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Abstract

As quantum chemistry calculations deal with molecular systems of increasing size,

the memory requirement to store electron-repulsion integrals (ERIs) greatly outpaces

the physical memory available in computing hardware. The Cholesky decomposition of

ERIs provides a convenient yet accurate technique to reduce the storage requirement

of integrals. Recent developments of a two-step algorithm have drastically reduced

the memory operation (MOP) count, leaving the floating operation (FLOP) count

as the last frontier of cost reduction in the Cholesky ERI algorithm. In this report,

we introduce a dynamic integral tracking, reusing, and compression/elimination pro-

tocol embedded in the two-step Cholesky ERI method. Benchmark studies suggest

that this technique becomes particularly advantageous when the basis set consists of

many computationally expensive high-angular-momentum basis functions. With this

dynamic ERI improvement, the Cholesky ERI approach proves to be a highly efficient

algorithm with minimal FLOP and MOP count.
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1 Introduction

Quantum chemistry calculations using localized atomic orbitals require the computation

of 4-index electron-repulsion integrals (ERIs) which scale as M(N4) in memory storage

requirement for in-core tensor product where N is the number of basis functions. The

memory requirement for storing ERIs can be reduced by using the Cholesky decomposition

(CD)1–6 or the resolution-of-the-identity (RI)7–9 techniques to approximate the 4-index ERI

tensor as a product of two 3-index tensors.10–21 The main difference between the RI and

CD techniques is that the former requires a pre-optimized auxiliary basis set whereas the

latter constructs it on-the-fly. Being able to work with general basis sets and elements

gives the Cholesky ERI approach a practical advantage over RI. Additionally, the Cholesky

decomposition method features a tunable accuracy, and is generally more accurate than the

RI method when their 3-index tensors have similar sizes.22 However, the computational cost

of the conventional algorithm to build the CD 3-index tensor is drastically greater than RI.

This is mainly due to the need to determine the Cholesky pivot set, which is the analogue

of the auxiliary basis set in RI.

In the conventional CD method, when a pair of basis function is selected as a pivot

(Cholesky basis), all associated ERI elements are evaluated for the construction of the

Cholesky vectors.3 However, the conventional algorithm discards many of the evaluated ele-

ments that are potentially useful in future iterations. This is because there is no easy way to

predict which ERI elements in a shell quartet are needed in future iterations, and storing all

of them is not practical. This situation becomes more severe when the system includes many

high-angular-momentum basis shells. In this case, construction of each new Cholesky vector

requires looping over all previous Cholesky vectors with length N2. When the number of

selected Cholesky pivots is great, the processing speed is limited by the memory bandwidth

and memory operation (MOP) count.

To mitigate this issue, Aquilante and co-workers proposed a two-step framework as an

alternative to the conventional CD method.23 The two-step algorithm splits the task into
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the prediction and construction steps: (1) determine the Cholesky pivots, and (2) build the

3-index ERI tensors. In this way, the second step is similar to the RI algorithm, where all

necessary ERI elements are evaluated only once and the 3-index tensor is built directly by

matrix multiplication with an optimal memory bandwidth requirement. Meanwhile, in the

first step, since only the diagonal elements need to be evaluated and the exact 3-index vectors

are not computed, elements connected to unimportant basis pairs can be discarded. This fact

is utilized in the span-factor algorithm proposed along with the two-step framework, which

was recently improved by Folkestad and co-workers,24 which determines the Cholesky pivots

in batches. As a result, the overall cost is only a fraction of the conventional algorithm. The

span-factor algorithm successfully resolves the memory bottleneck issue in the Cholesky ERI

algorithm, but the costly high-angular-momentum shell quartets are still evaluated multiple

times. In this work, we continue to improve the efficiency of the two-step Cholesky ERI

algorithm by introducing a dynamic ERI tracking, reusing, and compression/elimination

protocol when determining the Cholesky pivot set. With this dynamic ERI improvement,

the Cholesky ERI approach can be shown to be a highly efficient algorithm with minimal

FLOP count as well as an optimal MOP count, supported by benchmark studies.

