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ABSTRACT
In this paper, we consider contention resolution algorithms that

are augmented with predictions about the network. We begin by

studying the natural setup in which the algorithm is provided a

distribution defined over the possible network sizes that predicts

the likelihood of each size occurring. The goal is to leverage the

predictive power of this distribution to improve on worst-case time

complexity bounds. Using a novel connection between contention

resolution and information theory, we prove lower bounds on the

expected time complexity with respect to the Shannon entropy

of the corresponding network size random variable, for both the

collision detection and no collision detection assumptions. We then

analyze upper bounds for these settings, assuming now that the

distribution provided as input might differ from the actual distri-

bution generating network sizes. We express their performance

with respect to both entropy and the statistical divergence between

the two distributions—allowing us to quantify the cost of poor

predictions. Finally, we turn our attention to the related perfect

advice setting, parameterized with a length 𝑏 ≥ 0, in which all

active processes in a given execution are provided the best possible

𝑏 bits of information about their network. We provide tight bounds

on the speed-up possible with respect to 𝑏 for deterministic and

randomized algorithms, with and without collision detection. These

bounds provide a fundamental limit on the maximum power that

can be provided by any predictive model with a bounded output

size.
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1 INTRODUCTION
In this paper, we study distributed algorithms that leverage predic-

tions about their environment to improve worst-case performance

bounds. Motivated by recent investigations in the context of sequen-

tial algorithms (e.g., [18]), we imagine these predictions might be

generated in practice by machine learning models able to observe

the behavior of a given environment over time. As Mitzenmacher

and Vassilvitskii note in their recent study of the ski rental problem

with predictions [18], one appealing goal for this general approach

is to produce algorithms that perform no worse than our current

optimal solutions, but that will subsequently improve “for free”

as the machine learning models generating the predictions they

leverage improve in the future.

To help establish foundations for studying distributed algorithms

with predictions, we focus on the classical contention resolution

problem, as it is both simple and well-studied. We begin by produc-

ing new lower and upper bounds on the speed-up achievable when

the algorithm is provided a predicted distribution over network

sizes. To achieve the strongest results, our lower bounds assume

the distribution accurately describes the likelihood of each network

size occurring, while our upper bounds explicitly capture how this

performance degrades with respect to the Kullback–Leibler (KL)

divergence between the predicted distribution and the actual distri-

bution. We also study lower and upper bounds for a perfect advice
setting in which all active processes are provided the same 𝑏 bits

of advice generated by a function with perfect knowledge of the

network. The goal here is to understand the maximum possible

improvement for a given amount of information.

As we elaborate below, our network size prediction results are

built on a novel connection between contention resolution and

information theory, leading to speed-up results expressed with

respect to the entropy of the size distribution, lower bounds that

leverage the classical Source Code Theorem for optimal coding

on noiseless channels, and upper bounds that use optimal codes

in their design. A nice property of our information theory-based

lower bounds is that when they are applied to distributions with

high entropy, they match (or almost match) longstanding existing

lower bounds for contention resolution with uniform algorithms,

highlighting yet another mathematical framework through which

to understand this fundamental problem.
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1.1 Contention Resolution with Network Size
Predictions

The contention resolution problem assumes an unknown and non-

empty subset 𝑃 ⊆ 𝑉 of players from |𝑉 | = 𝑛 possible participants

are activated and connected to a shared channel. Time proceeds

in synchronous rounds. In each round, each player can choose to

transmit or receive. If two or more players transmit, all messages in

that round are lost due to collision. If the channel supports collision

detection, all players (including the transmitters) detect a collision.

If the channel does not support collision detection, then players

detect silence. The problem is solved in the first round in which

exactly one player transmits.

In resolving contention on a shared channel, knowing the size

𝑘 of the participant set 𝑃 is useful. Indeed, many of the standard

optimal worst-case algorithms operate by efficiently trying to find

a good estimate of this size. The decay strategy for channels with-

out collision detection, for example, introduced by Bar Yehuda et

al. [3], can be understood as cycling through log𝑛 geometrically-

distributed guesses of the network size. Given collision detection,

Willard’s algorithm [23] achieves optimal time complexity by con-

ducting a binary search over these same guesses.

In a worst-case setting in which no information is provided about

the network size, Jurdziński and Stachowiak proved a lower bound

of Ω(log𝑛/log log𝑛) on the expected rounds to solve contention

resolution with no collision detection and uniform algorithms (in

which probabilities are fixed in advance) [15]. Colton et al. [12]

later eliminated the log log𝑛 factor, and Newport [19] subsequently

generalized the bound to non-uniform algorithms. These results

match the 𝑂 (log𝑛) expected round complexity of the decay strat-
egy [3]. When collision detection is available, Willard establishes

Θ(log log𝑛) to be a tight bound [23].

In both the collision detection and no collision detection settings,

if the algorithm is given an accurate estimate
ˆ𝑘 = Θ(𝑘) of the

actual network size 𝑘 , the problem can be solved in 𝑂 (1) rounds
in expectation by simply transmitting with probability 1/ ˆ𝑘 in each

round. In real networks, however, it may be difficult to predict with

confidence the exact network size to expect next. It is arguably

more likely that learning models will generate distributions over
the likelihood of various sizes. The relevant question we explore in

Section 2, therefore, is howmuch prediction distributions of varying

usefulness and quality allow us to speed-up from the worst-case

toward the best-case bounds.

In Section 2, we augment the standard contention resolution

problem to provide each algorithm as input the definition of a

random variable 𝑋 defined over the possible participant set sizes

from 1 to𝑛. The goal is to use the distribution defining𝑋 to speed up

contention resolution if possible. (For concision, in the following

we sometimes say the algorithm is provided a random variable

over network sizes as input. In these instances, we mean that the

algorithm is provided as input the full distribution defining the

variable.)

As we argued earlier, however, we do not need the exact net-

work size to solve contention resolution fast. An estimate within

a constant factor of the real size is sufficient. Given a network

size random variable 𝑋 , let 𝑐 (𝑋 ) be the condensed version of 𝑋

that aggregates the probability mass over ⌈log𝑛⌉ values ranges of

Lower

Bounds (*)

Upper

Bounds (*)

No Collision

Detection

Ω

(
2
𝐻 (𝑐 (𝑋 ) )

log log𝑛

)
𝑂

(
2
2𝐻 (𝑐 (𝑋 ))

)
Collision

Detection

𝐻 (𝑐 (𝑋 ))
2

−𝑂 (log log log log𝑛) 𝑂 (𝐻2 (𝑐 (𝑋 )))

Table 1: Here we summarize our results for contention reso-
lution with network size predictions.𝐻 (𝑐 (𝑋 )) represents the
entropy of the condensed probability distribution over the
possible network sizes.
(*) Lower bounds are expressed as the expected number of
rounds while upper bounds are expressed with respect the
number of rounds with at least constant probability.

geometrically increasing size. Formally, for each 𝑖 ∈ [⌈log𝑛⌉] let

Pr (𝑐 (𝑋 ) = 𝑖) =
∑

2
𝑖−1< 𝑗≤2𝑖

𝑝 𝑗 .

Intuitively, knowing a value 𝑖 ∈ [⌈log𝑛⌉], such that 𝑘 = Θ(2𝑖 ), is
sufficient. We therefore express the bounds that follow for a given

𝑋 with respect to 𝑐 (𝑋 ).

Lower Bounds. Webeginwith lower bounds. To achieve the strongest

possible result, we assume that the variable 𝑋 is accurate, in the

sense that the network will actually determine the number of par-

ticipants according to 𝑋 . We also assume uniform algorithms in

which all players use the same transmission probability in each

round from a fixed schedule.
1

Intuitively, if 𝑐 (𝑋 ) places all of its probability mass on a single

network size range, then we are in the perfect prediction setting

and can solve the problem in𝑂 (1) rounds. On the other extreme, if

𝑐 (𝑋 ) describes a uniform distribution, we are likely unable to do

much better than the worst-case bounds. To describe these cases

we need a property of these distributions that succinctly captures

their predictive power. The natural candidate here is entropy—and
this is indeed what we we end up deploying in our results.

