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We explain the Lorentz resonances in plasmonic
crystals that consist of two-dimensional nano-
dielectric inclusions as the interaction between
resonant material properties and geometric reson-
ances of electrostatic nature. One example of such
plasmonic crystals are graphene nanosheets that are
periodically arranged within a non-magnetic bulk
dielectric. We identify local geometric resonances on
the length scale of the small-scale period. From a
materials perspective, the graphene surface exhibits
a dispersive surface conductance captured by the
Drude model. Together these phenomena conspire to
generate Lorentz resonances at frequencies controlled
by the surface geometry and the surface conductance.
The Lorentz resonances found in the frequency
response of the effective dielectric tensor of the bulk
metamaterial are shown to be given by an explicit
formula, in which material properties and geometric
resonances are decoupled. This formula is rigorous
and obtained directly from corrector fields describing
local electrostatic fields inside the heterogeneous
structure. Our analytical findings can serve as an
efficient computational tool to describe the general
frequency dependence of periodic optical devices. As
a concrete example, we investigate two prototypical
geometries composed of nanotubes and nanoribbons.
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1. Introduction
Novel frequency-dependent electromagnetic behaviour can be generated by patterned dispersive
dielectric metamaterials undergoing localized geometric resonance. Here the period of the
pattern lies below the wavelength of operation. Examples include plasmonic metasurfaces
[1,2], band gaps generated by periodic configurations of local plasmon resonators [3] and
beam steering [4]. In this work we contribute to the analytic understanding of such periodic
optical devices by investigating the role of local (frequency-independent) geometric features
and (frequency-dependent) material properties. In particular, we explain the appearance
of Lorentz resonances generated by periodically patterned dispersive dielectrics as the
interaction between resonant material properties and local geometric resonances of electrostatic
nature.

Concretely, we shall examine the optical frequency response of plasmonic crystals formed
by two-dimensional material inclusions (such as graphene) embedded in a non-magnetic bulk
dielectric host. We use a Drude model for the local conductivity response of the two-dimensional
material but allow for a fairly general periodic geometry, including, for example, graphene
nanoribbons or graphene nanotubes. In such geometries, frequency-independent geometric
resonances will be identified and characterized that occur on the length scale of the period of the
two-dimensional material inclusions. These local resonances are novel as they exist both on the
surface of the sheets and in the bulk. Together with the dispersive surface conductance of the two-
dimensional material, both phenomena conspire to generate Lorentz resonances in the effective
optical frequency response of the metamaterial. The resonance frequencies are controlled by the
surface geometry and the surface conductance.

The Lorentz resonances for the effective dielectric tensor or equivalently the effective index
of refraction for the bulk metamaterial are shown to be given by an explicit formula. This
formula is rigorous and obtained directly from the corrector fields describing local electrostatic
fields inside the heterogeneous structure. The local boundary value problem for the correctors
follows from the periodic homogenization theory for Maxwell’s equations developed in
[5–9]. The formula for the effective dielectric constant obtained here is notable in that the local
geometric resonances and local surface conductivity are uncoupled. This offers the opportunity
for efficient computation of the effective dielectric constant through the computation of the local
geometric resonances that are independent of the specific material properties. The interaction
between geometry and material dispersion is displayed explicitly in the rigorously derived
formula.

In detail, our contributions with the current work can be summarized as follows.

— We describe the interplay between frequency-independent geometric nanoscale
resonances and frequency-dependent local conductivity models that results in Lorentz
resonances in the effective optical frequency response. We derive an explicit formula
for the frequency response rigorously from a mathematical homogenization theory for
Maxwell’s equations for periodic two-dimensional material inclusions.

— The spectral decomposition is enabled by identifying an underlying compact self-adjoint
operator on a proper function space. This was done by symmetrizing a non-Hermitian
operator.

— We discuss how to use the analytic result for computing approximations on the frequency
response of periodic optical configurations. This approach offers a significant saving in
computational resources because only one frequency-independent geometric eigenvalue
problem has to be computed, in contrast to computing the corrector field for a huge
number of fixed frequencies [6,10].

— We examine two prototypical geometries—a nanotube and a nanoribbon configuration—
in more detail. The latter is analytically and computationally much more challenging
owing to singularities at the interior two-dimensional material edges. We discuss decay
estimates and examine the approximation quality of our computational approach.
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Figure 1. The homogenization procedure: (a) the nanoscale unit cell Y consisting of two-dimensional metallic inclusionsΣ
with surface conductivity σ (ω) in an ambient host material with permittivity ε; (b) the plasmonic crystal formed by many
scaled and repeated copies of Y in every space dimension; (c) a schematic of the homogenization process inwhich the nanoscale
structure is replace by a homogeneous material with effective permittivity εeff .

(a) Background: homogenization of plasmonic crystals
The following analytical investigation is based on a rigorous periodic homogenization theory
[5–9]. For the sake of simplicity, we will base our analytical investigation on a slightly simplified
setting that we quickly outline here.

Consider a three-dimensional plasmonic crystal consisting of periodic copies of a representative
volume element Y, which incorporates nanoscale inclusions given by two-dimensional material
surfaces (figure 1) of reasonably arbitrary shape (specified in §1b and appendix B). The
conductivity of the surfaces is assumed to obey the Drude model,

σ (ω) = i ωp

ω + i/τ
,

where i denotes the imaginary unit, ω is the angular frequency, ωp = 4 α ≈ 4/137 is a (rescaled)
Drude weight and τ is a material-dependent relaxation time. Here, we have non-dimensionalized
all quantities by applying a convenient rescaling [11]: ω̃ = h̄ω/EF, where EF denotes the
Fermi energy associated with the two-dimensional material and h̄ is the reduced Planck
constant; σ̃ (ω̃) = √

μ0/ε0 σ (ω), where μ0 and ε0 denote the vacuum permeability and permittivity,
respectively. We set the length, height and width of the representative volume element to 1,
Y= [0, 1]3. Furthermore, we assume that the dielectric host has a uniform and isotropic relative
permittivity ε.