2 Method

We use the following notations throughout this work:

• A,B,C,D, ... are basis shells;

• P,Q,R, S, ... are basis shell pairs;

• µ, ν, λ, γ, ... are basis functions;

• p, q, r, s, ... are basis function pairs;

• Lp is the Cholesky vector for pivot basis function pair p;
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• Calligraphic notations (B,L,P ,Q...) are sets/containers;

• Diag(r) is the diagonal element associated with r in the Cholesky decomposition algo-

rithm.

• i is the index for outer iteration, and j is the index for inner iteration.

2.1 Conventional Algorithm

The four-index ERI tensor over basis functions in the chemist (Mulliken) notation (µν|λγ)

can be cast as a two-index matrix Mrs = (r|s) where µ, ν, λ, γ are basis functions, r ≡ µν

and s ≡ λγ are basis function pairs. Due to the nature of electron repulsion, such an ERI

matrix is positive semidefinite and can be Cholesky-decomposed to a product of a lower

triangular matrix (L) and its transpose:

(µν|λγ) ≡Mrs =
∑
p

LprL
p
s = (LLT)rs (1)

where Lp are Cholesky (column) vectors in L. In the exact Cholesky decomposition, since

the dimension of L is (N2 × N2), where N is the number of basis functions, there is no

computational saving in either memory storage or floating point operations (FLOPs).

The Cholesky-ERI algorithm aims to directly construct a set of Cholesky vectors with a

reduced length that can produce ERIs within a tolerance or accuracy threshold,

(µν|λγ) ≡Mrs ≈
∑
p∈B

LprL
p
s (2)

where B is the set of basis pairs selected as Cholesky bases (pivots). Usually the length of

B is much smaller than N2 (|B| � N2), leading to significant savings in the ERI storage.

The conventional Cholesky-ERI algorithm iteratively adds new basis pairs into the Cholesky

pivot set B based on a selection criterion which usually corresponds to the largest diagonal

ERI remaining in Diag(r)|r/∈B. The iteration starts with pre-computed diagonal elements of
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ERIs, Diag(r) = (r|r) ≡ (µν|µν).

When a new basis pair is added to the Cholesky pivot set, the Cholesky vector length

increases for all N2 Cholesky vectors in L. If a basis pair q that satisfies Diag(q) =

max [Diag(r)|r/∈B] is selected as the new pivot, Cholesky vectors can be updated as

Lqs =


(q|s)−

∑
p∈B L

p
qL

p
s√

Diag(q)
for Diag(q) > 0,

0 otherwise,

for s /∈ B, (3)

Lqs = 0, for s ∈ B. (4)

q is then added to the Cholesky pivot set B. The total computational cost for updat-

ing Cholesky vectors using Eq. (3) is O(|B|2N2) in floating point operation (FLOP) and

M(|B|2N2) in memory operation (MOP) counts.

When a new basis pair is moved to the Cholesky pivot set, the Diag(r) values are updated

as

Diag(r) = Diag(r)− (Lqr)
2. (5)

in order to evaluate the importance of the remaining basis pairs. A new iteration starts with

the updated Diag(r). In the conventional Cholesky-ERI approach, when Diag(r) < τ for all

r /∈ B, the remaining basis pairs are considered insignificant and the iteration stops.

If we use M̃ to represent the difference between the exact matrix M and LLT,

M̃ = M− LLT, (6)

the diagonal elements of M̃ are

M̃rr = Diag(r). (7)

According to the Cauchy-Schwarz inequality,

M̃2
rs ≤ M̃rrM̃ss ≤ τ 2, (8)
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the error in approximation

(µν|λγ) ≡ (r|s) ≈
∑
p∈B

LprL
p
s ≤ τ (9)

for all ERI elements.

The conventional Cholesky-ERI approach approximates O(N4) ERI elements using 3-

index tensors of size O(|B|N2), where |B| is the number of Cholesky basis. The accuracy

and |B| is controlled by a single threshold τ . However, as τ → 0 and |B| → N2, the memory

storage requirement approaches that of a full ERI tensor. In addition, the procedure to

update Cholesky vectors (Eq. (3)) can be computationally expensive as all vectors of length

N2 have to be updated.