We begin in Section 2.3 by considering contention resolution

without collision detection. We prove that for a given network size

random variable 𝑋 , contention resolution requires Ω
(
2
𝐻 (𝑐 (𝑋 ) )

log log𝑛

)
rounds in expectation, where 𝐻 denotes Shannon entropy. For

maximum values of 𝐻 (𝑐 (𝑋 )), this reduces to Ω(log𝑛/log log𝑛)
rounds, exactly matching the original uniform algorithm lower

bound from [15]—a result that is interesting in its own right, as it

shows yet another approach to proving limits to this fundamental

problem.

The core idea driving this bound is a connection between con-

tention resolution and coding. Using a reduction argument involv-

ing an intermediate game we call range finding, we formalize the

intuition that solving contention resolution requires an algorithm

to try a transmission probability relatively close to the optimal

probability. We can therefore use a contention resolution algorithm

designed for 𝑋 to help construct a code for a given symbol source

𝑐 (𝑋 ). Let 𝑠 ∈ [⌈log𝑛⌉] be the symbol to be transmitted.We can then

1
It is important to point out that until recent work [19], most existing lower bounds

for contention resolution assumed uniform algorithms.
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consider the execution of our algorithm in a network of size 2
𝑠
, and

identify the first round 𝑟 such that the algorithm attempts a trans-

mission probability near 2
−𝑠
, and send 𝑟 to the receiver. Because

the receiver knows the same algorithm, it can use the probability

scheduled for round 𝑟 to determine 𝑠 . If the algorithm terminates

fast in expectation with respect to 𝑋 , then the expected code length

of our code for 𝑐 (𝑋 ) is small. The Source Code Theorem (see Sec-

tion 2.2), however, tells us that the average code length for 𝑐 (𝑋 ) is
lower bounded by 𝐻 (𝑐 (𝑋 )). Because, roughly speaking, the code

length is computed as the logarithm of the round complexity, we

get a bound of roughly 2
𝑐 (𝐻 (𝑋 ))

rounds.

In Section 2.4, we leverage a similar connection between con-

tention resolution and information theory to prove that given colli-

sion detection, uniform algorithms that solve contention resolution

with respect to a network size variable𝑋 require Ω(𝐻 (𝑐 (𝑋 ))) in ex-

pectation. For the maximum possible entropy of 𝑐 (𝑋 ), this matches

the original Ω(log log𝑛) lower bound proven by Willard, using

non-information theoretic techniques [23].

A uniform algorithm in the collision detection setting can be

understand as a function that maps a binary collision history
2
to

the uniform probability that all players try in the current round

given the current collision history. We show how to construct a

code for 𝑐 (𝑋 ) for such an algorithm by directly sending the shortest

collision history that corresponds to a probability well-matched to

the current symbol. (As in the no collision detection case, there is

actually an intermediate step involved here where our contention

resolution algorithm reduces to a simpler game called range finding,

and it is in fact this range finding solution from which we generate

our code.) In this case, they round complexity is the same as the

code length. It follows that𝐻 (𝑐 (𝑋 )) must bound the expected value

of the former.

Upper Bounds. We next turn our attention to produce contention

resolution upper bounds that take a network size random variable

as input and attempt to come as close as possible to matching the

relevant lower bounds. We start in Section 2.5 with an algorithm for

the no collision detection setting. Let 𝑋 be the actual distribution

fromwhich the network size will be drawn. Let𝑌 be the distribution

the algorithm is given as input (e.g., the distribution learned). We

analyze a natural strategy: sort the values in [⌈log𝑛⌉] in decreasing

order of likelihood given 𝑐 (𝑌 ); visit these values in turn, for each

such 𝑖 transmitting withing probability 2
−𝑖
.

We prove that with constant probability, this strategy succeeds

in 𝑂 (2𝑇 ) rounds, where:

𝑇 = 2𝐻 (𝑐 (𝑋 )) + 2𝐷𝐾𝐿 (𝑐 (𝑋 )∥𝑐 (𝑌 )),
and 𝐷𝐾𝐿 denotes the Kullback–Leibler divergence between the

two distributions (see Section 2.2). When 𝑌 = 𝑋 , this simplifies to

𝑂 (22𝐻 (𝑐 (𝑋 )) ) which matches the same general exponential form

of our lower bound, but includes an extra constant factor in the

exponent. We conjecture that something like this extra factor may

be fundamental in the analysis of this natural strategy. We sup-

port this conjecture by noting a straightforward application of a

2
In the collision detection model, in every round, either every player detects a collision

or no player detects a collision. We can therefore encode this history for the 𝑟 rounds

of an execution as a binary string 𝑏1𝑏2 . . . 𝑏𝑟 , where 𝑏𝑖 = 0 if there was no collision

in round 𝑖 , and 𝑏𝑖 = 1 if there was a collision in 𝑖 .

cryptography result due to Pliam [20] indicates that for every con-

stant 𝛼 ≥ 1, there is a random variable 𝑋𝛼 such that this strategy

requires more than 𝛼2𝐻 (𝑐 (𝑋𝛼 ))
rounds to succeed with constant

probability.
3

An important characteristic of the Kullback–Leibler divergence

is that is if each probability in𝑌 is off by at most a bounded constant

fraction from the real probability in 𝑋 , 𝐷𝐾𝐿 (𝑐 (𝑋 )∥𝑐 (𝑌 )) = 𝑂 (1).
This establishes that our algorithm does not require a precise pre-

diction to be useful, and its efficiency will increase smoothly along

with prediction quality.

In Section 2.4, we consider algorithms for the collision detector

setting. Given network size variable𝑌 , the algorithm first constructs

an optimal code 𝑓 with respect to source 𝑐 (𝑌 ). It then considers

all codes from shortest to longest in length. For each length ℓ , it

considers all symbols mapped to codes of this length. Ordering these

symbols from smallest to largest, it deploys the collision detector-

driven binary search strategy introduced by Willard [23] to explore

if any of these symbols correspond to the correct network size.

We show this algorithm solves contention resolution with con-

stant probability in𝑂 ((𝐻 (𝑐 (𝑋 ))+𝐷𝐾𝐿 (𝑐 (𝑋 )∥𝑐 (𝑌 ))2) rounds, which
reduces to𝑂 ((𝐻 (𝑐 (𝑋 )))2) when the probabilities in𝑌 are all within

a bounded constant factor of the real probabilities in 𝑋 . As before,

our upper bound shares the same general form as the lower bound

(in this case, a result expressed as a polynomial of 𝐻 (𝑐 (𝑋 ))), but
is not exactly tight. Closing these final gaps between the upper

and lower bounds for small divergence is not obvious, but likely

tractable; and therefore left as intriguing future work. We also note

that for clarity, we focused only on one-shot attempts to resolve

contention that succeed with constant probability. Achieving good

bounds on expected time also represents important future work.

1.2 Contention Resolution with Perfect Advice
In the interest of further expanding our foundational understanding

of contention resolution with predictions, in Section 3 we consider

contention resolution with so-called perfect advice. In more detail,

we fix parameter 𝑏 on the maximum number of bits of informa-

tion provided to the algorithm as advice or predictions about the

network. We assume an advice function 𝑓𝐴 that returns the same

advice 𝑓𝐴 (𝑃) of size 𝑏 bits to every node in the set 𝑃 of participat-

ing players. We seek to understand tight bounds on the speed-up

possible given 𝑏 bits of perfect advice. Tight bounds here charac-

terize the best possible improvements possible for a given quantity

of advice—lower bounds that can later inform the study of more

specific prediction models.

We prove this question amenable to analysis by providing tight

asymptotic bounds on achievable speed-up, with respect to param-

eter 𝑏, for both deterministic and randomized algorithms, with and

without collision detection. Our lower bound results for determin-

istic algorithms leverage existing lower bounds on a combinatorial

object called a strongly selective family [6], whereas our randomized

lower bounds leverage a reduction from the well-understood case

where 𝑏 = 0.

3
To be more precise, the result in [20] can be used to show more than 𝛼2𝐻 (𝑐 (𝑋𝛼 ) )

rounds are needed to arrive at the exact correct value. Formalizing this result would

require quantification of the reality that an exact guess is not needed to solve the prob-

lem. This crude application, however, serves its purpose of bolstering our conjecture

that 2
𝐻 (𝑐 (𝑋 ) )

is insufficient.
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Deterministic Randomized

No Collision Detection Θ
(
𝑛1−𝑏/log𝑛

)
Θ(log𝑛/2𝑏 )

Collision Detection Θ(log𝑛 − 𝑏) Θ(log log𝑛 − 𝑏)
Table 2: Here we summarize our results for deterministic
and randomized contention resolution given𝑏 bits of perfect
advice. The randomized results are expressedwith respect to
expected round complexity. All bounds presented are tight.