It can then be shown [6,11] that for a sufficiently small representative volume element Y
and sufficiently many repetitions of Y, i.e. a sufficiently large plasmonic crystal, the effective
conductivity of the plasmonic crystal is given by a uniform, frequency-dependent conductivity
tensor

εeff
ij (ω) = ε δij −

σ (ω)
iω

∫
Σ

{
PT(ej) + ∇Tχj(ω, x)

} · PT(ei) dox, i, j= 1, 2, 3. (1.1)

Here, x represents the spatial coordinates, δij is Kronecker’s Delta, ej is the jth unit vector, Σ

denotes the two-dimensional material surface (embedded in Y), PT is the projection of a vector
onto the two-dimensional tangential space of Σ and ∇T = PT∇ denotes the tangential gradient
(with respect to Σ).

The Y-periodic corrector field χ (x) for closed Σ is the solution of the cell problem [6],⎧⎪⎪⎨
⎪⎪⎩


χj(x) = 0 in Y\Σ ,

[χj(x)]Σ = 0 on Σ ,

ε[ν · ∇χj(x)]Σ = σ
iω ∇T · (

PTej + ∇Tχj(x)
)

on Σ ,

(1.2)
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where ν is the unit outward normal of Σ at x and [f ](x) denotes the jump of a quantity f across
the surface Σ along the normal direction of Σ , namely

[ f ](x) := lim
α↘0

( f (x + αν) − f (x − αν)) for x ∈ Σ .

The novelty of plasmonic materials is that they are used to control light at wavelengths
much larger than the characteristic length scale of the period. Thus understanding wave
dispersion for such systems through frequency-dependent effective behaviour is quite natural.
Recently frequency-dependent effective dispersive behaviour of a finite number of metallic sheets
embedded in a dielectric host was compared with direct numerical simulation and shown to agree
up to a negligible error [11]. In another work, the frequency dependence of effective properties
was mathematically proven to deliver the leading-order dispersive behaviour for subwavelength
plasmonic composites; this is rigorously done in theorem 4 of [12]. Last it is noted that the
Lorentz resonance for a single particle is not sufficient for understanding periodic subwavelength
patterned arrays of inhomogeneities as it ignores close range inter-particle interactions that are
captured by the local fields that determine the effective dielectric constant.

(b) Summary of the main result
The objective of our discussion is to decouple the frequency dependence introduced in (1.1) by
the surface conductivity and other material parameters from the geometric resonances of the
nanostructure. To this end, we introduce an auxiliary spectral problem to identify all {λn} ⊂C

for which there exists a ϕn satisfying⎧⎪⎪⎨
⎪⎪⎩


ϕn(x) = 0 in Y\Σ ,

[ϕn(x)]Σ = 0 on Σ ,

λn[ν · ∇ϕn(x)]Σ = ∇T · ∇Tϕn(x) on Σ .

Introducing η(ω) = σ (ω)/iω we then show that the effective refractive index in (1.1) can be
expressed by the formula

εeff
ij (ω) = εδij − η(ω)

∫
Σ

PT(ej) · PT(ei) dox −
∞∑
n=1

λn η2(ω)
ε − λn η(ω)

Mjn Min, (1.3)

where the factors Mjn are defined as

Mjn =
∫
Σ

PT(ej) · ∇Tϕn(x) dox, j= 1, 2, 3, n= 1, 2, . . . .

The important property of this formula is that the integrals only depend on geometry, and
the coefficients only depend on frequency. Equating the real part of the denominator in
the coefficients of (1.3) to zero recovers an explicit resonance frequency ωR,n for which the
contribution of the nth term of the sum may become dominant,

ωR,n =
√

ω2
0,n − 1

(2τ )2 , where ω2
0,n = λnωp

ε
, n= 1, 2, . . . .

(c) Past works
Plasmonic crystals based on patterned dispersive dielectric two-dimensional material inclusions
have made possible an unprecedented wealth of novel functional optical devices [13–18]. Possible
applications range from optical holography [19], tunable metamaterials [20] and cloaking [21] to
subwavelength focusing lenses [22].

The analytical approach taken here is motivated by earlier observations of local resonances
occurring at the length scale of the microgeometry. Electrostatic resonances identified at the length
scale of composite geometry were shown to control the effective dielectric response associated
with crystals made from non-dispersive dielectric inclusions in the pioneering work of [23,24].
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The associated representation formulae based on local resonances were extended and applied to
bound the effective dielectric response [25–27]. Most recently local electrostatic and plasmonic
resonances have been used to construct non-magnetic double negative metamaterials in the near
infrared [12] and design photonic band gap materials [28].

The current work advances the understanding of effective dielectric behaviour by discovering
and subsequently taking advantage of local resonances supported both on surfaces and in the
bulk for generating Lorentz resonances at frequencies explicitly controlled by the microstructure.

(d) Paper organization
The remainder of the paper is organized as follows. In §2, we introduce the analytical setting and
discuss our spectral decomposition result. The emerging Lorentz resonance and an application
to inverse optical design are discussed in §3. A computational framework based on the spectral
decomposition is outlined in §4 and two prototypical geometries are computationally analysed.
We discuss implications and conclude in §5.

Analytical technicalities concerning the spectral decomposition result on closed and open
surfaces are outlined in appendices A and B. We summarize some explicit analytical formulae
for the solution of the geometric eigenvalue problem in appendix C.

2. Spectral decomposition
In this section, we introduce and characterize an auxiliary spectral problem that enables us to
derive the spectral decomposition (1.3) of the cell problem (1.2). For the sake of argument, we
keep the discussion in this section on a formal level. A mathematically rigorous formulation of the
spectral decomposition for general classes of closed and open two-dimensional dielectric inclusions
Σ is given in appendices A and B, respectively. Here, a closed inclusion Σ is a Y-periodic two-
dimensional surface that does not have any one-dimensional edges in the interior of Y. Similarly,
an open inclusion Σ is a Y-periodic two-dimensional surface that exhibits an edge in the interior
of Y (figure 1).