2.2 Two-Step Algorithm

Alternatively, Cholesky vectors can be formed through a two-step algorithm. 23 The idea

behind the two-step algorithm is similar to RI using an auxiliary basis, except that in this

case the auxiliary basis is the set of Cholesky pivots.

In the first step, a procedure similar to the conventional approach is used to determine

the set of Cholesky basis (pivots) B without computing the complete Cholesky vectors, e.g.,

the Cholesky vector update in Eq. (3) is avoided.

In the second step, an RI-like algorithm is used. A matrix J can be computed with

elements

Jpp′ = (p|p′) , p, p′ ∈ B (10)

The ERI approximation in Eq. (9) can be equivalently written in an inner projection form,

(µν|λγ) ≈
∑
p,p′∈B

(µν|p′) (J−1)p′p (p|λγ) . (11)
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By Cholesky-decomposing J = KKT, the Cholesky vectors in Eq. (9) can be easily formed

Lpµν =
∑
p′∈B

(µν|p′) (K−T)p′p. (12)

There are several clear advantages of the two-step Cholesky-ERI algorithm over the

conventional approach. After determining the Cholesky pivot set B and its associated

Coulomb matrix J, the procedures to construct Cholesky vectors can take advantage of

high-performance BLAS and LAPACK libraries, including the Cholesky decomposition of

J, the inversion of the triangular matrix KT, and the contraction between the 3-index ERI

tensor (αβ|p′) and K−T. The FLOP count in the linear algebra portion of the conventional

algorithm (Eq. (3)) is comparable to the cost of Eq. (12); both scale as O(|B|2N2). How-

ever, the memory operation (MOP) count is higher in the conventional method compared to

the two-step approach, i.e. M(|B|2N2) vs. M(|B|N2), respectively. Additionally, Eq. (3)

suggests that in the conventional approach all integrals outside the Cholesky pivot set must

be computed regardless of their significance. In contrast, in the two-step approach, only

significant integrals are computed in Eq. (12).

Unlike the relative straightforward implementation of the conventional Cholesky-ERI

approach, in order for the two-step method to reach its full potential, several important cost

reduction techniques and considerations must be employed. The key lies in an efficient way

to determine the Cholesky pivot set without computing all Cholesky vectors in the first step.

2.3 Efficient Cholesky Pivot Determination

Recently, Folkestad and co-workers proposed the so-called “span-factor” algorithm to ef-

ficiently determine the Cholesky pivot set.24 Here, we introduce an additional step that

features a reduced FLOP count by avoiding redundant evaluations of the basis shell quartet.

Due to the dynamic nature of ERI tracking and compression in this algorithm, we term it

the “dynamic-ERI” algorithm. Both “span-factor” and “dynamic-ERI” algorithms can be
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organized into Algorithm 1.

The idea behind the “span-factor” approach is to determine new Cholesky pivots in

batches (Lines 12-14 in Algorithm 1) so as to take advantage of the fast linear algebra

libraries (Line 22 in Algorithm 1). In the “dynamic-ERI” algorithm, in addition to batching

evaluations of Cholesky pivots, all ERIs computed inside the loop are saved (Lines 8 and 20

in Algorithm 1) and reused (Line 22 in Algorithm 1). Due to the fast growing number of

ERIs, all integrals are tracked and removed when the associated Cholesky pivots fall below

the threshold (Line 39 in Algorithm 1). Note that although Cholesky pivots are selected

based on basis pairs, efficient ERI evaluations are batched by shell quartet. As a result, ERI

tracking and removal should be carried out in shell pairs.