1.3 Other Related Work
There is a long history of studying algorithms for contention reso-

lution in wireless networks, from Chlamtac and Kutten in 1985 [5]

and Willard [23] to the present, including tight upper and lower

bounds for the problem in a variety of settings (e.g., with and with-

out collision detection). Several recent directions have influenced

this paper.

First, there have been a series of papers recently looking at

the minimum number of bits of information per node needed to

solve broadcast in a multihop wireless network. In 2006, Fraigniaud,

Ilcinkas, and Pelc [13] proposed measuring the amount of advice
needed to solve various a distributed problems, and later Ilcinkas,

Kowalski, and Pelc [14] applied this to the problem of broadcast in

a radio network. Further results on this were given by Ellen, Gorain,

Miller, and Pelc [11], Ellen and Gilbert [10], and Bu, Potop-Butucaru,

and Rabie [4]. These results differed from our results on perfect

advice in Section 3 in that they focused on multihop networks,

giving a small number of distinct bits of advice to each node. Thus

the total number of bits of advice (e.g., Θ(𝑛)) was significantly
larger than in this paper.

Second, there has been much interest lately on how well al-

gorithms can do with additional advice. The general idea is that

machine learning and other prediction techniques may be able

to sometimes provide good advice that allows algorithms to run

faster; the challenge lies in ensuring that they continue to perform

well when the advice is faulty. Much of this direction began with

Mitzenmacher’s work on the Learned Bloom Filter in 2018 [17], and

has continued with a variety of related online algorithms such as

work by Kumar, Purohit and Svitkina’s [21] and Lattanzi, Lavastida,

Moseley and Vassilvitskii [16] on scheduling. Our paper does not

focus on machine learning per se, but does look at how extra infor-

mation can help a distributed algorithm, and examines the impact

on performance of faulty advice.

Third, one of the goals of this paper is to construct a connec-

tion between information theory and distributed algorithms, and

there have been several recent papers that have used information

theory and coding theory techniques to better understand radio

network algorithms. Dufoulon, Burman, and Beauquier [8] recently

showed how to use techniques from coding theory to communicate

efficiently in beeping networks; Ashkenazi, Gelles, and Leshem [2]

and Efremenko, Kol, and Saxena [9] independently showed how to

use techniques from coding theory to overcome noise in beeping

networks. This series of recent works, along with our own, leads

us to believe that there are powerful connections to information

theory here.

2 CONTENTION RESOLUTION WITH
NETWORK SIZE PREDICTIONS

Here we investigate an obvious question. Assume over time you

have learned a distribution that characterizes the likelihood of var-

ious network sizes for the instance of contention resolution you

are about to execute. To what degree can you leverage these pre-

dictions to outperform worst-case bounds? We study this question

from both the upper and lower bound perspective, considering both

the collision detection and no collision assumptions. As elaborated

below, in doing so we establish a novel connection between con-

tention resolution and core information theorey results regarding

coding on noiseless channels.

2.1 Uniform Algorithms
We focus on uniform contention resolution algorithms, in which

participants rely on predetermined probabilities. With no collision

detection, a uniform algorithm can be interpreted as a sequence

of probabilities, 𝑝1, 𝑝2, 𝑝3, . . ., such that in round 𝑖 , all participants

broadcast with probability 𝑝𝑖 . With collision detection, a uniform

algorithm can be interpreted as a function 𝑓 from collision histories

to broadcast probabilities. For a given round 𝑟 , let the binary string

𝐵 = 𝑏1, 𝑏2, . . . , 𝑏𝑟−1 describe the collision history through the first

𝑟 − 1 rounds of the given execution (i.e., 𝑏𝑖 = 0 indicates there was

no collision in round 𝑖 , while 𝑏𝑖 = 1 indicates there was). In round

𝑟 , all players transmit with the same uniform probability 𝑓 (𝐵).
Uniformity is a common assumption in the study of contention

resolution. Many previous lower bounds assume this property;

e.g., [7, 15, 23].

2.2 Preliminaries
Fix a network size 𝑛. Let 𝑋 be the discrete random variable that de-

termines the number of participants in each instance of contention

resolution. In more detail,𝑋 takes its values from 1, 2, . . . , 𝑛, that oc-

cur with probabilities 𝑝1, 𝑝2, . . . , 𝑝𝑛 , respectively. In our setting, the

size 𝑘 of the participant set is determined by 𝑋 , leaving the adver-

sary only to determine which 𝑘 nodes participate. Notice, however,

when considering uniform algorithms the identity of the partici-

pants is not consequential as transmission behavior is determined

exclusively by the algorithm and the collision history.

In our algorithms, we sometimes talk about this random variable

𝑋 , or perhaps an estimate𝑌 of this random variable, being provided

as input to the algorithm. This is shorthand for the more accurate

statement that the underlying distribution defining the variable is

provided as input. That is, the algorithm is given for each network

size, a prediction of the probability that the network size is drawn.

In our analysis, we will find it useful to reference a condensed
version of 𝑋 , we call 𝑐 (𝑋 ), which aggregates the probability mass

spread over 𝑛 possible network sizes into log𝑛 geometric size

ranges. (Assume all logs are base 2.) To formalize this latter def-

inition, let 𝐿(𝑛) = {1, 2, 3, . . . , ⌈log𝑛⌉}. We associate each range

𝑖 ∈ 𝐿(𝑛) with the values in the interval (2𝑖−1, 2𝑖 ]. That is, 𝑖 = 1 is

associated with just the value 2, 𝑖 = 2 is associated with the range

3 to 4, 𝑖 = 3 is associated with 5 to 8, and so on. Implicit in this

definition is the assumption that the network size is always of size

Session 2: Biological Algorithms, Contention 
Resolution, and Radio Networks

PODC ’21, July 26–30, 2021, Virtual Event, Italy 

130



at least 2 as there is no contention to resolve in a network of size

less than 2.
4

The random variable 𝑐 (𝑋 ) takes its values from 𝐿(𝑛). For each
𝑖 ∈ 𝐿(𝑁 ), let 𝑞𝑖 = Pr (𝑐 (𝑋 ) = 𝑖), defined as follows:

𝑞𝑖 =
∑

2
𝑖−1< 𝑗≤2𝑖

𝑝 𝑗

The analysis that follows makes use of the following version of

Jensen’s inequality applied to concave functions:

Theorem 2.1 (Jensen’s Ineqality). If 𝑝1, . . . , 𝑝𝑛 are real num-
bers where 𝑝𝑖 > 0 for all 𝑖 ∈ [𝑛] and∑

𝑖∈[𝑛] 𝑝𝑖 = 1, and 𝑓 is a real con-
tinuous function that is concave, then: 𝑓

(∑𝑛
𝑖=1 𝑝𝑖𝑥𝑖

)
≥ ∑𝑛

𝑖=1 𝑝𝑖 𝑓 (𝑥𝑖 ).

It also builds on the lower bound result from Shannon’s famed

Source Coding Theorem, which concerns the efficiency of codes on

noiseless channels:

Theorem 2.2 (Source Code Theorem [22]). Let 𝑋 be a random
variable taking values in some finite alphabet Σ. Let 𝑓 be a uniquely
decodable code from this alphabet to {0, 1}. Let 𝑆 be the random
variable that describes the length of codeword 𝑓 (𝑋 ). Let 𝐻 be the
entropy function. It follows:

𝐻 (𝑋 ) ≤ 𝐸 (𝑆)

Our upper bound analysis considers the case in which the net-

work size distribution 𝑌 provided as input to our algorithms does

not exactly match the actual distribution𝑋 from which the network

size will be drawn. Drawing from standard statistics, we can use the

Kullback-Leibler divergence between the two distributions, denoted

𝐷𝐾𝐿 (𝑋 ∥𝑌 ), to quantify their differences. We then leverage the fol-

lowing well-known information theory result which bounds the

decrease in coding performance, with respect to 𝐷𝐾𝐿 (𝑋 ∥𝑌 ), when
you build an construct an optimal code for 𝑌 that you then combine

with symbol source 𝑋 (for more on Kullback-Leibler divergence

and the coding bound see the excellent review in [7]):

Theorem 2.3. Let 𝑋 and 𝑌 be random variables taking values
in some finite alphabet Σ. Let 𝑓 be an optimal, uniquely decodable
code from 𝑌 to {0, 1}. Let 𝑆 be the random variable that describes the
length of codeword 𝑓 (𝑋 ). Let 𝐻 be the entropy function and 𝐷𝐾𝐿 be
the Kullback-Leibler divergence of two distributions. It follows:

𝐻 (𝑋 ) + 𝐷𝐾𝐿 (𝑋 ∥𝑌 ) ≤ 𝐸 (𝑆) ≤ 𝐻 (𝑋 ) + 𝐷𝐾𝐿 (𝑋 ∥𝑌 ) + 1

Lastly, we note that 𝐷𝐾𝐿 (𝑋 ∥𝑋 ) = 0 for any random variable 𝑋 .