(a) An auxiliary eigenvalue problem
As a first step, we introduce an auxiliary eigenvalue problem that is closely related to the cell
problem (1.2) of the homogenization process. By removing the forcing PTej and replacing the
quotient iωε/σ by a real-valued eigenvalue λ one arrives at the spectral problem: find all pairs of
eigenvalues λ ∈R and corresponding square-integrable eigenfunctions ϕ such that⎧⎪⎪⎨

⎪⎪⎩

ϕ(x) = 0 in Y\Σ ,

[φ(x)]Σ = 0 on Σ ,

λ[ν · ∇ϕ(x)]Σ = 
Tϕ(x) on Σ .

(2.1)

Here, ν is again the unit outward normal of Σ at x. We have set 
T := ∇T · ∇T and [f ](x) denotes
the jump of a quantity f across the surface Σ along the normal direction of Σ , namely

[ f ](x) := lim
α↘0

( f (x + αν) − f (x − αν)) for x ∈ Σ .

Eigenvalue problem (2.1) is certainly well posed and will admit an orthonormal basis of square-
integrable eigenfunctions provided one can identify an underlying self-adjoint and compact
linear operator. For all square-integrable densities γ (x) defined on the surface Σ we thus introduce
the periodic single-layer operator Sγ by setting

(Sγ )(x) :=
∫
Σ

Gper(x − y)γ (y) doy and x ∈Y. (2.2)
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Here, Gper is the periodic Green’s function of the periodic Laplace problem, namely

Gper(x) :=
∑
	z∈Zn

G0(	z + x) and G0(x) := − 1
4π |x| .

The single-layer operator S is constructed in such a way that Sγ satisfies


Sγ = 0 in Ω\Σ , [Sγ ]Σ = 0 on Σ , [ν · ∇(Sγ )]Σ = γ on Σ . (2.3)

An important insight (that we outline in appendix A) is the fact that this process can be reversed:
in particular, for every eigenfunction ϕ that solves (2.1) one can find a density γ such that ϕ(x) =
(Sγ )(x). This allows us to substitute the representation ϕ = Sγ into the last equation of (2.1),

λγ (x) = 
T(Sγ )(x) on Σ .

Let S denote the single-layer operator S restricted to Σ and set ξ = Sγ . Provided that the inverses
S−1 and 
−1

T exist we can further rearrange the eigenvalue problem (2.1) into an equivalent
spectral problem,


−1
T S−1ξ = λ−1ξ . (2.4)

We establish in appendix A that for the case of closed surfaces Σ both inverses S−1 and 
−1
T

do indeed exist and that the operator 
−1
T S−1 is compact and self-adjoint on a modified Hilbert

space

N(Σ) :=
{
ξ ∈H1(Σ) :

∫
Σ

S−1ξ dox = 0
}

,

with associated norm ||∇T · ||L2(Σ). Here, H1(Σ) denotes the Sobolev space of square-integrable
functions with square-integrable generalized derivatives. In summary, this guarantees the
existence of a countable set of real eigenvalues {λ−1

n }, n= 1, 2, . . . converging to zero, and an
associated orthonormal basis of eigenvectors {ξn} of N(Σ). Note that by design ξn is precisely the
restriction of ϕn, as characterized by (2.1) to the surface Σ .

(b) Spectral characterization of the corrector
Consider now the Y-periodic corrector field χ (x), described by the cell problem (1.2). The
aforementioned orthonormal basis of eigenvectors {ξn} admits (up to a constant) a representation

χj(x) =
∞∑
n=1

αn
j ξn(x) on Σ .

Substituting this characterization back into (1.2) and a bit of algebra exploiting (2.4) then yields
an explicit formula for the coefficients,

αn
j = λnη(ω)

ε − λn η(ω)

∫
Σ

PT(ej) · ∇Tξn dox, η(ω) := σ (ω)
iω

, j= 1, 2, 3. (2.5)

Similarly, repeating the substitution for equation (1.2) yields an explicit formula for the frequency
behaviour of the effective dielectric tensor,

εeff
ij (ω) = ε δij − η(ω)

∫
Σ

PT(ej) · PT(ei) dox −
∞∑
n=1

λn η2(ω)
ε − λn η(ω)

Mjn Min, (2.6)

where the factors Mjn are defined as

Mjn =
∫
Σ

PT(ej) · ∇Tϕn(x) dox, j= 1, 2, 3, n= 1, 2, . . . .

A number of remarks are in order. Equation (2.6) separates the frequency dependence of the
surface conductivity (included in η(ω)) from the fundamental (frequency-independent) geometric
resonances described by eigenvalue problem (2.1) that determine eigenvalues λk and eigenmodes
ξk. This implies that material properties and geometric resonances, which both contribute to the
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frequency response of the effective permittivity tensor εeff
ij (ω), are decoupled: the spectrum λk and

eigenmodes ξk of (2.1) only depend on the (nanoscale) geometry and not on the concrete surface
conductivity model.

3. Macroscale frequency response
We now investigate the effective permittivity tensor εeff(ω) given by (2.6) further. First, the
somewhat hidden Lorentz resonance structure in the coefficients of the sum in equation (2.6)
is made explicit. We then discuss how equation (2.6) can be used to facilitate the inverse design
process [29,30].

(a) Lorentz dispersive material
From (2.6) we see that resonances in the temporal behaviour of the tensor emerge whenever
the denominator in the coefficients of the sum is close to zero. Equating the real part of the
denominator of

λnη
2(ω)

ε − λnη(ω)

to zero recovers a critical frequency

ω2
0,n = λnωp

ε
. (3.1)

Here, we assumed a simple Drude model σ (ω) = iωp/(ω + i/τ ) to hold, where ωp ≈ 4/137 is a
rescaled Drude weight and τ is a material-dependent relaxation time. With this definition in place,
we can further manipulate the coefficients,

λnη
2(ω)

ε − λnη(ω)
=

ω2
0,nωp

ω(ω + i/τ )
· 1

ω2 − ω2
0,n + iω/τ

.

In general, the angular frequency ω is much larger than the inverse of the relaxation time, namely
ω 
 1/τ . Thus, close to resonance we can reasonably assume that ω ≈ ω + i/τ ≈ ω0,n and obtain

λnη
2(ω)

ε − λnη(ω)
≈ ωp

1

ω2 − ω2
0,n + iω/τ

= −ωp

(
ω2

0,n − ω2) − iω/τ(
ω2

0,n − ω2
)2 + ω2/τ 2

.

