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Abstract

Selected configuration interaction (sCI) methods exploit the sparsity of the full con-
figuration interaction (FCI) wave function, yielding significant computational savings
and wave function compression without sacrificing the accuracy. Despite recent ad-
vances in sCI methods, the selection of important determinants remains an open prob-
lem. We explore the possibility of utilizing reinforcement learning approaches to solve
the sCI problem. By mapping the configuration interaction problem onto a sequen-
tial decision-making process, the agent learns on-the-fly which determinants to include
and which to ignore, yielding a compressed wave function at near-FCI accuracy. This
method, which we call reinforcement learned configuration interaction (RLCI), adds an-
other weapon to the sCI arsenal and highlights how reinforcement learning approaches

can potentially help solve challenging problems in electronic structure theory.

1 Introduction

Methods that allow for the efficient simulation of strongly correlated molecules and materials
are critical to energy, quantum information, and materials applications. Strong correlation

arises when the system cannot be qualitatively described by a single Slater determinant,



such as in bond dissociation and in the description of many transition metal complexes.
Because of the breakdown of the single determinant approximation, methods like Kohn-Sham
density functional theory or perturbative techniques such as Mgller-Plesset perturbation
theory cannot be used. Instead, the reference wave function must be modified to include
multiple determinants from the outset.

In principle, the full configuration interaction (FCI) method® solves the electronic prob-
lem exactly for a given basis, but it scales exponentially, rendering FCI impractical for all
but the smallest of problems. However, it is well-known that the solution to the FCI wave
function is generally sparse. That is, many determinants do not significantly contribute to
the overall wave function; these determinants are sometimes referred to as computational
“deadwood.”? From a practical standpoint, this means that significant compression of the
wave function is possible while retaining near-FCI accuracy. Approaches for wave function
compression based on the singular value decomposition® and compressive sensing,* for ex-
ample, have been explored. How to best exploit this sparsity is an open question, % but it
is a question with important ramifications.

Exploring wave function compression is not just important for classical electronic struc-
ture calculations, where the sparsity may be exploited for significant computational savings.
As pointed out by Stair, et al.,? highly compressed wave functions are desirable for chemical
applications of quantum computing on near-term devices. The reason is that many quantum
algorithms, such as variational quantum eigensolvers, rely on wave function parameteriza-
tion. Because the goal of these quantum algorithms is to yield an advantage over classical
simulation, one way to characterize the advantage of these methods is to compare against the
classical efficiency, in order determine if there is indeed a quantum advantage over classical
approaches.

In this light, selected configuration interaction (sCI) methods have come to the fore,
driven by several recent important methodological advances. The goal of selected CI methods

is to find sparse approximate solutions to the full configuration interaction (FCI) problem,



which is generally done in an iterative manner where the FCI parameter space is efficiently
searched, ranked, and top contributors included in the process of obtaining a sparse solu-
tion to the CI problem. Most selected CI methods begin by selecting an initial variational
space (such as a Hartree-Fock, HF, reference or complete active space self-consistent field,
CASSCEF, reference) and obtaining the variational ground state wave function within this
space. After the initial wave function is obtained, search algorithms explore the space outside
the current set of determinants to select important additional determinants to be included
in the variational space. The estimated significance of a determinant may be based off per-
turbative or energetic heuristic considerations. Furthermore, the space may be optionally
pruned to eliminate determinants deemed no longer significant. After the searching and
pruning, the ground state of the Hamiltonian in this new variational space is obtained. The
process is then repeated until some convergence criteria is reached.

Although all flavors of sCI follow this rough algorithm, they differ on the specifics of how
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to achieve the goal: for example, there are deterministic, stochastic, and semi-

2831 variations of sCI methods. The crucial ingredient is the searching/ranking

stochastic
of determinants and the pruning of determinants no longer deemed significant. Although
several heuristics have been developed to achieve these goals, one open question is whether
or not these heuristics can be learned and improved upon via a machine learning (ML)
approach.

Machine learning methods have had a significant impact across many domains, not least
in chemistry.3?33 New methods for the analysis and simulation of molecules and materials
have emerged based on developments in machine learning. For example, machine learning has
been used to design new materials,3* to predict protein structure,® ground®® and excited?”
state molecular properties, and even aid in the interpretation of complex molecular dynamics
trajectories.3®3 For the selected CI problem, machine learning has been used to predict

important configurations using supervised learning on data generated on-the-fly. %4 This

enables more accurate potential energy surfaces with fewer iterations as compared to a



stochastic sCI approach. Most applications of ML for quantum chemistry are in either the
domain of supervised or unsupervised learning and require large amounts of data. The
quality of the application depends on the amount and type of data, and even then the
training may not generalize to previously unseen scenarios, making (un-)supervised learning
difficult to apply to broad problem classes in general.

