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Abstract. In the multiparty equality problem, each of the n nodes starts
with a k-bit input. If there is a mismatch between the inputs, then at
least one node must be able to detect it. The cost of a multiparty equality
protocol is the total number of bits sent in the protocol. We consider the
problem of minimizing this communication cost under the local broadcast
model for the case where the underlying communication graph is undi-
rected. In the local broadcast model of communication, a message sent by
a node is received identically by all of its neighbors. This is in contrast
to the classical point-to-point communication model, where a message
sent by a node to one of its neighbors is received only by its intended
recipient.

Under point-to-point communication, there exists a simple protocol
which is competitive within a factor 2 of the lower bound [1]. In this
protocol, a rooted spanning tree is fixed and each node sends its entire
input to its parent in the tree. On receiving a value from its child, a
node compares it against its own input to check if the two values match.
Ignoring lower order additive terms, a more complicated protocol comes
within a factor 4/3 of the lower bound and is tight for certain classes of
graphs [1]. Tight results, ignoring lower order terms, are also known for
complete graphs [2,9].

We study the multiparty equality problem under the local broadcast
model. Recently, our work has shown that the connectivity requirements
for Byzantine consensus are lower in the local broadcast model as com-
pared to the classical model [7,8]. In this work,

1. we identify a lower bound for the multiparty equality problem in this
model.

2. we first identify simple protocols, wherein nodes are restricted to
either transmit their entire input or not transmit anything at all,
and find that these can cost Ω(log n) times the lower bound using
existing example for the set cover problem [12].
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3. we then design a protocol to solve the problem within a constant
factor of the lower bound.

Keywords: Communication complexity · Multiparty equality · Static
protocols · Local broadcast

1 Introduction

In this paper, we study the multiparty equality problem, wherein n nodes are
connected via an arbitrary undirected graph G = (V,E). Each node u ∈ V
starts with a k-bit input x(u). If x(u) �= x(v) for two distinct nodes u, v ∈ V ,
then at least one node in the graph must be able to detect the mismatch. The
cost of a multiparty equality protocol is the total number of bits sent in the
protocol. We want to minimize this communication cost.

This problem has been studied under the point-to-point communication
model by Alon et al. [1] and Liang and Vaidya [9]. Under the point-to-point
communication model, all links are private so that when a node transmits a
message to a neighbor in the network, the other neighbors do not receive the
message. Here, we consider the local broadcast communication model where a
message sent by a node is received identically by all of its neighbors in the com-
munication network. This communication model is inspired by wireless networks
where a message sent by a wireless device is received by all devices in its imme-
diate vicinity. Recently, it has been shown that the connectivity requirements
for the Byzantine consensus problem are lower in the local broadcast model as
compared to the point-to-point model [7,8].

To see the difference between the two communication models, consider the
scenario where a node u intends to communicate its entire k-bit input with all
of its neighbors. In the point-to-point communication model, node u will have
to transmit its entire input on each of the incident edges separately. In contrast,
in the local broadcast model, node u will have to transmit its input only once
and all of its neighbors will receive the input identically.

When a node u transmits � bits, under point-to-point channels, exactly �
bits are received by the recipient node. However, under local broadcast, each
neighbor of u receives � bits. So while the total number of bits transmitted in a
protocol under the point-to-point model is exactly the same as the total number
of bits received, this is not the case under the local broadcast model. The optimal
protocols can be different depending on whether they minimize the number of
bits transmitted or the number of bits received. We discuss these two different
cost functions in Sect. 3. In this paper, we focus on the transmission cost.

We study static protocols [1,9], where the transmitting nodes (as well as the
number of bits transmitted by the nodes) for each round of the protocol are pre-
determined and independent of the inputs. We make the following contributions.
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1. We give a lower bound on the transmission cost of multiparty equality under
the local broadcast model.

2. We first introduce simple protocols, where each node can either transmit its
entire input or not transmit at all. When a node receives a value from its
neighbor, it compares it against its own input to check if the two values
match. Under local broadcast, such simple protocols are related to special
dominating sets. With point-to-point channels, the simple protocols consist
of fixing a rooted spanning tree, with each node transmitting its input value
to its parent. In the classical setting, these are competitive within a factor 2 of
the corresponding lower bound [1]. Unfortunately, under the local broadcast
model, we find that the simple protocols can be a factor Ω(log n) worse than
the identified lower bound.

