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A Graph Partitioning Technique to
Optimize the Physical Integration
of Functional Requirements
for Axiomatic Design
According to the concept of physical integration as understood in axiomatic design, design
parameters of a product should be integrated into a single physical part or a few parts with
the aim of reducing the information content, while still satisfying the independence of func-
tional requirement. However, no specific method is suggested in the literature for determin-
ing the optimal degree of physical integration in a given design. This is particularly
important with the current advancement in technologies such as additive manufacturing.
As new manufacturing technologies allow physical elements to be integrated in new
ways, new methods are needed to help designers optimize physical integration given the
specific constraints and conflicts of each design. This study proposes an algorithm that
uses graph partitioning to allow a designer to optimize the integration of functional require-
ments into a target number of parts, with the goal of minimizing the co-allocation of incom-
patible functional requirements in the same part. The operation and viability of the
algorithm are demonstrated via two numerical examples and a practical example of design-
ing a pencil. [DOI: 10.1115/1.4052702]

Keywords: design integration, design theory and methodology, graph partitioning,
axiomatic design

1 Introduction
Axiomatic design (AD) was developed by MIT mechanical

engineering professor Num P. Suh in 1976 as the first design meth-
odology to focus on the independence of functional require-
ments (FRs). AD systematically maps a design problem into
several domains (e.g., customer domain, functional domain, physi-
cal domain, and process domain) to enable designers to select the
best design solution while prioritizing two main axioms: the inde-
pendence axiom and the information axiom [1]. Suh developed
these axioms based on the philosophy that good designs share the
same characteristics regardless of their physical nature or their
domain of application. The information axiom requires that the
information content of the design be minimized. The independence
axiom requires that FRs—the actual purposes or functions of differ-
ent parts of the final product—must remain as independent as pos-
sible [2]. The value of the independence axiom is to ensure that if
one of the design parameters (DPs) were to fail, not all FRs
would be affected. The independence axiom transforms a multi-
input/multi-output system into a set of one-input/one-output
systems to maintain the independence of FRs and build a more
robust product [3].
The first step in designing a product is to define the set of FRs.

The minimum set of independent functions that the design should
satisfy is considered the set of FRs. The next step is to map the

set of FRs into the physical domain or a set of DPs. According to
the independence axiom, DPs must be chosen such that the indepen-
dence of FRs are maintained. Once DPs are determined based on
design embodiment principles, designers consider the process
domain and identify the process variables (PVs). PVs often act as
constraints in the system since designers are not free to change
the existing manufacturing processes [2]. AD uses design matrices
to relate FRs with DPs and represents the design using a set of equa-
tions. What makes axiomatic design powerful is that it provides a
quantitative approach to the formation of normative theories of
design [4]. The relationship between the FRs and the DPs is charac-
terized as follows:

FR = [A]DP

Here each element of matrix A, Aij, connects a component of the
FR vector to a component of the DP vector [5]. The characteristics
of design matrix A determine the degree to which the proposed
design satisfies the independence axiom (see Table 1). For
example, a diagonal matrix is an ideal matrix, where each FR is
independently satisfied by one corresponding DP. This is also
referred to as uncoupled design. In the case of a full matrix, the
design violates the independence axiom, since the change of any
single DP has an impact on all FRs. The independence axiom is par-
ticularly useful in the case of multi-objective optimization problems
due to the fact that each FR is independently satisfied by a set of
design variables [6].
So far, over 11 international conferences on axiomatic design have

been held in countries around the world. In addition to the field of
engineering design, AD has impacted a wide range of practices in
other disciplines including, but not limited to healthcare delivery
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systems [7], software design [8], production scheduling [9], manu-
facturing system design [10], supplier selection [11], interactive art
[12], decision science [13], and additive manufacturing [14].
Despite this broad adaptation, there are several flaws in axiomatic