However, a related alternative—reinforcement learning—has been relatively unexplored
for quantum chemical application. Whereas unsupervised learning seeks to find underlying
structure in unlabeled data, and supervised learning uses labeled data to train a parame-
terized model, reinforcement learning is designed to learn from experiences or mistakes. It
uses feedback observed from an appropriately defined environment to improve strategies to
achieve some objective by taking an optimal sequence of actions. By exploring the environ-
ment that provides rewards (or penalties), the agent gradually learns which actions to take
and which to avoid. In contrast to supervised learning, no answer or action is directly given
to the agent, and there is no need to label data or worry about preparing training data, as
all data is incorporated as it is generated in the form of a reward signal. Because data can
be generated on-the-fly and is used as-is (e.g., there is no need to label data or split data
into training, test, and validation sets), reinforcement learning is an attractive approach for
the selected CI problem.

Here we propose an alternative approach to the selected configuration interaction problem
based on reinforcement learning, where the sCI problem is mapped to a sequential decision-
making process that implicitly learns the optimal actions to take to return an accurate,
compressed approximation to the FCI wave function. The optimal ranking of configura-
tions can be learned on-the-fly due to observing the impact of including or removing (groups
of) determinants on the ground state energy. After detailing the mathematical aspects of
the reinforcement learning configuration interaction (RLCI) method, we explore the perfor-
mance of RLCI methods against several prototypical cases, as well as some larger, strongly

correlated hydrogen ring systems.



2 Methods

In configuration interaction methods, the goal is to obtain the ground state energy F of a
system by solving the eigenvalue problem corresponding to the molecular electronic Hamil-
tonian [:[, i.e.

H[Wor) = E|Ver) (1)

where the CI wave function |W¢p) is represented as a linear expansion of excited Slater

determinants out of a reference state |R). That is to say,

Nref
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The coefficients C' indicate the contribution of the determinant to the final wave function
expansion and S, D, ..., indicate the excitation level out of the reference state. The reference
|R) may be a single Slater determinant, such as a Hartree-Fock state, or it may be a CASSCF
reference. In contrast to a linear expansion out of the reference that is truncated at some
excitation level (e.g. configuration interaction with singles and doubles, CISD), the goal of
sCI methods is to minimize the expectation value of the molecular electronic Hamiltonian H
spanned by a subset of all possible determinants, without regard to an a prior: truncation.

That is, we seek an optimal solution to

(Ue| H |y
min _—
ITcrllo<k <\IJCI|\IJCI>

(3)

where ||[Wcpllp is the cardinality (the number of non-zero elements) of the CI vector. The
goal of selected CI methods is to find the solution to Eq. (3) where k is the maximum
number of determinants to be considered in the sCI problem. The value of k is a user-
defined parameter, and will depend on the particular system and the desired accuracy. If &
is equal to the dimension of all possible determinants for a problem, the solution to Eq. (3) is

equivalent to the FCI problem. Ultimately, this problem can be viewed as a special instance



of a combinatorial optimization problem, akin to the knapsack problem or the traveling
salesman problem. Given a subset of possible determinants to include, what is the optimal
combination of determinants that minimizes the expected value of the Hamiltonian?

In reinforcement learning, an agent is trained to take a series of actions in order to
maximize a reward.“? Herein we follow much of the notation and framework laid out for the
k-sparse eigenproblem in Ref 43 and apply it to the sCI case. The reinforcement learning
process proceeds in a series of episodes, where the agent explores the environment and obtains
rewards or penalties for its actions. In order to map the sCI procedure onto a reinforcement
learning framework, it is necessary to define the state, the environment, actions, and rewards.
The state is the current set of selected determinants to include in the approximate calculation
of the sCI problem. The environment is the space of all possible Slater determinants. During
each step of an episode, the local reward r can be determined by the change in the obtained

eigenvalue \,.,, from the previous step Agq, that is

r= )\old - )\new~ (4)

Herein we will utilize a Q-learning approach,*?#* wherein the goal is to learn the optimal
state-action value function Q(s,a). Although several different RL approaches could be used,
Q-learning is advantageous for its simplicity, robustness in planning, and ability to learn
the optimal policy while following a different exploration policy.*? In Q-learning, the learned
function Q(s, a) returns the value of taking a particular action a out of a state s. For a given
set s of determinants that make up the current sCI space, possible actions a are removing
the p-th determinant from the current set and replacing it with a SD ¢ that is outside the

current sCI space, i.e.,

a=(p,q), forpcsandq¢s (5)