2.3 Lower Bound for No Collision Detection
Our goal is to prove the following lower bound that connects con-

tention resolution with a known network size distribution to the

entropy of the condensed version of that distribution:

Theorem 2.4. Fix a uniform algorithm 𝐴 for a network of size 𝑛.
Let 𝑡𝑋 (𝑛) be the expected round complexity for 𝐴 to solve contention
resolution on a channel with no collision detection and the number

4
This assumption can hold without loss of generality as all algorithms can eliminate

the 𝑛 = 1 possibility in an additional early round in which all players transmit with

probability 1.

of participants determined by random variable 𝑋 . It follows: 𝑡𝑋 (𝑛) =
Ω

(
2
𝐻 (𝑐 (𝑋 ) )

log log𝑛

)
.

Our proof strategy deploys two steps. We begin by defining a

more abstract combinatorial-style problem called range finding,
which we can more directly and clearly connect to entropy. We

then show how to transform a contention resolution solution into

range finding solution with a related time complexity. Note that

due to space limitations many of the proofs that follow have been

omitted but can be found in the full version of this paper [1].

Range Finding. The range finding problem is parameterized with

a network size 𝑛 and range expressed as a function 𝑓 (𝑛) of this
size. A range finding strategy can take the form of a sequence

of values from 𝐿(𝑛), or a binary tree with its nodes labelled with

values from 𝐿(𝑛). Here we define the version defined with respect

to a sequence, as this is the version needed for our proof of the

above theorem. The binary tree variation will be used when we

later consider contention resolution with collision detection.

We say a sequence 𝑆 = 𝑣1, 𝑣2, . . . , 𝑣𝑘 solves the (𝑛, 𝑓 (𝑛))-range
finding problem in 𝑡 steps for a given target 𝑣 ∈ 𝐿(𝑛), if 𝑆 [𝑡] is the
first position in 𝑆 such that |𝑆 [𝑡] − 𝑣 | ≤ 𝑓 (𝑛), where 𝑆 [𝑡] = 𝑣𝑡 is

the 𝑡th element of 𝑆 . To handle probabilistic selections of targets

from a known distribution, fix some random variable 𝑌 that takes

values from 𝐿(𝑛). For each 𝑖 ∈ 𝐿(𝑛), let 𝑝 ′
𝑖
= Pr(𝑌 = 𝑖). We say 𝑆

solves (𝑛, 𝑓 (𝑛))-range finding in expected time 𝑡 with respect to 𝑌 ,

if 𝑡 is the expected step at which 𝐴 solves the problem when the

target value is determined by 𝑌 .

Bounding Sequence Range Finding Using Entropy. Assume 𝑆 is

a sequence that solves (𝑛, 𝑓 (𝑛))-range finding in expected time

𝑇 with respect to some distribution 𝑌 over 𝐿(𝑛). We can use 𝑆

to design a code for source 𝑌 with an efficiency determined by

𝑓 (𝑛). We leverage this connection to prove the following about the

connection between range finding and entropy for a range 𝑓 (𝑛) =
𝑂 (log log𝑛) that will prove useful for our subsequent attempts to

connect contention resolution to range finding:

Lemma 2.5. Let 𝑆 be a sequence that solves (𝑛, 𝛼 log log𝑛)-range
finding for some constant 𝛼 ≥ 1 and network size 𝑛 > 1. Assume that
the range is determined by random variable 𝑌 . Let 𝑍 be the random
variable describing the complexity of 𝑆 . It follows:

𝐸 (𝑍 ) = Ω
(
2
𝐻 (𝑌 )/(𝛼 log log𝑛)

)
,

where 𝐻 is the entropy function.

Proof. Fix some 𝑛, 𝛼 , 𝑆 and 𝑌 as specified by the theorem state-

ment. We can use 𝑆 to design a code for transmitting symbols from

𝐿(𝑛) over a noiseless channel as follows:
• Initialize the sender and receiver with sequence 𝑆 .

• To communicate a value 𝑥 ∈ 𝐿(𝑛), the sender transmits

(𝑟, 𝑑) to the receiver, where: 𝑟 is the first round such that

𝑆 [𝑟 ]is within 𝛼 log log𝑛 of 𝑥 (i.e., the first round to solve

(𝛼, 𝑛)-range finding for 𝑥 ; and 𝑑 = 𝑥 − 𝑣𝑟 is the distance of
𝑆 [𝑟 ] from 𝑥 .

• The receiver can then locally calculate 𝑥 = 𝑆 [𝑟 ] + 𝑑 .
Let us call the above scheme target-distance coding. We now

relate the expected code length with this scheme with the expected
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complexity of range finding with 𝐴. Consider the performance of

the target-distance coding scheme based on these values. For a

given 𝑥 ∈ 𝐿(𝑛), that is solved by 𝑆 by round 𝑟 , the code length

of this scheme is upper bounded by log 𝑟 + log (𝛼 log log𝑛) The
expected code length, therefore, is upper bounded as:

𝐸 (log𝑍 ) + ⌈log (𝛼 log log𝑛)⌉ + 1,
where the additional bit indicates the sign of 𝑑 . Noting the con-

cavity of the log function we can apply Jensen’s Inequality (Theo-

rem 2.1) to further refine this bound as follows:

𝐸 (log𝑍 ) + ⌈log (𝛼 log log𝑛)⌉ +1 ≤ log𝐸 (𝑍 ) + ⌈log (𝛼 log log𝑛)⌉ +1.
The Source Code Theorem (Theorem 2.2) tells us that the average

code length of this scheme is lower bounded by the entropy of 𝑌 .

It follows that 𝐻 (𝑌 ) ≤ log𝐸 (𝑍 ) + ⌈log (𝛼 log log𝑛)⌉ + 1, which
implies:

2
𝐻 (𝑌 ) ≤ 2

log𝐸 (𝑍 )+⌈log (𝛼 log log𝑛) ⌉+1 ⇒
2
𝐻 (𝑌 ) ≤ 2

log𝐸 (𝑍 )
2
⌈log (𝛼 log log𝑛) ⌉+1 ⇒

2
𝐻 (𝑌 ) ≤ 𝐸 (𝑍 ) · 4𝛼 log log𝑛 ⇒

𝐸 (𝑍 ) ≥ 2
𝐻 (𝑌 )

4𝛼 log log𝑛
= Ω

(
2
𝐻 (𝑌 )

𝛼 log log𝑛

)
,

as claimed by the lemma. □

Solving Range Finding with Contention Resolution. Here we trans-
form a solution to contention resolution to a sequence that solves

range finding with a similar expected complexity. Contention res-

olution is a more general problem than range finding, so care is

needed to tame its possible unexpected behaviors. We begin by

defining an algorithmic process for transforming a uniform algo-

rithm 𝐴 into a range finding sequence 𝑆𝐴 . We then analyze the

properties of 𝑆𝐴 .

Algorithm 1: RF-Construction
Input: Uniform contention resolution algorithm

𝐴 = 𝑝1, 𝑝2, . . . , 𝑝𝑧
Output: Range finding sequence 𝑆𝐴
𝑆𝐴 ← ∅;
𝑗 ← 0;

for 𝑖 ← 1 to 𝑧 do
Append ⌈log (1/𝐴[𝑖])⌉ to end of 𝑆𝐴;

Append 2
𝑗
to end of 𝑆𝐴;

𝑗 ← 𝑗 + 1;
if 𝑗 > ⌈log𝑛⌉ then

𝑗 ← 0

end
end
return 𝑆𝐴

We now analyze the quality of the range finding solution pro-

duced by our RF-construction algorithm. We begin a useful helper

lemma that formalizes the intuitive notion that a contention reso-

lution algorithm is unlikely to succeed if its probability is too far

form the optimal value for the participant count.