The coefficients are thus Lorentzian with resonance frequency

ωR,n =
√

ω2
0,n − 1/(2τ )2, n= 1, 2, . . . . (3.2)

In summary, we obtain that, up to a constant,

εeff
ij (ω) ∼MjnMin ωp

(
ω2

0,n − ω2) − iω/τ(
ω2

0,n − ω2
)2 + ω2/τ 2

, for ω ≈ ωR,n.

We point out that the nanoscale geometry that determines the spectrum λn and eigenmodes ξn

only influences the numerical values of the resonance frequencies ω0,n and ωR,n as well as the
numerical values of the weights Min.

In summary, this heuristic argument suggests that the macroscale optical response of the
plasmonic crystal is that of a Lorentz dispersive material [31–33]: the frequency response of the
effective permittivity, εeff(ω), can be approximated by a finite sum of Lorentz resonances, with
explicit formulae for resonant frequencies and coefficients provided by our characterization (2.6).

(b) Inverse optical design
The rational expression for the effective property given by (2.6) lends itself to an inverse optimal
design paradigm for a desired dispersive response. Equation (2.6) shows that the locations of the
poles and zeros are controlled by the eigenvalues λn and eigenfunctions ζn. These depend on
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x2

x1
x3

(a) (b)

Figure 2. Prototypical geometries: (a) a nanotube configuration and (b) a nanoribbon configuration. The diameter (in (a)) and
the width (in (b)) was set to 0.8.

the radius of the nanotube or the side length of the nanoribbon. One can compute a library of
λn and ζn near the desired operating frequency for a range of geometric parameters. From this
library, one can pick the poles and zeros that deliver the dispersive response closest to the desired
one. Here the focus is on manufacturable designs and future studies will investigate libraries of
manufacturable geometries to provide a manufacturable range of resonant responses.

4. Computational platform
The spectral decomposition discussed in §2b allows for a very efficient computation of the
frequency response of a nanostructure by first solving a single geometric eigenvalue problem
given by (2.1) approximately. Then, (2.6) can be invoked to characterize the frequency response
of the permittivity tensor. We will illustrate this procedure in this section on two prototypical
geometries shown in figure 2: a nanotube configuration, which is a closed smooth surface, and
a nanoribbon configuration, which is an open surface with edges. We point out that, because of
the translation invariance in the z-direction of both configurations, the corresponding corrector
χ3 vanishes. This implies that the corresponding cell problems (A 1) reduce to a two-dimensional
problem, and that the third diagonal component of the effective conductivity tensor εeff is simply
given by

εeff
33 = ε − η(ω)

∫
Σ

1 dox.

Owing to symmetry we have εeff
11 = εeff

22 for the nanotube configuration. In case of the nanoribbon
geometry the averaging process in the y-direction is trivial, leading to εeff

22 = ε. We thus only need
to determine εeff

11 computationally in the following.

(a) Numerical computation of the geometric spectrum
In order to approximate (2.4) numerically, we recast the eigenvalue problem (2.1) into variational
form: find ϕn ∈H and λn ∈R such that

λn

∫
Y

∇ϕn(x) · ∇ψ(x) dx=
∫
Σ

∇Tϕn(x) · ∇Tψ(x) dox, ∀ψ ∈H.

This eigenvalue problem can be efficiently approximated with a finite-element discretization
which we will quickly outline. We use the finite-element toolkit deal.II [34,35]. To achieve a good
numerical convergence order we use unstructured quadrilateral meshes Th for both geometries
that are fitted to the curved hypersurface Σ by aligning element boundaries with the hypersurface
[36] and discretizing with high-order Lagrange elements. Let {ψh

i }i∈{1:N } be the nodal basis of the
Lagrange ansatz. We can then define the usual stiffness matrix M= (mij)

mij =
∑
Q∈Th

∫
Q

∇ψh
j (x) · ∇ψh

i (x) dx.
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Table 1. Numerically computed spectrum and weight coefficients for the two geometries (figure 2) using the computational
approach outlined in §3a. Part (a) shows results for the nanotube configuration. All roots have multiplicity 2; eigenvalues with
weight 0 are omitted. Part (b) shows results for the nanoribbon geometry. Here all roots have multiplicity 1.

order k λk | ∫
Σ
PT (e1) · ∇Tξ n dox| λk | ∫

Σ
PT (e1) · ∇Tξ ndox|

(a) nanotubes (b) nanoribbons
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0.5924 1.1158 0.9873 0.8543
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 3.726 0.1077 5.314 0.1811
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 6.289 0.008194 9.283 0.1097
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 8.763 0.003574 13.22 0.07913
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 11.26 0.0002755 17.16 0.06194
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 13.76 0.00008546 25.02 0.04322
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 16.27 0.000009443 28.96 0.03755
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The boundary term requires a modification because the trace ∇Tψh
i is not single-valued and only

defined on an individual cell of the mesh. We thus define a matrix S= (sij) by averaging both cell
contributions to the gradient

sij =
∑
Q∈Th

1
2

∫
∂Q

∇Tψh
j (x) · ∇Tψh

i (x) dox.

We can then compute an approximate spectrum λhn and discrete eigenfunctions ξhn = ∑
i Ξ

h
n,iψ

h
i by

solving the matrix eigenvalue problem(
S + bM

)
Ξh
n = λ̃hn MΞh

n

with an eigenvalue solver, such as SLEPc [37]. Here, b> 0 is a suitably chosen Moebius parameter.
The original eigenvalue is recovered by setting λhn = λ̃hn − b. We briefly comment on one crucial
subtlety of this approach. The discrete eigenvectors Ξh

n are orthonormal with respect to the inner
product 〈M . , . 〉 because of the mass matrix M appearing on the right-hand side. This inner
product is the discrete analogue of

∫
Y ∇ . · ∇ . dx and not the normalization we used in §2. This

does not change the computed eigenvalues but has an effect on the surface integrals that have
to be computed next; see proposition B.5 and the discussion in appendix B. This can be easily

cured by scaling the surface integrals appropriately by 1/

√
λhn; see equations (2.6) and (B 3).