So when the optimal (s, a) is obtained, from any state s it is possible to obtain the optimal



set of determinants by following the policy 7(s) for a given state, i.e.,

7(s) = argmax Q(s, a) (6)

a

Although the ultimate goal is to learn the optimal policy in Eq. (6) via learning the
optimal state-action value function Q(s, a), the behavioral policy—that is to say the actions
taken during training—meed not follow the policy that is being learned in Eq. (6). Indeed,
this is undesirable in that the agent will not explore actions which may appear sub-optimal
yet may ultimately lead to the global optimal Q)(s,a): this is the exploration-exploitation
trade off. Q-learning, because it is off-policy (meaning it need not follow Eq. (6) during
training) has the flexibility to follow physics-inspired and potentially more efficient search
policies, all the while ensuring it learns the optimal Q(s,a) and 7(s).

The dimension of Q(s, a) is dim(s) x dim(a). Because dim(s) scales as (Nzet), where Nget
is the dimension of the FCI space, and for any state s, dim(a) scales as k x (Ngey — k), the

size of Q)(s,a) is clearly too large to store and utilize directly. To overcome this limitation,

we use a linear approximation to Q(s,a) ~ Qw(s,a), where

Qwl(s,a) = Z w; fi(s,a) = w'f. (7)

ieNdet
Here, Qw(s, a) is the inner product between weights w; and feature vectors f;(s, a), which
have yet to be defined. One possible definition of the feature vectors f;(s,a), and the one

used in this work, is

1 ificsandi#p, orifi ¢ sandi=gq
fi(s,a) =< -1 ifiecsandi=p (8)

0 otherwise




which then reduces Eq. (7) to a difference in weights w;, namely

Qu(s,a) =D w; —w, (9)

i€s’

where s’ is the active set of determinants subsequent to taking the action a = (p,q), as
defined in Eq. (5). One advantage of this choice is that the information in Qw(s,a) is
completely captured in the weights w. Furthermore, the weights w, which are independent
of s and a, can be interpreted as maintaining a global ranking for the set of all possible
determinants. The definition of the feature vectors in Eq. (8) can be interpreted as mapping
the expected value of an action a = (p, q) to the anticipated change in energy by removing
determinant p and replacing it with determinant ¢. In other words, this choice for f;(s,a)
enforces consistency between w and Qw(s,a): for a given action a = (p,q) it will always
return a positive value if w, is lower ranked than w,, or a negative value if w, is higher
ranked than w,.

In Q-learning, the Q-values (therefore, the weights w) are updated every step according

to the conventional update rule*?

dQw (s, a)
. A A ARl 1
w; — Ww; + « duw, ( O)
where the Bellman error ¢ is
6 =71 +ymax Qw(s',a') — Quw(s, a) =r4+yw £ —w'f (11)

and f’ denotes the feature vector after taking the action a’. « is the learning rate and ~ is
the discount factor, which are user-defined parameters and both should take values in (0, 1].
Larger values of v favor rewards in the future, rather than immediate rewards which are given
by smaller values of v. Although the update in Eq. (10) appears to be a gradient descent

method, for approximate state-action value functions such as that used in Eq. (7), this is no



longer the case. This has been pointed out in Ref 45, Appendix I. To see this, assume that

the update in Eq. (10) has been mapped onto the general gradient descent expression

W W — aa‘;gj) (12)
where J(w) is some loss function. In the case of Eq. (10), we have
oJ(w)  0Qw(s,a)
ow'f ,
= 0 (W' —(r+yw'f)) (14)
= fi (WTf —(r+ vaf')) (15)

However, to be a suitable gradient descent method, the second derivatives must be symmet-

ric. Yet for approximate Qv (s, a) it can be shown that this is not the case:

023 (w)
(9wj6w,-

0*J(w)
8wi8wj

= filf; —v1});

= fifi=f}) (16)

Therefore, the weights w are not guaranteed to converge in approximate Q-learning. How-
ever, it is possible to modify the weight update in Eq. (10) in order to yield a suitably
convergent learning algorithm. To this end, we modify the Greedy-G(Q method of Ref 46,
which relies on minimizing not the Bellman error directly, but rather the Bellman error pro-
jected onto the basis of feature vectors. This is to compensate the gradient due to the lack
of an incomplete basis. These terms can be understood in analogy to the Pulay forces*” in
conventional electronic structure nuclear gradients, where additional terms arise due to the

fact that the electronic structure calculations are performed in an incomplete basis.