design, including the lack of a structured method for generating
design matrices based on the axioms. Furthermore, the two axioms
do not sufficiently capture all that is needed in a given design,
leaving gaps in the application of human aspects of design [15], con-
sumer preference, market demand [16], manufacturing consider-
ations, and the potential to require a preference structure of
designers [17].Another challenge ofAD is that the goal of uncoupled
design can be confusing at face value—often designers believe that a
simple design is a good design. From this belief, we may conclude
that a coupled design in which one DP satisfies multiple FRs is pre-
ferred [5]. However, the independence axiom does not mean that the
DPsmust be independent nor that eachDPmust correspond to a sepa-
rate physical part. For example, a beverage can is designed to satisfy
12 FRs and has 12DPs, but has only three pieces [2]. In this study, we
would like to address this issue and propose amethod to help design-
ers minimize the total number of physical parts regardless of the
number of DPs. Therefore, a good design could satisfy many DPs
and FRs with a minimum number of parts.
It should be noted that the concept of physical integration is

completely different from modular design. A module is defined as
a part or a group of parts that can be dismantled from the product
in a nondestructive way as a unit [18,19]. Ishii et al. [20] have
referred to modular design as minimizing the number of functions
per part. According to Ulrich and Eppinger [21], the most
modular design is one in which each function is implemented by
exactly one module or subassembly, and there are limited interac-
tions between modules.
With the focus on physical integration of multiple design features

into a single part, researchers have come up with various methods to
quantify the complexity of a design. Decomposition of FR-DP can
result in concrete process variables, which is essential for practically
applicable solutions. However, most of the complexities have been
resorted between FRs and DPs [22–24]. There are several existing
complexity quantifying methods. Generally, these existing methods
first introduce the concept of changeability and the use of axiomatic
design when designing production equipment, and then, design-
solution-specific barriers to flexibility and changeability are
described [25,26].
The idea behind physical integration or physical coupling is to

integrate more than one FR in a single component, as long as
FRs remain independent. Therefore, physical integration reduces
the design complexity (at least in the physical domain). While
designers are in favor of physical integration, there is no normative
approach on how to achieve physical integration using scientific
engineering design techniques.
Kirschman and Fadel [27] have emphasized the usefulness of

function-based methodologies in the design field. Researchers
have already shown the necessity of considering the linkage
between FRs and the number of parts for different reasons
ranging from sustainability to reliability, simplicity, and even offer-
ing new functionalities to existing products. They have developed
qualitative architectural roles and mathematical models to map
functions to physical parts. To name a few, Bonjour et al. [28]
developed a fuzzy method as an inference system in which member-
ship functions define the structure of the design matrix. Then, a
clustering algorithm groups elements of the matrix into modules.
Devanathan et al. [29] emphasized the need for function-oriented

methods at the early design process and suggested considering
FRs and their impact on the number of parts and ultimately on
product sustainability. Kurtoglu and Tumer [30] also considered
the linkage between FRs and physical parts and combined hierarchi-
cal models of functionality and physical configuration at the early
design stage to minimize the risk of functional failure of physical
parts. Zhang et al. [31] discussed the importance of function-based
analyses and proposed a function recommendation process to
suggest adding new functions to an existing product. Bhasin et al.
[32] also discussed function-sharing, enabling multiple functions
to be performed by a single structure, as a success factor in biolog-
ical systems and how it can be employed in the bio-inspired design
field. Along this line, the current study considers the connection
between FRs and physical parts and aims to define the minimum
number of parts needed to satisfy the list of FRs.
In this article, we introduce a graph theory algorithm to help

designers enhance the degree of physical integration and minimize
product complexity by reducing the number of parts. Graph theory
algorithms are widely used in making design decisions [33–35].
Buluç et al. [36] discuss effectiveness of graph partitioning in ana-
lyzing complex networks. Division of graphs into small partitions is
the primary step for making algorithmic operations more efficient.
Therefore, one of the important sub-steps for complexity reduction
or parallelization is graph partitioning. Large graphs are first parti-
tioned into small ones and then they are analyzed. This is highly
helpful in simulations, social networks, or road networks. While dif-
ferent graph partitioning techniques are used, these approaches tend
to share certain basic algorithms [37]. As computing power evolves,
multiple graph partitions can be run in parallel, and ever more
complex systems can be analyzed [38,39].
A look at a few specific studies with different applications of

graph partitioning methods will serve to illustrate the context for
the algorithm proposed in this article. Li et al. [40] used graph par-
titioning techniques to extract reusable 3D computer-aided design
models to improve design reusability. Borisovsky et al. [41]
worked on a machining line design problem consisting of sequences
of workstations equipped with processing modules, called blocks,
each of which performs specific operations. They used a graph par-
titioning technique to integrate machines to perform different sets of
operations.
In this article, we have taken a graph partitioning approach that