We report numerical results for the two geometries (figure 2) in table 1. The decay rate of the
weight coefficients | ∫Σ PT(e1) · ∇Tξn dox| deserves a short discussion. The rapid convergence of
the coefficients to zero in the case of nanotubes is owed to the regularity of Σ and the absence
of interior edges. The eigenvalues and eigenfunctions of the nanotube geometry can be explicitly
computed when the periodic boundary condition on Y is replaced by an infinite domain and the
Sommerfeld radiation condition (see appendix C). In this case only the first order, namely k= 1,
has a non-zero contribution to the resonance. The rapid decay of the weight coefficients in our
numerical result for the periodic case is qualitatively in agreement with this observation. Owing
to the singularities at the corners of the nanoribbon geometry [38], it is not surprising that the
decay rate of the weight coefficients is limited.

An nth order numerical approximation of the effective permittivity tensor can be constructed
by invoking a discrete counterpart of (2.6),

ε
app
11 (ω) = ε − η(ω)

∑
Q∈Th

∑
∂Q∩Σ

PT(e1) · PT(e1) dox −
N∑

n=1

λhnη
2(ω)

ε − λhn η(ω)

∣∣∣∣∣∣
∑
Q∈Th

∑
∂Q∩Σ

PT(e1) · ∇Tξhn dox

∣∣∣∣∣∣
2

.

(4.1)
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Figure 3. (a) Frequency response of εeffii (ω), i = 1, 2, for the nanotube configuration: the solid (real part) and dashed
(imaginarypart) lines are computedby solving the cell problem(1.2) for everyω; thedottedanddash-dotted lines are computed
by formula (2.6) truncated at n= 2. (b) The corresponding relative error as a function of frequency. (Online version in colour.)

(b) Comparison
Choosing ε = 1, we compute a reference frequency response of εeff

11 (ω) by finely sampling over a
set frequency range 0 < ω < 0.5 and performing a complete direct numerical computation of the
cell problem for selected frequencies: for every chosen angular frequency ω, we first determine the
corrector by solving (1.2) with a finite-element code [10] up to a suitable resolution (about 110 000
unknowns for the nanotube configuration and about 130 000 unknowns for the nanoribbon
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Figure 4. (a) Frequency response ofεeff11 (ω) for the nanoribbon configuration: the solid (real part) and dashed (imaginary part)
lines are computed by solving the cell problem (1.2) for everyω; the dotted and dash-dotted lines are computed by formula
(2.6) truncated at n= 2. (b) The corresponding relative error as a function of frequency. (Online version in colour.)

configuration). The result is plotted in figures 3a and 4a. In both plots, about 700 frequencies
were chosen adaptively.

We then compare a second-order approximation ε
app
11 by using (4.1) with n= 2 against the

direct numerical computation graphically in figures 3a and 4a. For the chosen frequency range,
we observe an excellent agreement of the approximate permittivity ε

app
11 with the reference

computation in the ‘eyeball’ norm.
A more detailed comparison of the frequency behaviour of the relative error between both

computations is given in figures 3b and 4b, where also the dependence of the error on the order n

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 D

ec
em

be
r 2

02
1 



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210609

..........................................................

of the approximation (4.1) is visualized. On average we observe a relative error of less than 1%.
We note that the maxima in the relative error naturally occur at corresponding Lorentz resonances
and are dominated by the approximation error of the underlying finite-element simulations.
We observe an exponential decay of the relative error as a function of the approximation order
for the smooth nanotube geometry (figure 3b). The corresponding convergence behaviour for
nanoribbons as shown in figure 4b is significantly slower. This is owed to the fact that the edges
in the nanoribbon geometry cause singularity in the solution of the cell problems, thus limiting
the approximation order [38].

5. Conclusion
In this paper, we analysed the Lorentz resonances in plasmonic crystals that consist of two-
dimensional nano-dielectric inclusions embedded in a non-magnetic bulk. From the corrector
field found in a rigorous homogenization theory (A 1), we derived an analytic expansion formula
for the effective permittivity (1.3). This formula decouples the local geometric resonances and the
material properties, and thus enables a very efficient approximation to compute the frequency
response. This formula holds for inclusions of a large family of geometries, including closed
surfaces (as shown in §2 and appendix A) and open surfaces that can be completed into closed
surfaces as shown in appendix B.

We observe that, up to a constant factor, the nth Lorentz resonance is described by

λnη
2(ω)

ε − λnη(ω)
≈ ωp

1

ω2 − ω2
0,n + iω/τ

= −ωp

(
ω2

0,n − ω2) + iω/τ(
ω2

0,n − ω2
)2 + ω2/τ 2

.

We have also observed that a crucial quantity that determines the convergence speed of this
expansion is the decay rate of a weight factor

|Mjn| =
∣∣∣∣
∫
Σ

PT(ej) · ∇Tξn dox

∣∣∣∣2 .

The decay rate depends on the smoothness of the corrector, i.e. whether singularities due to
roughness or edges are present in the cell problem. We have demonstrated that our spectral
decomposition approach offers a significant saving in computational resources because only
one frequency-independent geometric eigenvalue problem has to be computed, in contrast to
computing the corrector field for a huge number of fixed frequencies.

Data accessibility. Source code and configuration files of all computations have been made available at https://
github.com/tamiko/rspa-2021 and https://zenodo.org/record/5610286#.YXvH957MJ9M.
Authors’ contributions. W.L., R.L. and M.M. contributed to the conception, design and analysis of the mathematical
model. M.M. developed the code. W.L., R.L. and M.M. designed the numerical tests. M.M. performed the
numerical simulation. All authors critically discussed the numerical results. All authors contributed to writing
and editing the paper.
Competing interests. We declare we have no competing interests.
Funding. R.L. acknowledges partial support by the NSF under grant nos. DMS-1921707 and DMS-1813698;
M.M. acknowledges partial support by the NSF under grant nos. DMS-1912847 and DMS-2045636.