8



Algorithm 1: Cholesky Pivot Determination

1 Initialize a list B to store selected Cholesky pivots;
2 Initialize a container L to store computed Cholesky vectors;
3 Initialize a container E to store computed ERIs;
4 Initialize a container P to store Cholesky pivot candidates;
5 for R = AB,A ≤ B do
6 Compute diagonal shell quartet (R|R);
7 for r ∈ R & Diag(r) ≡ (r|r) ≥ τ0 do r → PR;
8 for r, s ∈ PR do (r|s)→ E ;
9 P = ∪RPR;

10 end
11 while |P| 6= 0 do
12 Dmax = maxr∈P Diag(r);
13 Select Diag(r)r∈P ≥ σDmax where σ is the “span factor”;
14 if |{r}| > mσ then Only select the largest mσ number of Diag(r)r∈P .;
15 Initialize an empty container Q, store selected {r} in Q;
16 for s ∈ Q, s ∈ S do
17 for r ∈ P, r ∈ R do
18 if S 6= R & (R|S) /∈ E then
19 Compute shell quartet (R|S);
20 if s ∈ P then (r|s)→ E ;

21 end

22 M̃rs = (r|s)−
∑

Lp∈L L
p
rL

p
s;

23 end

24 end
25 if P \ Q 6= 0 then τ = maxr∈P\QDiag(r);
26 else τ = τ0;
27 while Q 6= 0 & Diag(q) = maxr∈QDiag(r) & Diag(q) ≥ τ do
28 Initialize a container L(i) to store new Cholesky vectors;
29 for r ∈ P do

30 Lqr =
M̃rq−

∑
Lp∈L(i) L

p
qL

p
r√

Diag(q)
;

31 Q = Q \ {q}, B = B ∪ {q}, L(i) = L(i) ∪ {Lq};
32 Diag(r) = Diag(r)− (Lqr)

2;

33 end

34 L = L ∪ L(i);

35 end
36 for R ∈ P do
37 if Diag(r) < τ then
38 for s ∈ P do E = E \ (r|s), E = E \ (s|r) ;
39 Compress the length of L ∈ L by removing the element r;

40 end

41 end

42 end
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3 Benchmarks and Discussion

The conventional, span-factor, and dynamic-ERI are implemented in the open-source Chronus

Quantum package,25 which uses the LIBINT library26 for ERI evaluations. Tables 1 to 3

report timing comparisons of the three Cholesky-ERI approaches discussed here. Unless

otherwise noted, all computations were performed with 28 threads on a computation node

with two Intel® Xeon® E5-2680 v4 CPUs. Additionally, Chronus Quantum was compiled

using the Intel® C++ Compiler version 19.0.0.117. For the two-step algorithms, we report

in wall-clock times the time spent to determine the Cholesky pivot set as T1 and the time

to build 3-index RI-ERI tensors as T2. The most time-consuming procedures in T1 include

the evaluation of ERI vectors (T1,ERI), the computation of Cholesky vectors (T1,CD), and the

compression of Cholesky vectors (T1,COM). For the dynamic-ERI algorithm, we also include

the integral tracking and removal time as part of the compression step (T1,COM). T2 primarily

consists of the time to compute 3-index ERI elements (T2,ERI) and the matrix multiplication

in Eq. (12) (T2,MM). We also report the total number of shell quartets (N1,SQ and N2,SQ) com-

puted during T1 and T2. The conventional algorithm is a single step approach, which requires

the evaluation of ERI vectors (TERI) and Cholesky decomposition (TCD). For convenience,

these values are listed together with those in the first step of two-step algorithms.

In Tables 1 to 3, the computational costs of computing Cholesky vectors are presented

for a cubic H1000 system, a C60 molecule, and a Au14 cluster. All three methods result in the

same set of Cholesky vectors and identically converged energies for a given threshold τ0.

Both the span-factor and dynamic-ERI algorithms are significantly faster than the con-

ventional Cholesky-ERI approach. For the case of H1000, since the majority of the basis pairs

are selected in the Cholesky pivot set, the only computational saving in the span-factor and

dynamic-ERI algorithms comes from the utilization of the fast linear algebra library to con-

struct the Cholesky vectors (T2,MM in span-factor and dynamic-ERI methods vs. T1,CD in the

conventional method). As a result, we only observed a 2.5× speed-up when a loose threshold

(τ0 = 1× 10−4) was used. As the threshold is decreased and the size of the Cholesky vectors
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Table 1. Computational costs (in seconds) of computing Cholesky vectors using the conventional, span-
factor, and dynamic-ERI approaches. This system consists of 10× 10× 10 H atoms in a cube. The distance
between adjacent H atoms is 1.0 Å. The STO-3G27 (1000 basis functions) is used in this test. Note that
the storage requirement for the full 4-index ERI tensor is 8 TB. The reference Hartree–Fock energy using
AO-direct 4-index ERI is −388.14611071 a.u.