Therefore, the loss function J(w) is chosen to minimize the projected Bellman error,



rather than the Bellman error (Eq. (11)) itself*246

J(w) = ||IL- 3"

—(5-£T)(£-£T) 7 (5-0) (17)

which leads to the gradient expression

10J(w)

— 5 (yF =) (F-£T) ' F
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= - fAf Ty (18)

where we define a new vector of auxiliary weights v in order to avoid the computational

overhead of inverting matrices of feature vectors, namely

v=(f-£1)(5-1). (19)

The vector v need not be explicitly formed, and will be learned on-the-fly during the

training as will be shown. Thus, with the above results, the new update formula for w is
wewta- (6 f—y-(fTv)-f) (20)

and

Ve vEB-(0—fTv)-f (21)

v is of the same dimension as w and may be initialized to zero at the beginning of the
RLCI algorithm. The update for v in Eq. (21) is derived from the Least Mean Square
(LMS) rule that seeks v so as to minimize the squared error (f'v — (5)2. This modifies
the update scheme to account for the fact that the linear approximation to Q(s,a) is not

complete. Note that upon setting the parameter [ to zero the algorithm will recover the

10



classic approximate Q-learning algorithm. In this gradient corrected method, the update in

Eq. (20) implicitly assumes that the update in Eq. (21) is at, or near, steady-state. In other

words, the secondary learning rate 3 needs to be greater than the learning rate .4 Because

« and f take values between 0 and 1, in our experience a reasonable value for 3 is \/a, where

« is the learning rate. This eliminates the need to set an additional hyperparameter, while

maintaining the condition that 5 > a.

2.1

Algorithm overview

Here we summarize the algorithm used to generate the results discussed in subsequent sec-

tions.

1.

From a given reference, initialize the set s through the greedy probing algorithm pro-
posed in Ref 48. In this work, we use the HF wave function as the reference. Briefly, the
greedy probing method builds up the set s incrementally through a perturbation-based
approach until dim(s) = k, at which the procedure terminates. The new determinants
to be added to s are obtained from the first-order perturbative wave function estimate,
as is commonly used in other sCI methods, such as CIPSI and ASCI

Zj;éi Hijcg'O)

W _
G T (B0 _ o) (22)

where H,, are the Hamiltonian matrix elements between determinants p,q, and E©)
is the energy for the Hamiltonian in the current determinant basis indexed by j with
eigenvector components cgo). At each iteration of the greedy probing algorithm, the
determinant ¢ corresponding to the largest value of \cl(l)\ is added to the set s at each
iteration. Unless otherwise stated, we add a single determinant to the set s at each
iteration, but we note that the selection procedure need not be limited to adding a

single determinant at each iteration and determinants may be added in “batches”,

e.g. adding the five determinants with the largest magnitude of |c§1)| to the set s until

11



a dimension of k is reached.

. Given the initial set s, initialize w using the magnitude of the eigenvector components
for the k£ x k Hamiltonian submatrix spanned by the determinants in s. For values
of w; ¢ s, the initial value is estimated using the perturbation theory expression in
Eq. (22). In general, the values of w; € s and w; ¢ s, which combine to form the initial
vector w, are not on the same scale as they are estimated from different procedures.
Therefore, each component of w; (i.e., the component w; € s and the component
w; ¢ s are each normalized individually to the unit vector and subsequently scaled
by its proportion of w. This ensures that the initial values of w; spanning the full
determinant space are approximately on the same scale. The auxiliary vector v is

initialized to zero, following Ref 46.

. Once initialized, the behavioral search policy is as follows. In order to efficiently prune
and expand the active determinant space s, we generate two ranked lists: the first
list S; contains candidate determinants within the current space to be removed (given
by low value in w) and the second list Sy contains candidate determinants outside
the current space s to be added (given by high value in Eq. (22)). The dimension
of S is the same as the selected subspace k, and nominally the dimension of S, is
(Nget — k), but for efficiency considerations, S may be limited to the most important
external determinants. In this work we make the top 150 determinants available for
consideration in the search policy. Note that if an action is selected, the loop over
Si is immediately terminated. Action pairs a = (p,q),p € s,q ¢ s from the two lists
are iterated over, and an action a is taken if it satisfies a Metropolis-like criterion as

detailed in Ref 43. If no action is selected, the learning procedure terminates.

. Once the action a is selected, the search policy terminates and the local reward r is
computed according to Eq. (4) and the weights w and v are updated according to

Eq. (20) and Eq. (21), respectively. Upon taking an action a = (p,q), S; can be

12



updated by removing p and adding ¢, and the next candidate external determinant in
S, can be considered. This prevents the need to re-construct S; and Sy at each step
in an episode. The episode terminates when no further suitable candidate actions can

be found, or once the space is exhausted.

