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ABSTRACT: Multiscale and multimodal imaging of material
structures and properties provides solid ground on which materials
theory and design can flourish. Recently, KAIST announced 10
flagship research fields, which include KAIST Materials Revolution:
Materials and Molecular Modeling, Imaging, Informatics and
Integration (M3I3). The M3I3 initiative aims to reduce the time for
the discovery, design and development of materials based on
elucidating multiscale processing−structure−property relationship
and materials hierarchy, which are to be quantified and understood
through a combination of machine learning and scientific insights. In
this review, we begin by introducing recent progress on related
initiatives around the globe, such as the Materials Genome Initiative
(U.S.), Materials Informatics (U.S.), the Materials Project (U.S.), the Open Quantum Materials Database (U.S.), Materials
Research by Information Integration Initiative (Japan), Novel Materials Discovery (E.U.), the NOMAD repository (E.U.),
Materials Scientific Data Sharing Network (China), Vom Materials Zur Innovation (Germany), and Creative Materials
Discovery (Korea), and discuss the role of multiscale materials and molecular imaging combined with machine learning in
realizing the vision of M3I3. Specifically, microscopies using photons, electrons, and physical probes will be revisited with a
focus on the multiscale structural hierarchy, as well as structure−property relationships. Additionally, data mining from the
literature combined with machine learning will be shown to be more efficient in finding the future direction of materials
structures with improved properties than the classical approach. Examples of materials for applications in energy and
information will be reviewed and discussed. A case study on the development of a Ni−Co−Mn cathode materials illustrates
M3I3’s approach to creating libraries of multiscale structure−property−processing relationships. We end with a future outlook
toward recent developments in the field of M3I3.
KEYWORDS: M3I3, materials and molecular modeling, materials imaging, materials informatics, machine learning, materials integration,
Li-ion battery, KAIST

The scientific method, a system by which observation,
experimentation, and reason are employed in forming
and testing hypotheses and theories, began to advance

near the end of the Renaissance period. Descartes promoted
science by first questioning everything and then constructing a
theory based upon sound observational evidence. Materials
science is no exception in the sense that the observation of
structural features, order parameters fields, and essential
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materials properties provides solid ground on which materials
theory and design can flourish.
Materials science and engineering have evolved significantly

from empirical trial-and-error approaches, searching and
optimization routines, and treasure hunting modes, which are
characterized as serendipitous discovery-led development using
processing recipes coupled with available technologies. With
advances in computational materials science and nanotechnol-
ogy, “Materials by Design” has emerged as the central paradigm
of materials science and engineering in the 2000s.1

What is meant by Materials by Design is a synthetic systems
view that integrates accumulated knowledge derived from a
reductionist analysis while replacing discovery-based R&D with
a far more effective and efficient design-based approach.
Materials engineers define a quantitative set of properties as
objectives, which together results in a desired material
performance within the economic boundary conditions. Next,
they conduct a systems analysis to identify and prioritize key
structure−property and processing−structure relationships.
Central to the materials design approach is a powerful logical
structure connecting the four elements of processing, structure,
property, and performance. The deductive, cause and effect logic
of reductionist materials science flows from processing to
performance, whereas the inductive logic of systems engineering
flows in the reverse direction from performance to processing,
thereby enabling materials engineers to design a specific
processing recipe to yield materials with the desired sets of
properties and performance.2 However, limited time and cost
constraints of the full materials development cycle in industry
and the lack of complete information on structure−property as
well as processing−property relationships pose great challenges
for achieving the vision of Materials by Design.
To tackle the challenges described above, the “Materials

Genome Initiative (MGI)” was initiated in 2011 in the U.S. with
the idea of using chemical elements, phases, and processes as the
genome for designing, manufacturing, and deploying inex-
pensive materials and materials-based technologies significantly
faster than before.3 Since the birth of MGI, many related
initiatives have been launched around the globe, such as the
Materials Research by Information Integration Initiative in
Japan,4 Novel Materials Discovery in the E.U.,5 Vom Materials

Zur Innovation in Germany,6 Materials Scientific Data Sharing
Network in China,7 and Creative Materials Discovery in Korea.8

Exploring the large number of materials and predicting their
desired properties have enabled the creation of searchable
databases for rapidly selecting candidates to be used in
experimental studies.9,10 However, this theory-driven approach
has been met with a few important challenges. First, a closer tie-
in with experiment is needed to improve the accuracy of
predictions. Second, many interesting material properties are
defined over different length scales and not just the atomic scale;
thus, the computational cost of first-principles methods
becomes prohibitive.11 This in turn necessitates introduction
of the mesoscopic averaged models, which requires a large
number of phenomenological parameters.
In 2018, KAIST published the “Future Report of KAIST,”

where 10 flagship research projects were selected through
rigorous screening work by all of the faculty members at
KAIST.12 Among the 10 projects, Materials and Molecular
Modeling, Imaging, Informatics and Integration (M3I3) was
selected as the only one in the field of materials science and
engineering (see Figure 1). In 2019, KAIST launched two
Global Singularity Projects where M3I3 was selected as the top
contender between the two.13,14

In this review, we briefly revisit the history of materials science
and engineering to understand how materials were discovered
and developed, followed by an overview of the role of materials
imaging in materials discovery and development. We then cover
the emergence of high-throughput screening using density
functional theory and machine learning within the framework of
Materials by Design. Recent advancements in multimodal and
multiscale materials imaging at user facilities around the globe
are discussed, which inspired the birth of the M3I3 initiative.
Furthermore, we present an example of M3I3 application to
rechargeable battery materials. Finally, the role of multiscale
materials and molecular imaging combined with machine
learning for realizing the vision of M3I3 is presented. We end
with a future outlook toward developments and the major
challenges of M3I3.

Figure 1. Schematic diagram of M3I3 Flagship Project. This project aims to achieve the seamless integration of the multiscale “structure−
property” and “processing−property” relationships via materials modeling, imaging, and machine learning. With the capability of artificial
intelligence (AI)-guided automatic synthesis, M3I3 will provide expedited development of new materials in the near future.
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HISTORY OF MATERIALS SCIENCE AND ENGINEERING
How do we divide our history into important segments? By the material
of choice. The most advanced material of a given era is often a defining
point in history, which is apparent in the naming of historical epochs
such as the Stone Age, Bronze and Iron Ages, and the Silicon Age.15,16

Currently, we can say that we are living in the Composite
Nanomaterials Age (see Figure 2). Since we are now entering into
the fourth industrial revolution, where all devices are connected and
embedded in buildings, vehicles, and even human bodies, more diverse
and custom-tailored materials will be needed beyond those that are
currently available with mass production-compatible materials.
Then the following question arises: How can we discover and

develop materials in response to the challenges of the fourth industrial
revolution, the increase in national protectionism due to the COVID-19
era, and the rise of artificial intelligence, open data policies, and user
facilities throughout the world? Before thinking about the answer to this
question, we will revisit the history of materials science and engineering.
Modern materials science evolved directly from metallurgy, ceramics,
and solid-state physics/chemistry. Gibbs made a major breakthrough in
the understanding of materials when he found that the thermodynamic
properties of various phases are related to the physical properties of a
material.17

Modern materials science had emerged by the second industrial
revolution, which was led by the mass production of steam and internal
combustion engines, the Second World War, Moore’s law, and the
Space Race as well as the third industrial revolution led by the Internet
and communication technologies. Materials science has driven, and
been driven by, the development of revolutionary technologies
including but not limited to superalloys, rubbers, plastics, semi-
conductors, optical fibers, functional ceramics, high-entropy alloys, and
biomaterials to name a few.18,19

MATERIALS IMAGING: STRUCTURE VS PROPERTY
To expedite the development of materials, materials scientists and
engineers have worked together to understand the structure and
property relationships that underlie the economic value of materials.
For example, Sorby revealed internal microstructures by etching metal
samples with acid and observed these samples with an optical
microscope to correlate the structures of these materials with their

properties and performance.20 This technique enabled scientists to
establish well-known structure−property relationships such as the
Hall−Petch equation, which relates grain size with the yield strength of
mild steel.21

It is notable that the Nobel Prize in Physics in 1986 was one-half
awarded to Ernst Ruska for his fundamental work in electron optics and
for the design of the electron microscope; the other half, jointly to Gerd
Binnig and Heinrich Rohrer for their design of the scanning tunneling
microscope (STM) and the atomic force microscope (AFM).22 While
transmission electron microscopy (TEM) was invented in the 1930s,23

it only becamewidely availablemany decades later due to the challenges
of economics, scale, and manufacturing of these precision technologies.
The big driving forces for commercialization of electron microscopy
were the semiconductor industries that need to image their integrated
circuit (IC)/CMOS devices and hard disk drives (HDDs).24

Transmission electron microscopy (TEM) reveals finer structural
levels than optical microscopy and suggests that ancient sword makers
were unintentional nanotechnologists because of the nanometer-scale
patterns of carbon in the hard edge of the sword. This “self-assembled
heterophase nanostructure” is responsible for the improved strength of
ancient sword blades, which are formed by a quench hardening process
that allows martensitic transformation and the redistribution of trapped
interstitial carbon to occur.1,20 However, people acquired this detailed
understanding of the structure−property and processing−structure
relationship long after the sword was invented. In other words, materials
engineers used to developmaterials for practical applications using trial-
and-error approaches and matched each processing recipe with the
ultimate properties without a clear picture of the hierarchical structure
of materials.25 As such, materials imaging has been frequently used to
check whether the processing led to the desired micro-/nanostructure.
Monitoring the grain size distributions and dimensional specifications
in the steel industry and in semiconductor fabrications through the use
of optical microscopy and critical dimension SEM (CD-SEM) are
currently the main functions of materials imaging in industry.

Materials imaging also plays an important role in failure analysis to
spot the root cause of a failure and identify what or who to blame the
failure for. As such, forensic engineering and failure analysis are key to
understanding the causes of various vehicle, marine vessel, and airplane
accidents. However, it has rarely occurred to materials scientists or

Figure 2. Evolution of historical epochs named by the materials of each era. Adapted with permission from ref 16. Copyright 2018 SciMap.

Figure 3. Schematic diagram showing Jung Ho Kim traveling around the country to draw Daedongyeo Map, and a GPS satellite images of the
Korean Peninsula and the world. The inset is a schematic image of Mount Everest.
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engineers that materials imaging can radically accelerate materials
design, discovery, and development.

ROLE OF MATERIALS IMAGING IN MATERIALS
DISCOVERY AND DEVELOPMENT
Thus, it must be asked:What breakthrough inmaterials imaging created
a paradigm shift in the discovery and development of materials? In
answering this question, we will first discuss the evolution of materials
imaging by studying an anecdote from Korean history. In the Chosun
Dynasty, JungHoKimwas the person to correctly depicted the shape of
the Korean Peninsula with detailed topographical information on a
map.26 According to an old document, he traveled around the country
to measure the surface morphology using his own ruler and equipment.
If this is a true story, he was the person in Korean history to become an
AFM probeor rather he was a physical stylusthat acquired the
surface topography of the Korean peninsula at the meter scale. Themap

he completed in 1861 is called the “Daedongyeo Map” and is the most
accurate map in Chosun Dynasty.26,27 From this map, one can readily
find the highest mountain in Korea, which is Mount Baekdu (see Figure
3). One can also see that the maps are stitched together to cover the
entire peninsula, which is a practice similar to that of the stitching of
AFM, SEM, and TEM images to cover large-scale areas to understand
the hierarchical context of the nanoscale or even atomic-scale
features.28

Currently, of course, one can use satellite and GPS information to
obtain the map of the Korean Peninsula with height information and
pick the same Mountain Baekdu as the highest mountain in Korea.29

Moreover, we can stitch GPS information around the globe and pick
Mount Everest as the highest mountain in the world within
seconds.30,31 This exercise provides us with insights into the importance
of the accuracy, scalability, and speed of materials imaging to locate the
peaks and troughs of the overall materials structural landscape in terms
of space and time.