Method
T1 T2 Total

N1,SQ T1,ERI T1,CD T1,COM N2,SQ T2,ERI T2,MM

τ0 = 1× 10−4 [a]

Conventional 1.85× 109 285.3 504.7 801.0
Span-Factor 1.12× 108 16.0 3.8 0.2 1.85× 109 286.0 14.4 327.2

Dynamic-ERI 7.00× 107 9.7 3.8 0.2 1.85× 109 287.2 14.1 322.1

τ0 = 1× 10−6 [b]

Conventional 4.59× 109 701.5 3086.4 3823.5
Span-Factor 5.61× 108 81.0 12.1 1.3 4.55× 109 721.9 86.1 918.5

Dynamic-ERI 2.67× 108 38.0 12.7 1.9 4.55× 109 721.2 85.5 876.0

τ0 = 1× 10−8 [c]

Conventional 7.11× 109 1092.3 7112.2 8259.5
Span-Factor 1.71× 109 248.4 36.9 5.1 7.01× 109 1119.8 206.3 1649.0

Dynamic-ERI 6.72× 108 96.1 39.2 8.3 7.01× 109 1113.8 202.7 1492.1

a 3-index tensor size = 29.6 GB, |B| = 3700, initial |P| = 43144, ∆E = 4.4× 10−1 a.u.
b 3-index tensor size = 73.3 GB, |B| = 9168, initial |P| = 80172, ∆E = 1.9× 10−3 a.u.
c 3-index tensor size = 113.6GB, |B| = 14205, initial |P| = 126924, ∆E = 4.0× 10−6 a.u.

Table 2. Computational costs (in seconds) of computing Cholesky vectors using the conventional, span-
factor, and dynamic-ERI approaches. A C60 molecule with the cc-pVDZ28 basis set (840 basis functions) is
used in this test. Note that the storage requirement for the full 4-index ERI tensor is 4 TB. The reference
B3LYP29–31 energy using AO-direct 4-index ERI is −2286.08361884 a.u.

Method
T1 T2 Total

N1,SQ T1,ERI T1,CD T1,COM N2,SQ T2,ERI T2,MM

τ = 1× 10−4 [a]

Conventional 2.47× 108 104.3 354.5 468.4
Span-Factor 2.31× 107 8.6 2.5 0.9 4.60× 107 30.5 9.9 57.1

Dynamic-ERI 1.06× 107 4.2 2.2 0.6 4.60× 107 30.7 10.2 53.0

τ = 1× 10−6 [b]

Traditional 4.33× 108 155.0 1114.9 1286.5
Span-Factor 6.91× 107 19.5 19.8 4.8 8.56× 107 43.9 31.3 129.5

Dynamic-ERI 1.97× 107 7.4 11.4 3.3 8.56× 107 44.2 31.0 107.1

τ = 1× 10−8 [c]

Conventional 7.22× 108 263.2 3222.1 3517.7
Span-Factor 1.64× 108 39.8 95.9 23.9 1.58× 108 68.7 86.9 331.5

Dynamic-ERI 3.67× 107 11.3 33.4 9.9 1.58× 108 68.1 89.6 230.1

a 3-index tensor size = 21GB, |B| = 3802, initial |P| = 58923, ∆E = 1.0× 10−3 a.u.
b 3-index tensor size = 38GB, |B| = 6663, initial |P| = 93636, ∆E = 4.8× 10−5 a.u.
c 3-index tensor size = 63GB, |B| = 11108, initial |P| = 123200, ∆E = 1.7× 10−7 a.u.
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Table 3. Computational costs (in seconds) of computing Cholesky vectors using the conventional, span-
factor, and dynamic-ERI approaches. An Au14 cluster with the Jorge-TZP-DKH32 basis set (1148 basis
functions) is used in this test. Note that the storage requirement for the full 4-index ERI tensor is 14 TB.
The reference ALH-X2C-PBE033–44 energy using AO-direct 4-index ERI is −265731.11806264 a.u.