. These training steps are iterated through until the completion of an episode. To reini-
tialize the state for a new training episode, the largest k values of w may be used.
We have also found it useful to occasionally and randomly initialize with the best s

obtained during the training procedure.
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Algorithm 1: Reinforcement Learning Configuration Interaction (RLCI)

Input: matrix A (efficiently represented), number of determinants k

Output: Approximate solution (\, [thc1)) with ||¢cr]lo < k

Initialize learning rate «, discount rate ~, exploration rate 7, weights w, and v;
for episode in 1,2, ..., max_episode do

Select an initial state s;

Construct Sy from ¢ € s with smallest w;’s;

Construct Sy from j ¢ s with largest |c;|’s;

for j =1,2,...,|5:| do

fori=1,2,...,|5]| do

s' = ((s\ Sild]) U Sa[]);

Compute smallest eigenvalue X of A(i € §',i € §');

Generate a random number € ~ U(0, 1);

if V< A-(1—7-¢) then

Let p = S1[i], ¢ = Sa[j], take action a = (p, q) to get new state s';
Evaluate local reward r;

Update w and v;

end

end

end

Output best approximate (\, [t)cr)) during training;

end

Although the cost of the exploration policy can be greatly reduced by limiting the search
space in Sy to the top m external determinants, the RLCI algorithm may still require multiple
matrix diagonalizations. However, the brunt of this cost can be greatly reduced by utilizing
an iterative subspace diagonalizer, such as Davidson’s algorithm,*® which reduces the cost

to O(k?), where k is the subspace dimension. The cost is reduced further still by solving

14



for the lowest eigenpair once at the beginning of each episode, then caching the resulting
eigenvector for re-use as an initial guess in subsequent search iterations. Since each action
involves the replacement of a single pair of determinants, the wave function overlap between
successive actions is very high, and Davidson’s algorithm will converge in a few number of
iterations. As each new eigenproblem is solved, the guess vector may be overwritten and
re-used for the next matrix diagonalization, ensuring that the guess for the current Davidson
diagonalization differs from the previous one by no more than one row.

Regarding memory utilization, the weights w and v are currently stored explicitly with
dimension of the full Hilbert space and this proves to be the largest memory bottleneck.
However, many of the (potential) weights are never accessed during the RLCI iterations,
and may never need to be stored explicitly. To this end, sparse storage techniques for the
learned weights may be utilized. For future work, it may be that moving beyond the linear
parameterization of the state-action value function and utilizing deep neural networks can

provide a more compact representation of the state and action space.

3 Results

3.1 Prototypical cases: dissociation curves

In order to test the performance of the proposed RLCI method, we have computed potential
energy curves for the symmetric dissociation of Ny, CO, and an Hg chain. These systems span
a range of strong to weak correlation and allow us to evaluate the prototypical performance
of RLCI methods for use in quantum chemistry. Note that we assume a point group of
C for all systems investigated here, and all data is obtained with an RHF reference wave
function using canonical RHF orbitals, and the underlying integrals and Hamiltonians were
obtained using an interface to the PySCF software package.?® Although currently the code
is far from optimized, we aim to show that RLCI is a promising route forward for generating

highly compact wave functions at chemical accuracy. In this work, we choose o = 0.5 and

15



v = 0.99 for all cases. Learning rates are not damped to avoid early convergence to local
minima, and the somewhat larger value of the learning rate « is suitable considering the

t.42 The exploration rate decays as a function of episode, with

deterministic CI environmen
7 = exp(—0.5-episode).  Additionally, all RL runs are terminated within 30 episodes.

Other choices of hyperparameters may be explored in future work.
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Figure 1. Comparison of RLCI and HCI methods for the dissociation of the
Ny molecule with the STO-6G basis with different levels of approximation. (a)
Difference between FCI and RLCI or HCI potential energy curves, relative to
the FCI minimum. The shaded gray area indicates region of chemical accuracy
(1 kecal/mol). (b) Comparison of the number of determinants used to calculate
each point along the potential energy surface. The size of the full space is 14,400
determinants.

An exploration of the dissociation behavior of Ny using the RLCI method is given in
Fig. 1. The errors with respect to FCI for Ny with the STO-6G basis is given in Fig. 1la.
N, dissociation is a challenging problem in quantum chemistry, and most single-reference
methods will fail to describe this process, particularly at larger separations. This is due to
the high amount of strong correlation required to dissociate the triple bond. To compare with
existing sCI methods, we compared with the heat-bath selected configuration interaction
(HCI) method'® in PySCF with varying levels of approximation. HCI depends on two
parameters, €; and €y, and values for these parameters were chosen to reasonably mimic
the level of accuracy obtained with the RLCI method at different levels of sparsity. This

is to give a sense of how much each method can compress the wave function. Because

