ables our joint inversion scheme to independently weight the struc-
ture of σ over εr (or vice versa).
Let Dx and Dz be the discretized differential operators in the x-

and z-directions written as matrices of size nxnz × nxnz

τ ¼ Dxεr⊙Dzσ − Dzεr⊙Dxσ: (C-1)

The derivatives of τ with respect to εr and σ are

∇ετ ¼ Dx⊙½Dzσ� − Dz⊙½Dxσ�;
∇στ ¼ Dz⊙½Dxεr� − Dx⊙½Dzεr�; (C-2)

where the brackets indicate a matrix of size
nxnz × nxnz and all columns of a matrix ½a�
are the column vector a. Let JTτ;° ¼ ∇°τ, and then
the gradients of Θτ are

gτ;ε ¼ Jτ;ετ;

gτ;σ ¼ Jτ;στ: (C-3)

We compute the updates of εr and σ by

Δεr;τ ¼ −ðJτ;εJTτ;ε þ ατ;εIÞ−1gτ;ε;
Δστ ¼ −ðJτ;σJTτ;σ þ ατ;σIÞ−1gτ;σ; (C-4)

where I is the identity matrix of size nxnz × nxnz,
and ατ;ε and ατ;σ are step sizes for the optimal
descent direction for the previous iteration gra-
dients and are computed with an n-point parabola
approximation. We then normalize the updates
by their largest amplitude and scale them with
their respective step sizes. At each iteration, εr
and σ are updated by

εr←εr þ Δεr;τ;

σ←σ þ Δστ: (C-5)

To control the weight of either structure εr or σ in
our joint inversion, at each iteration we store the
updated information of Δεr;τ and Δστ in the
master updates Δεr;τ;° and Δστ;°

Δεr;τ;°←Δεr;τ;° þ Δεr;τ; (C-6)

Δστ;°←Δστ;° þ Δστ: (C-7)

We note that, in our inversion scheme presented in the “Joint inver-
sion with cross gradients” section, we first optimize Θτ modifying σ
and keeping εr fixed and then we optimize Θτ modifying εr and
keeping σ fixed.

APPENDIX D

INITIAL MODELS FOR THE SYNTHETIC
ALLUVIAL AQUIFER

For the first initial model (see Figure D-1a), we smooth the true
permittivity with a low-pass Gaussian filter so as to only allow two
characteristic wavelengths in the space-frequency domain (a Gaus-
sian with a half-width of 0.8 1/m). For the second initial model (see
Figure D-1b), we first remove the top layer from the true permit-
tivity model, we then smooth analogously as for the first initial
model, and finally we return the first layer without smoothing.
To keep the location of the shallow reflector equal in the initial per-
mittivity and conductivity, we interpolate the permittivities to obtain
Figure D-1c and D-1d.
Two main differences between the first and second initial models

are that the first initial model does not have an accurate amplitude in

Figure D-1. Sensitivity analysis of the initial model for the synthetic alluvial aquifer. (a-
d) The first and second initial model for permittivity and conductivity and (e-h) their
respective recovered parameters using the JOIX method.
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the first layer and it does not follow the low-velocity region in
length. As a result, when compared to the inversions of the first
model (Figure D-1e and D-1g), the second model is visibly able
to resolve all layers in the model with minimal artifacts in the first
layer (Figure D-1f and D-1h). We note, however, that the first model
is able to correctly identify the location of the first-/second-layer
boundary.
We choose the initial model for the inversions presented in the

main text as a perturbed true model between the two initial models
presented in this Appendix. First, we remove the top layer from the
true permittivity model, and then we smooth with a low-pass Gaus-
sian filter to only allow two characteristic wavelengths in the space-
frequency domain (a Gaussian with a half-width of 0.8 1/m). Then,
we decrease the values by 4% of the true values, return the first
layer, and smooth again to only allow six characteristic wavelengths
in the space-frequency domain (a Gaussian with a half-width of
2.5 1/m). The initial model for the conductivity is achieved by in-
terpolation of the permittivity. The result is a smooth initial model
with values 4% less than the true model but with a not-so-smooth
first layer interface.
Such a smooth initial velocity model can be achieved by follow-

ing the inversion procedure of Bradford et al. (2009a). This method
for estimating an initial velocity model is robust when airwave re-
fractions are present in the data, and it resolves the subsurface in a
top-down approach. We conclude that if the GPR field data exhibit
airwave refractions, the better the initial model fits these events in
the data, the better the inversion results will be.
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