Figure 4. High-magnification AFM images of a composite anode (natural graphite (NG)/lithium silicon titanium phosphate (LSTP)/styrene−
butadiene rubber (SBR)−carboxymethylcellulose (CMC)/Super-P). (a−c) Height, ESM amplitude, and frictional force images, respectively.
(d) Pearson’s correlation plot of the frictional force (x-axis) and electrochemical strainmicroscopy (ESM) amplitude (y-axis) and the histogram
of the frictional force. (e) Trends of the average values of ESM amplitude as a function of the frictional force (orange) and the frictional force as
a function of the ESM amplitude (olive). The ranges of the x- and y-axes are 99% of the full data. AFM images were acquired with a 4 V AC drive
voltage to the AFM tip and a tip loading force of 400 nN. The blue lines in panels a−c are guides for the eye showing the valley between grains.
Adapted with permission from ref 36. Copyright 2020 American Chemical Society.
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However, what use is an accurate multiscale geography map to lay
people? One immediate use is to estimate the distance between two
places where one wants to, e.g., travel to visit their friends’ house.
Additionally, it may help people decide how long it will take to move
from one place to the other and which route may be their best choice.
However, without knowing the traffic situation of various roads
connecting two places, the estimate will be rough at best. Having real-
time traffic information layered on top of the accurate map will improve
the accuracy of the travel time from one place to the other and help
people choose the route with the shortest travel time. In materials
science terminology, simultaneously knowing both the structures (road
morphology) and properties (traffic status and/or rate of flow) in real
time can help users determine the optimum route to tailor their
functional performance (travel from place to place).
We show the incredible strength of imaging through the following

example of electrochemical strain microscopy (ESM) to map surface
morphology overlaid with the distribution of Li ionic motion (Figure
4).32−36 ESM can simultaneously reveal both the surface grain structure
and diffusion property of Li ions in situ, which helps to elucidate the
routes taken by Li ions moving from one site to another. A priori
knowledge that the ions move along but not perpendicular to the layers
in the cathode materials allows us to better understand why there is a
strong correlation between the orientation and electrochemical activity
of each grain.
Furthermore, imagine you have amap of the world and you overlaid a

map of a specific monetary value rubric as a function of time. You can
make a strategic decision to convert sea to land or vice versa if the initial
cost can be quickly recovered by amuch higher revenue flowing into the
region of interest. Thus, land reclamation or the construction of canals
can be understood from this perspective.
If removing some of the materials at the nanoscale can enhance the

material properties and hence the performance and value, one can then
design better performingmaterials. A good example is the case of a ZnO
nanotruss structure, in which both the piezoelectric coefficient and
elastic limit drastically improve in comparison to those of bulk ZnO
materials (see Figure 5).37 Here the researchers in effect removed

nanoscale parts of the structure in a regular manner using proximity
field nanopatterning (PnP) and atomic layer deposition (ALD), which
could extend the elastic limit of brittle materials because a large flaw is
less likely to occur in a small structure, which in turn enhances the
strength of the material, according to the Griffith criterion. In addition,
they attributed the improved piezoelectric properties to less constraint
on the structure.37

MULTISCALE STRUCTURE−PROPERTY IMAGING

Now we can answer the following question: What breakthrough
in materials imaging created a paradigm shift in the discovery
and development of materials?
We suggest that the development of various microscopy and

diffraction tools with the ability to map the structure, property,
and performance of materials at multiscale and in real time
enabled people to think that materials imaging could radically
accelerate materials discovery and development.11,38,39

One of the examples that shows the power of structure−
property imaging at the nanoscale is the development of future
materials for emerging nonvolatile memory devices.40 For
example, the thickness and area of the capacitor are two
important structure parameters, which can be optimized on the
basis of the ferroelectric domain imaging to maximize its
property such as the rate of polarization switching.40 Elucidating
the polarization switching mechanism by identifying the rate-
determining step, one can design the capacitor to be large-area−
low-thickness film or small-area−high-thickness rod. Two of the
key performance parameters of a memory device are the volume
of the smallest possible unit of information (in other words,
information storage density in terms of bit/inch2) and the speed
at which one can write and read this information bit.41,42

Consider the design of a ferroelectric capacitor to store the
information and write/read such information at high speed. In

Figure 5. (a) Conceptual schematics and (b) SEM images of 3D-ZnO hollow nanostructures deposited at 90, 165, 250, and 300 °C after
removing the epoxy template. (c) XRDpatterns of the 3D-ZnOhollow nanostructure before (black) and after additional annealing (red) at each
deposition temperature. Reprinted with permission from ref 37. Copyright 2020 Elsevier.
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addition to the performance parameters, you will also need to
know the reliability parameter, which may be the lifetime of your
ferroelectric capacitor.43

How can materials imaging help design the best ferroelectric
capacitor? First, one may want to know the size limit of the
ferroelectric domain that consists of the same polarization
within the region of interest. Using synchrotron X-rays as the
probe, the structure of materials can be imaged in a reciprocal
space to map the ferroelectric polarization, thereby providing us
the answer once we know the minimum thickness along with the
minimum width of the ferroelectric domain at such a thickness.
Fong and his colleagues at Argonne National Laboratory
reported that a PbTiO3 thin film can sustain its ferroelectricity
down to three-unit cells,44 and Cho’s research group at Tohoku

University45,46 successfully imaged the smallest ferroelectric
domain in LiTaO3 thin films with diameters of less than 3 nm
(see Figure 6).
Furthermore, Hong et al.47,48 found the rate-determining

speed of ferroelectric domain switching that could help
engineers design the aspect ratio of the ferroelectric capacitors
to maximize the switching speed. In addition, Colla et al.49

reported the distribution of frozen domains that were
responsible for polarization fatigue in ferroelectric capacitors
as a function of switching cycles, which is directly related to the
lifetime of the capacitor. Therefore, the simultaneous nanoscale
mapping of the domain structures and properties (such as
switchability) provided important insights into the design of
fatigue-free ferroelectric capacitors.

Figure 6. (a) Schematic diagram of the ferroelectric data-storage system based on scanning nonlinear dielectric microscopy (SNDM). (b)
Smallest artificial nanodomain represented as single dots with a diameter of 2.8 nm, as observed by using SNDM. (Left) SNDM image and
(right) profile taken along the white line in the left image. Note: C0 is the built-in capacitance including the stray capacitance, L is the built-in
inductance, ωp is angular frequency of the applied voltage, Cs is the tip−sample capacitance, LC is the inductance−capacitance, AC is the
alternating current, DC is the direct current, and FM is the frequency modulation. Reprinted with permission from ref 45. Copyright 2008 The
Japan Society of Applied Physics.

Figure 7. Trace and retrace CGM images of artificially decorated domains with different sizes. CGM images taken on ribbon-shaped domains
poled by 6 V to the bottom electrode of 85 nm thick LiTaO3 films with a (a) left-to-right scan (trace) and (b) right-to-left scan (retrace) using Pt
tips at scan frequency of 40 Hz. Piezoresponse force microscopy (PFM) (c) amplitude and (d) phase images obtained in the same region at a
scan frequency of 1 Hz where a bright-phase contrast corresponds to the positive (upward) domain and a dark-phase contrast corresponds to
the negative (downward) domain. Reprinted from ref 59. Copyright 2014 The Authors under Creative Commons International 4.0 Attribution
license (https://creativecommons.org/licenses/by/4.0/), published by The National Academy of Sciences (NAS).Manipulation and detection
of surface charges using SRPM. (e, f) Topography (e) and SRPM (f) images of artificially polarized domains with letters showing “RESISTIVE
PROBE”. (g, h) Checkerboard patterns of alternating positive and negative domains imaged by SRPM (g) and the selected line profiles of
domains with distances of 50, 38, and 25 nm (h). Reprinted with permission from ref 58. Copyright 2011 American Chemical Society.
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On a side note, the development of imaging tools, such as
piezoresponse force microscopy,50−56 scanning resistive probe
microscopy,57,58 or charge gradient microscopy,59,60 can lead to
the development of information storage devices or vice versa
(see Figure 7).61,62

It is worth noting that there are pioneering groups promoting
multiscale structure−property imaging in several places, such as
the Integrated Imaging Institute (I3) at Argonne National
Laboratory63 and the Center for Nanophase Materials Sciences
(CNMS) at Oak Ridge National Laboratory.64

MATERIALS BY DESIGN: HIGH-THROUGHPUT
SCREENING USING DENSITY FUNCTIONAL THEORY
AND MACHINE LEARNING
A prominent change in materials science during recent decades has
been the active integration of computer simulations to find materials,
predict properties, and understand phenomena. Using first-principles
calculations, many research groups have proposed the idea of
identifying compounds with interesting properties using computers
and high-throughput screening algorithms.2,65−68 Calculations, partic-
ularly those based on density functional theory (DFT) and other ab
initio techniques, are more easily scaled across diverse chemical spaces
than experiments.67 For example, all of the elements and the possible
crystal structures can be used to calculatematerial properties such as the
conductivity, permittivity, polarization, magnetization, diffusion
coefficient, elastic modulus, formation energy, and adsorption/
desorption energy. However, since DFT suffers from the limitations,
namely, the small number of cells (e.g., 1000 atoms) and a temperature
of zero Kelvin, while underestimating the band gap for certain classes of
materials, materials scientists have started to combine it with
conventional molecular dynamics, phase field modeling, and con-
tinuum physical modeling tools. Furthermore, to enhance the
calculation efficiency, researchers have started to use machine learning
(ML) to calculate the density of states and electronic band structure.68

Machine learning (ML), an algorithm that underpins a majority of
artificial intelligence (AI),69 is rooted from linear regressionof which
algebraic procedure was established by Adrien-Marie Legendre in
180570and pioneered by Arthur Samuel in 1959 who defined it as the
field of study that enables computers to learn without being explicitly
programmed.71 While MLmodels and algorithms have been developed
since the 1950s,72,73 it is only in the recent decade that the systematic
generation and curation of data have enabled ML to nucleate frontiers
across many fields including materials science and engineering.66,74−78

ML is especially suitable for exploratory tasks that feature exponentially
complex solutions, which is exemplified by the recent triumph of
AlphaGo and AlphaGo Zero in solving the problem of Go, which has an
estimated 10170 potential outcomes.79,80

The ability of ML to interpolate and in some cases extrapolate from a
set of training data to explore unknown spaces makes it a fascinating
solution to many challenges in materials science including the problem
of materials discovery and development.38,77 Currently, approximately
106 crystalline materials and 109 molecules have been explored and
investigated computationally and/or experimentally. Nevertheless, this
constitutes a tiny fraction of potential crystals and molecules in the
universe, where the number of only small organic molecules is
estimated to be 1060.68

High-throughput DFT screening limits the search space to
thousands of compounds.65 Therefore, ML offers a solution to the
limitation of the small search space of DFT by making predictions of
materials or properties from existing data, which in turn can drive the
generation of more data that can be used to further refine the ML
models.38 Recently, Noh et al.81 reviewed the latest progress in
machine-enabled inverse materials design, which can be categorized
into high-throughput virtual screening, global optimization, and
generative models. The inverse design has been performed by exploring
the chemical space effectively toward the target region. However, the
grand challenge of inverse design is the physical realization of predicted

materials, which attests to the importance of developing an
experimental feedback loop for discovered materials.81

The MGI has provided large, public databases of computed material
properties.3,66 Similar attempts have been made around the globe, such
as the Materials Research by Information Integration Initiative in
Japan,4 Novel Materials Discovery in the E.U.,5 Vom Materials Zur
Innovation in Germany,6 Materials Scientific Data Sharing Network in
China,7 and Creative Materials Discovery in Korea.8

Examples of general-purpose databases with high chemical diversity
include the Materials Project,66,82 Citrination platform,83,84 Automated
Interactive Infrastructure and Database for Computational Science
(AiiDA) platform,85 AFLOWLIB,86,87 Open Quantum Materials Data
(OQMD),88,89 Novel Materials Discovery (NOMAD) repository,90

JARVIS-DFT91 (JARVIS92), Inorganic Crystal Structure Database
(ICSD),93 and Materials Data Facility (MDF)94 to name a few. These
resources contain millions of computational “measurements” of
material properties, e.g., the formation enthalpy, electronic band
structure, and elastic moduli, which can be systematically searched. The
ability to rapidly generate reliable material data in this manner improves
every year as computing costs decrease; thus, the study of materials with
theoretical methods becomes more accurate, and the software to apply
these techniques becomes more powerful and more accessible to a
larger audience.95

The Atomate library,96 developed by the Materials Project
collaboration, uses several underlying libraries to create sophisticated
materials models, manage workflows on supercomputing centers, and
provide error correction. Atomate implements many commonmaterials
workflows and was used to create the Materials Project database.82

The Materials Data Facility (MDF) operates two cloud-hosted
services, data publication, and data discovery, with features to promote
open data sharing, self-service data publication, and curation and
encourage data reuse, layered with powerful data discovery tools.94 In
collaboration with Materials Data Facility at Argonne National
Laboratory, Phatak et al. implemented an automated data curation
workflow for the transmission electron microscope that imposes
minimal burden on users for additional information, yet collects data in
a form amenable to automated analysis and machine analysis.97

Nonetheless, ML based on DFT has its own limitations. They
employ a particular exchange functional, and thus in some cases the data
are not accurate. In addition, the predictions need to be validated by
experiments. As such, the data quality and reliability have become the
most important challenges. Data uncertainty can come from many
sources, such as computational errors from unsatisfactory approx-
imation, experimental errors, and the intentional omission of important
parts due to confidentiality or the fear of being copied by the fast
followers.