Lemma 2.6. Assume in a given round of a uniform contention
resolution algorithm that the 1 < 𝑘 ≤ 𝑛 participants (where 𝑘 ∈ Z)
each decide to transmit with a probability 𝑝 such that 𝑝 < 1

𝑘𝛽 log𝑛
or

𝑝 >
𝛽 log𝑛

𝑘
, for some constant 𝛽 ≥ 1. It follows that the probability

exactly one participant transmits is strictly less than: 1

2 log𝑛
.

We can now prove our primary lemma which connects the per-

formance of a contention resolution algorithm to the range finding

solution it induces.

Lemma 2.7. Let 𝐴 be a uniform contention resolution algorithm
defined for a network of size 𝑛 that solves the problem in 𝑡𝑋 (𝑛)
rounds in expectation when the network size is determined by ran-
dom variable 𝑋 . Let 𝑆𝐴 be the range finding sequence returned by
RF-construction run on 𝐴. There exists a constant 𝛼 ≥ 1 such that 𝑆𝐴
solves (𝑛, 𝛼 log log𝑛)-range finding in expected time no more than
2𝑡𝑋 (𝑛) with respect to 𝑐 (𝑋 ).

Pulling Together the Pieces. Fix some uniform contention resolu-

tion algorithm 𝐴 that solves contention resolution in expected time

𝑡𝑋 (𝑛) when run in a network of size 𝑛 with no collision detection

and a participant size determined by𝑋 . By Lemma 2.7, there exists a

constant𝛼 ≥ 1, such that the range finding sequence 𝑆𝐴 constructed

by applying RF-construction on 𝐴, solves (𝑛, 𝛼 log log𝑛)-ranging
finding in expected time 𝑇 ≤ 2𝑡𝑋 (𝑛) when ranges are drawn from

𝑐 (𝑋 ).
Applying Lemma 2.5 further tells us 𝑇 ≥ 2

𝐻 (𝑐 (𝑋 ))/(𝛼 log log𝑛).
It then follows that 2𝑡𝑋 (𝑛) ≥ 2

𝐻 (𝑐 (𝑋 ))/(𝛼 log log𝑛) ⇒ 𝑡𝑋 (𝑛) =
Ω

(
2
𝐻 (𝑐 (𝑋 ) )

log log𝑛

)
, which proves Theorem 2.4.

2.4 Lower Bound for Collision Detection
We now adapt the techniques used in the preceding section to

achieve an entropy-based lower bound for the setting with collision

detection. Our goal is to prove the following:

Theorem 2.8. Fix a uniform algorithm 𝐴 for a network of size 𝑛.
Let 𝑡𝑋 (𝑛) be the expected round complexity for 𝐴 to solve contention
resolution on a channel with collision detection and the number of
participants determined by random variable 𝑋 . It follows: 𝑡𝑋 (𝑛) ≥
(1/2)𝐻 (𝑐 (𝑋 )) −𝑂 (log log log log𝑛).

For the maximum possible entropy value 𝐻 (𝑐 (𝑋 )) = log log𝑛,

this bound asymptotically matches the best known upper bound,

from the 1986 work of Willard [23], which requires 𝑂 (log log𝑛)
rounds. It also provides an arguably simpler and more intuitive ap-

proach than the original lower bound from [23], which deployed a

more complex probabilistic counting argument to establish log log𝑛−
𝑂 (1) rounds as being necessary for uniform algorithms.

We note that the appearance of a quadruple logarithm is unusual,

but straightforward to explain in our context. In the argument that

follows we seek a probability within a factor of 1/log log𝑛 from

the optimal probability for the current participant size. This is a log

factor closer than in our argument for no collision detection, as the

shorter executions can handle smaller error probabilities. Recall,

within our condensed support 𝐿(𝑛), each 𝑖 ∈ 𝐿(𝑛) is associated
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with probability 2
−𝑖
. So if 2

−𝑖
is the optimal probability, than a

range 𝑗 that is within a distance of log log log𝑛 from 𝑖 will yield a

probability within a factor of 1/log log𝑛; e.g.,

2
−𝑗 = 2

−(𝑖+log log log𝑛) = 1/(2𝑖2log log log𝑛)) = 1/(2𝑖 log log𝑛) .

In the coding scheme used below, as in the no collision detection

argument, a code contains a distance value from 0 to𝑂 (log log log𝑛),
which requires 𝑂 (log log log log𝑛) bits.

Our proof follows the same structure as in the no collision de-

tection case. We differ, however, in the details of how we construct

our range finding solution and bound such solutions form an infor-

mation theory perspective.

Bounding Tree Range Finding Using Entropy. Assume 𝑇 is a bi-

nary tree that solves (𝑛, 𝛼 log log log𝑛)-range finding in expected

time 𝑇 with respect to some distribution 𝑌 defined over 𝐿(𝑛). By
interpreting 𝑇 as a code, we can deploy Shannon’s source coding

theorem to arrive at the following bounds:

Lemma 2.9. For some constant 𝛼 ≥ 1 and network size 𝑛 > 1, let𝑇
be a labeled binary tree that solves (𝑛, 𝛼 log log log𝑛)-range finding.
Assume the target range be determined by random variable 𝑌 . Let 𝑍
be the random variable describing the complexity of solving range
finding using 𝑇 with respect to 𝑌 . It follows:

𝐸 (𝑍 ) ≥ 𝐻 (𝑌 ) −𝑂 (log log log log𝑛),

where 𝐻 is the entropy function.

Solving Range Finding with Contention Resolution. Here we trans-
form a solution to contention resolution with collision detection

to a binary tree that solves range finding with a related expected

complexity. We begin by defining an algorithmic process for trans-

forming a uniform algorithm 𝐴 into a range finding tree 𝑇𝐴 .

As a uniform contention resolution algorithm that assumes colli-

sion detection,𝐴 is formalized as a function that maps the sequence

of collisions and silences detected so far to probabilities for all par-

ticipants to use during the next round. A history of length 𝑟 can be

captured by a bit sequence 𝑏1𝑏2 . . . 𝑏𝑟 , where 𝑏𝑖 = 0 means silence

was detected in round 𝑖 and 𝑏𝑖 = 1 means a collision was detected.

We can interpret 𝐴 as a binary tree where each node is labeled

with a probability. In particular, interpret each input string 𝑠 =

𝑏1𝑏2 . . . 𝑏𝑟 as specifying a particular node at depth 𝑟 − 1, reached in
a 𝑟 -step traversal starting from the root, where at step 𝑖 you descend

the to left sub-tree if 𝑏𝑖 = 0 and descend to the right sub-tree if

𝑏𝑖 = 1. You labeled this node with probability 𝐴(𝑠); that is, the
probability mapped to pattern 𝑠 by the algorithm.

Let 𝑇1 be this binary tree labeled with probabilities. We next

create tree 𝑇2 by replacing each label ℓ in 𝑇1 with its related range:

⌈log (1/ℓ)⌉, as in our no collision detection construction. Let 𝑇 ∗

be the canonical binary tree of depth ⌈log log𝑛⌉ labeled with all

the values in 𝐿(𝑛). To arrive at our final range finding solution 𝑇𝐴 ,

we must insert 𝑇 ∗ into the tree, with the root beginning at depth

⌈log log𝑛⌉. There are many equally useful ways to do so. Assume

for now that we just follow the left-most path through 𝑇2, and

when arrive at node 𝑣 depth ⌈log log𝑛⌉, we remove 𝑣 ’s children and

instead make the root of 𝑇 ∗ the only child of 𝑣 .

We now analyze the quality of the range finding tree 𝑇𝐴 pro-

duced by our above procedure. We begin with a useful probability

observation.

Lemma 2.10. Assume in a given round of a uniform contention
resolution algorithm that the 1 < 𝑘 ≤ 𝑛 (where 𝑘 ∈ Z) participants
each decide to transmit with a probability 𝑝 such that 𝑝 < 1

𝛽 (log log𝑛)𝑘
or 𝑝 >

𝛽 (log log𝑛)
𝑘

, for some sufficiently large constant 𝛽 ≥ 1. It
follows that the probability exactly one participant transmits is strictly
less than: 1

2 log log𝑛
.

