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Abstract

Magnetic reconnection is invoked as one of the primary mechanisms to produce energetic particles. We employ
large-scale 3D particle-in-cell simulations of reconnection in magnetically dominated (σ= 10) pair plasmas to
study the energization physics of high-energy particles. We identify an acceleration mechanism that only operates
in 3D. For weak guide fields, 3D plasmoids/flux ropes extend along the z-direction of the electric current for a
length comparable to their cross-sectional radius. Unlike in 2D simulations, where particles are buried in
plasmoids, in 3D we find that a fraction of particles with γ 3σ can escape from plasmoids by moving along z, and
so they can experience the large-scale fields in the upstream region. These “free” particles preferentially move in z
along Speiser-like orbits sampling both sides of the layer and are accelerated linearly in time—their Lorentz factor
scales as γ∝ t, in contrast to g µ t in 2D. The energy gain rate approaches ∼eErecc, where Erec; 0.1B0 is the
reconnection electric field and B0 the upstream magnetic field. The spectrum of free particles is hard,

g gµ -dN dfree
1.5, contains ∼20% of the dissipated magnetic energy independently of domain size, and extends

up to a cutoff energy scaling linearly with box size. Our results demonstrate that relativistic reconnection in GRB
and AGN jets may be a promising mechanism for generating ultra-high-energy cosmic rays.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739)

1. Introduction

High-energy emission from pulsar wind nebulae (PWNe) and
the relativistic jets of active galactic nuclei (AGNs) and gamma-
ray bursts (GRBs) raises a question about the origin of the
emitting particles. Outflows from these compact objects are
believed to be dominated by Poynting flux, i.e., the magnetic
energy density is greater than the plasma rest-mass energy density.
In GRB and AGN jets, magnetic field lines can reverse on small
scales, as a result of the nonlinear stages of magnetohydrodynamic
(MHD) instabilities (Romanova & Lovelace 1992; Begel-
man 1998; Spruit et al. 2001; Lyutikov & Blandford 2003;
Giannios & Spruit 2006; Böttcher 2019). Alternatively, the jet can
carry current sheets from its base, like in pulsar winds (Lyubarsky
& Kirk 2001; Drenkhahn 2002; Drenkhahn & Spruit 2002; Kirk
& Skjæraasen 2003; Giannios & Uzdensky 2019; Cerutti et al.
2020). In both cases, field reversals on small scales are prone to
magnetic reconnection, driving heating, and particle acceleration.

Magnetic reconnection, and in particular the “relativistic” regime
where the magnetic energy dominates over the plasma rest-mass
energy, is now established as an efficient mechanism of particle
acceleration. Three-dimensional (3D) particle-in-cell (PIC) simula-
tions, which offer a self-consistent description of plasma kinetics,
have shown that relativistic reconnection naturally produces power-
law spectra of accelerated particles (Zenitani & Hoshino 2008;
Kagan et al. 2013; Guo et al. 2014; Sironi & Spitkovsky 2014;
Werner & Uzdensky 2017; Guo et al. 2021). The origin of the
power-law particle spectrum in two-dimensional (2D) relativistic
reconnection has been recently investigated by, e.g., Guo et al.
(2014) and Uzdensky (2020). Yet basic questions, such as how
particles are accelerated to high energies, the timescale of
acceleration, and whether these processes proceed up to larger
(fluid) scales, remain debated. The answer to these questions is
critical when evaluating the potential of relativistic reconnection for
explaining high-energy astrophysical phenomena in relativistic
outflows (e.g., the emission of very high energy photons or the

acceleration of ultra-high-energy cosmic rays (UHECRs)). For
instance, Giannios (2010) proposed that protons escaping the
reconnection layer can undergo first-order Fermi acceleration, due
to repeated deflections by the converging reconnection upstream
flows, and can reach energies up to E∼ 1020 eV in GRB and
powerful AGN jets.
In this context, it is critical to determine from first principles

the acceleration rate of the highest-energy particles. PIC
simulations of relativistic reconnection showed that the
reconnection layer fragments into a chain of plasmoids/flux
ropes (e.g., Sironi et al. 2016). Recent large-scale 2D PIC
simulations by Petropoulou & Sironi (2018) and Hakobyan
et al. (2021) suggested that the particles populating the high-
energy spectral cutoff reside in a strongly magnetized ring
around the plasmoid core. Their acceleration is driven by the
increase in the local field strength, coupled with the conserva-
tion of the first adiabatic invariant. They also found that the
high-energy spectral cutoff grows in time as µ t , which
appears too slow to explain, e.g., UHECR acceleration.
These conclusions may change in a 3D geometry, which would

account for the finite length of plasmoids along the z-direction of
the electric current. In 3D, the z invariance postulated by 2D
simulations can be broken by the oblique tearing instability (e.g.,
Daughton et al. 2011) and the drift-kink instability (e.g., Zenitani &
Hoshino 2007), which may modify the 2D picture of particle
energization. While in 2D particles are efficiently trapped within
plasmoids, 3D simulations of nonrelativistic reconnection (Dahlin
et al. 2017; Li et al. 2019) have shown that self-generated
turbulence and chaotic magnetic fields allow high-energy particles
to access multiple acceleration sites within the reconnected plasma,
resulting in faster acceleration rates than in 2D.
In this work, we perform 3D PIC simulations of relativistic

reconnection in a magnetically dominated electron–positron plasma,
with magnetization (i.e., the ratio of magnetic energy density to
plasma rest-mass energy density) σ= 10. Our inflow/outflow
boundary conditions allow us to reliably study the statistical steady
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state of the system, beyond the initial transient. We identify and
characterize a novel acceleration mechanism, unique to 3D. We
find that a fraction of particles with γ 3σ can escape from
plasmoids by moving along z and experience the large-scale fields
in the “upstream” region.3 The momentum of these “free”
particles is preferentially oriented along z. They undergo
Speiser-like deflections by the converging upstream flows (as
envisioned by Giannios 2010; see also de Gouveia dal Pino &
Lazarian 2005) and are accelerated linearly in time—their
Lorentz factor scales as γ∝ t. The energy gain rate approaches
∼eErecc, where Erec; 0.1B0 is the reconnection electric field
and B0 the upstream magnetic field. The spectrum of free
particles is hard and can be modeled as a power law

g gµ -dN dfree
1.5—whose slope we justify analytically—

extending up to a cutoff energy that scales linearly with box
size. We find that the free particles account for ∼20% of the
dissipated magnetic energy, independently of domain size, yet
their number (as compared to the particle count in the
downstream plasma) decreases with increasing box size.