Many existing experimental data repositories are still either too small
or too inconsistent (e.g., different experimental conditions, measure-
ment techniques, or different simulation input choices) for high-quality
ML models.98 In addition, most of the databases are commercial
products requiring a license, and programmatic application program
interfaces (APIs) for large-scale data access are rarely implemented.68

MULTIMODAL AND MULTISCALE MATERIALS
IMAGING: RISE OF USER FACILITIES
Oneway to tackle the problem of a small amount of experimental data is
to tap into the very large data set created by user facilities around the
world such as Advanced Photon Source (APS) at Argonne National
Laboratory, SLAC National Accelerator Laboratory, Spallation
Neutron Source (SNS) at Oak Ridge National Laboratory, nanoscience
centers at six national laboratories in the U.S., Spring-8 in Japan,
European Synchrotron Radiation Facility (ESRF) in France, Diamond
Light Source in the U.K., and Pohang Accelerator Laboratory in Korea.
With the policy of open and transparent data publication, and more
efforts toward the standardization of data sets created by these user
facilities, this is the right time to use such experimental data sets to
validate DFT-based ML models and create experimental data-based
ML models.
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While DFT-basedML has emerged as the central part ofMaterials by
Design, with the imaging and characterization capabilities of user
facilities, researchers have started to build a holistic picture of emerging
phenomena in functional materials; thus, this process could potentially
identify the use of existing materials in applications. For example, using
multiple microscopy tools such as AFM and TEM, and synchrotron X-
rays as a probe to change the structure of materials, Chang et al.99 found
that a photovoltaic-like effect can reversibly modulate the conductance
of TiO2 thin films by a few orders of magnitude in response to the
intensity of impinging X-rays (see Figure 8). This method led to a
reversible nonvolatile conductance change when the photovoltaic-like
effect is combined with a local phase transition into a Magneĺi phase.
The discovery of a reversible resistance change induced by X-rays
provides a methodology to initiate the electroforming process in TiO2

thin films.

Choi et al.28 discovered the mechanical annealing process, which
could control nanoscale material properties and molecular orientation
using intense local stress. They directly applied mechanical stress,
which could induce irreversible plastic deformation, to a P(VDF-TrFE)
thin film using a nanoscale tip at room temperature. The regions with
plastic deformation did not show any significant damage or
delamination. The vertical and lateral piezoresponse amplitudes
measured after the mechanical annealing were 28% and 102.4% higher
than those of the pristine film. In addition, randomly oriented lamellar
crystals were well-aligned along the applied stress direction (see Figure
9). Therefore, they envisioned that mechanical annealing using intense
local stress would be widely used to improve and control the local
material properties in the polymeric thin films for fabricating high-
performance piezoelectric devices.

Kalinin et al.38 reviewed the challenges and opportunities for
extending electrochemical characterization probes to the nanometer

Figure 8. (a) Schematic showing the electrical measurement of a Pt/TiO2/Pt cell with the synchrotron-based X-ray irradiation. I−V curves of
the cell, measured before and after the prolonged irradiation. (b) C-AFM images of the pristine and the X-ray-irradiated surfaces. Two-
dimensional current map measured at 0.02 V show distinct differences between the unexposed pristine and X-ray-irradiated regions.
Conduction paths of 28± 14 nm diameter are clearly seen in the irradiated region. High-resolution electron microscopy (HREM) image of the
filament-like region. Lattice spacing of d = 0.67 nm is clearly seen which corresponds to [010] of the Magne  li phase of Ti4O7. Reprinted with
permission from ref 99. Copyright 2014 American Chemical Society.

Figure 9. Raman spectra and mapping images of the P(VDF-TrFE) film before and after mechanical annealing. (a) Raman spectra of pristine
and mechanically annealed regions as a function of mechanical force from 0.6 to 1.4 μN. (b) Optical microscopy image (b-1), Raman mapping
images at 805 (b-2), 848 (b-3), and 1294 cm−1 (b-4), and (c) Raman spectra measured at the circle-marked position (pristine region) of image
b-1 and at the triangle-marked position of image b-1 (mechanically annealed region). Grazing-incidence wide-angle X-ray scattering (GIWAXS)
data of the (d) pristine region and (e) mechanically annealed region with a mechanical force of 1.0 μN, (f) simulated GIWAXS of the (200)
orientation of the P(VDF-TrFE) film (inset: top view of the unit cell), and (g) azimuthally averaged data. The phase peak is denoted by the
arrows in panels e and g. Reprinted with permission from ref 28. Copyright 2015 American Chemical Society.
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and ultimately atomic scales (scanning probe and electron micros-
copy), and integration of spatial heterogeneity of local properties to
understand macroscopic properties. In addition, they envisioned that
the structure−property relationship on a single atomic-defect level
could be unveiled by combining multiscale materials imaging with ML
models.100

At this point we can answer the question we posed in the beginning:
How can we discover and develop materials in response to the
challenges of the fourth industrial revolution, the increase in national
protectionism due to the COVID-19 era, and the rise of artificial
intelligence, open data policies, and user facilities around the world?
With more powerful imaging tools that can map the structure and

properties as a function of space, time, momentum, and energy
dimensions, one can build a powerful library that correlates the complex
relationship between structures and properties at different scales, which
could be used to reverse engineer materials of interest with given
performance specs.

MATERIALS AND MOLECULAR MODELING, IMAGING,
INFORMATICS, AND INTEGRATION (M3I3) INITIATIVE
Recently, KAIST announced 10 flagship research fields, which include
the KAIST Materials Revolution: Materials and Molecular Modeling,
Imaging, Informatics and Integration (M3I3) (see Figure S1).12 The
M3I3 initiative aims at reducing the time for the discovery, design, and
development of materials based on multiscale processing−structure−
property relationships and materials hierarchy, which will be quantified
and understood through combination of ML and scientific insight.
As such, M3I3 is an algorithm to perform a reverse engineering of

future materials. Fast followers usually copy the products of the first
movers by reverse engineering them. For example, in the case of state-
of-the-art battery products, competitors dissect them into pieces and
analyze the structure and composition of each part, such as the cathode,
anode, electrolyte, and separator. This so-called “reverse engineering” is
the most inexpensive way to catch up with the forefront runners in the
ever-expanding competitive world. Front runners also need a way to
defend themselves and aggressively keep distance from their
competitors, which is why they invest a huge amount of resources
into the research and development of materials, devices, systems, and
platforms, and file patents all over the world. M3I3 provides a means to
effectively achieve this goal by mimicking a “reverse engineering”
strategy with a higher level of creativity. Thus, M3I3 can reverse-
engineer future materials of interest with superior performance and
reliability as well as with minimal cost and environmental impact.
Reverse engineering starts by analyzing the structure and

composition of the cutting-edge materials or products. Once we
determine the performance of our targeted future materials, we need to
know the candidate structures and compositions for producing the
future materials. This knowledge can only be available if we know the
structure−property or the property−structure relationships of all
materials and molecules at all scales. High-quality multiscale and
multidimensional experimental data will be the key to the success of our
approach.

APPLICATION OF M3I3 TO BATTERY MATERIALS
Among many types of materials, we aimed to apply M3I3 to
rechargeable battery materials. The reason we chose battery materials
was because of the relatively long history of materials development,
initiation of the MGI, and intuitive and qualitative understanding of
multiscale physical/chemical/electrical properties.101−103 Since Sony
Co. commercialized the lithium-ion battery (LIB) in the 1990s, the
demand for rechargeable batteries has become so pervasive that the
capacity requirement is now common knowledge to most of the people.
With the consensus and recognition of climate change caused by
greenhouse gases, governments around the world have launched
numerous initiatives on renewable energy technologies and electric
vehicles to tackle the climate challenge.102

Researchers around the globe added at least 202,756 publications on
batteries from 2010 to 2020, representing a 320% growth in the total
number of journal papers based on the Web of Science search with

query of “batteries”.102 In the meantime, with competition between
major car companies such as Toyota, GM, BMW, Audi, Mercedes-
Benz, Hyundai, and Tesla, the market for Li-ion batteries has surged
with amarket size of 36.35 billionUSD in 2019 and is projected to reach
115.98 billion USD by 2027, growing at a compound annual growth
rate (CAGR) of 15.6% from 2020 to 2027.104

Even though the battery market has undergone an exponential
growth, the ultimate goals of research have remained the same: to
increase the volume and weight energy density, increase charging/
discharging rate, enhance lifetime (cycling durability), ensure safety,
and minimize cost and environmental impact.

Energy density has steadily increased but still needs to increase to
create a larger impact in cars, ships, and airplanes as well as grid storage
applications. If we think of electrodes as a parking lot with cars, then a
building will be the materials to maintain the structural integrity of the
electrode whereas the cars will be the Li ions that drive in and out of the
parking lot when the batteries are being charged or discharged.
Although this metaphor applies mostly to the intercalation type
electrode materials, it could also be applied to other future battery
materials used for, e.g., lithium−sulfur and lithium−air batteries if we
add one more step of car transforming into a truck with a volume
expansion. In such cases, we need to consider the design of parking
space for trucks like Li2S and Li2O2 that are the discharging products of
lithium−sulfur and lithium−air batteries, respectively.105,106 In
addition, we should consider the reversibility between car and truck
as well as the structural resilience of the parking lot against the volume
expansion. Improved cyclability using mesoporous 3D conducting
scaffolds as the cathode underscores the need for optimum porous
electrodes to confine Li2S and Li2O2, which could be an example of a
resilient parking lot.105−108

MULTISCALE DESIGN OF MATERIALS STRUCTURE
Then the question arises: How do we design the filler materials to
maintain structural integrity and empty space for Li ions to diffuse in
and out of the electrode? At the atomic scale, one must think of the
space being able to embrace the case when Li ions are present and the
case when Li ions are absent.103 From an electric force point of view, the
filler atom should be able to change its valence freely to accommodate
both the presence and absence of Li ions. Therefore, transition metal
ions are the most likely candidates in our electrode materials.

Now, if we increase the scale to the lattice scale (0.5−1 nm), then we
should consider the quantum mechanical effect, such as repulsive force
between atoms or ions, due to the uncertainty principle.109 As such,
point defects such as vacancies and interstitial sites should be
considered altogether. At this scale, inorganic materials form typical
structures such as perovskite, spinel, or layered structures that can host
Li ions easily without destabilizing the structural integrity when
charging and discharging occur.103 Notably, the typically observed sites
are either octahedral or tetrahedral.

As we scale up to grain and grain boundaries, the length scale would
be between 100 nm and 10 μm,where the orientation of grains and their
nature, the width and length of grain boundaries, and the characteristics
and density of grain boundary junctions start to play important roles.
Will grain boundaries act as fast diffusion paths of Li ions or as
additional parking lots for Li ions?Will they helpmaintain the structural
integrity during the volume changes that accompany with charging and
discharging?

If we approach the scale of hundreds of micrometers to tens of
millimeters, then we start to see composite materials comprised of
inorganic particles, polymeric binders, conductive additives, and
electrolytes. The shape of particles, the stress/strain gradient in radial
and circumferential directions, the composition gradient (core/shell),
the interface between particles and binder, the network structure, and
the composition of additives will start to play major roles in the energy
density of electrode materials.

To control the properties of materials in regard to a performance
point of view, knowing all of the details of the multiscale structure−
property relationship can be a daunting job. As such, many practical
engineers rely on direct processing−property or processing−perform-
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ance relationships and optimize the properties and performance within
the boundary conditions of the processing equipment and starting raw

materials they have. Because most of the experimentalists tend to focus

on so-called positive results, large amounts of unreported “dark data”
are discarded, which we need to keep to truly find the global optimum

point for maximizing the property and performance of interest.

Figure 10. (a) Part of theM3I3 data sheet extracted from journal papers onNCMcathodematerials from 2004 to 2019. (b)Magnified portion of
the data sheet marked by the black box and the blue box inside the black box (inset). A full list can be found in ref 111.

Figure 11. First charge capacity (mAh/g) vs: (a) Ni, (b) Co, and (c) Mn compositions. This plot was created by MATLAB.
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MATERIALS INFORMATICS AND MACHINE LEARNING
FOR MATERIALS IMAGING AND INTEGRATION
Here we propose two independent but related approaches for tackling
this issue within the M3I3 philosophy stated above.
One way is to use datamining from existing literature (mainly journal

papers). The ideal method would be to use natural language processing
(NLP) to create large and diverse material data sets.110 However, since
NLP is at the development stage, we used collective intelligence (in
other words, 55 students worked together to fill out a data sheet reading
the papers allocated to them) and created a data sheet where we
identified approximately 900 important papers related to Li-ion
batteries using NMC electrodes (LiCoO2-based materials).111 To
minimize human errors, we assigned two students for each paper to

double check the numbers input in the data sheet (see Figure 10). One
type of error we observed during the analysis were the typos in the
literature where the data in the table had an inconsistent composition.