We now make our main argument analyzing 𝑇𝐴’s performance

as a solution to range-finding.

Lemma 2.11. Let 𝐴 be a uniform contention resolution algorithm
defined for a network of size 𝑛 with collision detection, that solves
the problems in 𝑡𝑋 (𝑛) rounds in expectation when the network size
is determined by random variable 𝑋 Let 𝑇𝐴 be the range finding
tree returned by apply our above procedure to 𝐴. There exists a con-
stant 𝛼 ≥ 1 such that 𝑇𝐴 solves (𝑛, 𝛼 log log log𝑛)-range finding in
expected time no more than 2𝑡𝑋 (𝑛) with respect to 𝑐 (𝑋 ).

Pulling Together the Pieces. Fix some uniform contention reso-

lution algorithm 𝐴 that solves contention resolution in expected

time 𝑡𝑋 (𝑛) when run in a network of size 𝑛 with collision detec-

tion and a participant size determined by 𝑋 . By Lemma 2.11, there

exists a constant 𝛼 ≥ 1, such that the range finding tree 𝑇𝐴 con-

structed by applying our procedure to 𝐴, solves (𝑛, 𝛼 log log log𝑛)-
ranging finding in expected time 𝑇 ≤ 2𝑡𝑋 (𝑛) when ranges are

drawn from 𝑐 (𝑋 ). Applying Lemma 2.9 further tells us that 𝑇 ≥
𝐻 (𝑐 (𝑋 )) −𝑂 (log log log log𝑛). It follows that 2𝑡𝑋 (𝑛) ≥ 𝐻 (𝑐 (𝑋 )) −
𝑂 (log log log log𝑛) ⇒ 𝑡𝑋 (𝑛) = (1/2)𝐻 (𝑐 (𝑋 ))−𝑂 (log log log log𝑛),
which proves Theorem 2.8.

2.5 Upper Bound for No Collision Detection
In this section we introduce an algorithm for solving contention

resolution without collision detection. We assume the algorithm

is provided as input the definition of a random variable 𝑌 defined

over network sizes. Let𝑋 be the actual random variable from which

the sizes will be drawn. We will produce our round complexity

bounds with respect to the statistical divergence between 𝑌 and 𝑋 ,

quantifying the cost of inaccuracy in predictions. Again, all omitted

proofs can be found in the full version of this paper [1].

In Section 2.3, we proved that with accurate predictions (i.e.,

𝑌 = 𝑋 ), Ω(2𝐻 (𝑐 (𝑌 ))/log log𝑛) rounds are needed in expectation

to solve contention resolution. Our goal here is produce a result

that comes close to matching this exponential bound. To do so,

we analyze a natural strategy: trying range predictions in 𝑐 (𝑌 )
in decreasing order of likelihood. We prove that with constant

probability, this strategy solves the problem in 2
𝑇
rounds, where

𝑇 = 2𝐻 (𝑐 (𝑋 )) + 2𝐷𝐾𝐿 (𝑐 (𝑋 )∥𝑐 (𝑌 )). If every probability used by

𝑌 is within some bounded constant factor of the corresponding

probability in𝑋 , this reduces to 2
2𝐻 (𝑐 (𝑌 ))

, which is within the same

general form as the lower bound but with an extra factor in the

exponent. It is not obvious how to remove any extra factor in the

exponent. Indeed, as elaborated in Section 1, we have reason to

believe that some exponential factor greater than 1 is necessary for

this algorithm.
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2.5.1 Algorithm. Let 𝜋 = ⟨𝜋1, . . . , 𝜋log𝑛⟩ represent an ordering

over 𝐿(𝑛) sorted by non-decreasing probability of the correspond-

ing range with respect to 𝑐 (𝑌 ). In other words such that for all

𝑖 < 𝑗 , Pr(𝑘 ∈ (2𝜋𝑖−1, 2𝜋𝑖 ] ≥ Pr(𝑘 ∈ (2𝜋 𝑗−1, 2𝜋 𝑗 ]. Our algorithm
consists of log𝑛 rounds where in round 𝑖 each node broadcasts with

probability 1/2𝜋𝑖 .5

2.5.2 Analysis. We prove the following time complexity statement

regarding the above algorithm.

Theorem 2.12. In the above algorithm, a node broadcasts alone af-
ter at most 𝑂 (2𝑇 ) rounds where 𝑇 = 2𝐻 (𝑐 (𝑋 )) + 2𝐷𝐾𝐿 (𝑐 (𝑋 )∥𝑐 (𝑌 ))
rounds with probability at least 1/16, where 𝑋 is the actual distribu-
tion over the network sizes and 𝑌 is the provided distribution.

First we prove that in round 𝑖 that if 𝑘 ∈ (2𝜋𝑖−1, 2𝜋𝑖 ] then a

single node broadcasts alone during the round with probability at

least 1/2.

Lemma 2.13. For 𝑘 ≥ 2 and 𝑖 > 0 if 𝑘 ∈ (2𝜋𝑖−1, 2𝜋𝑖 ], a single node
broadcasts alone in round 𝑖 with probability at least 1/8.

Consider an optimal variable-length code 𝑓 over the values of

𝐿(𝑛) based on their probabilities according to 𝑐 (𝑌 ). We will relate

this code to the number of rounds required by our algorithm.

Lemma 2.14. With at least probability 1/8 the above algorithm
takes 2𝑆+1 rounds where 𝑆 is the random variable representing the
code lengths of 𝑓 applied to 𝑐 (𝑌 ).

Note that since 𝐷𝐾𝐿 (𝑐 (𝑋 )∥𝑐 (𝑋 )) = 0, if instead our algorithm

learns from the actual distribution 𝑐 (𝑋 ) we can bound the running

time with respect to the entropy of 𝑐 (𝑋 ) alone.

Corollary 2.15. (of Theorem 2.12.) In the above algorithm, a
single node broadcasts alone after at most 𝑂 (22𝐻 (𝑐 (𝑋 )) ) rounds with
probability at least 1/16, where 𝑋 is both the actual distribution over
the network sizes and the distribution provided to the algorithm.

2.6 Upper Bound for Collision Detection
We now turn our attention to a setting with collision detection. We

once again make use of an optimal code 𝑓 constructed for source

𝑐 (𝑌 ), and use its code words to structure our algorithm’s behavior.

Algorithm. We group the values from 𝐿(𝑛) into 𝑥 equivalence

classes based on the length of their code according to 𝑓 (𝑐 (𝑌 )). Let
𝜋1, . . . , 𝜋𝑥 be these classes where the 𝑖th class contains all values

from 𝑐 (𝑌 ) which have codes of length exactly 𝑖 . More formally,

for all 𝑖 ∈ [𝑥], let 𝜋𝑖 = { 𝑗 ∈ 𝐿(𝑛) | |𝑓 ( 𝑗) | = 𝑖}. Note that 𝑥 ≤
log log𝑛 since we can assign a unique code of length log log𝑛 bits

to all ranges, so the existence of larger codes would contradict the

assumed optimality of 𝑓 .

Our algorithm then divides rounds into 𝑥 phases, one dedicated

to each 𝜋𝑖 . In the phase for 𝜋𝑖 , we use transmissions and collision

detection to perform a binary search over the possible network

size ranges represented by the values in class 𝜋𝑖 . The binary search

algorithmwe use is an adaptation of the classical strategy presented

5
Because we seek only a constant probability result, we analyze here only one pass

through all log𝑛 possible probabilities. In the pursuit of good expected times, you

would instead cycle through these probabilities in a clever manner. We do not prove

expectation bounds on this algorithm here, and note that an expectation close to our

constant probability result is not necessarily easily obtained.

in [23] which searches over a collection of ⌈log𝑛⌉ geometrically

distributed network size guesses, transmitting with a corresponding

probability for each guess, and using collision and silence to indicate

if a guess is too small or too large, respectively.

More formally, when searching over 𝜋𝑖 , the nodes order the

ranges in 𝜋𝑖 from smallest to largest. They then broadcast with

probability 2
−𝑚

, where𝑚 is the median of these values. If a collision

is detected, the nodes then recurse over the values greater than𝑚.

Otherwise, if silence is detected, they recurse over the values smaller

than𝑚. If a single node broadcasts, then contention resolution is

solved.