The layout of this paper is as follows. In Section 2, we describe
the simulation setup we employ. In Section 3, we present our main
results, with regard to the particle energy and momentum spectrum,
the characterization of particle orbits inside and outside the
reconnection layer, and the dependence on the size of the
computational domain. In Section 4, we draw our conclusions
and discuss implications for astrophysical systems. We argue that
relativistic reconnection in GRB and AGN jets may be a promising
mechanism for generating UHECRs.

2. Simulation Setup

We employ 3D PIC simulations performed with the
TRISTAN-MP code (Buneman 1993; Spitkovsky 2005). The
magnetic field is initialized in Harris sheet configuration, with
the field along x reversing at y= 0. We parameterize the
field strength B0 by the magnetization s p= =B n mc40

2
0

2

( )w wpc
2, where ωc= eB0/mc and w p= n e m4p 0

2 are,
respectively, the Larmor frequency and the plasma frequency
for the cold electron–positron plasma outside the layer, with
density n0. The Alfvén speed is related to the magnetization as

( )s s= +v c 1 ;A we take σ= 10. In addition to the reversing
field, we initialize a uniform guide field along z with strength
Bg= 0.1B0. We have also explored a case with zero guide field and
found similar results (see Table 1). We resolve the plasma skin
depth c/ωp with 2.5 cells and initialize an average of one particle in
each cell. We have also tested a larger value of four particles per
cell, finding no significant change in reconnection rate, maximum
energy, and particle spectra (for more details, see Table 1). The
numerical speed of light is 0.45 cells per time step. We employ
periodic boundary conditions in z and outflow boundary conditions
in x, while along y two injectors continuously introduce fresh
plasma and magnetic flux into the domain (for details see Sironi
et al. 2016; Sironi & Beloborodov 2020). As opposed to the
commonly adopted triple-periodic boundaries, our setup allows us
to evolve the system to arbitrarily long times, so we can study the
statistical steady state for several Alfvénic crossing times.

We trigger reconnection near the center of the simulation
domain (i.e., near x= y= 0, but along the whole z extent), by

removing the pressure of the hot particles initialized in the
current sheet, as in Sironi et al. (2016). The characteristic x
length of this region is defined as Δinit. For our largest 3D
simulation (see below), we choose Δinit= 500c/ωp. For
smaller boxes, we have tested different values of Δinit, finding
no difference in our main results (see Table 1 for details).
For our reference 3D simulation, the box length in x and z

(respectively, Lx and Lz) is ;4000 cells∼ 1600 c/ωp, while the
box extent along y increases over time as the two injectors
recede from the current sheet. We also present results from a set
of boxes with fixed Lx but various Lz from 1600 c/ωp down to
12 c/ωp, and two sets of experiments with a fixed ratio Lx/Lz
(Lx/Lz= 1 and Lx/Lz= 2) but different box sizes. In the
following, unless otherwise indicated, we employ our reference
box with Lx= 1560 c/ωp and Lz= 1613 c/ωp, and we define
L= 1560 c/ωp as our unit of length.
We have also performed a 2D simulation with identical

physical and numerical parameters as our reference 3D run
(aside from a choice of 16 particles per cell to increase particle
statistics), to emphasize 3D effects.

3. Results

Figure 1 shows two snapshots of the 3D density structure from
our reference simulation.4 The top panel refers to ct/L; 0.47
and shows the two reconnection fronts (see the two overdense
regions at |x|∼ L/4) propagating away from the center, at near
the Alfvén speed. The bottom panel of Figure 1 refers to a
representative time (ct/L; 2.13) when the layer has achieved a
statistical steady state. The layer is fragmented into flux ropes
of various sizes, with comparable lengths in the z-direction as
in the x-y plane. The finite extent of plasmoids along the z-

Table 1
Number and Energy Efficiency for the Population of High-energy Free

Particles

Box Size Δinit/[c/ωp] Nfree/Nrr Efree/Err

1.6k × 0.8k 500 0.006(0.008)a 0.131(0.173)

0.8k × 0.4k 500 0.012 0.161
250 0.015 0.200

0.4k × 0.2k 500 0.012 0.149
250 0.016 0.199
125 0.013 0.166

1.6k × 1.6k 500 0.008 0.179

0.8k × 0.8k 500 0.014 0.188
250 0.014 0.197

0.4k × 0.4k 500 0.022 0.224
250 0.023 0.250
125 0.015 0.201

1.6k × 0.4k 500 0.009(0.012)b 0.153(0.199)

Notes. The number (energy) efficiency is the ratio of the number (energy) of free
particles normalized to the number (energy) of particles in the reconnection region.
The unit of length for the box size (leftmost column) is the plasma skin depth (c/ωp).
a The results in parentheses are from a simulation with the same parameters, but with
four particles per cell.
b The results in parentheses are from a simulation with the same parameters, but
with guide field Bg = 0.

3 We point out that the mechanism discussed by Li et al. (2019) in
nonrelativistic reconnection relied on particles moving between multiple
acceleration sites in the reconnection “downstream,” i.e., in the post-
reconnection plasma.

4 A movie showing the evolution of the density structure can be found at
https://youtu.be/fMictkK1QNU.
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direction, likely due to the relativistic drift-kink instability
(Zenitani & Hoshino 2007, 2008), plays a fundamental role for
the physics of high-energy particle acceleration.5

The 3D instabilities can also change the reconnection rate, as
compared to 2D. Figure 2 illustrates the temporal evolution of the
reconnection rate ηrec≡ vin/vA for both 2D (blue) and 3D (red)
simulations, where vin is the inflow speed and vA; c for
magnetically dominated plasmas. The initial growth of the box-
averaged reconnection rate before ct/L∼ 0.8 is just due to the
increase of the region where reconnection is active (i.e., between
the two reconnection fronts). When the two reconnection fronts
exit the computational domain, the rate becomes quasi-steady.
The reconnection rate in 3D, ηrec∼ 0.075, is slower than in 2D,