Appendix A. Spectral decomposition for closed surfaces
We now give a rigorous mathematical proof of the spectral decomposition introduced in §2
through the use of a weak formulation. The mathematical proof involves simpler function spaces
when the surface Σ is closed. For this reason, we first discuss the case of a closed surface and
discuss the case of open surfaces based on the notion of fractional Sobolev spaces in appendix B.
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(a) The weak formulation
Provided the surface Σ is Lipschitz continuous (implying that it admits a uniquely defined
surface normal), the Y-periodic corrector field χ (x) is the solution of the variational cell problem
[6],

iωε

∫
Y

∇χj(ω, x) · ∇ψ(x) dx − σ (ω)
∫
Σ

∇Tχj(ω, x) · ∇Tψ(x) dox = σ (ω)
∫
Σ

PT
(
ej) · ∇Tψ(x) dox. (A 1)

The appropriate function space for the variational problem (A 1) is

H :=
{
ψ ∈H1

per(Y,C) : ∇Tψ ∈ L2(Σ ,C),
∫
Y

ψ = 0
}

. (A 2)

Here, H1
per(Y) denotes the Sobolev space of periodic functions u such that u and its first-order

(distributional) partial derivatives are square integrable in Y, and L2(Σ) denotes the space of
square-integrable functions on Σ . The space H equipped with the norm

|| · ||2H = ||∇ · ||2Y + ||∇T · ||2Σ
(and the corresponding inner product) is a Hilbert space. It can be shown that the corrector
problem (A 1) admits a unique solution χj ∈H [5–9].

Thus, the auxiliary spectral problem partitioning between the first two integrals in (A 1),
parallel to (2.1), is to find all pairs of eigenfunctions ϕ ∈H and eigenvalues λ ∈R, such that

λ

∫
Y

∇ϕ · ∇ψ dx=
∫
Σ

∇Tϕ · ∇Tψ dox for all ψ ∈H. (A 3)

(b) A density representation for the corrector
The corrector χi ∈H given by (A 1) can be characterized in terms of the Y-periodic single-layer
potential S (2.2) with a density γ . Recall that we have restricted the discussion to the case of Σ

without internal edges in Y. In this case, the following two properties hold:

(i) The restricted single-layer operator S : L2(Σ) →H1(Σ) defined by (2.3) is a bounded,
invertible operator with a bounded inverse.

(ii) The jump in the normal derivative of the solution χi ∈H of the cell problem (A 1) on the
surface, [∂νχj]Σ , is in L2(Σ), where L2(Σ) is the space of square-integrable functions on
Σ .

A proof of (i) for the case of Lipschitz continuous Σ can be found in [39, theorem 7.17], and
property (ii) is a direct consequence of the standard trace theorems [40] and property (i). Note
that properties (i) and (ii) do not hold when Σ is an open surface (i.e. when Σ has edges in the
interior of Y; see appendix B). Starting from (ii), we set

γ := [∂νχj] ∈ L2(Σ ,C).

Recalling (2.3) we observe that the difference χj − Sγ belongs to H1
per(Y,C) and its distributional

Laplacian is zero everywhere in Y. Therefore,

χj = Sγ + C,

where C is a constant. This suggests the following lemma.

Lemma A.1. For the corrector χj solving (A1), there exists a unique γ ∈ L2(Σ ,C) and a unique
complex valued constant C, such that

χj = Sγ + C, with
∫
Σ

γ dox = 0. (A 4)
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Proof. We have already established its existence. For the uniqueness, assume that we have two
representations for χj, namely Sγ1 + C1 = Sγ2 + C2. This implies that S(γ1 − γ2) is a constant in Y,
and thus

γ1 − γ2 = [∂νS(γ1 − γ2)] = 0 on Σ .

It follows that C1 and C2 are also identical. Finally, note that 
Sγ = 0 implies
∫
Σ

γ dox =
∫
Σ

[∂νSγ ] dox = −
∫
Y\Σ


Sγ dx= 0. (A 5)

�

(c) An equivalent spectral problem and symmetrization
Using the same argument again as in the preceding subsection (appendix Ab), for closed Σ

every eigenfunction ϕ of the spectral problem (A 3) has a representation ϕ = Sγ , where γ ∈ L2(Σ).
Substituting the representation ϕ = Sγ into (A 3), we obtain an equivalent spectral problem for γ ,

λ

∫
Y

∇Sγ · ∇ψ dx=
∫
Σ

∇TSγ · ∇Tψ dox, for all ψ ∈H.

Integration by parts of the volume integral and (2.3) further transforms the eigenvalue problem
to an eigenvalue problem described exclusively on Σ ,

−λ

∫
Σ

γ ψ dox =
∫
Σ

∇TSγ · ∇Tψ dox for all ψ ∈H.

Writing ξ = Sγ , which is equivalent to γ = S−1ξ since S : L2(Σ) →H1(Σ) is invertible for closed
Σ , we obtain

−λ

∫
Σ

S−1ξ ψ dox =
∫
Σ

∇Tξ · ∇Tψ dox, ∀ ψ ∈H.

(d) A compact and self-adjoint operator
The property of the density function γ in lemma A.1 suggests that we work with the space

N(Σ) :=
{
ξ ∈H1(Σ) :

∫
Σ

S−1ξ dox = 0
}

. (A 6)

A straightforward calculation shows that N(Σ) equipped with the norm ||∇Tξ ||L2(Σ) is a Hilbert
space. The Riesz representation theorem then establishes a particular inverse of the Laplace–
Beltrami operator 
T.

Lemma A.2. For f ∈ L2(Σ) with
∫

Σ f dox = 0, there exists a unique g ∈N(Σ), such that
∫
Σ

∇Tg · ∇Tψ dox = −
∫
Σ

fψ dox, for all ψ ∈N(Σ).

Moreover, the solution g is bounded, namely ||∇Tg||L2(Σ) ≤C||f ||L2(Σ). We will denote this solution
operator by 
−1

T .

We are now in a position to formulate and prove a central proposition and corollary.