The algorithm proceeds through the phases in order of the

classes; i.e., 𝜋1 then 𝜋2, and so on. If the problem is not solved

during the search for class 𝜋𝑖 , then it moves on to search 𝜋𝑖+1. As
without our no collision detection algorithm, we present this result

here as a one-shot attempt that solves contention resolution with

constant probability. For higher probability, it can be repeated, but

we do not analyze this form.

Analysis. Our goal is to prove the following about the time com-

plexity of our algorithm.

Theorem 2.16. In the above algorithm, with constant probability:
contention resolution is solved in 𝑂 ((𝐻 (𝑐 (𝑋 )) + 𝐷𝐾𝐿 (𝑐 (𝑋 )∥𝑐 (𝑌 ))2)
rounds, where 𝑋 corresponds to the actual distribution over the net-
work sizes and 𝑌 is the distribution provided to the algorithm.

We first analyze our algorithm with respect to the random vari-

able describing the code lengths generated by 𝑓 when symbols are

drawn from 𝑐 (𝑌 ).

Lemma 2.17. With constant probability: the algorithm solves con-
tention resolution in 𝑂 (𝑆2) rounds where 𝑆 is the random variable
describing the code lengths of 𝑓 applied to 𝑐 (𝑌 ).

We now prove our final result by leveraging the optimality of

the code to express the expected code length with respect to the

entropy of 𝑐 (𝑌 ).

Proof. (of Theorem 2.16) We have from Lemma 2.17 that the

algorithm solves contention resolution with constant probability

in 𝑂 (𝑆2) rounds where 𝑆 is the random variable describing the

length of the code word for the target value drawn from 𝑐 (𝑌 ).
We have from our optimal code 𝑓 and Theorem 2.3 that the ex-

pected value of 𝑆 is at most 𝐻 (𝑐 (𝑋 )) +𝐷𝐾𝐿 (𝑐 (𝑋 )∥𝑐 (𝑌 )) + 1. There-
fore from Markov’s inequality we have that 𝑆 ≤ 2(𝐻 (𝑐 (𝑋 )) +
𝐷𝐾𝐿 (𝑐 (𝑋 )∥𝑐 (𝑌 )) + 1) with probability at least 1/2.

To obtain our final result, we multiply the probability that 𝑆 is

not larger than the bound from the theorem with the probability

that we solve contention resolution in 𝑂 (𝑆2) rounds. Both values

are constant, providing the claimed constant success probability.

□

As with Theorem 2.12, because 𝐷𝐾𝐿 (𝑐 (𝑋 )∥𝑐 (𝑋 )) = 0, if 𝑌 = 𝑋 ,

then we get a sharper bound:

Corollary 2.18. (of Theorem 2.16.) In the above algorithm, if the
input distribution 𝑌 equals the actual network size distribution 𝑋 : a
single node broadcasts alone after at most 𝑂 (𝐻2 (𝑐 (𝑋 ))) rounds.
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3 CONTENTION RESOLUTION WITH
PERFECT ADVICE

In the previous section, we studied how to speed up contention

resolution given probabilistic predictions on the network size. We

proved bounds with respect to the quality of the predictions. Here

we investigate bounds on speed up proved with respect to the size
of predictions. More concretely, we assume a general setting, in

which some abstract learning model provides 𝑏 bits of predictive

advice to the algorithm. Our goal is to understand for a given advice

size 𝑏, the theoretical limit on the speed up possible given this much

information. That is, given the best possible advice of this size, how

much improvement is possible?

For 𝑏 = 0, the worst case lower bounds apply. For 𝑏 ≥ log𝑛, it is

possible to encode the id of a participant in 𝑏 bits, enabling a solu-

tion in only 1 round. We study the space between these extremes,

providing tight bounds for both deterministic and randomized algo-

rithms. The goal with these bounds is to set a ceiling on how much

improvement we can ever expect from a given specific learning

model with bounded advice size.

3.1 The Perfect Advice Model
We study the perfect advice model, a generalization of the standard

contention resolution model, parameterized with an advice size

𝑏 ≥ 0, in which we augment a contention resolution algorithm 𝐴

with an advice function, 𝑓𝐴 : P(𝐴) → {0, 1}𝑏 . At the beginning of
each execution, after the adversary selects the set 𝑃 ⊆ 𝑉 of players

to participate, each player in 𝑃 is provided the same 𝑏 bits of advice

𝑓𝐴 (𝑃). The advice function, in other words, has perfect knowledge

of the participants for the current execution, allowing it generate

the best possible prediction for the given size bound.

3.2 Tight Bounds for Deterministic Algorithms
An interesting place to start this investigation of perfect advice is

with deterministic algorithms, as these allow us to study the impact

of 𝑏 bits of advice from a purely combinatorial perspective; e.g.,

asking how many relevant participant sets can be eliminated given

a specific advice string?

With no advice (i.e., 𝑏 = 0), deterministic collision detection re-

quiresΘ(𝑛) rounds without collision detection andΘ(log𝑛) rounds
with collision detection [19]. We prove that with 𝑏 = 𝛼 log𝑛 bits

of advice, for positive 𝛼 < 1, the problem still requires at least

𝑛1−𝛼/2 rounds to solve without collision detection. With collision

detection, 𝑏 bits of advice can improve the bound at best to log𝑛−𝑏
rounds. We show both bounds to be tight within small constant

factors.

Our strategy is to first bound a harder problem that we call non-
interactive contention resolution that forces nodes to decide whether

or not to transmit in a single round, based only on their advice.

Leveraging existing theory on a combinatorial object known as a

strongly selective family [6], we formalize the intuitive result that

very close to log𝑛 bits of advice are needed to solve this problem

deterministically. That is, there is no strategy much better than

simply having the advice function specify exactly which single

participant should transmit. We then leverage this result as a foun-

dation for our lower bounds on the round complexity of normal

contention resolution with and without collision detection. These

bounds use efficient contention resolution algorithms to construct

efficient solutions to non-interactive resolution.

Non-Interactive Contention Resolution. We say an algorithm 𝐴

and advice function 𝑓𝐴 solves 𝑏 (𝑛)-non-interactive contention reso-
lution, if for every participant set 𝑃 ⊆ 𝑉 , the advice 𝑓𝐴 (𝑃) contains
no more than 𝑏 (𝑛) bits and leads to exactly one participant from 𝑃

transmitting in the first round.

Our goal is to show that this requires 𝑏 (𝑛) = Ω(log𝑛). To do so,

we leverage bounds on the following object:

Definition 3.1. Fix integers 𝑛, 𝑘 , 1 ≤ 𝑘 ≤ 𝑛. A family F of subsets
if [𝑛] is (𝑛, 𝑘)-strongly selective if for every subset 𝑍 of [𝑛] such that
|𝑍 | ≤ 𝑘 and for every element 𝑧 ∈ 𝑍 , there is a set 𝐹 in F such that
𝑍 ∩ 𝐹 = {𝑧}.

As proved in [6], for large 𝑘 , there are no small strongly selective

families:

Theorem 3.2 (from [6]). Let F be an (𝑛, 𝑘)-strongly selective
family. If 𝑘 ≥

√
2𝑛 then it holds that |F| ≥ 𝑛.

We can leverage this fact to establish our lower bound on non-

interactive contention resolution.

Theorem 3.3. Assume deterministic algorithm 𝐴 and advice func-
tion 𝑓𝐴 solve 𝑏 (𝑛)-non-interactive contention resolution in a network
of size 𝑛. It follows that 𝑏 (𝑛) ≥ log𝑛.

Proof. Let 𝑆 contain all 2
𝑏 (𝑛)

possible advice strings. For each

𝑠 ∈ 𝑆 , let 𝑉 (𝑠) be the nodes in 𝑃 that would broadcast according

to 𝐴 given advice 𝑠 . By the assumption that 𝐴 is correct, for each

𝑃 ⊆ 𝑉 , with corresponding advice 𝑠𝑃 = 𝑓𝐴 (𝑃): |𝑉 (𝑠𝑃 ) ∩ 𝑃 | = 1. We

can therefore consider F = {𝑉 (𝑠) | 𝑠 ∈ 𝑆} to be an (𝑛, 𝑛)-strongly
selective family. It follows from Theorem 3.2 that |F| ≥ 𝑛, which

implies |𝑆 | ≥ 𝑛, which implies the number of bits required to encode

elements of 𝑆 is at least log𝑛, as claimed by the theorem. □

Bounds for No Collision Detection. Here we build on Theorem 3.3

to prove a tight bound on the advice required for deterministic

solutions to the contention resolution problem. The problem can be

trivially solved in one round given log𝑛 bits of advice. We show that

as we reduce this advice to 𝛼 log𝑛 bits, for some positive fraction

𝛼 < 1, the rounds required grow roughly as 𝑛1−𝛼 . We will then

show this result is tight within constant factors.