Then, we used the composition of the NMC electrode as the main
input parameter and energy density as the main output parameter.
However, in doing so, we found that many of the papers lacked the
information about the energy density and rather reported the output
charge/discharge capacity as the proxy of energy density. As such, we
changed our strategy to use the charge/discharge capacity as the output
parameter.

Using a very simple linear regression and gradient descent technique,
we were able to plot the discharge capacity as a function of the
composition of Ni, Co, and Mn. As we confined our search within the
NMC system, the total amount of Ni, Co, and Mn was assumed to be

Figure 12. Capacity contour triangle plot as a function of the Ni, Co, and Mn compositions. (a) Left plot from the data extracted from the data
sheet and (b) right plot based on the machine learning model developed using the same data sheet.

Figure 13. Pearson correlation coefficient between each parameter derived by (a, b) random forest (RF), (c) k nearest neighbor (KNN), and (d)
MICE.
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constant, and therefore, we would have two degrees of freedom to
change the composition of the NMC electrode. In other words, if we
knew, e.g., the Ni and Co compositions, the Mn composition could be
obtained from the following relationship, [Mn] = 1 − ([Ni] + [Co]).
We used the code provided by the machine learning course in

coursera.org,69 and plotted the output discharge capacity as a function
of the Ni, Co, andMn composition, as shown in Figure 11. One can find
the expected trend of the discharge capacity increasing as the Ni
content increases. Another thing one can find is the popular
composition of NMCs, where there are concentrated data points.
The other thing is that there are other factors that contribute to the
discharge capacity because at certain Ni compositions, the vertical
spread is very large. Some other outliers indicate either experimental
error or true innovation and therefore need special attention.
We found that these outliers include a sophisticated control of

morphology, such as core/shell structures, concentration gradient
particle structures, additive dopants, or Li-rich components. With these
data included and using support vector machine (SVM), we built a
triangle-shaped composition−first discharge capacity diagram, as
shown in Figure 12. One can immediately spot two peaks in the
predicted diagram and pick either Li-rich electrodes or Ni-rich
electrodes as promising future electrodes for high energy density.
To learn the role of composition in the cathode without additional

effects from multiple dopants, we restricted our search to a constant
amount of Ni, Co, and Mn and decided to exclude Li-rich electrodes
and solely focus on NMC electrodes to determine whether we could
obtain the overall trend of moving to the Ni-rich composition, which is
currently the market trend.
Although Li-rich cathodes (Li1+xMn0.5+yNizCowO2, where x + y + z +

w is 0.5, also shown in Table S2) can reach higher output values of
discharge capacity than Ni-rich cathodes, they often suffer from critical
capacity fading and discharge voltage decay for prolonged cycles larger
than 4.5 V.112 The additional consideration of Li in cathode material
complicates the overall thermodynamic stability of the cathode
materials.112 As such, Li-rich data from reliable resources is significantly

smaller than that of the conventional NCM one. Therefore, our current
approach focuses on simpler study of NCM. However, we intend to
expand our approach to find the optimum Li-rich cathodes using
transfer learning based on NCM.

In addition, we also wanted to know if other parameters reported in
the literature affected the output discharge capacity as much as the
reported composition of Ni, Co, and Mn. As such, we checked the
correlation between the discharge capacity and sintering temperature
and time, NCM particle size, cutoff voltage, measurement temperature,
and current density (or C-rate). Figure 13 shows the Pearson
correlation coefficient map between each parameter, where the NMC
composition and current density (C-rate) have the largest influence on
the discharge capacity. On the basis of this correlation, we employed
three different supervised nonlinear imputation techniques (k nearest
neighbor (KNN), random forest, and multivariate imputation by
chained equations (MICE)), which statistically predict the missing
values in the data sheet.

With KNN, the algorithm can find the missing data based on its
closest k neighbors. While in random forest, the missing data are
imputed on the basis of the nonlinear interaction within the variable.
Finally, with MICE, the missing data are imputed on the basis of a
conditional model of variable distribution. All three different methods
operate inmultidimensional space rather than a single imputation.With
this complete data set as input features, the trained model is ready to be
used to calculate the output voltage and charge capacity. Finally, we
demonstrated the output capacity calculation based on approximately 9
million data sets using the trained model. This allows us to quickly map
the output voltage or charge capacity on the basis of the interested
compound ratio and their optimal operating conditions (see Figure 14).
This calculation has been verified by experimental results with a
maximum error of 10% deviation, as shown in Table 1.

Figure 14. Capacity contour triangle plot as functions of composition (Ni, Co, andMn), particle size, sintering temperature/time, measurement
temperature, cutoff voltage, and C-rate.

Table 1. Experimental Validation of theMachine LearningModel Based on theData Sheet in Reference 111 withRtrain
2 = 0.95 and

Rtest
2 = 0.85

composition

no. Ni Co Mn
particle size

(μm)
sintering
temp (°C)

sintering
time (h)

cutoff
voltage (V)

measuring
temp (°C)

C-
rate

actual capacity
(mAh/g)

calculated capacity
(mAh/g)

error
(%)

1 0.5 0.2 0.3 15 4.5 25 0.1 190.0 191.3 0.7
2 0.5 0.2 0.3 15 900 12 4.5 25 0.1 181.1 180.5 0.3
3 1 0 0 5 650 12 4.5 25 0.1 214.0 236.3 10.4
4 0.95 0 0.05 5 650 12 4.5 25 0.1 214.0 231.3 8.1
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INTEGRATION OF STRUCTURE−PROPERTY AND
PROCESSING−STRUCTURE RELATIONSHIPS

The other strategy is to use ML combined with physics- and
chemistry-based models to independently correlate multiscale
structure and property parameters and processing and structure
parameters and finally merge those two to have a streamlined
processing−structure−property model where both forward and
inverse propagations are allowed (see Figure 15).
We first focus on the exploration of the structure−property

relationship based on materials imaging as a quantitative tool.
Recent progress in high-resolution, real-space imaging techni-
ques such as scanning probe microscopy (SPM) or AFM,113,114

TEM,115,116 scanning transmission electron microscopy

(STEM),117,118 scanning tunneling microscopy (STM),119,120

and atom probe tomography (APT)121 has allowed the direct
and efficient imaging of atomic columns and surface/interfacial
atomic structures. These techniques enabled the direct visual-
ization of the structure of materials, providing information on
structural motifs that underlie crystals, grains, grain boundaries,
dislocation cores, and quasicrystals, thereby leading to a
fundamental understanding of the chemistry in these systems.
The spatial and temporal resolution of these methods have

improved sufficiently to quantify the picometer-level displace-
ment of atoms from original positions, thereby providing direct
information about, e.g., the ferroelectric polarization (or dipole
moment), octahedral tilts and rotations, and electrochemical

Figure 15. Two-step strategy of M3I3. Separate libraries of multiscale (a) “processing−structure” and (b) “structure−property” relationships.
(c) Merging of these two libraries to create a seamless multiscale “processing−structure−property” library.

Figure 16. 0° projections of (a) HAADF and (b−f) STEM-EDX 3D tomography reconstructions for a layered LiNi1/3Mn1/3Co1/3O2 cathode
material. Full 3D tomograms are provided in Supporting Information Video S1. Scale bar, 50 nm.

ACS Nano www.acsnano.org Review

https://dx.doi.org/10.1021/acsnano.1c00211
ACS Nano 2021, 15, 3971−3995

3983

https://pubs.acs.org/doi/10.1021/acsnano.1c00211?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c00211?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c00211?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c00211?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c00211?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c00211?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c00211?fig=fig16&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.1c00211/suppl_file/nn1c00211_si_002.mp4
https://pubs.acs.org/doi/10.1021/acsnano.1c00211?fig=fig16&ref=pdf
www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.1c00211?ref=pdf


strains. In addition, high-resolution STM and AFM can provide
real-space atomic and electronic structures of material surfaces,
visualizing structures of molecular vibration and lattice vibration
(phonons), strongly or weakly correlated electrons, and
chemical bonds (bond length and angle).38

The precise determination of the internal distribution of
chemical elements within materials plays a crucial role in
tailoring functional materials for desired properties. Especially
for transition metal-based Li-ion battery cathode materials for
which the structure−composition−property relationships basi-
cally govern their performance, accurate determination and
control over the 3D distribution of different transition metals
within the materials are essential.103 It has been recently
demonstrated that the segregation and migration of chemical
elements (especially Ni) can substantially affect the surface
reconstruction and degradation of the cathode during the
battery cycling.122,123 However, there are few techniques that
can nondestructively map the 3D distribution of chemical
compositions at the nanometer scale. Unlike many techniques
that are either restricted to lower dimensions (2D projections or
surface) or destructive (cannot detect the migration dynamics
during the battery cycling), scanning transmission electron
microscopy-based energy dispersive X-ray spectroscopy
(STEM-EDX) tomography can safely provide the desired
information. By combining the elemental specificity of STEM-
EDX with tilt-series measurements and tomographic recon-
structions,124 the 3D distribution of individual chemical
elements can be mapped at the nanometer scale.122,125−127

Figure 16 shows the 3D tomographic reconstructions of high-
angle annular dark-field (HAADF) tomography as well as the
elemental tomography maps obtained from STEM-EDX
tomography. HAADF tomography can reveal the overall 3D
morphologies and internal density, while STEM-EDX tomog-
raphy shows the 3D composition map. Since the STEM-EDX
technique is nondestructive, it can be used to track the same
specimen over the course of battery cycling, illuminating the

dynamics of the migration of each chemical element during
cycling.
Scanning probe and electron microscopies enable a broad

range of spectroscopies, providing information about local
electronic, mechanical, dielectric, and chemical properties. This
local property imaging results in multidimensional data sets,
which offer an opportunity to explore structure−property
relationships at the level of single atoms and chemical bonds,
linking local properties to local bond lengths and angles;
furthermore, these techniques can be used at the level of
micrometer-sized grains and particles, linking micrometer-scale
properties (which for some cases represent the bulk properties)
to local grains, grain boundaries, and mixed components in
particles and the surrounding matrix.
For example, Kim et al. developed a visualization method that

determined the distribution of components in battery electrodes
using AFM.36 They explored the dependence of ESM
amplitude/phase and lateral force microscopy frictional force
on the AC drive voltage and the tip loading force, respectively,
and used their sensitivities as the markers for each component in
the composite anode. This method allowed for the direct
multiscale observation of the composite electrode under
ambient conditions, distinguishing various components and
simultaneously measuring their properties.
Electrochemical AFM visualizes the morphological evolution

of electrodes and/or discharge products during the operation of
battery model cells. The best benefit of electrochemical AFM
among many in situ imaging systems is to preserve realistic cell
conditions, i.e., the temperature, pressure, liquid environment,
and lack of external stimuli perturbation. This in situ observation
has been used for lithium−oxygen cells to reveal the discharging
and charging process. The nucleation and growth process of
lithium peroxide (Li2O2) as a discharge product has been
witnessed on highly oriented pyrolytic graphite.128−130 The
structure of Li2O2 is dependent on the electrolyte solution,
inclusion of trace amounts of water, and additives. Electro-
chemical AFM imaging shows the growth of toroidal Li2O2 with

Figure 17. (a) Visualization of phase evolution in the Li−Sn alloy under the stress. Lithiation-induced volume changes during in situ lithiation of
a Sn−SnO2 core−shell particle. (b) Electron diffraction patterns taken at the respective moments. (c−e) Thermodynamic rationale for the
strong stress−composition coupling: (c) stress distribution within the particle during lithiation according to the relative radial position from
the particle center, with the inset showing the lithiated particle geometry; (d, e) stress effect on the equilibrium potential of the Li−Sn alloy
system (d) and schematic illustrating the spontaneous core dealloying based on the stress-driven potential differences (e). The numbered
circles indicate the discrete time frames during lithiation. Reprinted with permission from ref 131. Copyright 2019 The Authors under Creative
Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/), published by Springer Nature.
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DMSO,130 while the growth of conformal Li2O2 is observed in a
water-free tetraglyme electrolyte solution.128,129 In addition, the
decomposition of insulating Li2O2 is probed, and its
morphological changes in response to charging potential are
observed; results suggest the contribution of possible Li+

dissolution from Li2O2 for triggering decomposition.130

As another example (see Figure 17), Seo et al. observed the
evolution of structures and phases on Sn/SnO2 core−shells
during their lithiation using in situ graphene liquid cell electron
microscopy (GLC-EM). They derived compositional informa-
tion from the phases and stress information from the volumes of
particles. These results offered the stress−composition coupling
through the visualization of particle structures.131