Method
T1 T2 Total

N1,SQ T1,ERI T1,CD T1,COM N2,SQ T2,ERI T2,MM

τ = 1× 10−4 [a]

Conventional 3.64× 108 1515.1 1869.0 3415.5
Span-Factor 1.87× 107 155.4 16.2 3.7 4.51× 107 115.4 55.7 361.1

Dynamic-ERI 6.15× 106 13.0 4.6 2.6 4.51× 107 114.5 54.5 204.6

τ = 1× 10−6 [b]

Conventional 5.05× 108 1977.2 3608.1 5630.2
Span-Factor 4.43× 107 277.6 51.5 10.7 6.56× 107 133.6 111.8 609.5

Dynamic-ERI 1.16× 107 17.1 16.3 6.5 6.56× 107 133.8 112.2 311.4

τ = 1× 10−8 [c]

Conventional 7.32× 108 2681.7 7705.5 10447.0
Span-Factor 8.46× 107 459.6 152.4 28.4 9.49× 107 171.4 228.6 1082.8

Dynamic-ERI 1.83× 107 21.6 41.3 14.2 9.49× 107 170.3 233.4 525.9

a 3-index tensor size = 68GB, |B| = 6436, initial |P| = 58377, ∆E = 3.4× 10−3 a.u.
b 3-index tensor size = 94GB, |B| = 8920, initial |P| = 95009, ∆E = 2.8× 10−4 a.u.
c 3-index tensor size = 136GB, |B| = 12925, initial |P| = 125694, ∆E = 2.7× 10−6 a.u.

0.0 0.5 1.0 1.5 2.0
Avg. angular momentum

1.0

1.5

2.0

2.5

ER
I e

ffic
ien

cy

Span-Factor NSQ
Dynamic-ERI NSQ

Span-Factor TERI
Dynamic-ERI TERI

Figure 1. ERI efficiency as a function of the average angular momentum of
basis. Systems used in this plot are H1000 with STO-3G,27 (H2O)50 with 6-
31G(d),45–47 C60 with cc-pVDZ,28 and Au14 with Jorge-DZP-DKH,48 Jorge-
TZP-DKH,32 Sapporo-DKH3-XZP (X=D,T,Q)49 at τ0 = 1×10−4. The baseline
NSQ and TERI is defined to be N2,SQ and T2,ERI of the two-step algorithm. This
plot computes the ratio of N1,SQ +N2,SQ and T1,ERI + T2,ERI to the baseline.
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increases, the advantage of using fast linear algebra library to construct the Cholesky vector

becomes more prominent. At τ0 = 1× 10−8, the span-factor and dynamic-ERI method show

a factor of ∼ 5.5 speed-up compared to the conventional method. This behavior is consistent

throughout the tests carried out here.

For the C60 and Au14 test cases, additional computational savings arise from the reduction

of the number of shell quartets evaluated in the Cholesky-ERI procedures (N2,SQ in span-

factor and dynamic-ERI methods vs. N1,SQ in the conventional approach). The reduced

computation in ERI evaluation and the utilization of the fast linear algebra in the span-

factor and dynamic-ERI algorithms give rise to a 10 ∼ 20-fold speed-up for Au14 with

τ0 = 1× 10−8.