Proposition A.3. The operator


−1
T S−1 : N(Σ) →N(Σ)

is compact and self-adjoint. Moreover, ker ( 
−1
T S−1) = {0}.

Corollary A.4 (Spectrum). The spectrum of 
−1
T S−1 consists of countably many non-zero

eigenvalues {λ−1
n }n, only possibly accumulating at 0. The corresponding eigenfunctions {ξn} form an

orthonormal basis of N(Σ).

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 D

ec
em

be
r 2

02
1 



15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210609

..........................................................

Proof of proposition A.3. 
−1
T S−1 is well defined and bounded by virtue of property (i) and

lemma A.2. For any given f , g ∈N(Σ), it holds that

−
∫
Σ

(∇T 
−1
T S−1f

) · ∇Tgdox =
∫
Σ

(
S−1f

)
gdox =

∫
Σ

f
(
S−1g

)
dox

= −
∫
Σ

∇Tf · (∇T 
−1
T S−1g

)
dox.

Therefore, 
−1
T S−1 is self-adjoint.

In order to establish the compactness of 
−1
T S−1, we first fix a bounded sequence gi ∈N(Σ).

The image ui = 
−1
T S−1gi is also a bounded sequence in N(Σ). By Rellich’s lemma, there exists

subsequence uik that is convergent in L2(Σ). Furthermore, we have
∫
Σ

∇Tui · ∇Tuj dox = −
∫
Σ

S−1gi uj dox.

Thus ∇Tuik converges componentwise in L2(Σ), which gives that uik converges in N(Σ).
The last statement follows immediately from the fact that S and 
T are bounded and

invertible. Thus 
−1
T S−1f ≡ 0 immediately implies f ≡ S 
T0 = 0. �

(e) Proof of the spectral decomposition result
Proof of (2.6). Let χj be the solution of (A 1). According to lemma A.1, we can write χj as a single-

layer potential with a density γ ∈ L2(Σ) that satisfies
∫

Σ γ dox = 0, namely

χj = Sγ + C.

Using the invertibility of S, we obtain that, for ξ = Sγ ∈N(Σ),

χj = S S−1ξ + C.

Corollary A.4 guarantees the existence of the expansion ξ = ∑
k αk

j ξk with {αn
j }n ∈ �2(C), which

yields (up to a constant)

χj = SS−1

(∑
k

αk
j ξk

)
.

Identity (2.5) follows directly from substituting this expansion into (A 1) and testing with ψ =
SS−1ξk,

η(ω)
∫
Σ

PT
(
ej) · ∇Tξk dox =

∑
n

(εαn
j /λn − αn

j η(ω))
∫
Σ

∇Tξn · ∇Tξk dox

=
∑
n

(εαn
j /λn − αn

j η(ω)) δkn

= εαk
j /λk − αk

j η(ω).

Finally, identity (2.6) follows from a similar substitution using equations (2.5) and (1.1). �

Appendix B. Spectral decomposition on open surfaces
When Σ is an open surface, in the sense that Σ has edges in the interior of Y, the property
in §2b, S : L2(Σ) →H1(Σ) is invertible, no longer holds. A counter-example is the fact that, in
two-dimensional space, the non-periodic single-layer potential maps 1/

√
a − x2 to a constant

function on the interval [−a, a] [41]. This means that we cannot write χj = Sγ + C for some
γ ∈ L2(Σ). However, this representation is valid for γ defined in a proper fractional Sobolev space.
Thus, modifying the argument to fractional Sobolev spaces makes it possible to obtain the same
expansion (2.6).
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In this appendix, we collect all necessary modifications to the argument outlined in appendix
A, provided that the mild assumptions hold true that Σ has a smooth boundary and Σ can be
completed into a closed smooth surface Σ∗.

(a) Sobolev spaces on open surfaces
We give a definition of Sobolev spaces defined on open surfaces following the notations in [39].
First, on a closed Ck,1 surface Σ∗ in R

n, where k≥ 0 and n> 0 are integers, Hs(Σ∗) is defined
through charts and the Fourier transform for s ∈ [−k − 1, k + 1] [39, p. 98].

Let Σ be an open subset of Σ∗ and, for simplicity, assume that the boundary of Σ is smooth.
For every real number s ∈R, we define

Hs(Σ) := { f : Σ →C| f has an extension f̃ ∈Hs(Σ∗)}
H̃s(Σ) := closure of C∞

0 (Σ) in Hs(Σ∗).

It is shown in [39, theorems 3.14, 3.29, 3.30] that when Σ is a Lipschitz subset of Σ∗, for all s ∈R,

(H̃s(Σ))′ =H−s(Σ),

(Hs(Σ))′ = H̃−s(Σ)

and H̃s(Σ) = { f ∈Hs(Σ∗)|suppf ⊂ Σ},
and, for an integer m ∈ [0, k + 1],

Hm(Σ) = { f : Σ →C| f and its weak tangential derivatives up to order m are in L2(Σ)}.
Note that the above defined Hs(Σ) and H̃−s(Σ) for s≥ 0 are the same as those defined in [42,43].

(b) Spectral decomposition
We can now modify the argument in appendix A as follows. Since χj belongs to H1(Y), its
distributional Laplacian is 0 and [∂nχj] = 0 on Σ∗\Σ , so we obtain the standard result shown
in lemma B.1.

Lemma B.1. For the corrector χj solving (A1), there exists a unique γ ∈ H̃−1/2(Σ ,C) and a unique
constant C, such that

χj = Sγ + C.

This γ satisfies that
∫

Σ γ dox = 0.

The mapping property of S on H̃−1/2(Σ) is given by lemma B.2.

Lemma B.2 ([42,43]). The single-layer operator S : H̃−1/2(Σ) →H1/2(Σ) is bijective.

The proper Hilbert space to consider becomes

N (Σ) :=
{
f ∈H1/2(Σ), 〈S−1f , 1〉Σ = 0

}
, (B 1)

equipped with the inner product 〈−S−1ξ , η〉Σ . Here, 〈·, ·〉Σ is the L2(Σ) pairing, and we will refer
to 〈−S−1ξ , η〉Σ as the S−1 inner product.

On this space, we consider the following inverse of 
T.