16



the parameters that govern the accuracy of each method differ (the RLCI parameter is the
number of determinants k, whereas the HCI € values govern determinant cutoff parameters)
they cannot be compared one-to-one, however by observing the error with respect to FCI
and the number of determinants used in Fig. 1b, general trends can be observed. The HCI
and RLCI methods are competitive in the sense that both methods can be tuned to yield
errors below chemical accuracy with reasonable wave function compression (worst case for
all methods for Ny here are still < 10% of the total FCI space). As can be seen, in order
to get the accuracies to roughly agree in Fig. 1a, the number of parameters (determinants)
for HCT is roughly double that of RLCI. In the more strongly correlated regime (> 2.0 A),
the agreement in accuracy between HCI and RLCI diverges, despite HCI utilizing a greater
number of parameters. In fairness, for the current implementation HCI is a significantly
faster method, but the savings in terms of wave function compression for RLCI suggest that

pursuing further improvements to the method may be warranted.
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Figure 2. Comparison of RLCI and HCI methods for the dissociation of the
CO molecule with the STO-6G basis with different levels of approximation. (a)
Difference between FCI and RLCI or HCI potential energy curves, relative to
the FCI minimum. The shaded gray area indicates region of chemical accuracy
(1 kecal/mol). (b) Comparison of the number of determinants used to calculate
each point along the potential energy surface. The size of the full space is 14,400
determinants.

Next, we explore the dissociation of the CO molecule in Fig. 2. Though HCI maintains a

roughly constant accuracy throughout the dissociation, it requires roughly 2 —3x the number

17



of determinants as RLCI. In contrast, RLCI can maintain kcal/mol accuracy or better while
utilizing 4.0% of the determinant space. That said, the errors for RLCI increase during
dissociation up until around 1.7 A, at which point they begin to decrease again, whereas
HCI is relatively constant accuracy. This suggests that investigating ways to dynamically set
the RLCI parameter k£ may be beneficial. For HCI, the free parameters govern the cutoffs
used to determine the importance of a determinant, which in this particular case seems to

yield more constant energy errors, though this requires the use of an increasing determinant

space.
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Figure 3. Comparison of RLCI and HCI methods for the symmetric dissociation
of an Hg chain with the STO-6G basis with different levels of approximation. (a)
Difference between FCI and RLCI or HCI potential energy curves, relative to
the FCI minimum. The shaded gray area indicates region of chemical accuracy
(1 kecal/mol). (b) Comparison of the number of determinants used to calculate
each point along the potential energy surface. The size of the full space is 4,900
determinants.

Finally, we explore the symmetric dissociation of the Hg chain in Fig. 3. Despite its
apparent simplicity, this is a challenging system with rapidly increasing amounts of strong
correlation as the system dissociates. This is reflected in the linear increase in log error
in Fig. 3a, and the linear increase in determinants required for HCI to maintain its sub-
chemical accuracy observed in Fig. 3b. Despite these challenges, RLCI is able to obtain better
accuracy for fewer determinants compared to HCI for most points along the dissociation

curve, similar to what has been observed in the other prototype calculations for CO and Ns.
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At high intra-atomic separations, the necessary parameters to achieve chemical accuracy in
the (very) strongly correlated limit seem to limit toward a unified value of roughly 25% of the
determinant space. We note that there is no orbital optimization in either the RLCI or HCI
methods presented here, which may prove beneficial in cases such as these. Or, there may
simply be limits to how well determinant-based methods can compress the wave function
and other wave function ansitze, such as matrix®! or tensor!® product states may prove
more efficient. Utilizing configuration state function (CSFs) may also additionally compress
the wave function, though the RLCI will lose some of the computational advantages of a
determinant-based approach. Thus, further improvements may be found in both extending
RLCI to treat orbital optimization, as well as extending RL methods to optimize non-
determinant-based wave function anséitze, like CSF's or tensor product states.

An example of the convergence behavior with respect to episode for the previous three
test cases is given in Fig. 4, which depicts the difference between the best estimate of the
energy at each episode and the lowest energy obtained overall. Each of the molecules (CO,
Hg chain, and Ny) was fixed with an interatomic distance of 1.5 A and otherwise used the
same parameters as those given previously. To explore the impact of the the dimension of
the external determinant search space |Ss| was allowed to vary, with [Sy| = 50, 100, 200.
As can be seen, there is a rapid initial drop in energy in the first few episodes, which serve
to quickly correct the initial guess. As later episodes explore the determinant space, the
agent continues to decrease the energy and refine the set of determinants. Larger external
determinant spaces may provide faster convergence with respect to episode, but the larger
set of candidate actions results in longer episodes, which may explain this behavior. If the
external determinant space is too small, the agent may end up in a higher energy local
minima, as may be the case in Fig. 4b for the |S5| = 50 case after episode 28. In most cases,
minimal energetic refinement is obtained after 30 episodes, though for larger systems it may

be necessary to consider additional episodes.
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Figure 4. Difference between the best estimate of the energy at each episode
i and the lowest energy obtained overall for (a) CO, (b) Hg chain, and (c) Na.
Each molecule used a STO-6G basis and had an interatomic distance of 1.5 A.
The dimension of the subspace k was 200 determinants, and the dimension of
the external determinant search space |Se| was varied to be 50, 100, or 200. All
other parameters correspond to those used in the rest of the work. A small scalar
constant of 1 x 10™* was added to the lowest energy obtained overall in order to

avoid plotting zero on a log scale.
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3.2 Larger examples: hydrogen rings