ηrec∼ 0.12. In either case, the rate is in reasonable agreement with
analytical expectations (Lyubarsky 2005).
The inflowing particles from the two sides of the layer mix in

the reconnection region, which we shall also call “reconnected
plasma” or “downstream” region. In contrast, the pre-
reconnection flow shall be called “upstream.” To identify the
region of reconnected plasma, we define a “mixing factor 
(e.g., Rowan et al. 2017; Ball et al. 2018; Sironi &
Beloborodov 2020):

( )º - -
n

n
1 2

1

2
, 1

top

where ntop is the density of particles that started from y> 0,
while n is the total density. It follows that = 1 represents
the downstream plasma, where particles from the two sides of
the layer are well mixed, whereas = 0 characterizes the
upstream, where no mixing has occurred. We will use the
mixing factor to identify whether a particle is located in the
upstream or downstream region.
Using  as a criterion for separating upstream and down-

stream regions, we study where particles of different energies are
located. Figure 3 shows histograms of the particle Lorentz factor γ
(horizontal axis) and mixing factor  (vertical axis) at time
t= 2.37L/c, for 3D (left) and 2D (right) simulations. Both
histograms suggest that most of the low-energy particles (γ 30)
are located in the downstream region (i.e., near unity). In 2D,
all of the high-energy particles are also located in well-mixed
regions, i.e., in the downstream. In agreement with earlier studies,
high-energy particles in 2D are trapped within plasmoids (Sironi
et al. 2016; Petropoulou & Sironi 2018; Hakobyan et al. 2021). In
contrast, a significant fraction of high-energy particles (γ 30) in
the 3D simulation lie in low-mixing regions, i.e., in the upstream.
As we show below, these are particles that have escaped from
reconnection plasmoids and are now being rapidly accelerated by
the large-scale upstream fields. In the following, we will take a
threshold of = 0.30 (horizontal red dotted line in the left
panel) to separate the downstream region ( > 0) from the
upstream region ( < 0). We expect that our results will not
change significantly as long as0 is near 0.3 (e.g., between 0.25
and 0.35).
In the rest of this section, we first study the particle energy

and momentum spectra in the 3D simulation and identify that

Figure 1. Two snapshots of density from our reference 3D simulation. We show
the density structure at a relatively early time (top, t = 0.47 L/c), when
reconnection fronts are moving outward, and at a later time (bottom,
t = 2.13 L/c), when the system has achieved a steady state. The upstream plasma
flows into the layer along y, while reconnection outflows move along x. The
electric current is along the z-direction, which is invariant in 2D simulations.

Figure 2. A comparison of the reconnection rate between 3D (red) and 2D
(blue) simulations. The reconnection rate is calculated by averaging the plasma
inflow velocity (in units of the speed of light) in the region 0.03L < y < 0.08L.

5 We defer to future work a full characterization of the stochastic nature of the
layer and the properties of the density and magnetic structures generated by 3D
reconnection (Lazarian & Vishniac 1999; Kowal et al. 2009; Takamoto et al.
2015; Werner & Uzdensky 2021), as investigated in 2D by, e.g., Sironi et al.
(2016).
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high-energy particles preferentially move along the z-direction
(Section 3.1). Then, we track particles and investigate in detail
their acceleration mechanism (Section 3.2). Finally, we
investigate the dependence of our results on the domain size,
in order to show that the acceleration physics should operate
effectively out to larger scales (Section 3.3).

3.1. Particle Spectra

A nonthermal power-law spectrum extending to high
energies is a well-established outcome of relativistic reconnec-
tion (e.g., Sironi & Spitkovsky 2014). Figure 4 shows the
positron momentum spectrum p dN dpz z, where pz= γβz is the
dimensionless 4-velocity along z (βz is the particle z velocity in
units of the speed of light). The spectrum is obtained by
averaging between t= 3.34L/c and 3.56L/c, when the system
is in steady state. The box-integrated spectrum of positrons
with pz> 0 (blue, indicated as pz+,box in the legend) can be
modeled for pz 3 as a power law µ -p dN dp pz z z

1.
The figure compares the momentum spectrum between

positrons with pz> 0 (blue lines, indicated as pz+ in the legend)
and pz< 0 (green lines, indicated as pz− in the legend) and further
distinguishes between spectra integrated in the whole box (solid
lines) and only extracted from the reconnection downstream
( > 0; dashed lines). We find that high-energy positrons
with pz< 0 are mostly located within the downstream region
(compare green solid and dashed lines), i.e., nonthermal positrons
with pz< 0 are trapped in plasmoids, analogous to 2D results (see
Petropoulou & Sironi 2018; Hakobyan et al. 2021).

In contrast, a significant fraction of high-energy positrons with
pz> 0 reside outside the reconnection region (compare blue solid
and dashed lines), and we shall call them “free.” The fraction of free
positrons is an increasing function of momentum, and for pz 100
they are more numerous than the ones located in the reconnection
downstream. The pz+ spectrum of free positrons (dotted blue line)
can be modeled as a hard power law, µ -dN dp pz zfree

1.5. In
Appendix B, we provide an analytical justification of the measured
spectral slope. The cutoff in the spectrum of pz> 0 positrons is
much higher than for pz< 0 positrons, suggesting that free
positrons can be accelerated to much larger energies than trapped
ones, as we indeed demonstrate below.6

The asymmetry between positrons with pz> 0 versus pz< 0 is a
unique feature of our 3D setup. In a corresponding 2D simulation
(see Appendix A), pz+ and pz− spectra are nearly identical, and

nearly all high-energy particles reside within the reconnection
downstream, as already shown by Figure 3 (right panel).
In the inset of Figure 4, we present the box-integrated

positron spectra of kinetic energy (gray) and momentum in
different directions, as indicated in the legend. In contrast to the
pz spectrum, there is no broken symmetry between positive and
negative directions in the px and py spectra. The inset shows
that the peak of the energy spectrum (gray), at γ− 1∼ 3, is
dominated by motions along the x-direction of the reconnection
outflows (compare with the px spectrum; red line). In contrast,
the high-energy cutoff of the positron energy spectrum at
γ∼ 500 is dominated by the pz+ spectrum (blue). Hence, the
most energetic positrons move mostly along the+ z-direction
(conversely, the highest-energy electrons along− z). We also
remark that the py spectrum (orange) reaches rather high
momenta (albeit not as high as the pz+ spectrum). This is
consistent with the trajectories of high-energy positrons that we
illustrate in Section 3.2.