which assigns a weighted value to potential conflicts between func-
tional requirements, in order to construct a systematic method for
achieving physical integration in design. Integrating functional
requirements facilitates fewer assembly parts, greater flexibility,
and less logical efforts.
The algorithm proposed in this article provides a new method for

optimizing physical integration, which is especially relevant as new
manufacturing technologies emerge, for example, additive manu-
facturing, which enable novel configurations of geometry and
shape. Our graph partitioning method allows the designer to quan-
titatively determine which FRs to combine in single part, even for
very complex designs, while reducing potential conflict between
those FRs.

2 Proposed Graph Partitioning Method
This article introduces a method to determine the optimal distri-

bution of functional requirements among k parts in a product, given
that the functional requirements may have varying degrees of com-
patibility with one another. We will use graphs to model the rela-
tionships between functional requirements in a product and graph
partitioning in the algorithms to optimize the design.
A graph G is made up of two sets:

V(G) = set of all vertices vi in G

E(G) = set of all edges ei,j in G

where each member ei,j∈E(G) corresponds to a pair of vertices vi, vj
∈V(G). The order of the vertex set, |V|= n, is the number of vertices

Table 1 Three different types of design matrices

Uncoupled design Decoupled design Coupled design

Design matrix A11 0
0 A22

[ ]
A11 0
A21 A22

[ ]
A11 A12

A21 A22

[ ]
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in G. In this article, each of the n vertices v1,…vn, represents one of
the n FRs that we are attempting to group. We will use identification
of vertices in our attempt to find an optimal grouping. To identify
two vertices in a graph G means that we contract or merge two ver-
tices vi and vj. This process entails forming a new vertex vi,j in G.
Furthermore, all edges formerly connected to vi are connected to
the new vertex vi,j and the same for all edges formerly connected
to vj. The edge ei,j between vi and vj, if present, is removed from
the graph. The graph that results from these operations is denoted
as G.vi,j, where vi,j is the new vertex created in the contraction
process. This contraction of identified vertices is the primary
graph operation in our algorithm.

Inputs. The input to our proposed algorithm is a graph G with
weighted edges chosen by the designer to represent the product
under consideration. The designer chooses an integer 2≤ k< n,
where k is the number of discrete parts desired in the final
product and n is the total number of vertices in the graph, where
each vertex represents and FR. We specify that 2≤ k because if
our desired k equals one, then the only solution possible is the
trivial one wherein all FRs are condensed onto one part. If one
desires, it is possible to use other types of weight besides integers,
but whichever set of numbers is used, it should be an ordered one,
i.e., “less than” and “greater than” must be definable attributes. The
selection of weights is admittedly subjective and relies on the
designer’s expertise and interpretation of the relations between
FRs. However, the strength of the algorithm is that it allows the
designer to generate solutions to the FR grouping problem based
on said expertise beyond what the designer can generate manually.
This is especially important as the number of FRs increase: for a
graph modeling n FRs, there are n(n− 1) possible edges represent-
ing the relations between the FRs to consider. Thus, as n increases,
it becomes decreasingly feasible for the designer to conceptualize
these relations. The designer labels the vertices of G as v1, …, vn,
representing the n FRs. The designer places an edge ei,j between
each pair of vertices vi, vj. Each edge is assigned an integer
weight ω(ei,j) such that

0 ≤ ω(ei,j) ≤ ∞

by the designer to indicate the level of conflict between the func-
tional requirements associated with those vertices. In this notation
system, the designer can indicate the degree to which they would
prefer to keep two functional requirements in separate parts of the
final product, where a higher edge weight indicates a stronger pref-
erence to keep functional requirements in separate parts. The
designer will label the edge ei,j with the weight ∞ when it is not
desirable or possible for two functional requirements vi and vj to
be in the same part under any circumstances. In the case where
there is no conflict between two functional requirements, the
designer may assign a weight of 0, or omit that edge.