In order to get a sense of the performance for larger systems, we have applied the RLCI
algorithm to larger systems of hydrogen rings with a STO-6G basis. These hydrogen rings
have been investigated recently in order to explore the ability of several methods to compress
the wave function in strongly correlated materials.® In order to apply the RLCI method to
these larger systems, we have implemented the RLCI algorithm in the Chronus Quantum
electronic structure program,®? with efficient determinant manipulation based on Ref. 53.
At the moment, the algorithm uses a canonical generalized Hartree-Fock reference, which
results in much larger and far more sparse determinant spaces. As an example, an Hyy/STO-
6G ring with canonical RHF orbitals has a full Hilbert space dimension of 63504, whereas
with GHF the full Hilbert space is three times larger with dimension 184756. In any case,
the RLCI algorithm is agnostic to the type of reference: if the method can handle a more
challenging GHF reference, it can also handle a RHF reference.

Table 1. Comparison of the percent FCI correlation energy (% corr.) captured
versus RLCI subspace dimension k as a function of the percentage of the full
Hilbert space (% Nget) for hydrogen rings with n atoms, an interatomic separation
of 1.5 A, using a STO-6G basis.

n k Nyet % Nget % corr.
10 2000 184756 1.083%  96.2%
10 4000 184756 2.165%  98.3%
10 6000 184756 3.248%  99.2%
12 4000 2704156 0.148%  74.3%
12 6000 2704156 0.222% 77.2%
12 10000 2704156 0.370%  95.6%
14 6000 40116600 0.015%  86.2%
14 10000 40116600 0.025%  88.6%
14 20000 40116600 0.050%  91.3%
16 10000 601080390 0.002%  47.4%
16 20000 601080390 0.003%  49.6%
16 50000 601080390 0.008%  52.4%

In Tab. 1, we compare the performance of the RLCI algorithm for a series of hydrogen

rings with an interatomic separation of 1.5 A and an STO-6G basis. This interatomic
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distance was previously found to exhibit strong correlation in hydrogen rings.® Using the
GHF reference, fully correlating all electrons, and utilizing rings ranging from 10 to 16
atoms, the full Hilbert space spans from 10° to nearly 10° determinants. All parameters for
the calculations were the same as those used previously, with the exception that the greedy
initialization for each trial was done in batches corresponding to 1/10 of the subspace k. As
observed in the prototypical cases, only a small percent of the full Hilbert space is necessary
to capture a significant portion of the FCI correlation energy. For the Hyg ring, 2% of the
Hilbert space is sufficient to capture 98% of the correlation energy. For the Hy4 ring, even
0.05% of the Hilbert space is sufficient to capture over 91% of the correlation energy. The
results in Tab. 1 are consistent with the observations found for the smaller, prototypical

systems.
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Figure 5. Sparse distribution of learned weights w; after 30 episodes of RLCI for
an Hy, ring with interatomic spacing of 1.5 A and a STO-6G basis. The weights
were sorted and plotted according to magnitude, with a constant of 107!* added
to avoid plotting zero on a log scale. The learned weights are sparse, with roughly
13% of the over 2.7 million determinants being non-zero. For this particular case,
a subspace dimension of k = 10,000 was utilized, which recovered around 95% of
the FCI correlation energy. All other parameters correspond to the defaults used
elsewhere in this work.

As alluded to previously, it may appear that the memory requirements for storing the
weights for Qw(s,a) are prohibitive. To show that memory need not be a limiting factor,
Fig. 5 shows an example of the distribution of magnitudes for the learned weights in an Hys

ring with a subspace dimension of £ = 10,000, same as that used in Tab. 1, which recovered

around 96% of the FCI correlation energy. In this case, nearly 87% of the determinants have

22



zero weight and therefore need not be explicitly stored. Furthermore, of the weights with
non-zero magnitude, nearly half fall below 10~°, suggesting that cutoffs may be employed to
further reduce demands on the weight storage. Thus, sparse storage coupled with pruning
techniques may be employed to efficiently manipulate Qv (s, a). Moreover, the weights need
not be stored in memory: as the number of elements that are updated at any given time
according to Eq. (20) go as subspace dimension k, the full weights may instead utilize scratch

disk space. An analogous argument extends to the handling of auxiliary weights v.