3. We show that there exist static protocols that solve the multiparty equality
problem within a constant factor of the lower bound. These are linear proto-
cols in the sense that the value transmitted by any node is a linear function
(over a finite field) of its input. This is in contrast with the point-to-point
model where linear protocols do not perform any better than the simple pro-
tocols [1].

The best known protocol for arbitrary graphs under point-to-point communi-
cation is by Alon et al. [1]. It is a non-linear protocol that achieves a competitive
factor of 4/3 against the lower bound, ignoring lower order additive terms. For
certain classes of graphs, it is in fact optimal. Tight results, ignoring lower order
terms, are also known for complete graphs [2,9] using non-linear protocols. Our
results show that while there is no separation between linear and simple proto-
cols in the point-to-point model, there is a clear separation between them in the
local broadcast model.

The rest of the paper is organized as follows. We introduce the notation
in Sect. 2. In Sect. 3, we formalize the problem and discuss the cost measure
under the local broadcast model. A lower bound is given in Sect. 4. We present
and analyze simple protocols in Sect. 5. In Sect. 6, we design a protocol that is
competitive within factor 4 of the lower bound. Finally, we conclude in Sect. 7
and identify some open problems.

2 Notation

We consider an undirected communication graph G = (V,E) of size |V | = n,
which is fixed in advance. Throughout, we assume that the communication graph
is connected, since the problem is not solvable in disconnected graphs. Each node
u has a k-bit binary input x(u).

Two nodes u and v are neighbors if uv ∈ E is an edge in G. The neighborhood
of a node u is the set of neighbors of u. It is denoted

N(u) :=
{
v | uv ∈ E

}
.

The number of neighbors of u is the degree of node u, denoted by

d(u) :=
∣
∣N(u)

∣
∣ .
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We use N+(u) to denote the set containing neighbors of u and u itself,

N+(u) := N(u) + u.

Above, “+” denotes the union of a set with a singleton. We extend the definition
of neighborhood to sets so that the neighborhood of a set S is the set of nodes
not in S that have a neighbor in S,

N(S) :=
{
v ∈ V − S | uv ∈ E, u ∈ S

}
.

For a set of nodes S ⊂ V ,

• S is the set V − S.
• a cut is a partition (S, S) of V .
• the set of edges that cross a cut (S, S) is denoted by

E(S, S) :=
{

uv ∈ E | u ∈ S, v ∈ S
}

.

• the boundary B(S, S) of a cut (S, S) is the set of nodes that have a neighbor
on the other side of the cut, i.e.,

B(S, S) :=
{

u | ∃uv ∈ E(S, S)
}

.

• edges within the set S are denoted by

E [S] :=
{
uv | u, v ∈ S

}
.

A subgraph of G is a graph whose node set and edge set are subsets of V
and E respectively.

• For a subset of nodes U ⊂ V , G[U ] is a subgraph of G node-induced by U ,
with node set U and edge set E[U ].

• With a slight abuse of terminology, for a subset of edges F ⊂ E, G[F ] is a
subgraph of G edge-induced by F , where all the endpoints of edges in F form
the node set and F is the edge set. More specifically, the node set of G[F ] is
given by

{
u | ∃uv ∈ F

}
.

3 Problem Statement and Cost Function

In the Multiparty Equality Problem, each node u starts with a k-bit binary input
x(u) and must output a single bit 0 or 1, meeting the following criteria. If all
nodes have the same input, then all nodes must output 0. However, if there is a
mismatch x(u) �= x(v), for any two distinct nodes u, v, then at least one node in
the graph must output 11.

1 Note that the node detecting a mismatch between inputs can propagate this to the
rest of the graph with an overhead that is independent of k, but not of n.
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Communication between nodes is via local broadcast. A message sent by a
node u is received identically and reliably by each neighbor of u. Moreover, each
neighbor can correctly identify u to be the transmitter of the message.

As in [1] and [9], we consider only the static protocols where the transmitters
at each time step are pre-determined by the protocol and are independent of the
inputs. We consider protocols where the total number of bits c(u) transmitted
by a node u is independent of the inputs. Note that under the local broadcast
model, when a node u transmits c(u) bits, a total of d(u)c(u) bits are received
by all the neighbors of u combined.