Theorem 3.4. Assume deterministic algorithm 𝐴 and advice func-
tion 𝑓 solve contention resolution in 𝑡 (𝑛) rounds in a network of size 𝑛
with no collision detection, such that 𝑓 returns at most 𝛼 log𝑛 bits of
advice, for some positive constant𝛼 < 1. It follows that 𝑡 (𝑛) ≥ 𝑛1−𝛼/2.

Proof. Fix some 𝐴, 𝑓 , 𝑡 , 𝑛, and 𝛼 , as specified. Our strategy is

to deploy the advice function 𝑓 , designed for general contention

resolution without collision detection, to create a related advice

function 𝑓 ′ for the non-interactive setting. To do so, given a par-

ticipant set 𝑃 ⊆ 𝑉 , consider the execution that results when the

participants in 𝑃 run 𝐴 given initial advice 𝑓 (𝑃). By assumption,

this execution solves contention resolution by round 𝑟 ≤ 𝑡 (𝑛). Cru-
cially, because 𝐴 assumes no collision detection, no participant in

this execution receives or detects anything until round 𝑟 . Therefore,
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each participant can simulate the first 𝑟 −1 rounds locally by simply

simulating 𝐴 detecting silence for 𝑟 − 1 rounds.
It follows that to solve non-interaction contention resolution it

is enough for 𝑓 ′(𝑃) return the pair (𝑓 (𝑃), 𝑟 ), allowing each node

in 𝑃 to locally simulate 𝐴 with advice 𝑓 (𝑃) through the first 𝑟 −
1 rounds, and then simply execute round 𝑟 , solving contention

resolution in one round without any interaction. To encode this

advice requires 𝑓 ′ to return 𝑓 (𝑃) + ⌈log 𝑡 (𝑛)⌉ = 𝛼 log𝑛 + ⌈log 𝑡 (𝑛)⌉
bits. By Theorem 3.3, this sum must be at least log𝑛. It follows:

𝛼 log𝑛 + ⌈log(𝑡 (𝑛))⌉ ≥ log𝑛 ⇒
⌈log(𝑡 (𝑛))⌉ ≥ log𝑛 − 𝛼 log𝑛 ⇒

log(𝑡 (𝑛)) + 1 ≥ (1 − 𝛼) log𝑛 ⇒
2
log(𝑡 (𝑛))

2 ≥ 2
(1−𝛼) log𝑛 ⇒

2𝑡 (𝑛) ≥ 𝑛1−𝛼 ⇒
𝑡 (𝑛) ≥ 𝑛1−𝛼/2,

as claimed by our theorem. □

It is straightforward to show that this lower bound is tight (within

constant factors). Assume we are restricted to 𝑞 = 𝛼 log𝑛 bits of

advice for some positive 𝛼 < 1. Assign the 𝑛 possible participants

to the leaves of a balanced binary tree of height ⌈log𝑛⌉. Given log𝑛

bits of advice, it is possible to encode a traversal through this tree

from the root down to a specific leaf, corresponding the id of a

participant. For 𝑞 < log𝑛 bits, we can record the first 𝑞 steps of

such a traversal toward a participant. Given this traversal prefix,

all participants can reduce the number of possible identities of the

target participant by a factor of 2with each step deeper into the tree.

The result is that only 𝑛/𝑞 = 𝑛/2𝛼 log𝑛 = 𝑛/𝑛𝛼 = 𝑛1−𝛼 possible

identities remain. The participants can solve the problem in an

additional 𝑛1−𝛼 rounds by giving each of these remaining identities

one round to transmit alone. The resulting algorithm is within a

constant factor of the bound proved above.

Bounds for Collision Detection. We now consider the collision

detection case. As mentioned, with no advice, Θ(log𝑛) is a tight
bound on contention resolution with collision detection. Here we

prove that 𝑏 bits of advice can improve this by at most an additive

factor of 𝑏.

Theorem 3.5. Assume deterministic algorithm 𝐴 and advice func-
tion 𝑓 solve contention resolution in 𝑡 (𝑛) rounds in a network of size
𝑛 with collision detection, such that 𝑓 returns at most 𝑏 (𝑛) bits of
advice. It follows that 𝑡 (𝑛) ≥ log𝑛 − 𝑏 (𝑛).

Proof. Fix some 𝐴, 𝑓 , 𝑡 , 𝑏 and 𝑛 as specified. We use these tools

to build an advice function 𝑓 ′ to solve non-interactive contention

resolution. In particular, given a participant set 𝑃 ⊆ 𝑉 , 𝑓 ′(𝑃) can
include the advice 𝑓 (𝑃) as well as the round 𝑟 ≤ 𝑡 (𝑛) during which
these participants running 𝐴 with advice 𝑓 (𝑃) solve contention

resolution. Unlike in the no collision detection case, however, this

advice is not sufficient on its own for participants to simulate 𝐴’s

behavior during round 𝑟 , as the participants also need to know the

pattern of collisions and no collisions that occur in the first 𝑟 − 1
rounds of this simulation.

Accordingly, we have 𝑓 ′(𝑃) instead return 𝑓 (𝑃) plus a bit string
of length 𝑟 −1 that encodes the collision history (e.g., with 0=silence
and 1=collision) of the first 𝑟 −1 rounds of participants in 𝑃 running

𝐴 with this advice. This allows each participant to locally simulate

these 𝑟 − 1 rounds and proceed with the behavior of round 𝑟 which

solves the non-interactive problem.

We know from Theorem 3.3 that solving non-interactive con-

tention resolution requires at least log𝑛 bits of advice. Therefore,

it must be the case that

𝑏 (𝑛) + 𝑡 (𝑛) ≥ log𝑛 ⇒ 𝑡 (𝑛) ≥ log𝑛 − 𝑏 (𝑛),
as claimed. □

To show this bound tight, we first note that a standard solution

for contention resolution with collision detection is to construct a

balanced binary tree of height ⌈log𝑛⌉ with one potential participant
assigned to each leaf. Using the collision detector, participants can

traverse from the root to the leaf corresponding to one of the active

participants (using silence/collision to indicate a vote for descending

to the left/right subtree). An obvious way to deploy 𝑏 (𝑛) bits of
advice to augment this algorithm is to provide the participants

the first 𝑏 (𝑛) steps of the traversal toward an active participant,

leaving them with only ⌈log𝑛⌉ − 𝑏 (𝑛) steps remaining to complete

the identification of a single node to transmit. Resolving the impact

of the ceilings provides an almost exactly matching upper bound

of log𝑛 − 𝑏 (𝑛) + 1 rounds.

3.3 Tight Bounds for Randomized Algorithms
We now consider tight bounds on the maximum possible speed up

to the expected time complexity of randomized algorithms given

a bounded amount of advice. These results deploy two styles of

reduction arguments. An interesting property of the lower bound

results that follow is that because we ultimately reduce to a lower

bound that holds for non-uniform algorithms (from [19]), these

new bounds also hold for non-uniform algorithms. We prove both

of the below theorems in the full version of this paper [1].

Theorem 3.6. Fix a network size 𝑛 and advice size 𝑏 (𝑛) < log𝑛.
Let 𝑡 (𝑛) be the smallest bound such that an algorithm augmented
with an advice function that provides 𝑏 (𝑛) bits of advice can solve
contention resolution with no collision detection in 𝑡 (𝑛) rounds in
expectation. It follows that 𝑡 (𝑛) = Θ(log(𝑛)/2𝑏 (𝑛) ).

Theorem 3.7. Fix a network size𝑛 and advice size𝑏 (𝑛) < log log𝑛.
Let 𝑡 (𝑛) be the smallest bound such that an algorithm augmented
with an advice function that provides 𝑏 (𝑛) bits of advice can solve
contention resolution with collision detection in 𝑡 (𝑛) rounds in expec-
tation. It follows that 𝑡 (𝑛) = Θ(log log𝑛 − 𝑏 (𝑛)).
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