Algorithm Overview. We propose to enact this process using
the recursive algorithm that is composed of the function 1: main,
with its associated helper functions 2: recur and 3: contract.
The designer builds a graph G, where each vertex of G corresponds
to a functional requirement of the product. Recall that the algorithm
works by attempting different identifications of vertices. Recall also
that the designer has assigned a certain weight, ω(ei,j), to each edge
ei,j in G. Each time when vertices vi and vj are identified and con-
tracted, the weight of the edge between them, ω(ei,j), will be
added to what is known as the cost of G, which starts at zero
before the algorithm has taken any action. The algorithm will
recur among all possible vertex identifications in the graph G
while comparing the cost incurred by those graphs, which have k
vertices and searching for the one with minimum cost. For a
graph to have minimum cost implies that the fewest number of

vertices with great weight in between them, i.e., the vertices repre-
senting the most incompatible FRs, have been identified and con-
tracted together. When this graph with minimum cost is found, it
is referred to as G′ and is the final product of the algorithm. Essen-
tially, main directs the input graph to recur, which is where most
of the computation occurs. As needed, recur calls contract to
perform vertex identifications. When the process is over, main
returns the result, which is graph with k vertices and minimum
cost. It is then up to the human designer to take that solution and
use it to develop a physical product whose FRs are grouped in
accordance with the configuration of G′. We shall now explain in
depth the algorithm’s process, starting with its inputs and then the
functions main, recur, and contract in-turn.

Function main. This function sets the initial conditions of the
algorithm and is its start and end point. The function shall be
explained line by line.

(1) The function sets the minimum possible final cost of G,
minCost, to ∞, since there is no finite expected ceiling on
the total final cost of the graph. The initial value of G.cost,
the cost of the input graph, is zero since no vertices have
been contracted yet.

(2) The function initializes a stack of graphs, empty at first, onto
which candidate solution graphs will be pushed as they are
discovered.

(3) The function invokes recur on G. The end result of recur
is the solution graphG′, which will be placed onto the graph-
Stack. The specifics of what occurs in the function recur
will be described in the next subsection.

(4) The solution graph G′ is popped off graphStack and returned
as the algorithm output.

Function recur. This is a recursive function that traverses all
possible configurations of G until it finds a graph with k parts and
minimum cost among all the graphs with k parts. The function
shall be explained line by line.

(1) A conditional check occurs to ensure that the current
running cost G.cost of the graph G does not exceed the
established minimum cost, minCost. Also, it checks to see
whether minCost is greater than zero. The purpose of this
step is to halt the exploration of any branch of graphs
whose identifications have already exceeded the minimum
cost and also to prevent further exploration when a solution
of minimum cost has already been derived. Since the initial
values are set to G.cost= 0 and minCost=∞ for the input
graph, the first run through the algorithm will not trigger
this cutoff, and we can proceed.

(2) The function checks to see if the graph has successfully
been contracted to k or fewer vertices. If so, we proceed
to line 3. If G still has more than k vertices, the algorithm
skips to line 6. During the initial call to recur, G still
has n vertices, so the algorithm skips to line 6.

(3) The function now sets minCost to be G.cost, that is, because
of the check done on line 1, we know that the graph we are
now looking at must have the new minimum cost.

(4) Since the graph under consideration has k parts and
minimum cost, the function pushes it onto the graphStack
as our current best solution. Exploration of the current
branch of graphs ends at this point, and the algorithm back-
tracks to explore a new one. Note that we need not explicitly
tell it to do so: in a recursive algorithm, this occurs
spontaneously.

(5) The if block spanning lines 2–4 ends.
(6) Here, a for loop begins, which iterate over the vertex pairs

in G. Note that as G is modified, the set of vertices will
change. For example, at the outset, the vertex set of G is
{v1, v2, …, vn}. Suppose vertices v1 and v2 are identified
and contracted into one vertex. Then, the new vertex set
will be {v1,2, v3, …, vn}.
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(7) A conditional check occurs to see if the edge ei,j between vi,
vj, the vertices under investigation, has infinite weight. If so,
there is nothing more to do with these vertices and we go
back to line 6 and move on to the next pair. If ei,j has
finite weight, we proceed to line 8.