Figure 3. 2D histograms of the particle Lorentz factor γ and the mixing factor (interpolated to the nearest cell) at time t = 2.37L/c, for 3D (left) and 2D (right). The
red dashed line in the left panel marks the threshold = 0.30 that we employ to distinguish upstream ( < 0) from downstream ( > 0).

Figure 4. Momentum spectrum p dN dpz z of positrons, where pz = γβz is the
dimensionless 4-velocity along the z-direction. We show spectra of positrons
with pz > 0 (blue, indicated as pz+ in the legend) and pz < 0 (green, indicated
as pz− in the legend). Spectra from the overall box are shown as solid lines
(indicated with subscript “box” in the legend), whereas the dashed lines refer
only to positrons belonging to the downstream region, as defined by the mixing
condition > 0 (indicated with subscript “rr” in the legend). The spectrum
of high-energy “free” positrons residing in the upstream region (with

< 0), which preferentially have pz > 0, is indicated by the dotted blue
line. The dotted black line shows a power law -pz

1. In the inset, we present the
box-integrated positron spectra of kinetic energy (gray) and momenta in
different directions, as indicated in the legend. All spectra in the main plot and
in the inset are time averaged between t = 3.34L/c and 3.56L/c and
normalized to the total number of positrons in the box.

6 The electron spectrum shows the opposite asymmetry: electrons with pz > 0
mostly reside in plasmoids, and their spectrum extends to lower momenta than
for free electrons with pz < 0.
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In summary, the momentum spectra in Figure 4 show that
most of the highest-energy positrons are located in the
reconnection upstream, and their momentum is dominated by
the z component, which is aligned with the large-scale motional
electric field ˆ ˆh= =E E z B zrec rec rec 0 carried by the upstream
converging flows. If Erec is the primary agent of acceleration,
we expect a linear relation between the gain in Lorentz factor
(Δγ) and the displacement along the z-axis (Δz), of the form

( )g h swD
D

» =
z

eE

mc c
. 2

prec
2

rec

In Figure 5, we show the relation between Δγ and Δz for a
sample of ∼2× 106 positrons selected at the end of the
simulations (t= 3.48L/c), for 3D (left) and 2D (right). Each
particle is traced back to the first time its Lorentz factor
exceeded γ= 3, and its overall Δγ and Δz are computed.7 The
plot only shows the quadrant with Δγ> 0 and Δz> 0, which
includes most of the positrons and displays the strongest
difference between 2D and 3D.

For Δγ 100, 2D and 3D results are similar. There appears a
trend that particles gaining more energy also display a larger z
displacement, but the spread is quite large (Δγ may vary by two
orders of magnitude for the same Δz). The similarity between 2D
and 3D for Δγ 100 suggests that most of these particles are
accelerated while trapped in plasmoids, as found in 2D simulations
(Petropoulou & Sironi 2018; Hakobyan et al. 2021).

The most striking difference between 2D and 3D results is in
the behavior of particles experiencing large energy gains,
Δγ 100. In this range (Δγ 100 and Δz> 0.4 L), positrons
from the 3D simulation follow a linear relation Δγ∝Δz,
indicating that they are all accelerated by the same electric
field. Such a branch is absent in the corresponding 2D
simulation. For comparison, in the left panel of Figure 5 we
plot with a dashed white line the expectation of Equation (2)
for the measured ηrec= 0.075. The agreement of the high-
energy branch in the 3D histogram with Equation (2) confirms

that particles experiencing the largest energy gains are
accelerated in the upstream by the motional electric field Erec.
We also point out the excess of positrons lying along the

extrapolation of the dashed white line to low Δγ, in the left
panel at 1Δγ 5. These positrons are currently being
injected into the acceleration process by the reconnection
electric field, so they still obey Equation (2).

3.2. Particle Orbits

To investigate the acceleration mechanism of the highest-
energy particles, we have studied the trajectory of a large
number of high-energy (γ> 200) positrons. We present in
Figure 6 two representative orbits.8 Their Δγ−Δz tracks are
shown in the left panel of Figure 5 by the two colored lines,
demonstrating that for Δγ 10 they follow a linear relation
akin to Equation (2).
Figure 6 shows the particle orbits projected on the x-y (left)

and y-z (middle) planes, as well as the particle Lorentz factor as
a function of lifetimeΔt (right panel), measured since a particle
first crosses the threshold γ= 3. The acceleration rate due to
the electric field ˆ ˆh= =E E z B zrec rec rec 0 in the upstream flow
can be written as

( )g g
b b h sw=

D
D

» »
t

eE

mc
, 3z z p

rec
rec

where βz is some time-averaged z velocity in units of the speed
of light. The highest acceleration rate will be achieved when
βz; 1, leading to a maximal rate

( )g h sw= , 4pmax rec

indicated by the dashed red line in Figure 6 (right). We refer to
this as gmax, since it is the maximum acceleration rate that can
be provided by the large-scale electric field. Even stronger
electric fields may transiently appear within the reconnection
region, which explains why some particles can temporarily
experience an energization rate even larger than this value (e.g.,
positron B in the range Δt; 0.4–0.8L/c).

Figure 5. 2D histograms of the gain in positron Lorentz factor (Δγ) and displacement along the z-axis (Δz), in 3D (left) and 2D (right). The positrons are selected at
the end of the simulations (ct/L = 3.48) and traced back to the first time they are saved. For the 2D case, the particle displacement along the z-axis is calculated by
time integration of the z velocity. The relation expected from Equation (2) is marked with a dashed white line in the left panel. The red and yellow lines in the left
panel represent the tracks in the Δγ-Δz plane of the two high-energy positrons shown in Figure 6; in this case, the differences Δγ and Δz are computed at each time
with respect to the initial time when the particle Lorentz factor first exceeded γ = 3. For electrons, we find a similar result when considering −Δz instead ofΔz, due to
their opposite charge.

7 In 3D, Δz is directly recorded. In 2D, it is obtained by time integration of
the z velocity.

8 Movies showing the orbits of positron A and B can be found online at https://
youtu.be/pjpYzw2VKe0 and https://youtu.be/kOycphI0WUw, respectively.