Apparently, Seo et al. also directly visualized the formation
and diffusion of lithium polysulfides (Li-PS) (see Figure 18).
They observed the morphological and phase evolutions of sulfur
nanoparticles during their lithiation and found that Li-PS
formation was slowed in an ionic liquid (IL)-containing
electrolyte. This result provides the structure and solubility
relationships.132

However, with the growing complexity and closed-source
nature of modern microscopes, the much-lauded promise of
artificial intelligence (AI), and machine learning (ML) to
revolutionize TEM experiment design, execution and analysis
have not yet been fully realized.133 On the other hand, X-ray
crystallography have adopted open, standardized methods and
data exchanges with enormous success. Automated X-ray
experimentation is routinely conducted at scale, aided by easily
accessible libraries of past work to plan and interpret future
studies.134

These large volumetric data sets coming from automated
experiments are nearly impossible to analyze without the help of
computational tools. Image segmentation (the act of partition-
ing an image into multiple useful sections) can be the most

difficult and time-consuming part of the data set analysis
workflow. Having a human manually trace each image would
take a very long time of continuous work.135 In addition,
complex images may contain a variety of artifacts such as color
gradients, streaks, and foreign particles that are difficult for
conventional contrast-based computational techniques to seg-
ment.
Machine learning methods have emerged as next-generation

tools for segmentation of large data sets. Convolutional neural
networks (CNNs) have been used for identification of dendritic
patterns,136 classification of steel microstructures,137 segmenta-
tion of precipitates and nanoparticles,138,139 phase mapping in
multicomponent alloys,140 classification of ambiguous micro-
structures,141 denoizing of synchrotron X-ray computed
tomography (XCT) experiments,142 and calibrating the rotation
axis in XCT.143

While, in principle, more data are a positive development, our
ability to process and extract physical and chemical meaning
from ballooning data sets has not kept pace.133 In this regard, AI
and ML methods trained on established physical and chemical
models enable us to identify statistically significant features in
large, noisy, and potentially incomplete data streams to build
structure−property libraries, which leads to knowledge
discovery.
Once a library of multiscale structure−property relationships

is available as partially demonstrated above, the next step is to
build a library of multiscale processing−structure relation-
ships.144 We will develop this library for Li-ion battery materials
with a focus on the cathode.
The first task is to understand the current boundary

conditions in terms of processing techniques used in the field
of battery materials. We confined the options of synthesis to
hydrothermal145 and solid-state synthesis methods.146 For
hydrothermal synthesis, the precursor synthesis, washing/

Figure 18. (a) Morphological and phase evolutions of sulfur nanoparticles during lithiation visualized by using in situ graphene liquid cell
electronmicroscopy. (b) TEM image showing the interface between sulfur/Li-PS and the Li-PS/electrolyte. (c, d) Time-series bright-field TEM
images showing the morphological evolutions of sulfur nanoparticles in (c) the IL-free and (d) the IL-containing electrolyte solution,
respectively. The morphological evolution of sulfur and dissolved area of Li-PS are suppressed with the IL-containing electrolyte, while those
with the IL-free electrolyte change significantly with lithiation time. (e, f) Outer boundaries of the sulfur core and Li-PS shown in panels c and d
labeled with time, respectively. Reprinted with permission from ref 132. Copyright 2020 American Chemical Society.
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drying, lithiation, and calcination are considered for determining
the input processing parameters of the procedure, such as
reaction temperature, reaction time, precursor composition,
impurity type and amount, washing time, drying temperature
and time, pulverization pressure and time, precalcination
temperature and time, and calcination temperature and time.
For solid-state synthesis, the precursor grinding, wet milling,

solvent evaporation, pelletizing, and calcination steps are the
three main processing steps. Here, the parameters of interest
include the composition of the precursor mixture, grinding
pressure, speed and time, size and number of zirconia balls,
solvent amount, ball milling speed and time, evaporation
temperature and time, size and volume of the pellet, pressure
and time of the pressing machine for pelletization, calcination
temperature, time and flow rate of injected gas, and partial
pressure of oxygen.
The output structural parameters are the primary particle size,

shape, secondary particle size, shape, crystal structure (crystal
symmetry and lattice constants), and crystallinity (crystal vs
amorphous) of the primary/secondary particles, valence states
of the surface elements, and composition and its gradient in the
primary and secondary particles.
Our example shows a simplified version of building up the

processing−structure library. If we include the electrolyte,
binder, separator, and anode altogether, the scope and size of the
library will be much larger.
As such, generalizing the processing−structure library for any

materials will be a very large job to complete. We envision that
with the development of NLP techniques to read all the
documents related to the processing of materials as well as image
recognition techniques to extract processing parameters from
tables and graphs in such documents, the task of generalizing the
processing−structure library will be expedited. This library will
be fed into an appropriate MLmodel to create a function we can
use for the reverse engineering of the materials from their
multiscale structures.
The spatial dimensions of the structure of materials is only

part of what makes them tick. There is a spectrum of
characteristic relaxation times associated with the various
chemical and physical processes operating at the materials
differing structural length scales, which adds the dimension of
time. The resulting dynamic spatiotemporal hierarchy implies
that any material at any time has structural features that have not
yet reached equilibrium. This is the reason that the structure of
materials depends on how they are made and what conditions
they endure during processing.1

Even at equilibrium inside repeating units of crystal lattices
and grains exist structural defects as they lower the Gibb’s free
energy of the total system, leading to the realization that
structural defects have reasons to exist and play vital roles at all
length scales. Defects can make or break materials in many ways.
It is the dopant ion in perfect silicon crystals that has changed
society through Moore’s law. Carbon impurities in pure iron
metal gave birth to the steel backbone of the industrial
revolution. Although “defect tolerance” remains a central tenet
of modern materials science and engineering for its commercial
and safety importance, “defect engineering” is ascendant in the
minds of many materials engineers. This is because defects at
various hierarchical levels are a principal opportunity for
controlling material behavior.
Therefore, the output structural features include the size,

shape, and symmetry parameters of multiscale repeating and

randomly distributed units as well as sparsely distributed defects
in multiple dimensions as shown in Table 2.
One may ask the following question: “How can we

deconvolute the complex multiscale processes occurring at the
same time and extract processing−structure relations at each
scale?”
The studies of direct e-beam effects on materials can provide

useful data for this task. A large number of e-beam-induced
phenomena have been reported on the ordering of oxygen
vacancies,147 formation of vacancies, and extended defects in 2D
materials,148 beam-induced migration of single interstitials,149

and formation of individual chemical bonds.150 If we can
develop a processing tool that uses an e-beam as the main
stimulus for the motion of atoms, then we can develop
processing−structure relations at the atomic scale.
At the 1 μm scale of a structure, the structural changes during

quenching (rapid cooling), whereby crystal grains transform and
subdivide into a hierarchy of low-temperature crystalline phases,
can be matched with the processing temperature and time as
well as the quenching rate. In addition to these conventional
processes, electrodeposition can also control the crystallinity of
materials from a dendritic structure to an amorphous phase by
means of the applied current and bath conditions.
We can also build upon the hierarchy of models based on

materials science, applied mechanics, and quantum physics.
Thermodynamic codes such as THERMOCALC enable
designers to simulate the structure of metal alloys at the 10
μm scale, where the chemical partitioning between the liquid
and solid phases evolves during solidification processing.
Lastly, once we build the structure−property and processing−

structure models based on the experimental and simulation data,
we will be able to integrate them tomake a seamless processing−
structure−property model. By using this model, we envision that
we can input the desired sets of properties for materials and
obtain the optimum processing recipe to make them.

M3I3 CHALLENGES AND FUTURE PERSPECTIVE
The greatest challenge of M3I3 is the quality and quantity of
experimental data that could be used to develop the processing−
structure−property relationship-based model.
Regarding the quality of the data, we can think of the following

example of imaging the structure of a three-dimensional
polycrystalline sample, where grains are defined by a single
crystal in which the crystallographic planes are aligned in one
direction and the grain boundaries act as interfaces between
those grains. One simple method to build this image is to
combine the use of SEM, focused ion beam (FIB) lithography,
and electron backscatter diffraction (EBSD) altogether. In this
case, we lose part of the materials due to the Ga beam impinging
upon the materials of interest and suffer from Ga-ion
implantation. The first challenge can be solved with the
imputation of data using ML guided by physical and chemical
laws. For example, the boundary should be continuous and its
slope should be continuous unless there are more than two
boundaries such as a triple boundary junction in the missing
area. The distortion of grains or grain boundaries by Ga-ion
beam damage can be detected if again ML is well-developed to
identify such a region and modify the shape of grain boundaries
based on the ML model.
Indeed, one of the breakthroughs ML brings to materials

imaging is the imputation of missing data or non-existing data
between existing data. One can then enhance a low-resolution
image to a high-resolution image using ML, and this has been
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shown inmanymovies where the actor asks the agent to enhance
the quality of an image captured by CCTV on the street. The
other breakthrough of ML is identifying and classifying objects
in the image, which provides the possibility of autonomous
driving based on the images captured by all cameras on the car.
The basic concept of convolutional neural network (CNN)

used in object detection (localization and classification) is to
learn the features of data and simplify data representations for
the purpose of finding patterns. As the model learns, it simplifies
features at each layer (edges, angles, and so on) and attribute a
combination of features to a specific output (object class,
location, and boundary). This is how ML get information about
the location and speed of pedestrians, cars, and buildings in the
image. Using the same ML structure and applying it to the
materials images, one can segment the materials image into
different phases and pores with information about location, size,
and shape.
The ability to quickly analyze large imaging data sets is vital to

the widespread adoption of modern materials characterization
tools and, thus, the development of materials. Image
segmentation can be the most subjective and time-consuming
step in the data analysis workflow. A promising approach to
segmentation of large materials data sets is the use of CNNs. For
example, Horwath et al.151 proposed methods for optimizing
performance of TEM image segmentation using CNN.
However, a major challenge is to obtain the images and
segmentations needed for CNN training, since this requires
segmentations performed by humans. We plan to use SegNet-
based CNN, which is trained on simple phase field simulations,
to segment experimental materials science data.
Furthermore, we can use ML to extract structural descriptors,

such as the space group, crystal structure, d-spacing, and zone
axis. For descriptors, such as the space group, crystal structure,
and zone axis, we use logistic regression to assign each output to
different classes (classification), whereas, for d-spacing, we use
linear or nonlinear regression to assign each output to an
obtained numerical value.
For example, the machine learning-assisted analysis of

electron microscopy has been developed to analyze structural
information of materials and defects. Ziatdinov et al. proposed a
deep learning-based “weakly supervised” approach that uses
information on the coordinates of atomic species in scanning
transmission electron microscopy (STEM) images in order to
analyze the atomic structure and detect a variety of defects
automatically.152 Li et al. demonstrated and evaluated an
automated approach to detect dislocation loop in STEM images
using contemporary ML computer vision and image analysis
techniques, which achieved performance similar to the human
average across the same data set.153

ML-assisted analysis of electron microscopy has identified the
crystal structure of unknownmaterials. Ziletti et al. constructed a
classification model based on a convolutional neural network to
automatically determine the crystal class according to crystal
symmetry.154 They calculated the diffraction images to train the
model from 100,000 simulated crystal structures including
heavily defective ones. The trained model successfully identified
the crystal class in the presence of defects.154 Aguiar et al.
classified experimental high-resolution STEM data as 230 space
groups.155 Two-dimensional fast Fourier transformed diffrac-
tion patterns were azimuthally integrated and converted into a
one-dimensional profile. The pattern and profile provide the
structural classification details using the deep-learning model
approach.155 Kaufmann et al. performed the crystal structureT
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determination of 14 Bravais lattice with electron backscatter
diffraction (EBSD) data by constructing ResNet50 and
Xception models.156 They achieved accuracy of 93.5% for
ResNet50 and 91.2% for Xception and confirmed good
performance rather than traditional Hough transform.
ML-assisted analysis of electron microscopy has also revealed

nanoscale dynamics. Yao et al. analyzed liquid-phase trans-
mission electron microscopy (TEM) images of various gold
nanostructures using U-Net neural network-based image
segmentation to extract physical and chemical meaning.157

They generated simulated TEM images for model training and
showed the U-Net model has better performance than the
conventional thresholding method in blurred liquid-phase TEM
condition.
However, because of the quantity and the way data analysis is

conducted, the vast majority of high-quality experimental data
are left unreported and a very small fraction of this data are
published, which renders the unreported data inaccessible to the
research community. To tackle this problem effectively and
promote the full utilization of high-resolution structural and
property imaging data, the wide adoption of ML should be
implemented. The development of unsupervised image analysis
tools using high-performance computing platforms has demon-
strated the ability to allow the full analysis of atomic
configurations in 2D, high-resolution imaging data in real
time.158−160

How should we tackle the issue of a small quantity of high-
quality data? Data mining from patents and data sheets publicly
available on the Web sites of companies in addition to journal
papers can vastly increase the amount of high-quality data. Data
augmentation within the boundaries of physical and chemical
laws and the simulation of such data within the constraints of
science can also help tackle this problem. One example includes
the enumerated classes of atomic defects extracted from the
deep convolutional neural network−Gaussian mixture model
analysis of STEM movies.38 We can find another example from
the work of Frey et al.,161 where they developed an approach
based on deep transfer learning, machine learning, and first-
principles calculations to address the issue of a small number of
high-quality data. They used physics-informed featurization to
generate a minimal description of defect structures and
identified optimal point defects in 2D materials.161

In process of executing the M3I3 initiative, we have built the
data-driven experimental design based on traditional NCM
cathode materials (nickel, cobalt, and manganese). With this
establishment, our future direction is to expand this idea for
achieving even higher discharge capacity, which can be realized
via Li-rich cathode. However, one of the major challenges is the
limitation of available data that describe the Li-rich cathode
properties. To mitigate this problem, we propose two solutions:
First, we should build an ML-guided data generator for data
augmentation. To ensure the quality of generated data, we will
include a quality control feature that restricts only the data
above-defined threshold to be accepted in the data pool. Thus,
the data with larger size can be used for machine learning-driven
experimental design. Second, we will use an ML method based
on “transfer learning”.162 Since the NCM cathode database
shares the common feature to that of Li-rich cathode, one may
consider repurposing theNCM trainedmodel in assisting the Li-
rich prediction. With the pretrained model and transfer learning,
we expect to achieve outstanding prediction in Li-rich cathode
even with the small data set.