Lemma B.3 (A particular inverse of 
T). For f ∈ H̃−1(Σ) with 〈f , 1〉Σ = 0, there exists a unique
g ∈H1(Σ) with 〈S−1g, 1〉Σ = 0, such that

− 〈f , ψ〉Σ =
∫
Σ

∇Tg · ∇Tψ dox, for all ψ ∈H1(Σ). (B 2)

Moreover, the solution g of (B2) is bounded, ||g||H1(Σ) ≤C||f ||H−1(Σ). We will denote this solution operator
by 
−1

T .
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Proof. Given f ∈ H̃−1(Σ) with 〈f , 1〉Σ = 0, it follows from standard elliptic equation theory that
there exists a unique g̃ ∈H1(Σ) with 〈g̃, 1〉Σ = 0, such that

−
∫
Σ

fψ dox =
∫
Σ

∇Tg̃ · ∇Tψ dox ∀ψ ∈H1(Σ)

and
||g̃||H1(Σ) ≤C||f ||H̃−1(Σ).

Now let g0 = S−11 ∈ H̃−1/2(Σ) and define the constant

C(g̃) := 〈S−1g̃, 1〉Σ
〈S−11, 1〉Σ

= 〈g̃, g0〉Σ
〈1, g0〉Σ

.

The function g := g̃ − C(g̃) obviously solves (B 2) and by construction 〈S−1g, 1〉Σ = 0. The bound
follows from

||C(g̃)||H1 = ||C(g̃)||L2 ≤C|〈S−1g̃, 1〉| ≤C||S−1g̃||L2 ≤C||g̃||H1 ≤C||f ||H̃−1 .

�

Since 
−1
T S−1 maps N(Σ) ⊂H1/2(Σ) into H1(Σ) ⊂⊂H1/2(Σ), we can verify the following.

Proposition B.4. The operator

−1

T S−1 : N (Σ) →N (Σ)

is compact and self-adjoint with respect to the S−1 pairing. Here 
−1
T is the particular operator defined in

lemma B.3. Moreover,
ker ( 
−1

T S−1) = {0}.
Finally, the main result reads as follows.

Proposition B.5 (Spectral decomposition for open surfaces). Let χj be the solution of the cell
problem (A 1). Let {ξn, λ−1

n }n be the orthonormal eigensystem of the operator 
TS in the space N (Σ).
Then

χj = SS−1

(∑
n

αn
j ξn

)
+ C,

where C is a constant and

αn
j = η(ω)

ε − λn η(ω)

∫
Σ

PT(ej) · ∇Tξ k dox.

Furthermore,

εeff
ij = ε δij − η(ω)

∫
Σ

PT(ej) · PT(ei) dox

−
∑
n

η2(ω)
ε − λn η(ω)

∫
Σ

PT(ej) · ∇Tξn dox
∫
Σ

∇Tξn · PT(ei) dox. (B 3)

Note that the S−1 inner product gives a different normalization of ξn and hence different αn
j

values. In terms of the scaled function ξ̃k := ξk/
√|λk|, (2.1) is satisfied and the expansion (B 3) takes

the same form as (1.3).

Appendix C. Explicitly computable examples
We explicitly compute the eigensystem of 
−1

T S−1 on two non-periodic geometries in R
3. These

examples qualitatively illustrate the corresponding periodic geometries, when the inclusions are
far apart from each other. On spheres and circular cylinders in R

3, the eigensystems of 
TS are
explicitly known. This is because 
T and S separately have explicit eigensystems, and they share
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eigenfunctions. Note that the only manifolds on which the Laplace–Beltrami operator has explicit
eigensystems are n-spheres, n-tori and Heisenberg groups.

(a) Circular cylinder
Let Σ be a cylinder with a circular cross-section of radius a. The corresponding periodic geometry
is the nanotube structure considered numerically in §4. We will abuse notation by denoting the
cross-sections of all quantities by the same notation, since all quantities are invariant along the
axis of the cylinder. A basis for mean zero L2(Σ) functions is {einθ , n �= 0}. This is also a set of
simultaneous eigenfunctions for 
T and S,


T einθ = −n2

a2 einθ and S einθ = − a
2n

einθ .

Thus the eigensystem for (2.4) normalized in the ||∇T · ||L2(Σ) norm is

λn = n
2a

, ξ kn =

⎧⎪⎪⎨
⎪⎪⎩

1
n

√
a
π

cos(nθ), k= 1,

1
n

√
a
π

sin(nθ ), k= 2,
n≥ 1.

Using PT(e1) = −θ̂ sin θ and ∇T = θ̂ 1
a ∂θ , we obtain

∫
Σ

PT(e1) · ∇Tξ
k
n dox =

{√
πa, n= 1, k= 1,

0, otherwise.

Note that, for the corresponding periodic geometry, the factor
∫

Σ PT(e1) · ∇Tξ
k
n dox in table 1

decays, instead of falling to zero abruptly. This is due to the effect from other cylinders in the
array. The decay becomes faster when the size of the cylinder relative to the cell becomes smaller.

(b) Sphere
Let Σ be a sphere of radius a. A basis for mean zero L2(Σ) functions is the set of spherical
harmonic functions {Ym

n , n≥ 1, −n≤m≤ n}. This is also a set of simultaneous eigenfunctions for

T and S,


TYm
n = −n(n + 1)

a2 Ym
n and SYn,m = − a

2n + 1
Yn,m.

Thus the eigensystem for (2.4) normalized in the ||∇T · ||L2(Σ) norm is

λn = n(n + 1)
a(2n + 1)

, ξ in = 1√
n(n + 1)

Yn,m, n≥ 1, −n≤m≤ n.

Using PT(e1) = θ̂ cos θ cos φ − φ̂ sin φ, ∇T = θ̂ (1/a)∂θ + φ̂(1/a sin θ )∂φ and the recurrence relations
for the associated Legendre polynomials, we obtain

∫
Σ

PT(e1) · ∇Tξ
i
n dox =

⎧⎪⎨
⎪⎩

∓2a
√

π

3
, n= 1, m= ±1,

0, otherwise.
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