5

The Astrophysical Journal, 922:261 (11pp), 2021 December 1 Zhang, Sironi, & Giannios

https://youtu.be/pjpYzw2VKe0
https://youtu.be/pjpYzw2VKe0
https://youtu.be/kOycphI0WUw


We find that both positron A and positron B are injected into the
acceleration process in the vicinity of an X-point in the midplane
of the layer (y= 0). However, at later times their histories diverge.
Positron A is energized at nearly the maximal rate gmax for most of
its life (compare blue and dashed red lines in the right panel of
Figure 6). Its orbit in the y-z plane displays a series of quasi-
periodic deflections between the two sides of the reconnection
layer, as expected for Speiser motion (Speiser 1965). However,
while Speiser orbits in reconnection with a weak guide field are
expected to get focused toward the midplane y= 0 (e.g., Cerutti
et al. 2013), the trajectory of positron A displays a y-extent
increasing over time. This is caused by interactions with plasmoids,
whose effect is not taken into account in standard Speiser orbits. In
fact, at the time corresponding to the white circle in Figure 6(a-2),
the positron has just been deflected toward the upstream by the
interaction with the plasmoid located at z∼ 0.45L. The positron
Lorentz factor at this time is γ∼ 200, and its Larmor radius is
rL= γmc2/eB0; 0.08L, which is larger than the plasmoid
transverse width. It follows that the positron will not be captured
by the plasmoid, but rather it is deflected away from the midplane,
which allows positron A to keep gaining energy at nearly the
maximal rate, while executing a Speiser-like motion.

The energization mechanism of positron A can be alter-
natively described as drift acceleration, with the grad-B
velocity associated with the field discontinuity across the layer.
As remarked above, only those particles whose Larmor radius
becomes comparable to or larger than the largest plasmoids can
sample the magnetic discontinuity across the layer and so
participate in grad-B-drift acceleration. We remark that the
occurrence of drift acceleration in large-scale field gradients
has also been reported in the trajectories of test particles
evolved in MHD simulations of turbulent reconnection (e.g.,
Kowal et al. 2011, 2012; Beresnyak & Li 2016; del Valle et al.
2016; Medina-Torrejón et al. 2021; see in particular the sketch
in Figure 23 of Lazarian et al. 2012).

The orbit of particle B is different, and more typical of the
majority of high-energy positrons. It is trapped in a plasmoid in
the interval 0.1L/cΔt 0.4L/c. During this stage, it moves
back and forth in both x- and z-directions, while its Lorentz
factor stays roughly constant at γ∼ 20. The positron succeeds
in escaping the plasmoid at Δt∼ 0.5L/c. After that, it
experiences fast acceleration while being deflected in a
Speiser-like fashion between the two converting upstream
flows, similarly to positron A. By studying a sample of γ∼ 30

particles temporarily trapped in a given plasmoid, we have
found that the ones that manage to escape have typically larger
z velocities and are preferentially located in the plasmoid
outskirts. This is expected, since such particles, by moving
along z, will be able to successfully travel outside the plasmoid
and thus experience efficient acceleration by the upstream field.
Clearly, this cannot happen in 2D, where the z-direction is
invariant (i.e., plasmoids are infinitely long in z).
Motivated by the trajectory of particle B, we now employ a

statistical approach to further investigate the properties of
accelerated particles, and in particular ascertain at which energy
they are most likely to escape from plasmoids and start
experiencing fast acceleration by the upstream large-scale fields.
This is shown in Figure 7. We first separate the positrons in six
groups, based on the largest Lorentz factor they attain in their
lifetime (we shall call it γend, given that it is typically attained at the
end of the particle life; we only consider γend> 30). Each group
corresponds to a different color in Figure 7. Each of the colored
curves is obtained as follows. For each particle in a given
γend-group, its history is followed since its birth, dividing it
depending on the instantaneous Lorentz factor (for each of the six
γend-groups, we employ 10 γ-bins, logarithmically spaced between
γ= 3 and γ= 300). Taking all the times when a particle lies in a
given γ-bin, we compute the median mixing factor , median
acceleration rate g , and fractional energyΔγup/Δγtot gained while
in the upstream (still, while crossing the selected γ-bin). The
colored lines are then computed by taking the median among
particles belonging to the same γend-group.
Figure 7 (left panel) shows that at low energies (γ 20)most of

the particles reside in the downstream region, regardless of their
γend. In fact, the mixing fraction is  0.8. As particles gain
energy, the median  of the two groups with the largest γend
(green and blue lines in Figure 7) starts to drop, down to  0.1
for the particles reaching the highest energies. As also demon-
strated above, particles of high energy (γ 100) are preferentially
located in the upstream. The transition from being trapped to
breaking free appears at γ∼ 3σ∼ 30.
The middle panel of Figure 7 presents the acceleration rate,

distinguishing between particles in the downstream (solid lines)
and those in the upstream (dashed lines). The acceleration
rate should be compared with the maximum rate gmax in
Equation (4), which is indicated in the plot by the horizontal
dotted line. We find that, regardless of γend, downstream
particles gain energy at a relatively slow rate, g w 0.1 p.

Figure 6. Trajectories of two representative positrons. For each particle, its trajectory in the x-y plane is shown in the left panel, and in the y-z plane in the middle
panel. The color of the line represents the particle energy (from red to white as the energy increases). A white filled circle shows the position at a specific time:
t = 2.28L/c for particle A, corresponding to a time Δt = 0.87L/c in the particle life; and t = 2.80L/c for particle B, corresponding to Δt = 1.03L/c. The background
color shows the plasma density at that same time, in the x-y and y-z slices where the particle is located. In the right panel, we show the particle Lorentz factor as a
function of its lifetime Δt since it first crossed a threshold γ = 3. The maximum expected acceleration rate corresponding to Equation (4) is shown with a red
dashed line.
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Particles residing in the upstream with Lorentz factors γ 30
—the same threshold as derived from  in the left panel—
gain energy at a faster rate, which asymptotes to g w~ 0.2 p for
the highest-energy upstream particles.9 This rate approaches
; g0.8 max, which implies that the highest-energy particles
move with an average z velocity βz; 0.8 (see Equation (3)).
This is in agreement with the momentum spectra presented in
Section 3.1, i.e., the highest-energy particles preferentially
move in the z-direction.

The right panel of Figure 7 shows the fraction Δγup/Δγtot of
energy acquired in the upstream, while traversing a given γ-
bin. Regardless of the γend-group, we find that this is an
increasing function of γ, reaching ∼80% for the highest-energy
particles. Again, the transition to the stage when acceleration is
dominated by the upstream motional field occurs at γ 30, the
same threshold already derived from the left and middle panels.
Hence, we conclude that most particles ending up with high
energies escape from plasmoids at γ∼ 3σ∼ 30, at which point
their energization starts to be dominated by the large-scale
upstream field.