Our expectation is based on some of the related prior works
that used generative adversarial networks (GAN) and variational
autoencoders (VAEs) to address the issues of insufficient data.
For example, Court et al.163 reported an autoencoder-based
generative deep-representation learning pipeline for geometri-
cally optimized 3D crystal structures, which predicts the values
of formation energy, total energy, band gap, bulk modulus, shear
modulus, Poisson ratio, refractive index, and dielectric constant.
Ma et al.164 developed a transfer learning strategy, which

combines real and simulated data and the augmentation of
training data in a data mining process. For a specific task of grain
instance image segmentation, they generated synthetic data by
fusing the images obtained from simulating the physical
mechanism of grain formation and the image style information
in real images extracted by the generative adversarial networks.
Because the time required to perform grain simulation and
generate synthetic data is much smaller than that to acquire real
experimental data, their strategy can exploit the strong
prediction power of deep learning without the experimental
burden of training data preparation.
Ohno165 addressed the issue of small data size for training

models for regression models by using a real-valued nonvolume
preserving model (real-NVP) as the normalizing flow and the
generator in theGAN-based trainingmethod. Using kernel ridge
regression trained by generated data, generalization perform-
ance was measured by evaluating the models, where the GAN-
based training approach was comparable to the state-of-art
models. Furthermore, Ohno used variational autoencoders
(VAEs) as generative models for data augmentation to address
the issue of small data size for regression problems.166 The
multitask learning for VAEs improved the generalization
performance of multivariable linear regression model trained
with augmented data in seven benchmark data sets and ionic
conductivity data set.
While the most common approach for machine learning has

been to extract physically meaningful descriptors and use either
linear machine learning algorithms or kernel tricks to impose
nonlinearity, the boom in large structured data sets and low-cost
embarrassingly parallel computing has given rise to deep
learning techniques in materials science.167 Deep learning or
neural network-based machine learning assembles large net-
works of neurons containing a matrix multiplication, the
addition of a bias, and a nonlinearity. The weights and biases
are optimized on the basis of some objective function. These
networks if large enough are overparametrized to the point that
they become universal function approximators. While over-
parametrization left unchecked will result in overfitting, the
optimization is constrained through the addition of damaging
mechanisms in the form of regularizers. Design of deep learning
models requires co-design of the model to the objective.
Generally, this involves building specific architectures for
supervised learning (classification or regression), unsupervised
latent space extraction, generative models, control systems, and
much more. Deep learning has recently been used to extract
latent manifolds from high-dimensional spectroscopy,168

discover phase transformations,169 segmentation, and detection
inmicroscopy images,170 and controlled experimentation171 and
atomic manipulation.150

Despite these successes, there are many open areas for
innovation by M3I3. In particular, we are working on designing
regularization pipeline mechanisms including adding sparsity
through L1-regularization168 and imposing selective Kullback−
Leibler divergence constraints,172 and shaping latent manifolds
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using normalizing flows.173 Additionally, we are working on
creating models that can learn underlying governing equations
that describe observable phenomena.174 One of the key practical
challenges with deep learning is the relatively long inference
latency. There is a strong directive to use machine learning to
analyze high-velocity streaming data > 1 TB/s and make
decisions with faster than human response times (∼300 ms).
Both of these applications require alternative computing
paradigms where analysis happens without saving data to disk
and without CPU management.
The necessary innovation requires the co-design of deep

learning algorithms and AI hardware for specific applications.
One promising approach involves compressing deep learning
models using pruning and quantization such that they can be
deployed on reconfigurable logic such as field-programmable
gate arrays capable of conducting inference with ns-latencies.175

Large volumes of searchable structural images and property
maps will allow the building of a database of multiscale
configurations and their associated properties in materials,
thereby revealing the hierarchical physics and chemistry
underlying the multiscale multimodal structure−property
relationships in materials.
We plan to build an M3I3 repository of searchable structural

and property maps using FAIRfindable, accessible, interoper-
able, and reusableprinciples to standardize best practices as
well as streamline the training of early career researchers.176 Our
repository will include data of all formats and a whole class of
meta-analyses and connect with existing repositories such as
NOMAD, JARVIS, Materials Project, AFLOW, OQMD, NREL
MatDB, and Materials Cloud. The Materials Research Platform
is the vision of a future system, which comprises data and
knowledge assets, automation of science, and integrative
approaches for materials research.177 Many of the issues and
topics such as inclusion of “dark data” (i.e., data that are
considered a “negative” result and not publishable), main-
tenance of data quality through rapid user feedback and
community review, and curation of standardized and bench-
marked data sets have been well-documented and are identical
in substance when compared with M3I3. In the wider context,
M3I3 is not a standalone initiative but rather a parallel and
interdependent initiative, which needs a close connection to the
Materials Research Platform.
With advances in experimental imaging and the availability of

well-resolved information and big data, along with significant
advances in high-performance computing and a worldwide
thrust toward a general, collaborative, integrative, and on-
demand research platform, there is a clear confluence in the
required capabilities of advancing the M3I3 initiative.
Once we succeed in using the inverse “property−structure−

processing” solver to develop cathode, anode, electrolyte, and
membrane materials for high energy density Li-ion batteries, we
will expand our scope of materials to, e.g., battery/fuel cell,
aerospace, automobile, food, medicine, and cosmetic materials.
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VOCABULARY
Materials by Design, a methodology to design a material that
meets a material user’s need; Materials Genome Initiative, an
initiative to design, manufacture, and deploy materials and
materials-based technologies faster and cheaper than ever
before; materials informatics, a field of study that applies the
principles of informatics to materials science and engineering to
improve the understanding, design, development, and discovery
of materials; multimodal imaging, imaging materials in various
modes that can map structures and properties using different
descriptors or markers (for example, piezoresponse force
microscopy uses piezoelectric strain as the marker for polar-
ization vector in ferroelectric materials); multiscale imaging,
imaging materials at various scales covering atomic scale,
nanoscale, mesoscale, micrometer scale, millimeter scale, and
meter scale; ten flagship research fields, grand research fields to
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overcome the global challenges, which can be categorized into
four major themes, namely, bio/medical field, energy and
environment, military/defense/space, and the fourth industrial
revolution

REFERENCES
(1) Olson, G. B. Designing a New Material World. Science 2000, 288,
993−998.
(2) Xiong, W.; Olson, G. B. Cybermaterials: Materials by Design and
Accelerated Insertion of Materials. npj. Comput. Mater. 2016, 2, 15009.
(3) Materials Genome Initiative; http://mgi.gov (accessed 2020-10-
18).
(4) “Material Research by Information Integration” Initiative (MI2I);
https://www.nims.go.jp/MII-I/en/ (accessed 2020-10-18).
(5) Horizon 2020: Novel Materials Discovery; https://cordis.europa.
eu/project/id/951786 (accessed 2020-10-18).
(6) Vom Material zur Innovation (From Material to Innovation).
Bundesministerium für Bildung und Forshung; https://www.bmbf.de/
de/vom-material-zur-innovation-1130.html (accessed 2020-10-18).
(7) Materials Scientific Data Sharing Network, http://www.materdata.
cn/ (accessed 2020-11-04).
(8) Creative Materials Discovery Program; https://nrf.re.kr/biz/info/
notice/list?biz_no=305 (accessed 2020-10-18).
(9) Curtarolo, S.; Hart, G. L. W.; Nardelli, M. B.; Mingo, N.; Sanvito,
S.; Levy, O. The Throughput Highway to Computational Materials
Design. Nat. Mater. 2013, 12, 191−201.
(10) Lopez-Bezanilla, A.; Littlewood, P. B. Growing Field of Materials
Informatics: Databases and Artificial Intelligence.MRS Commun. 2020,
10, 1−10.
(11) Kalinin, S. V.; Sumpter, B. G.; Archibald, R. K. Big-Deep-Smart
Data in Imaging for Guiding Materials Design. Nat. Mater. 2015, 14,
973−980.
(12) KAIST Vision 2031 Committee; Gimmyoung, P. 2031 KAIST
Future Report (in Korean); 2018; pp 1−276, http://www.gimmyoung.
com/Book/BookView?bookCode=BC002877&bookType=all (ac-
cessed 2020-10-18).
(13) Under the Heading of Global Singularity Research Projects,
M3I3 Initiative can be found: M313 Initiative: MaterialsandMolecular
Modeling, Imaging, Informatics and Integration. KAIST Research
Homepage, KAIST, Daejon, Republic of Korea; https://www.kaist.ac.
kr/en/html/research/04.html (accessed 2020-10-18).
(14) Opening New Horizons for Humanity: KAIST. Nature
Advertorial, Nature Research Custom Media, 2020; https://www.
nature.com/articles/d42473-020-00132-w (accessed 2020-10-18).
(15) Materials Science, Wikipedia. https://en.wikipedia.org/wiki/
Materials_science (accessed 202010-18).
(16) Materials Age. SciMAP, Mar. 20, 2018; https://www.scimap.
tech/post/materials-age (accessed 2021-01-14).
(17) Gibbs, J. W. On the Equilibrium of Heterogeneous Substances.
Transactions of the Connecticut Academy of Arts and Sciences;
Connecticut Academy of Arts and Sciences, 1874−1878; Vol. 3, pp
108−248 and 343−524.
(18)Mody, C. C.M.The Long Arm ofMoore’s LawMicroelectronics and
American Science. The MIT Press: Cambridge, MA, USA, 2017; pp 1−
304.
(19) Riordan, M.; Hoddeson, L. Crystal Fire: The Birth of the
Information Age; W. W. Norton: New York, NY, USA, 1997; pp 1−352.
(20) Smith, C. S. A History of Metallography; The MIT Press:
Cambridge, MA, USA, 1988; pp 1−326.
(21) Hall, E. O. The Deformation and Ageing of Mild Steel: III
Discussion of Results. Proc. Phys. Soc., London, Sect. B 1951, 64, 747−
753.
(22) The Nobel Prize in Physics 1986;https://www.nobelprize.org/
prizes/physics/1986/summary/ (accessed 2021-01-21).
(23) Williams, D. B.; Carter, C. B., The Transmission Electron
Microscope. Transmission Electron Microscopy: A Textbook for Materials
Science; Springer: Boston, MA, USA, 1996; pp 3−17, DOI: 10.1007/
978-0-387-76501-3_1.