(8) Here, the function first identifies and contracts the vertices
vi, vj into the new vertex vi,j. The graph produced is called
G.vi,j. The specifics of how contract does this will be
explained in the next subsection. Once contract is fin-
ished, the function calls recur, which effectively sends
us back to line 1, but with G.vi,j instead of G, which
then goes through the same processes we described in
lines 2–7. This process will recur for as long as it takes to
exhaust all branches descendant of G.vi,j for solutions, sup-
posing they exist. Only then can we proceed to line 9. Note
that we are not proceeding to line 9 with G.vi,j, since that
graph is created and used specifically on the current line.

(9) Instead of identifying and contracting vi, vj, we instead
assign infinite weight to the edge ei,j between them. The
graph produced is called G ∪ ei,j.

(10) The function calls recur, which effectively sends us back
to line 1, but with G ∪ ei,j instead of G, which then goes
through the same processes we described in lines 2–7.
This process will recur for as long as it takes to exhaust
all branches descendant of G ∪ ei,j for solutions, supposing
they exist. Then, we return to line 6 and move on to the next
pair of vertices.

Function contract. This function takes as input a graph G
and a pair of vertices vi, vj and contracts them into a single new
vertex vi,j. This entails taking every edge adjacent to vi and attaching
them to vi,j and likewise for vj. Whatever weight was on the edge ei,j
between them gets added to the cost of G.

(1) The function increases the cost of G by the weight of ei,j,
since this edge will soon be contracted.

(2) We create a new vertex in G, called vi,j.
(3) The function enters a for loop that iterates over every vertex

vx adjacent to vi. That is, we shall iterate over every vertex vx
such that ei,x is an existing edge.

(4) We make vx adjacent to the new vertex vi,j created in line 2 by
creating a new edge, which we call ei,j,x.

(5) We assign the weight ω(ei,x) to the new edge ei,j,x. We then
return to line 3, while there are still unprocessed vertices
adjacent to vi.

(6) The function enters a for loop that iterates over every vertex
vy adjacent to vj. That is, we shall iterate over every vertex vy
such that ej,y is an existing edge.

(7) We make vy adjacent to the new vertex vi,j created in line 2 by
creating a new edge, which we call ei,j,y.

(8) We assign the weight ω(ej,y) to the new edge ei,j,y. We then
return to line 7 while there are still unprocessed vertices adja-
cent to vj.

(9) The new vertex vi,j is now correctly initialized, so we discard
vi and vj. The graph G is now called G.vi,j.

FUNCTION 1 main

Input: A graph G, with an initial cost, G.cost = 0
Output: A set of graphs contracted from G having k vertices each
1 Let minCost =∞;
2 Let graphStack be a new stack;
3 recur(G);
4 pop G′ off of graphStack;

FUNCTION 2 recur

Input: A graph G
Output: void
Result: A list of graphs contracted from G having k vertices each
1 if G.cost ≤ minCost and minCost > 0 then
2 if G has k or fewer vertices then
3 minCost = G.cost;
4 push G onto graphStack;
5 end
6 for each vertex pair vi, vj in G do
7 if ω(ei,j) <∞ then
8 recur(contract(G,vi,vj));
9 ω(ei,j) = ∞;
10 recur(G);
11 end
12 end
13 end

FUNCTION 3 contract

Input: A graph G, and two vertices vi, vj in G
Output: G with vi and vj contracted
1 G.cost +=ω(ei,j);
2 Let vi,j be a new vertex in G;
3 for each vertex vx adjacent to vi do
4 make vx adjacent to vi,j;
5 ω(ei,j,x) + =ω(ei,x));
6 end
7 for each vertex vy adjacent to vj do
8 make vy adjacent to vi,j;
9 ω(ei,j,y) + =ω(e j,y);
10 end
11 delete vi, vj from G;

3 Numerical Example
In this section, we provide two numerical examples that illus-

trates how the algorithm acts on a graph to assign its functional
requirements to a fixed number of parts. In the first example, we
attempt to optimally assign the four functional requirements repre-
sented by the vertices v1, v2, v3, and v4 of the graph G1 into three
parts. The graph G1 itself is shown in Fig. 1. The weights
between the vertices, i.e., ω(ei,j), quantify the extent to which we
desire to keep the FRs represented by those vertices in separate
parts in the final product.
Figure 2 demonstrates this process graphically as a binary tree,

which is traversed in a depth-first fashion. The changes made to
G1 are explained with regards to the letter-labeled arrows. That is,
each letter in the list below describes the effect on the input graph
of the arrow labeled with that letter. We start at the initial input
graph G1 seen at the top-left of Fig. 2.