3.3. Dependence on the Domain Size

In this subsection, we investigate the dependence of the
properties of high-energy “free” particles on the size of the
computational domain, in order to extrapolate our conclusions
to larger (fluid) scales. Free particles are defined such that they
reside in the upstream, with mixing parameter < 0.3. We
also require that they have γ> 10, to exclude the cold upstream
particles that have yet to reach the reconnection region. Our
results are presented in Figure 8 and Table 1.

In the left panel, we show the cutoff Lorentz factor γcut of
free particles, as a function of time (horizontal axis) and box
size (different colors, as indicated in the legend). The cutoff
Lorentz factor is obtained by calculating the location of the
peak of ( )g g- dN d1 3

free . As described in Petropoulou &
Sironi (2018), this is generally a good proxy for the location of
the exponential cutoff of the spectrum. We find that γcut∝ Lx.
The proportionality constant is such that the Larmor radius of
particles with Lorentz factor γcut is rL(γcut)∼ 0.2 Lx, regardless

of Lx. This is expected, since particles accelerated near the
maximal rate in Equation (4) over the typical advection time
∼Lx/c will obtain a Larmor radius rL∼ ηrecLx∼ 0.1Lx. This
can be phrased as a “Hillas criterion” for relativistic magnetic
reconnection.
We also calculate the energy efficiency Efree/Err (filled

circles), where Efree and Err are, respectively, the energy
content of free particles and that of particles in the reconnection
region. The number fraction Nfree/Nrr (open circles) is obtained
in a similar way. We examine their dependence on the x length
of the box in the middle panel (at fixed aspect ratio Lx/Lz, blue
for Lx/Lz= 1 and red for Lx/Lz= 2) and on the z length in the
right panel, for fixed Lx∼ 1600c/ωp (gray points). As shown
in Figure 8(b), Efree/Err is nearly independent of Lx. This
demonstrates that, regardless of the box size, free particles
carry a constant fraction (∼20%) of the post-reconnection
particle energy. Given that γcut∝ Lx and that the spectrum of
free particles is hard, g gµ -dN dfree

1.5, this implies that their
number fraction needs to decrease with increasing box size, as
indeed confirmed by Figure 8(b) (open circles).
Figure 8(c) shows that convergent 3D results are obtained

only if the box is sufficiently extended in the z-direction. For
our reference case with Lx∼ 1600c/ωp, convergent 3D results
are obtained for Lz 400 c/ωp∼ Lx/4. This may be due to the
requirement that the z extent of the largest plasmoids, ∼0.1Lx
(assuming spherical plasmoids), be smaller than the box length
along z, i.e., z invariance should be broken even for the largest
plasmoids. Figure 8(c) also shows that the 2D limit is
approached for Lz 20 c/ωp, such that even small plasmoids
do not fit within the vertical extent of the box.

4. Summary and Discussion

In this work, we performed large-scale 3D PIC simulations
of relativistic reconnection in a σ= 10 electron–positron
plasma. We found that a fraction of particles with γ 3σ can
“break free” from plasmoids by moving along z and then
experience the large-scale motional electric field in the
upstream region. This process cannot be captured by 2D
simulations, which are invariant along the z-direction. The free
particles preferentially move along z and are accelerated
linearly in time (γ∝ t) while undergoing Speiser-like deflec-
tions by the converging upstream flows, as already hypothe-
sized by Giannios (2010). Their spectrum is hard and can be
modeled as a power law g gµ -dN dfree

1.5—in Appendix B,

Figure 7. Statistical assessment of the properties of accelerated positrons. We first separate the positrons into six groups, based on the largest Lorentz factor γend they
attain in their lifetime (see legend in the left panel). For each group, we then compute (as described in the text) the following quantities, as a function of the particle
Lorentz factor γ: the median mixing factor (left); the median acceleration rate g (middle), distinguishing between particles in the downstream (solid) and in the
upstream (dashed); and the fractional energy Δγup/Δγtot gained while in the upstream (right). In the middle panel we also show, as a reference, the maximum
acceleration rate quantified by Equation (3) (horizontal dotted line). The corresponding plot for electrons is nearly identical.

9 In the highest γ-bin, all the curves bend toward slower acceleration rates.
This can be simply understood as a selection bias: for a given γend-group,
particles in the highest γ-bin are biased toward having slower acceleration
rates; otherwise, they would move up in energy and be classified in the next
γend-group.
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we analytically justify the value of the power-law slope. The
free particles account for ∼20% of the dissipated magnetic
energy, independently of domain size.

The acceleration rate of the particles, in this mechanism, is
closely connected to the reconnection speed. Its accurate descrip-
tion, therefore, relies on the reconnection system having reached a
statistical steady state. To this end, our adopted boundary conditions
are of crucial importance. By adopting continuous injection of
plasma (and magnetic flux) in the far upstream and outflow
boundaries in the reconnection exhaust direction, the system can be
followed for many Alfvén crossing times after it has reached a
statistical steady state. We find that the most energetic particles take
a few Alfvén crossing times to reach their maximum energy. In
contrast, the more commonly adopted triple-periodic boundaries
can only study reconnection transiently and may not be able to
capture this mechanism accurately. In addition, periodic boundaries
do not allow plasmoids to escape, so the largest plasmoids can
grow up to a size comparable to the system length. This would
artificially enhance the rate at which high-energy free particles get
captured back by plasmoids.

We find that the particle acceleration rate is

( )g
h

b~
eB

mc
, 5z

rec

where B is the magnetic field in the upstream and ηrecβz∼ 0.06
as determined by our simulations. As far as we can infer from
our simulations, the maximum energy achievable by this
process is determined by either radiative losses or the size of
the reconnection region. If synchrotron cooling is the dominant
energy loss, then the particles are accelerated until the energy
gain rate gmc2 is balanced by the synchrotron loss rate
(4/9)e4B2γ2/m2c3, resulting in a maximum gmax:

( )g
b h

=
m c

e B

9

4
. 6z

max
rec

2 4

3

The corresponding synchrotron emission energy is =Esyn

g b h=Be mc 160 zmax
2

rec MeV∼ 10MeV, for electrons, i.e.,
about one order of magnitude below the well-known burn-off
limit (de Jager & Harding 1992). We remark that in this
argument we have assumed that the accelerated particles have
large pitch angles (i.e., the angle between the particle velocity
and the magnetic field), as indeed observed in our simulations.