In the point-to-point model, a message transmitted by a node u is received by
exactly one neighbor of u. So the total number of bits transmitted in a protocol
is exactly the same as the total number of bits received. In contrast, in the local
broadcast model, the number of bits transmitted is smaller than the number of bits
received by factor equal to the degree of the transmitting node. Correspondingly,
there are the following two cost functions. The transmission cost of a protocol is
the total number of bits transmitted by all the nodes in the graph,

∑

u∈V

c(u).

The reception cost of a protocol is the total number of bits received by all the
nodes in the graph,

∑

u∈V

d(u)c(u).

In this paper, we consider the transmission cost of protocols.

4 Lower Bound

The two party equality problem was introduced by Yao [13], who showed that
both parties combined must transmit at least k bits to solve the problem. Note
that, for two parties, the point-to-point model and the local broadcast model
are equivalent. This argument can be extended for n ≥ 3 parties by considering
two-way partitions of the node set [1,3]. Let (S, S) be an arbitrary cut of V .
Consider the set of executions where all nodes in S always have the same input
and all nodes in S always have the same input. Then this is equivalent to the
two party equality problem. Thus, by the two party lower bound, there must be
at least k bits shared across the cut.

Consider any multiparty equality protocol under the local broadcast model.
Let c(u) be the number of bits transmitted by a node u in the protocol. Then for
any cut (S, S), we have that there must be at least k bits transmitted across the
cut. Under the local broadcast model, when a node transmits a message, it is sent
identically on all its incident edges. Therefore, the total number of bits transmitted
by the nodes at the boundary of the cut (S, S) must be at least k, i.e.,

∑

u∈B(S,S)

c(u) ≥ k.
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Using y(u) := c(u)/k to normalize the transmission by each node, we get the
following linear program.

Linear Program P:

minimize: k ·
∑

u∈V

y(u) (1)

subject to:
∑

u∈B(S,S)

y(u) ≥ 1 ∀(S, S) : ∅ �= S � V (2)

y(u) ≥ 0 ∀u ∈ V. (3)

We use P to denote the above linear program given by Eqs. 1–3. The cost of P
is the value of its optimal solution.

Theorem 1. The cost of any static protocol that solves the multiparty equality
problem under the local broadcast model is at least the cost of P.

The proof is an extension of the arguments for two parties. For any cut (S, S),
one can contract all nodes in S into one node and all nodes in S into another to
get a two party problem.

Proof. Suppose, for the sake of contradiction, that a static protocol solves the
multiparty equality problem but has a cost less than the optimal solution to P.
Then, there exists a cut (S, S) such that

∑
u∈B(S,S) c(u) < k for this protocol.

By the pigeon hole principle, there exist two inputs α and β such that the nodes
in B(S, S) all transmit the same messages in the following three cases:

1. every node in the graph has input α.
2. every node in the graph has input β.
3. all nodes in S have input α and all nodes in S have input β.

Since all nodes in S (resp. S) output 0 in case 1 (resp. case 2), therefore, all
nodes output 0 in case 3, a contradiction.

5 Simple Protocols

In this section, we consider simple protocols where some subset of nodes is chosen
to transmit their entire input. On receiving transmission from any of its neigh-
bors, a node u compares the received value against its own input. If the values
match for all the received messages, then u outputs 0. Otherwise, u outputs 1.

Definition 1. A protocol is simple if every node either transmits its entire
input, or does not transmit at all.

This set of protocols is related to what is called the weakly connected dominat-
ing set of a graph. Consider a subset S ⊂ V of nodes. Let F := E [S] ∪ E(S, S)
be the set of edges that are incident on at least one node in S. Let H := G [F ] be
the subgraph of G edge-induced by F . Then S is a weakly connected dominating
set of G if H is a connected spanning subgraph of G.
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Proposition 1. A simple protocol solves the multiparty equality problem if and
only if the set S ⊂ V of nodes chosen to transmit their entire input is a weakly
connected dominating set of G.