(24) Palucka, T. Overview of Electron Microscopy; https://authors.
library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/
ElectronMicroscope/EM_HistOverview.htm (accessed 2021-01-21).
(25) Kim, H.; Lee, S.; Kim, S.; Oh, C.; Ryu, J.; Kim, J.; Park, E.; Hong,
S.; No, K. Membrane Crystallinity and Fuel Crossover in Direct
Ethanol Fuel Cells with Nafion Composite Membranes Containing
Phosphotungstic Acid. J. Mater. Sci. 2017, 52, 2400−2412.
(26) About Jung Ho Kim. Encyclopedia of Korean Culture, The
Academy of Korean Studies; http://encykorea.aks.ac.kr/Contents/
Index?contents_id=E0010423 (accessed 2020-10-18).
(27) Daedongyeo Map. Full image. Wikimedia; https://commons.
wikimedia.org/wiki/File:Daedongyeojido-full.jpg (accessed 202010-
19).
(28) Choi, Y.-Y.; Sharma, P.; Phatak, C.; Gosztola, D. J.; Liu, Y.; Lee,
J.; Lee, B.; Li, J.; Gruverman, A.; Ducharme, S.; Hong, S. Enhancement
of Local Piezoresponse in Polymer Ferroelectrics via Nanoscale
Control of Microstructure. ACS Nano 2015, 9, 1809−1819.
(29) Mount Baekdu. Google Maps; https://bit.ly/344HVt0 (accessed
2020-10-18).
(30)Mount Everest.Google Maps; https://bit.ly/2HbL8Ok (accessed
2020-10-18).
(31) Wang, L. H. Picture of Mount Everest. This file is licensed under
the Creative Commons Attribution-Share Alike 4.0 International
licensehttps://commons.wikimedia.org/wiki/File:Mt.Everest.jpg (ac-
cessed 2020-10-19).
(32) Balke, N.; Jesse, S.; Morozovska, A. N.; Eliseev, E.; Chung, D.W.;
Kim, Y.; Adamczyk, L.; Garcia, R. E.; Dudney, N.; Kalinin, S. V.
Nanoscale Mapping of ion Diffusion in a Lithium-Ion Battery Cathode.
Nat. Nanotechnol. 2010, 5, 749−754.
(33) Balke, N.; Kalnaus, S.; Dudney, N. J.; Daniel, C.; Jesse, S.;
Kalinin, S. V. Local Detection of Activation Energy for Ionic Transport
in Lithium Cobalt Oxide. Nano Lett. 2012, 12, 3399−3403.
(34) Yang, S.; Yan, B.; Li, T.; Zhu, J.; Lu, L.; Zeng, K. In Situ Studies of
Lithium-Ion Diffusion in a Lithium-Rich Thin Film Cathode by
Scanning Probe Microscopy Techniques. Phys. Chem. Chem. Phys.
2015, 17, 22235−22242.
(35) Alikin, D. O.; Romanyuk, K. N.; Slautin, B. N.; Rosato, D.; Shur,
V. Y.; Kholkin, A. L. Quantitative Characterization of the IonicMobility
and Concentration in Li-Battery Cathodes via Low Frequency
Electrochemical Strain Microscopy. Nanoscale 2018, 10, 2503−2511.
(36) Kim, H.; Oh, J.; Park, G.; Jetybayeva, A.; Kim, J.; Lee, Y.-G.;
Hong, S. Visualization of Functional Components in a Lithium Silicon
Titanium Phosphate-Natural Graphite Composite Anode. ACS Appl.
Energy Mater. 2020, 3, 3253−3261.
(37) Kim, H.; Yun, S.; Kim, K.; Kim, W.; Ryu, J.; Nam, H. G.; Han, S.
M.; Jeon, S.; Hong, S. Breaking the Elastic Limit of Piezoelectric
Ceramics using Nanostructures: A Case Study using ZnO.Nano Energy
2020, 78, 105259.
(38) Kalinin, S. V.; Dyck, O.; Balke, N.; Neumayer, S.; Tsai, W.-Y.;
Vasudevan, R.; Lingerfelt, D.; Ahmadi, M.; Ziatdinov, M.; McDowell,
M. T.; Strelcov, E. Toward Electrochemical Studies on the Nanometer
and Atomic Scales: Progress, Challenges, andOpportunities.ACSNano
2019, 13, 9735−9780.
(39) Hong, S.; Nakhmanson, S. M.; Fong, D. D. Screening
Mechanisms at Polar Oxide Heterointerfaces. Rep. Prog. Phys. 2016,
79, 076501.
(40) Hong, S., Ed. Nanoscale Phenomena in Ferroelectric Thin Films;
Kluwer Academic: Boston, MA, USA, 2004; pp 3−279.
(41) Auciello, O.; Scott, J. F.; Ramesh, R. The Physics of Ferroelectric
Memories. Phys. Today 1998, 51, 22−27.
(42) Setter, N.; Damjanovic, D.; Eng, L.; Fox, G.; Gevorgian, S.; Hong,
S.; Kingon, A.; Kohlstedt, H.; Park, N. Y.; Stephenson, G. B.;
Stolitchnov, I.; Taganstev, A. K.; Taylor, D. V.; Yamada, T.; Streiffer, S.
Ferroelectric Thin Films: Review of Materials, Properties, and
Applications. J. Appl. Phys. 2006, 100, 051606.
(43) Auciello, O.; Araujo, C. A. P. d.; Celinska, J. Review of the Science
and Technology for Low- and High-Density Nonvolatile Ferroelectric
Memories. Emerging Non-Volatile Memories: Hong, S., Auciello, O.,

ACS Nano www.acsnano.org Review

https://dx.doi.org/10.1021/acsnano.1c00211
ACS Nano 2021, 15, 3971−3995

3991

https://dx.doi.org/10.1126/science.288.5468.993
https://dx.doi.org/10.1038/npjcompumats.2015.9
https://dx.doi.org/10.1038/npjcompumats.2015.9
http://mgi.gov
https://www.nims.go.jp/MII-I/en/
https://cordis.europa.eu/project/id/951786
https://cordis.europa.eu/project/id/951786
https://www.bmbf.de/de/vom-material-zur-innovation-1130.html
https://www.bmbf.de/de/vom-material-zur-innovation-1130.html
http://www.materdata.cn/
http://www.materdata.cn/
https://nrf.re.kr/biz/info/notice/list?biz_no=305
https://nrf.re.kr/biz/info/notice/list?biz_no=305
https://dx.doi.org/10.1038/nmat3568
https://dx.doi.org/10.1038/nmat3568
https://dx.doi.org/10.1557/mrc.2020.2
https://dx.doi.org/10.1557/mrc.2020.2
https://dx.doi.org/10.1038/nmat4395
https://dx.doi.org/10.1038/nmat4395
http://www.gimmyoung.com/Book/BookView?bookCode=BC002877&bookType=all
http://www.gimmyoung.com/Book/BookView?bookCode=BC002877&bookType=all
https://www.kaist.ac.kr/en/html/research/04.html
https://www.kaist.ac.kr/en/html/research/04.html
https://www.nature.com/articles/d42473-020-00132-w
https://www.nature.com/articles/d42473-020-00132-w
https://en.wikipedia.org/wiki/Materials_science
https://en.wikipedia.org/wiki/Materials_science
https://www.scimap.tech/post/materials-age
https://www.scimap.tech/post/materials-age
https://dx.doi.org/10.1088/0370-1301/64/9/303
https://dx.doi.org/10.1088/0370-1301/64/9/303
https://www.nobelprize.org/prizes/physics/1986/summary/
https://www.nobelprize.org/prizes/physics/1986/summary/
https://dx.doi.org/10.1007/978-0-387-76501-3_1
https://dx.doi.org/10.1007/978-0-387-76501-3_1
https://dx.doi.org/10.1007/978-0-387-76501-3_1?ref=pdf
https://dx.doi.org/10.1007/978-0-387-76501-3_1?ref=pdf
https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/ElectronMicroscope/EM_HistOverview.htm
https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/ElectronMicroscope/EM_HistOverview.htm
https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/ElectronMicroscope/EM_HistOverview.htm
https://dx.doi.org/10.1007/s10853-016-0534-z
https://dx.doi.org/10.1007/s10853-016-0534-z
https://dx.doi.org/10.1007/s10853-016-0534-z
http://encykorea.aks.ac.kr/Contents/Index?contents_id=E0010423
http://encykorea.aks.ac.kr/Contents/Index?contents_id=E0010423
https://commons.wikimedia.org/wiki/File:Daedongyeojido-full.jpg
https://commons.wikimedia.org/wiki/File:Daedongyeojido-full.jpg
https://dx.doi.org/10.1021/nn5067232
https://dx.doi.org/10.1021/nn5067232
https://dx.doi.org/10.1021/nn5067232
https://bit.ly/344HVt0
https://bit.ly/2HbL8Ok
https://commons.wikimedia.org/wiki/File:Mt.Everest.jpg
https://dx.doi.org/10.1038/nnano.2010.174
https://dx.doi.org/10.1021/nl300219g
https://dx.doi.org/10.1021/nl300219g
https://dx.doi.org/10.1039/C5CP01999K
https://dx.doi.org/10.1039/C5CP01999K
https://dx.doi.org/10.1039/C5CP01999K
https://dx.doi.org/10.1039/C7NR08001H
https://dx.doi.org/10.1039/C7NR08001H
https://dx.doi.org/10.1039/C7NR08001H
https://dx.doi.org/10.1021/acsaem.9b02045
https://dx.doi.org/10.1021/acsaem.9b02045
https://dx.doi.org/10.1016/j.nanoen.2020.105259
https://dx.doi.org/10.1016/j.nanoen.2020.105259
https://dx.doi.org/10.1021/acsnano.9b02687
https://dx.doi.org/10.1021/acsnano.9b02687
https://dx.doi.org/10.1088/0034-4885/79/7/076501
https://dx.doi.org/10.1088/0034-4885/79/7/076501
https://dx.doi.org/10.1063/1.882324
https://dx.doi.org/10.1063/1.882324
https://dx.doi.org/10.1063/1.2336999
https://dx.doi.org/10.1063/1.2336999
https://dx.doi.org/10.1007/978-1-4899-7537-9_1
https://dx.doi.org/10.1007/978-1-4899-7537-9_1
https://dx.doi.org/10.1007/978-1-4899-7537-9_1
www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.1c00211?ref=pdf


Wouters, D., Eds.; Springer: New York, NY, USA, 2014; pp 3−36,
DOI: 10.1007/978-1-4899-7537-9_1.
(44) Fong, D. D.; Stephenson, G. B.; Streiffer, S. K.; Eastman, J. A.;
Auciello, O.; Fuoss, P. H.; Thompson, C. Ferroelectricity in Ultrathin
Perovskite Films. Science 2004, 304, 1650−1653.
(45) Tanaka, K.; Kurihashi, Y.; Uda, T.; Daimon, Y.; Odagawa, N.;
Hirose, R.; Hiranaga, Y.; Cho, Y. Scanning Nonlinear Dielectric
Microscopy Nano-Science and Technology for Next Generation High
Density Ferroelectric Data Storage. Jpn. J. Appl. Phys. 2008, 47, 3311−
3325.
(46) Cho, Y.; Hong, S. Scanning Probe-Type Data Storage Beyond
Hard Disk Drive and Flash Memory. MRS Bull. 2018, 43, 365−369.
(47) Hong, S.; Colla, E. L.; Kim, E.; Taylor, D. V.; Tagantsev, A. K.;
Muralt, P.; No, K.; Setter, N. High Resolution Study of Domain
Nucleation and Growth During Polarization Switching in Pb(Zr,
Ti)O3 Ferroelectric Thin Film Capacitors. J. Appl. Phys. 1999, 86,
607−613.
(48) Hong, S.; Setter, N. Evidence for Forward Domain Growth being
Rate-Limiting Step in Polarization Switching in < 111>-Oriented-
Pb(Zr0.45Ti0.55)O3 Thin-Film Capacitors. Appl. Phys. Lett. 2002, 81,
3437−3439.
(49) Colla, E. L.; Hong, S.; Taylor, D. V.; Tagantsev, A. K.; Setter, N.;
No, K. Direct Observation of Region by Region Suppression of the
Switchable Polarization (Fatigue) in Pb(Zr, Ti)O3 Thin Film
Capacitors with Pt Electrodes. Appl. Phys. Lett. 1998, 72, 2763−2765.
(50) Takata, K. Strain Imaging of a Pb(Zr,Ti)O3 Thin Film. J. Appl.
Phys. 1996, 79 (1), 134−142.
(51) Kolosov, O.; Gruverman, A.; Hatano, J.; Takahashi, K.;
Tokumoto, H. Nanoscale Visualization and Control of Ferroelectric
Domains by Atomic ForceMicroscopy. Phys. Rev. Lett. 1995, 74, 4309−
4312.
(52) Franke, K.; Hülz, H.; Weihnacht, M.; Hab̈ler, W.; Besold, J.
Nanoscale Investigations of Polarization in Thin Ferroelectric Films by
Means of Scanning Force Microscopy. Ferroelectrics 1995, 172, 397−
404.
(53) Franke, K.; Besold, J.; Haessler, W.; Seegebarth, C. Modification
and Detection of Domains on Ferroelectric PZT Films by Scanning
Force Microscopy. Surf. Sci. 1994, 302, L283−L288.
(54) Hong, J. W.; Park, S.-I.; Khim, Z. G. Measurement of Hardness,
Surface Potential, and Charge Distribution with Dynamic Contact
Mode Electrostatic Force Microscope. Rev. Sci. Instrum. 1999, 70,
1735−1739.
(55) Balke, N.; Bdikin, I.; Kalinin, S. V.; Kholkin, A. L. Electro-
mechanical Imaging and Spectroscopy of Ferroelectric and Piezo-
electric Materials: State of the Art and Prospects for the Future. J. Am.
Ceram. Soc. 2009, 92, 1629−1647.
(56) Hong, S.; Woo, J.; Shin, H.; Jeon, J. U.; Pak, Y. E.; Colla, E. L.;
Setter, N.; Kim, E.; No, K. Principle of Ferroelectric Domain Imaging
using Atomic Force Microscope. J. Appl. Phys. 2001, 89, 1377−1386.
(57) Park, H.; Jung, J.; Min, D. K.; Kim, S.; Hong, S.; Shin, H.
Scanning Resistive Probe Microscopy: Imaging Ferroelectric Domains.
Appl. Phys. Lett. 2004, 84, 1734−1736.
(58) Ko, H.; Ryu, K.; Park, H.; Park, C.; Jeon, D.; Kim, Y. K.; Jung, J.;
Min, D. K.; Kim, Y.; Lee, H. N.; Park, Y.; Shin, H.; Hong, S. High-
Resolution Field Effect Sensing of Ferroelectric Charges. Nano Lett.
2011, 11, 1428−1433.
(59) Hong, S.; Tong, S.; Park, W. I.; Hiranaga, Y.; Cho, Y.; Roelofs, A.
Charge Gradient Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2014, 111,
6566−6569.
(60) Tong, S.; Jung, I. W.; Choi, Y. Y.; Hong, S.; Roelofs, A. Imaging
Ferroelectric Domains and Domain Walls using Charge Gradient
Microscopy: Role of Screening Charges. ACS Nano 2016, 10, 2568−
2574.
(61) Hong, S.; Kim, Y. Ferroelectric Probe Storage Devices. Emerging
Non-Volatile Memories: Hong, S., Auciello, O., Wouters, D., Eds.;
Springer: New York, NY, USA, 2014; 259−273, DOI: 10.1007/978-1-
4899-7537-9_7.
(62) Hong, S.; Choa, S.; Jung, J.; Ko, H.; Kim, Y. K. Ferroelectric Hard
Disk System. U.S. Pat. 8248906, 2012.