If this acceleration mechanism were to operate also in the limit
of strong guide fields, the accelerated particles would likely
have small pitch angles, which would comparatively reduce
their synchrotron losses. A strong guide field would also help
enforce invariance along the z-direction (i.e., plasmoids are
likely to be more elongated in z), which may inhibit particle
escape from plasmoids and hence the efficiency of our
proposed mechanism. We defer to future work the study of
this acceleration mechanism in the strong guide field regime.
If radiative losses are negligible, the maximum energy is only

limited by the size of the reconnecting system. For a given length
of the reconnection layer Lz in the z-direction, the maximum
Lorentz factor a particle can reach can be estimated as

( )g h= L e B mc . 7max z rec
2

The particle motion along the x-direction of reconnection
outflows is unlikely to constrain the maximum energy, since we
have shown that the accelerated particles mostly move along
the z-direction, so their escape time along x is likely longer than
along z.
Although in this work we have only focused on electron–

positron plasmas, our results may still be applicable to
electron–proton cases, since high-σ reconnection is virtually
identical in pair plasmas and electron–proton plasmas (Guo
et al. 2016; Ball et al. 2018; Werner et al. 2018; Petropoulou
et al. 2019). Protons are much less affected by cooling as
compared to leptons and may escape from plasmoids with
higher efficiency. Therefore, given that we have neglected
cooling losses, our results may be most applicable to protons in
astrophysical systems where radiative lepton losses are severe.
Nevertheless, in less extreme environments (e.g., the emission
zone of a blazar jet), even leptons should be able to escape
small plasmoids and participate in this acceleration process.
Therefore, one may expect that both leptonic and hadronic
signatures will be affected by the acceleration mechanism we
have discussed here.
The sources and acceleration mechanism of UHECRs with

energies between ∼1018 and ∼1020 eV are still under debate.
Relativistic jets launched by GRBs (Milgrom & Usov 1995;
Waxman 1995) and AGNs (Halzen & Hooper 2002) have been
proposed as sources of UHECRs. Magnetic reconnection taking
place in the magnetically dominated plasma of these jets may be a
promising accelerator of UHECRs (Giannios 2010). Since our

Figure 8. Dependence on the box size. The unit of Lx and Lz is the plasma skin depth (c/ωp). (a) The energy cutoff γcut for free particles as a function of time for boxes
with Lx = 2 Lz (see legend). (b) Number and energy efficiency for boxes with different Lx, at fixed aspect ratio Lx/Lz = 1 (blue) and Lx/Lz = 2 (red). Open circles
show the number efficiency, defined as Nfree/Nrr, where Nfree and Nrr are, respectively, the number of free particles and the number of particles in the reconnection
region; filled circles show the energy efficiency Efree/Err. (c) Number (open gray circles) and energy (filled gray circles) efficiency for boxes with different Lz, at fixed
Lx ∼ 1600c/ωp. Blue and red points are the same as in panel (b).
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setup has a weak guide field (Bg= 0.1B0), we envision that our
results may be more directly applicable to the case that magnetic
reconnection is triggered in a striped jet (e.g., Giannios &
Uzdensky 2019). Recent studies of kinks in jets, on the other
hand, favor the presence of stronger guide fields in the
reconnection layer (e.g., Alves et al. 2018; Davelaar et al. 2020;
Bodo et al. 2021), which may change the efficiency of our
proposed acceleration mechanism.

The rest-frame magnetic field strength can be estimated by
the Poynting luminosity of the jet LP, the bulk Lorentz factor
Γ, and the distance R from the central engine (see, e.g.,
Giannios 2010):

L
( )

G
B

c R
. 8P

1 2

1 2

Combining with Equation (7), we can estimate the maximum
energy that a proton can be accelerated to:

L ( )h= - -E c R Le, 9Pmax rec
1 2 1 2 1

where L is the length scale of the reconnection region, which
may be properly assessed with global MHD simulations (e.g.,
Medina-Torrejón et al. 2021). We also introduce a factor of Γ
when we boost from the jet frame to the observer frame.

For long-duration GRBs, the (isotropic equivalent) energy
they release in gamma-rays is around 1053 erg in a duration of
about 10 s. This gives a lower limit for their Poynting
luminosity of L ~ -10 erg sP

52 1, since the energy conversion
efficiency to gamma-rays needs to be below unity. The size of
the reconnection region can be estimated as L∼ R/Γ, and Γ
usually varies from 100 to 1000 in GRB jets. Therefore, the
maximum energy that a particle can be accelerated to is

Lh» ´ G-
-E 2 10 eVmax

20
rec, 1 P, 52

1 2
2

1 , where ηrec,−1= ηrec/0.1,
L L= -10 erg sPP, 52

52 1, and Γ2= Γ/102.
A powerful AGN jet can reach a luminosity of 1048 erg s−1.

They usually have bulk Lorentz factors of Γ∼ 3–30. Using these
values, we estimate that protons accelerated by reconnection in
AGN jets can reach energies Lh~ ´ G-

-E 6 10 eVmax
19

rec, 1 P, 48
1 2

0.5
1 ,

where L L= -10 erg sPP, 48
48 1 and G = G 100.5 .

Both jets are then capable of accelerating protons (or heavier
nuclei in AGN jets) to 1018 eV and even to the highest energies
that have been observed so far, 1020 eV. Though we do not
consider constraints imposed by cooling losses (see, e.g.,
Giannios 2010, for further discussion), our analysis demon-
strates that relativistic reconnection is, in principle, a promising
way to produce UHECRs.

H.Z. and D.G. acknowledge support from the NASA ATP
NNX17AG21G, the NSF AST-1910451, and the NSF AST-
1816136 grants. L.S. acknowledges support from the Sloan
Fellowship, the Cottrell Scholars Award, NASA ATP
NNX17AG21G, and NSF PHY-1903412. The simulations
have been performed at Columbia (Habanero and Terremoto),
with NERSC (Cori) and NASA (Pleiades) resources.