Proof. We consider the two directions separately:

⇒ Consider a simple protocol that solves the multiparty equality problem by
choosing a set S ⊂ V of nodes to transmit their entire input. We show that
S is a weakly connected dominating set of G. Let F := E [S] ∪ E(S, S) and
H := G [F ].
1. H is a spanning subgraph of G: Suppose for the sake of contradiction that

there is a node u �∈ H. Then u neither sends nor receives any transmissions.
Then no node in the graph G can distinguish between the case where all
nodes in G have the same input and the case where u has a different input
than the rest of the graph. This is a contradiction to the initial assumption
that the protocol solves the multiparty equality problem.

2. H is a connected graph: Suppose for the sake of contradiction that H is
not a connected graph so that there are at least two connected components
A and B of H. Note that no messages are transmitted between A and B.
Then no node in G can distinguish between the case where all nodes in
G have the same input and the case where nodes in A have a different
input than nodes in B. This is a contradiction to the initial assumption
that the protocol solves the multiparty equality problem.

⇐ Suppose that S ⊂ V is a weakly connected dominating set of G. As before,
let F := E [S] ∪ E(S, S) and H := G [F ]. Consider the corresponding simple
protocol where nodes in S transmit their entire input, while all nodes compare
the received values against their own input. Clearly no mismatch is detected
when all nodes in G have the same input, and so all nodes output 0. So
consider the case where two nodes u, v have mismatching inputs x(u) �= x(v).
Since H is a connected spanning subgraph of G, so there exists at least one
uv-path P in H. Furthermore, because x(u) �= x(v) so there exist two adjacent
nodes w, z in P such that x(w) �= x(z). By construction of H, either w ∈ S
or z ∈ S (or both). WLOG assume that w ∈ S and it transmits its entire
input in the protocol. Then z will receive a value different than its input and
will output 1.

Note that the total cost of transmission is k ·|S| where |S| is the size of the
weakly connected dominating set. The minimum weakly connected dominating
set problem has been studied in the literature [4–6,11] and is known to be NP-
complete.

As mentioned in Sect. 1, simple protocols in the point-to-point model are
supported on a rooted spanning tree of G. These are within a factor 2 of the
optimal and one can not do any better with linear protocols [1]. Even on complete
graphs, non-linear protocols are needed to achieve the optimal cost [2,9]. Under
local broadcast, it is easy to see that simple protocols are optimal for complete
graphs (one node transmits its entire input). Unfortunately, the simple protocols
suffer a gap of Ω(log n) against the lower bound on arbitrary graphs.
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Proposition 2. There exist a family of graphs such that the cost of P is O(k)
while any dominating set has size Ω(k · log n).

Proof (Proof Sketch). The family of graphs is based on Example 13.4 in [12]
for establishing a lower bound on the integrality gap of a linear programming
relaxation of the set cover problem. Using a common approximation preserving
reduction from the set cover to the dominating set problem, one can get a graph
G with the following properties. G has two parts A and B, both of size n/2.
A is a complete graph and B is an independent set. Each node in A (resp. B)
has exactly (n + 2)/4 neighbors in B (resp. A). Furthermore, any dominating
set has size at least log2((n + 2)/2).

We now give a solution y to P. Pick an arbitrary node s ∈ A. Assign y(s) := 1.
For each node u ∈ A − s, assign

y(u) :=
1∣

∣N(u) ∩ B
∣
∣

=
4

n + 2
.

For each node u ∈ B, assign y(u) := 0. To see that y is indeed a solution to P,
consider an arbitrary cut (S, S). WLOG assume that s ∈ S. By construction of
G (recall that A is a complete graph), if A − S is non-empty, then s ∈ B(S, S)
and we have that

∑

u∈B(S,S)

y(u) ≥ y(s)

= 1,

as required. So assume that S ⊇ A. Consider any node t ∈ S ⊆ B. We have that
∑

u∈B(S,S)

y(u) ≥
∑

u∈N(t)

y(u)

≥
∑

u∈N(t)

4
n + 2

= 1.

The first inequality follows from the fact that all of t’s neighbors are in A ⊆ S,
and so B(S, S) ⊇ N(t). The second inequality follows from y(u) ≥ 4/(n + 2) for
each u ∈ N(t), since N(t) ⊂ A. Finally, the equality follows from the fact that t
has exactly (n + 2)/4 neighbors by construction.