(a) The vertices v1 and v2 are identified and become the vertex
v1,2. The edge e1,2 has weigh 1. Therefore this action
increases the total cost from 0 to 1. The graph now hasFig. 1 Example graph G1
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three parts as desired and finite cost, so this graph becomes
the first solution candidate.

(b) The vertices v1 and v2 are insulated from each other by setting
the weight of the edge e1,2 to ∞.

(c) The vertices v1 and v2 are identified and become the vertex
v1,2. The edge e1,2 has weigh 0. No cost is incurred from
this action, and the graph now has three parts as required
and has lesser cost than our previous graph obtained in
a. Furthermore, since no lesser cost is possible, the algorithm
returns this graph as an optimal solution.

In the previous example, the best solution happens to be an
answer that combines vertices with no weight on the edges
between them and therefore 0 cost. But this is not the case by neces-
sity, and we should not in general expect a result with 0 cost. In fact,
the contraction operation makes this unlikely with repeated use
since contraction combines edges as well as vertices. The aim is
to partition the vertex set into a given number of parts in a way
that minimizes the cost part-wise. That is, the cost is the sum of
weights of edges within the parts. When it is 0, it means that we
have a perfect answer that necessitates no compromise from the
designer’s perspective. Our next example, however, has no such
solution.Fig. 2 The algorithm reduces G1 to three parts

Fig. 3 The algorithm reduces G1 TO two parts
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Suppose instead that we desire to reduce the graph G1 to two
parts. Our algorithm is able to accomplish this just as well,
though the generated process is more complex. The process is illus-
trated in Fig. 3. As mentioned earlier, the changes made to G1 are
explained with regards to the letter-labeled arrows. We start at the
initial input graph G1 seen at the top-left of Fig. 3.

(a) The vertices v1 and v2 are identified and become the vertex
v1,2. The edge e1,2 has weigh 1. Therefore this action
increases the total cost from 0 to 1. The graph now has
three parts.

(b) The vertices v1,2 and v3 are identified and become the vertex
v1,2,3. The edge e1,2,3 has weigh 9. Therefore this action
increases the total cost from 1 to 3. The graph now has
two parts as desired and finite cost, so this graph becomes
the first solution candidate.

(c) The vertices v1,2 and v3 are insulated from each other by
setting the weight of the edge e1,2,3 to ∞.

(d) The vertices v1,2 and v3 are identified and become the vertex
v1,2,3. The edge e1,2,3 has weigh 9. Therefore this action
increases the total cost from 1 to 10. The graph now has
two parts as desired, but its cost is higher than that obtained
in step b and is discarded.

(e) The vertices v1,2 and v4 are insulated from each other by
setting the weight of the edge e1,2,4 to ∞.

(f) The vertices v3 and v4 are identified and become the vertex
v3,4. The edge e3,4 has weigh 3. Therefore this action
increases the total cost from 1 to 4. The graph now has
two parts as desired, but its cost is higher than that obtained
in step b and is discarded.

(g) The vertices v1 and v2 are insulated from each other by
setting the weight of the edge e1,2 to ∞.

(h) The vertices v1 and v3 are identified and become the vertex
v1,3. The edge e1,3 has weigh 0. No cost is incurred.

(i) The vertices v1,3 and v4 are identified and become the vertex
v1,3,4. The edge e1,3,4 has weigh 8. Therefore this action
increases the total cost from 0 to 8. The graph now has
two parts as desired, but its cost is higher than that obtained
in step b and is discarded.

(j) The vertices v1,3 and v4 are insulated from each other by
setting the weight of the edge e1,3,4 to ∞.

(k) The vertices v2 and v4 are identified and become the vertex
v2,4. The edge e2,4 has weigh 4. Therefore this action
increases the total cost from 0 to 4. The graph now has
two parts as desired, but its cost is higher than that obtained
in step b and is discarded.