Comparing the two two-step Cholesky-ERI methods, the dynamic-ERI algorithm consis-

tently outperforms the span-factor approach with a speed-up ranging from a factor of 1.02

(H1000, τ0 = 1 × 10−4) to 2.06 (Au14, τ0 = 1 × 10−8). The computational savings in the

dynamic-ERI algorithm mainly comes from the elimination of redundant ERI evaluations

through a tracking and removal process without exhausting the memory resources. For ba-

sis sets mostly consisting of low angular momentum functions (i.e., the STO-3G basis set

used with H1000) the speed-up in the dynamic-ERI algorithm is only marginal (about 10%

faster) compared to the span-factor method. As more high-angular-momentum bases are

included in the basis set, the computational saving in the dynamic-ERI algorithm becomes

more significant. Since both the dynamic-ERI and span-factor algorithms have identical pro-

cedures in the second step, the difference in computational savings comes exclusively from

the first step. Figure 1 plots ERI efficiencies as a function of average angular momentum

of the basis set, including the number of evaluated shell quartets and the time spent on the

ERI evaluation. Since the computational cost of ERI evaluation in T2 can be considered

as the theoretical limit when all Cholesky pivots have been determined, the ERI efficiency

in each algorithm is defined as the total number of ERI computed and total ERI time in

relative to T2, e.g., (N1,SQ + N2,SQ)/N2,SQ and (T1,ERI + T2,ERI)/T2,ERI. Figure 1 shows that
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Figure 2. (Top): The computational times of Cholesky basis determination
(first step). The number of basis functions in each system is labelled along the
curve. (Bottom)The computational times of ERI Cholesky decomposition and
the sizes of result 3-index tensors for gold cluster series of 14, 20, 24, 28, 30, and
40 gold atoms in Jorge-DZP-DKH48 basis set with τ0 = 1× 10−6. Computations
were performed with 48 threads on an computation node with two Intel® Xeon®

Platinum 8160M CPUs. Additionally, Chronus Quantum was compiled using the
Intel® C++ Compiler version 2021.1 Beta 20201112.

the dynamic-ERI algorithm recomputes only 10%∼20% more ERIs than what needed for

constructing Cholesky vectors. In contrast, the span-factor approach needs to recompute

70%∼80% more ERIs than those needed in T2. If the extra ERIs are associated with high

angular momentum bases with high computational cost, the computational saving in the

dynamic-ERI algorithm can be significant, as shown for the case of Au14.

Figure 2 plot wall-clock times for a series of Aun clusters. Across the series, the dynamic-

ERI algorithm constantly shows an 80% savings in the computational cost to determine

Cholesky pivots. However, as the size of the system increases, the second step to build

14



3-index Cholesky tensors dominates the Cholesky-ERI procedure. As a result, the dynamic-

ERI algorithm shows a 45% computational saving in the overall wall-clock time at Au14, but

only 25% at Au40. Note that storing all 3-index Cholesky vectors requires ∼1 TB memory

for 2520 basis functions (Au40). As the size of the system increases, AO-direct algorithm

will be a better choice.
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Figure 3. The shared-memory parallel acceleration of the dynamic-ERI algo-
rithm in computing the Cholesky vectors of the Au14 cluster using the Jorge-
TZP-DKH32 basis set (1148 basis functions) with τ = 1 × 10−6. We show the
acceleration ratio, T (1-core)/T (n-core), in the first step, second step, and total
time.

Figure 3 shows the parallel performance of the dynamic-ERI algorithm. As expected, the

matrix product step (T2), by taking advantage of linear algebra libraries, nicely scales with

respect to the number of computing cores. Since not all procedures in the first step (T1) can

be vectorized, its parallel performance is not ideal. However, since the computational cost of

T1 is only a small fraction of that of T2, the overall parallel performance of the dynamic-ERI

algorithm is still near optimal.
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4 Conclusion

In this work, we introduced an efficiency-improved two-step Cholesky-ERI method. The

algorithm focuses on minimizing the floating point operation (FLOP) count in the ERI eval-

uation by employing an ERI tracking, reusing, and eliminating protocol without exhausting

the memory resource. Benchmark tests show that the dynamic-ERI algorithm consistently

outperforms the span-factor approach, with both methods being significantly faster than the

conventional Cholesky-ERI method. The advantage of the dynamic-ERI algorithm becomes

more prominent as more high angular momentum bases are used. We also demonstrated the

excellent parallel scaling of the dynamic-ERI method as the underlying algorithm is designed

to take the full advantage of linear algebra libraries in both steps.
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