Appendix A
2D Particle Spectra

In Figure 4, we have shown the energy and momentum
spectra extracted from the 3D simulation. For comparison, in
Figure 9 we show the z-momentum spectrum from the
corresponding 2D run. In agreement with earlier 2D studies,
the particle spectrum is nonthermal. Unlike the 3D case, where

the cutoff in the pz+ spectrum is much larger than in the pz−
spectrum, here the two are roughly comparable, though
particles moving along+ z extend to slightly larger energies
and dominate in number at high energies. In addition, as
discussed in the main text, at γ> 2 the spectra from the whole
box are coincident with corresponding spectra extracted from
the reconnection region alone.
In the inset, we compare energy spectra between 2D and 3D

simulations. The 3D spectrum has a higher cutoff than the 2D
one, and it is dominated at high energies by particles outside
the reconnection region. This indicates once again that
acceleration outside of plasmoids plays an important role for
the highest-energy particles.

Appendix B
The Power-law Slope of Free Particles

In the main body of the paper, we have demonstrated that the
spectrum of free particles can be modeled as a power law

g g= µ -f dN dfree
1.5 followed by a cutoff, which scales

linearly with the system size. In this appendix, we aim at
providing a theoretical framework to interpret the value of the
power-law slope.10 In steady state, the distribution of free
particles will follow

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )
g

g
d g s

¶
¶

+ = -
t

f
f

t
Q 3 , B1

acc esc
0

where both the acceleration time tacc and the escape time tesc
generally depend on the particle Lorentz factor. In the equation
above, Q0 quantifies the particle injection rate, which we have
assumed to happen at a fixed energy of γ= 3σ, in agreement
with the results obtained in the main body of the paper.

Figure 9. The main panel is as in Figure 4, but for a 2D simulation. We display
the positron time-averaged (between t = 3.34L/c and 3.56L/c) spectra of the
momentum along + z (blue lines) and −z (green lines). Solid lines refer to the
whole box, while dashed lines refer to the particles in the downstream. In the
inset, we show the particle energy spectrum ( )g g- dN d1 from the whole
simulation box in the 2D simulation (red line) and in the 3D simulation (blue),
as well as the spectrum of free particles from the 3D simulation (green). The
latter can be fit as a power law ( )g gµ - -dN d 1 1.5, as indicated by the dotted
black line in the inset.

10 We remark that, as shown in our paper, the acceleration mechanism of free
particles is distinct from the one of particles accelerated in the reconnection
layer, whose spectral shape has been discussed by, e.g., Guo et al. (2014) and
Uzdensky (2020).
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For free particles, the acceleration time can be calculated
as ( )g g g h b swº =t z pacc rec , where our results yield
ηrecβz; 0.06. Free particles are accelerated while residing in
the upstream. When they get captured and trapped by plasmoids,
they effectively escape the accelerator, so the escape time tesc
from the acceleration region is, for free particles, the time spent
in the upstream before getting trapped.11

In order to compute the escape time of free particles, we
assume a steady-state scenario: the rate at which free particles
are trapped in plasmoids balances the rate at which trapped
particles advect out of the domain, so

( )g
g

=t t
dN d

dN d
. B2esc adv

free

trap

Figure 10 shows, at different times, the ratio of the number of
free particles to the number of trapped particles. The trapped
particles at a given time are defined as the ones that are
currently trapped but were free at some point in the previous
∼0.25Lx/c (our results are not appreciably sensitive to this
choice). The plot shows that the ratio is in steady state, and in
the range 30 γ 300,12 it can be fit as

( )g
g

g
dN d

dN d
0.005 . B3free

trap

We have computed the advection time tadv considering the
lifetime of particles that remain always trapped in plasmoids.
We find that tadv∼ 0.4Lx/c independently of the Lorentz factor.
In retrospect, this is not surprising. The mass-weighted bulk
motions of relativistic reconnection are trans-relativistic, with
typical outflow velocities of ∼0.6c (Sironi & Beloborodov
2020). On average, a trapped particle travels a distance
∼0.25Lx before advecting out of the system, which indeed
leads to an advection time tadv∼ 0.4Lx/c.

It follows that the ratio of acceleration time to escape time
is energy independent (for 30 γ 300) and equal to
tacc/tesc; 1.6, where we have used that Lx/c/ωp∼ 1600 in
our reference simulation. This allows us to compute the
solution of Equation (B1). As discussed by, e.g., Kirk et al.
(1998), the solution of Equation (B1) in the case that both the
acceleration time and the escape time scale linearly with γ is a
power law

( )
g

g= µ -f
dN

d
, B4t tfree acc esc

which for our case yields g gµ -dN dfree
1.6, in good agreement

with the spectrum measured directly from our simulation.
Based on this model for the acceleration of free particles, one

can address the question of what is the power-law slope expected
in the asymptotic (and astrophysically relevant) regime Lx?
c/ωp. Let us call g= -s d N dlog logfree the power-law slope
of free particles in the asymptotic limit Lx? c/ωp. Given that
s= tacc/tesc should be independent of the box size Lx, this
requires that tesc in Equation (B2) be independent of Lx. In turn,
given that tadv∝ Lx/c, the ratio in Equation (B3) should scale

as∝ 1/Lx. In other words, for g g= -dN d C s
free free and

g g= - -dN d C s
trap trap

1, we require Cfree/Ctrap∝ 1/Lx.
Let us now consider the specific case of s= 1 and assume

that the spectrum of free particles extends from g s~ 3min,free
up to γcut∝ Lx, while the spectrum of trapped particles extends
from g s~min,free up to the same γcut∝ Lx. The ratio of number
of free particles Nfree to number of trapped particles Ntrap

(which we called Nrr for “reconnection region” in the main
paper) is, in the limit g g gcut min,free min,trap,

⎜ ⎟
⎛
⎝

⎞
⎠

( )g
g

g
=

N

N

C

C
log , B5free

trap

free

trap
min,trap

cut

min,free

which, aside from logarithmic corrections, scales as∝Cfree/Ctrap∝
1/Lx. On the other hand, the energy fraction can be written as

( )
( )g

g g
=

E

E

C

C log
, B6free

trap

free

trap

cut

cut min,trap

which, aside from logarithmic corrections, scales as
( )gµ µC C constfree trap cut , in agreement with our results in

Figure 8 (there, we called Err the energy content of trapped
particles). Based on our model of acceleration, and requiring
that the energy fraction of free particles stays constant with
box size, we then expect that the spectrum of free particles in
the limit Lx? c/ωp should reach an asymptotic power-law
slope s; 1.
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