(l) The vertices v1 and v3 are insulated from each other by
setting the weight of the edge e1,3 to ∞.

(m) The vertices v1 and v4 are identified and become the vertex
v1,4. The edge e1,4 has weigh 5. We discard this graph
without further exploration since its cost is higher than
that obtained in step b.

(n) The vertices v1 and v4 are insulated from each other by
setting the weight of the edge e1,4 to ∞.

(o) The vertices v2 and v3 are identified and become the vertex
v2,3. The edge e2,3 has weigh 2. Therefore this action
increases the total cost from 0 to 2.

(p) The vertices v2,3 and v4 are identified and become the vertex
v2,3,4. The edge e2,3,4 has weigh 7. Therefore this action
increases the total cost from 2 to 9. The graph now has
two parts as desired, but its cost is higher than that obtained
in step b and is discarded.

(q) The vertices v2 and v3 are insulated from each other by
setting the weight of the edge e2,3 to ∞. Note that the algo-
rithm will not any attempt more insulation, since doing so
would make it impossible to end up with two parts.

(r) The vertices v2 and v4 are identified and become the vertex
v2,4. The edge e2,4 has weigh 4. The algorithm terminates for
two reasons: all vertices are now insulated, meaning no
further action is possible, and the cost is higher than that

obtained in step b. The graph obtained in step b with k
parts and cost 3, which is now assured to be the minimum
of all generated, is returned as the solution.

4 Practical Example: Pencil Design
In the previous section, we demonstrated the result of the algo-

rithm on two numerical examples. In this section, we illustrate a
more practical case. Suppose we wished to design a mechanical
pencil. Such a device could have the following functional require-
ments depending on the type of pencil:

FR1: Allow erasing FR6: Position lead
FR2: Store lead FR7: Be hand-holdable
FR3: Store erasure material FR8: Allow user to attach to
FR4: Extrude lead clothes or paper sheets
FR5: Grasp lead FR9: Protect internal parts

The designer in this case has decided to segregate FR1 and FR6
from all the other FRs. In the case of FR1, it is because the designer
believes that a part that can allow erasing would be made of an self-
ablative substance that cannot satisfactorily embody any of the
other FRs enumerated. Similarly, for FR6, the function of position-
ing lead requires a part of precise dimension as to mate properly
with the lead, but the designer does not believe such precision is
needed to meet the other FRs. Thus, the graph that models these
FRs and their relations shall have FR1 and FR6 adjacent to all
other vertices of the graph and with infinite weight assigned to
those edges. The other edges receive the lesser values enumerated
as follows.

ω(e1,2)=∞ ω(e3,6)=∞
ω(e1,3)=∞ ω(e3,8)= 1
ω(e1,4)=∞ ω(e3,9)=∞
ω(e1,5)=∞ ω(e4,5)= 2
ω(e1,6)=∞ ω(e4,6)=∞
ω(e1,7)=∞ ω(e4,8)=∞
ω(e1,8)=∞ ω(e5,6)=∞
ω(e1,9)=∞ ω(e5,8)=∞
ω(e2,3)= 2 ω(e6,7)=∞
ω(e2,9)= 5 ω(e6,8)=∞
ω(e2,6)=∞ ω(e6,9)=∞
ω(e2,8)=∞ ω(e7,8)=∞
ω(e3,4)= 1 ω(e7,9)= 1
ω(e3,5)= 2 ω(e8,9)=∞

Fig. 4 The graph GP, showing the relations between the nine
functional requirements. Weights are tabulated in the text.
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The graph representing these FRs and edges is shown in Fig. 4. It
has nine vertices v1, v2, …, v9, representing the nine FRs of the
pencil. The edge weights are absent from the actual figure for the
sake of clarity, but may be referenced in the list above.
The result of the algorithm acting on Gp is shown in Fig. 5, where

Gp
′ is displayed along with the cost accrued in creating it. As

desired, FR1 and FR6 are their own parts, while FR2, FR4, and
FR5 are grouped; FR3 and FR8 are grouped; and FR7 and FR9
are grouped. This matches the set goal of five parts. This tells the
designer that according to the criteria that they input, this grouping
of FRs minimizes the incidence of incompatible FRs being
co-allocated together. It is then the designer’s job to create a
design that takes this recommendation into account. For example,
in Fig. 6, we see an actual pencil that embodies this solution,
where the FRs are allocated to the pencil’s parts in the following
manner:

Eraser – FR1
Chuck Assembly – FR2, FR4, FR5,
Clip – FR3, FR8
Tip and Sleeve – FR6
Body – FR7, FR9

Of course, this is not the only possible design that satisfies this
grouping of FRs. But the goal of the algorithm is not to find the spe-
cific design, only a grouping of FRs that is favorable according to
the designer’s criteria. Design is a complex decision-making
process moving from the voice of customers to FRs and then con-
verting FRs in the conceptual design phase to DPs and process
parameters in the physical domain phase. Once designers identify
the list of FRs needed in a design, they may look for solution prin-
ciples currently available in the market and physical domain incor-
porate the FRs. For example, if the required function is to facilitate
“rotation to translation” in a mechanical device, designers based on
previous experience and available solutions principles in the market

realize that a “crank-slider” or a “rack-and-pinion” mechanism is
needed in the design. Our proposed algorithm can be applied
right before designers select the proper solution principles available
in the physical domain at which point it can guide them in the
process of combining FRs and the process of finding a solution prin-
ciple to address multiple functions at the same time. It should be
noted that the proposed algorithm is by no means a replacement
for designer expertise or the feasibility analysis of specific
designs, but it rather a tool to help them quantify their extant knowl-
edge on the feasibility of combining FRs and consider it as an input
while selecting the proper solution principle in the physical domain.

5 Conclusion
This research deals with analyzing the concept of physical inte-

gration originated in axiomatic design field. A graph partitioning
method is proposed for determining the best pairs of FRs that can
be physically integrated into a single part. The proposed method
is employed for two numerical examples and one example of
designing a pencil, which initially is made of nine FRs. It has
been shown that the number of parts can be reduced to five parts
where all the FRs are independent and serves its purpose.
This research can be extended in several ways. The algorithm can

be extended to determine the optimum assignment of FRs while
satisfying the independence of the FRs as one of the main principles
of axiomatic design. In addition, the information content of each
design alternative can be calculated as another factor to be added
to the algorithm. Furthermore, the proposed method can be
extended to determine the optimal number of parts needed to
satisfy the predefined set of FRs. The proposed method is one
step toward developing methods that can help designers define
the optimal degree of physical integration for design alternatives.
An important area of concern is the degree to which the algorithm
is sensitive to variances in input, especially since its input parame-
ters have a degree of subjectivity. Sensitivity analyses should be run
to investigate the impacts of subjective parameters selected by dif-
ferent designers and different levels of expertise, which would
enable comparison of the outputs. Also, it should be investigated
what effect, if any, using different number sets besides the integers
might have on the algorithm output, with the goal of making sure
designers are enabled to assign weights in as near an objective
way as possible.
This study can be extended to more complex designs with more

number of parts and FRs. The implementation of the outputs of the
proposed algorithm is feasible through the recent advancement in
additive manufacturing where parts with different geometries and
shapes are manufacturable. Another area for future research is to
study the economic viability and efficiency of physically integrated
parts considering that the number of parts, manufacturing processes,
and assembly times may be reduced. In addition, the proposed algo-
rithm can be run for more complicated designs to better reveal the
performance of the algorithm under different conditions. In
the case of complex systems, not every part needs to be printed at
the same time. Instead integrated parts can be printed separately
and be assembled together to reduce the operation time and cost.
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Fig. 6 A five-part pencil embodying GP
′

Fig. 5 Graph GP
′ , after the algorithm has reduced it to five parts.

It has cost 4 as indicated in the box.
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Nomenclature
G = a graph composed of a vertex set V(G) and an edge

set E(G)
|E| = the number of edges in a graph G
|V| = the number of vertices in a graph G
ei,j = an edge in a graph between vertices vi and vj,

where i and j are natural numbers
v1, v2, …, vn = the n vertices of a graph G

G+ ei,j = the graph formed from G by adding the edge ei,j
G · vi,j = the graph formed from G by identifying the

vertices vi and vj into the single vertex vi,j
G ∪ ei,j = the graph formed from G by placing an edge of

weight ∞ between the vertices vi and vj
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