3.3 Transfer learning

A benefit of utilizing reinforcement learning is the ability for the agent to apply knowledge
of gained in one domain to a related, but different, domain. This is known as transfer
learning. If successful, the agent does not need to re-learn all salient aspects of the new
environment, but can fine-tune the optimal actions based on experience. As a test of the
potential for transfer learning in RLCI, we apply the following transfer protocol to the
symmetric dissociation of a Hg ring with the STO-6G basis.

To attempt transfer learning for this scenario, the RLCI algorithm is initially run for 30
episodes on the Hg ring with an interatomic separation of 0.9 A. This is to ensure that the
agent has learned an optimal representation of the wave function. Then, the geometry is
incremented by 0.05 A up to 1.7 A, and the RLCI method is run for the much shorter 15
episodes. The transfer protocol explored here involves initializing the RLCI with the wave
function and learned weights for the previous geometry, similar to the approach utilized in
the work of Coe for the MLCI method.*! Over the course of computing the potential energy
curve, the agent fine-tunes the previous experience to incorporate the knowledge gained
elsewhere. A comparison between RLCI with and without transfer compared to the FCI
results is given in Fig. 6. In most cases, the previous knowledge allows RLCI to obtain an
improved wave function and energy in fewer iterations compared to RLCI without transfer

learning. Furthermore, because the agent is able to learn on-the-fly, it appears to better
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handle the strong correlation as the interatomic distance increases, evidenced by the growing
difference in energy between the RLCI protocols. It bears mentioning that transfer learning
is problem dependent. For example, even in Fig. 6 despite transfer learning the RLCI method
with transfer does not obtain a better estimate of the wave function at 1.3 A compared to
RLCI without transfer learning. More episodes may improve the wave function at this point.
Further exploration of different types of transfer protocols*! and, crucially, representations
of the wave function for the state-action value function Qw/(s,a), such as neural networks,
should be explored further. Despite this, the example shown in Fig. 6 demonstrates that
learned information about the wave function at one geometry may potentially be exploited

for improved performance at other geometries.

0.20 { =—@— RLCI with transfer
RLCI
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Figure 6. Symmetric dissociation of a Hg ring using the STO-6G basis, with
and without transferring the wave function and associated weights. In this case,
the dimension of the subspace k = 120 determinants, approximately 2.5% of the
full Hilbert space. The RLCI method with transfer is able to achieve smaller
error with respect to FCI energies with fewer iterations for the majority of the
points considered. Both dissociation curves begin at the same bond length of 0.9
A, which is run for 30 episodes. For subsequent points along the potential energy
curve, the geometry is incremented in steps of 0.05 A and the RLCI method is run
for 15 episodes. For RLCI with transfer, the wave function and learned weights
from the previous geometry are used to initialize the algorithm. Otherwise, all
other initializations, including the initial wave function for RLCI transfer, used
a single iteration of the greedy algorithm. All other parameters are the same as
those used elsewhere in the text.
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4 Conclusion

Here we have explored the potential of using reinforcement learning techniques to solve
the selected configuration interaction problem. In the prototypical cases explored, RLCI
outperformed HCI in terms of generating more compact wave functions without neglecting
chemical accuracy (< 1 kcal/mol from FCI). Although we do not claim that the current
implementation is necessarily faster than existing sCI methods, we have provided support
that approaches based on reinforcement learning may yield more optimally compact wave
functions, at least at the determinantal level. In these dissociation curves presented here, HCI
appears to require on the order of 2—3x the number of determinants for comparable accuracy
to RLCI. As is seen in the strongly correlated case of the stretched Hg chain, there may be
an upper limit to how compressed a wave function can become. In these cases, other wave
function ansatze may be required, or it may speak to the importance of orbital optimization
in the strongly correlated cases. Both avenues are worth pursuing with a RL approach.
We have also shown how a transfer learning protocol can be utilized to obtain improved
estimates of wave function and energy from RLCI on related, but different, problems. Further
work to explore the transfer learning protocols between different Hamiltonians in order to
improve efficiency should continue to be explored. Other improvements of the RLCI method
include modifying the action space to allow more than one determinant to be added or
removed from the state, optimizing the learning rate and the discount factor, and gaining
a better understanding of the trade-off between exploration and exploitation. Additional
investigations of perturbative corrections on top of the RLCI-learned wave function may
also yield robust convergence to the FCI limit with compact wave function references, as has

been observed in other sCI methods?: 185456
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