(63) Integrated Imaging Institute (I3). Argonne National Laboratory;
https://www.anl.gov/imaging (accessed 2020-10-18).
(64) Institute for Functional Imaging of Materials (IFIM). Oak Ridge
National Laboratory; https://www.ornl.gov/facility/cnms (accessed
2020-11-04).
(65) Cheng, L.; Assary, R. S.; Qu, X.; Jain, A.; Ong, S. P.; Rajput, N. N.;
Persson, K.; Curtiss, L. A. Accelerating Electrolyte Discovery for Energy
Storage with High-Throughput Screening. J. Phys. Chem. Lett. 2015, 6,
283−291.
(66) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.;
Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A.
Commentary: TheMaterials Project: AMaterials GenomeApproach to
Accelerating Materials Innovation. APL Mater. 2013, 1, 011002.
(67) de Pablo, J. J.; Jackson, N. E.; Webb, M. A.; Chen, L.-Q.; Moore,
J. E.; Morgan, D.; Jacobs, R.; Pollock, T.; Schlom, D. G.; Toberer, E. S.;
Analytis, J.; Dabo, I.; DeLongchamp, D.M.; Fiete, G. A.; Grason, G.M.;
Hautier, G.; Mo, Y.; Rajan, K.; Reed, E. J.; Rodriguez, E.; Stevanovic, V.;
Suntivich, J.; Thornton, K.; Zhao, J.-C. New Frontiers for the Materials
Genome Initiative. npj Comput. Mater. 2019, 5, 41.
(68) Chen, C.; Zuo, Y.; Ye, W.; Li, X.; Deng, Z.; Ong, S. P. A Critical
Review of Machine Learning of Energy Materials. Adv. Energy Mater.
2020, 10, 1903242.
(69) Ng, A. Machine Learning. Coursera; https://www.coursera.org/
learn/machine-learning (accessed 2020-10-18).
(70) Legendre, A. M. Nouvelles Met́hodes pour la Det́ermination des
Orbites des Comet̀es; Courcier: Paris, 1805; pp 1−98.
(71) Samuel, A. L. Some Studies inMachine Learning Using theGame
of Checkers. IBM J. Res. Dev. 2000, 44, 206−226.
(72) Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning
Representations by Back-Propagating Errors. Nature 1986, 323, 533−
536.
(73) LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015,
521, 436−444.
(74) Chibani, S.; Coudert, F.-X.Machine Learning Approaches for the
Prediction of Materials Properties. APL Mater. 2020, 8, 080701.
(75) Attia, P. M.; Grover, A.; Jin, N.; Severson, K. A.; Markov, T. M.;
Liao, Y. H.; Chen, M. H.; Cheong, B.; Perkins, N.; Yang, Z.; Herring, P.
K.; Aykol, M.; Harris, S. J.; Braatz, R. D.; Ermon, S.; Chueh, W. C.
Closed-Loop Optimization of Fast-Charging Protocols for Batteries
with Machine Learning. Nature 2020, 578, 397−402.
(76) Min, K.; Choi, B.; Park, K.; Cho, E. Machine Learning Assisted
Optimization of Electrochemical Properties for Ni-Rich Cathode
Materials. Sci. Rep. 2018, 8, 15778.
(77) Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M.
B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J.
Machine-Learning-Assisted Materials Discovery using Failed Experi-
ments. Nature 2016, 533, 73−76.
(78) Zakutayev, A.;Wunder, N.; Schwarting,M.; Perkins, J. D.; White,
R.;Munch, K.; Tumas,W.; Phillips, C. AnOpen Experimental Database
for Exploring Inorganic Materials. Sci. Data 2018, 5, 180053.
(79) Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den
Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.;
Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.;
Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.;
Hassabis, D. Mastering The Game of Go with Deep Neural Networks
and Tree Search. Nature 2016, 529, 484−489.
(80) Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang,
A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; Chen, Y.;
Lillicrap, T.; Hui, F.; Sifre, L.; van den Driessche, G.; Graepel, T.;
Hassabis, D. Mastering the Game of Go without Human Knowledge.
Nature 2017, 550, 354−359.
(81) Noh, J.; Gu, G. H.; Kim, S.; Jung, Y. Machine-Enabled Inverse
Design of Inorganic Solid Materials: Promises and Challenges. Chem.
Sci. 2020, 11, 4871−4881.
(82) The Materials Project; https://materialsproject.org/ (accessed
2020-10-18).
(83) The Citrination Platform; https://citrination.com/ (accessed
2020-11-04).

ACS Nano www.acsnano.org Review

https://dx.doi.org/10.1021/acsnano.1c00211
ACS Nano 2021, 15, 3971−3995

3992

https://dx.doi.org/10.1007/978-1-4899-7537-9_1?ref=pdf
https://dx.doi.org/10.1126/science.1098252
https://dx.doi.org/10.1126/science.1098252
https://dx.doi.org/10.1143/JJAP.47.3311
https://dx.doi.org/10.1143/JJAP.47.3311
https://dx.doi.org/10.1143/JJAP.47.3311
https://dx.doi.org/10.1557/mrs.2018.98
https://dx.doi.org/10.1557/mrs.2018.98
https://dx.doi.org/10.1063/1.370774
https://dx.doi.org/10.1063/1.370774
https://dx.doi.org/10.1063/1.370774
https://dx.doi.org/10.1063/1.1517396
https://dx.doi.org/10.1063/1.1517396
https://dx.doi.org/10.1063/1.1517396
https://dx.doi.org/10.1063/1.121083
https://dx.doi.org/10.1063/1.121083
https://dx.doi.org/10.1063/1.121083
https://dx.doi.org/10.1063/1.360920
https://dx.doi.org/10.1103/PhysRevLett.74.4309
https://dx.doi.org/10.1103/PhysRevLett.74.4309
https://dx.doi.org/10.1080/00150199508018503
https://dx.doi.org/10.1080/00150199508018503
https://dx.doi.org/10.1016/0039-6028(94)91089-8
https://dx.doi.org/10.1016/0039-6028(94)91089-8
https://dx.doi.org/10.1016/0039-6028(94)91089-8
https://dx.doi.org/10.1063/1.1149660
https://dx.doi.org/10.1063/1.1149660
https://dx.doi.org/10.1063/1.1149660
https://dx.doi.org/10.1111/j.1551-2916.2009.03240.x
https://dx.doi.org/10.1111/j.1551-2916.2009.03240.x
https://dx.doi.org/10.1111/j.1551-2916.2009.03240.x
https://dx.doi.org/10.1063/1.1331654
https://dx.doi.org/10.1063/1.1331654
https://dx.doi.org/10.1063/1.1667266
https://dx.doi.org/10.1021/nl103372a
https://dx.doi.org/10.1021/nl103372a
https://dx.doi.org/10.1073/pnas.1324178111
https://dx.doi.org/10.1021/acsnano.5b07551
https://dx.doi.org/10.1021/acsnano.5b07551
https://dx.doi.org/10.1021/acsnano.5b07551
https://dx.doi.org/10.1007/978-1-4899-7537-9_7
https://dx.doi.org/10.1007/978-1-4899-7537-9_7?ref=pdf
https://dx.doi.org/10.1007/978-1-4899-7537-9_7?ref=pdf
https://www.anl.gov/imaging
https://www.ornl.gov/facility/cnms
https://dx.doi.org/10.1021/jz502319n
https://dx.doi.org/10.1021/jz502319n
https://dx.doi.org/10.1063/1.4812323
https://dx.doi.org/10.1063/1.4812323
https://dx.doi.org/10.1038/s41524-019-0173-4
https://dx.doi.org/10.1038/s41524-019-0173-4
https://dx.doi.org/10.1002/aenm.201903242
https://dx.doi.org/10.1002/aenm.201903242
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://dx.doi.org/10.1147/rd.33.0210
https://dx.doi.org/10.1147/rd.33.0210
https://dx.doi.org/10.1038/323533a0
https://dx.doi.org/10.1038/323533a0
https://dx.doi.org/10.1038/nature14539
https://dx.doi.org/10.1063/5.0018384
https://dx.doi.org/10.1063/5.0018384
https://dx.doi.org/10.1038/s41586-020-1994-5
https://dx.doi.org/10.1038/s41586-020-1994-5
https://dx.doi.org/10.1038/s41598-018-34201-4
https://dx.doi.org/10.1038/s41598-018-34201-4
https://dx.doi.org/10.1038/s41598-018-34201-4
https://dx.doi.org/10.1038/nature17439
https://dx.doi.org/10.1038/nature17439
https://dx.doi.org/10.1038/sdata.2018.53
https://dx.doi.org/10.1038/sdata.2018.53
https://dx.doi.org/10.1038/nature16961
https://dx.doi.org/10.1038/nature16961
https://dx.doi.org/10.1038/nature24270
https://dx.doi.org/10.1039/D0SC00594K
https://dx.doi.org/10.1039/D0SC00594K
https://materialsproject.org/
https://citrination.com/
www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.1c00211?ref=pdf


(84) O’Mara, J.; Meredig, B.; Michel, K.Materials Data Infrastructure:
A Case Study of the Citrination Platform to Examine Data Import,
Storage, and Access. JOM 2016, 68, 2031−2034.
(85) Huber, S. P.; Zoupanos, S.; Uhrin, M.; Talirz, L.; Kahle, L.;
Haüselmann, R.; Gresch, D.; Müller, T.; Yakutovich, A. V.; Andersen,
C. W.; Ramirez, F. F.; Adorf, C. S.; Gargiulo, F.; Kumbhar, S.; Passaro,
E.; Johnston, C.; Merkys, A.; Cepellotti, A.; Mounet, N.; Marzari, N.;
Kozinsky, B.; Pizzi, G.; et al. AiiDA 1.0, A Scalable Computational
Infrastructure for Automated Reproducible Workflows and Data
Provenance. Sci. Data 2020, 7, 300.
(86) Curtarolo, S.; Setyawan, W.; Hart, G. L. W.; Jahnatek, M.;
Chepulskii, R. V.; Taylor, R. H.; Wang, S.; Xue, J.; Yang, K.; Levy, O.;
Mehl, M. J.; Stokes, H. T.; Demchenko, D. O.;Morgan, D. AFLOW:An
Automatic Framework for High-Throughput Materials Discovery.
Comput. Mater. Sci. 2012, 58, 218−226.
(87) AFLOW (Automatic-FLOW for Materials Discovery); http://
www.aflow.org/ (accessed 2020-10-18).
(88) Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.;
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