Recall that, by construction, any dominating set has size at least
log2((n + 2)/2). This is a lower bound for any weakly connected dominating
set as well. Therefore, any simple protocol has cost at least k · log2((n + 2)/2).
On the other hand, the solution y to P given above has value
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k ·
∑

u∈V

y(u) = k
(
y(s) +

∑

u∈A−s

y(u)
)

= k
(
1 +

(n

2
− 1

) 4
n + 2

)

= k
(
1 + 2

(n − 2
n + 2

))

≤ 3k.

Therefore, the cost of P is at most 3k.

6 Upper Bound

In this section, we constructively establish an upper bound on the multiparty
equality problem, as stated in the following theorem.

Theorem 2. For sufficiently large k, there exists a protocol that solves the mul-
tiparty equality problem with a cost of at most 4 times the cost of P.

We design a protocol that solves the multiparty equality problem under the
local broadcast model. We start with an optimal solution y of the linear program
P in Sect. 4. Note that y is an optimal solution to P for all values of k > 0. Since
the linear program has integer entries, y(u) is rational for each node u. Let q be
an even integer such that q · y(u) is an integer for all u. Define two integers m
and � as follows.

m := q ·
∑

u

y(u),

� :=
q

2
.

For simplicity, we assume k is an integral multiple of both q and �. To design
our protocol, we will use an (m, �)-Reed-Solomon code [10] over Galois field
GF (2k/�). Note that a code-word in this code consists of m symbols, with each
symbol size being k/� bits. Such a Reed-Solomon code exists so long as 2k/� > m.
To satisfy this property, we assume that k is sufficiently large. In a Reed-Solomon
(RS) code, k input bits are represented using � symbols from GF (2k/�), each sym-
bol representing k/� bits of the input. These � symbols are then encoded into m
symbols to obtain the corresponding code-word. Given any � out of the m sym-
bols of a code-word, the corresponding k-bit input can be correctly determined.
We view the encoding of each of the m symbols as a function {0, 1}k → {0, 1}k/�,
since we will be applying the encodings to different inputs. Of the m total sym-
bols in the code-word, each node u is assigned q·y(u) of them in the protocol.
We describe how the nodes use these symbols later.

In the protocol, nodes are either red or blue. We describe how they are
colored later. A red node broadcasts its entire input to its neighbors and always
outputs 0. A blue node u computes its q·y(u) code symbols on its input x(u) and
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broadcasts them to its neighbors. A blue node u performs checks (as discussed
below) on all transmissions received from its neighbors. If all checks pass, then
it outputs 0. Otherwise, it outputs 1. On receiving a transmission from a red
neighbor r, u checks if the received value x(r) is the same as x(u). On receiving
a transmission from a blue neighbor b, u computes the corresponding q · y(b)
code symbols on its own input x(u) and checks if they match with the received
code symbols from b.

We now describe how to color the nodes for the protocol. We color the nodes
in rounds. Initially, all nodes are colored white. In each round, at least one white
node gets colored either red or blue. At the end, all nodes will be colored either
red or blue. Let Wi, Bi, and Ri denote the set of white, blue, and red nodes at
the end of round i, with W0 = V and B0 = R0 = ∅. In each round, we maintain
that

1. the red and blue subgraph G[Ri ∪ Bi] is connected, and
2. no white node is a neighbor of a red node.

In round 1, we select an arbitrary node and color it red. All its neighbors are
colored blue. In round i, we select an arbitrary white neighbor u ∈ N(Bi−1) of
a blue node. Note that until all nodes are colored red or blue, such a white node
always exists. There are two cases to consider.

1. If
∑

v∈N+(u)∩Wi−1

y(v) ≥ 1
2
,

then we color u red and its white neighbors blue:

Ri := Ri−1 + u,

Bi := Bi−1 ∪ (
N(u) ∩ Wi−1

)
,

Wi := Wi−1 \ (
N+(u) ∩ Wi−1

)
.

2. Otherwise we have that
∑

v∈N(u)∩Bi−1

y(v) =
( ∑

v∈N+(u)

y(v)
)

−
( ∑

v∈N+(u)∩Wi−1

y(v)
)

≥ 1 − 1
2

=
1
2
.

The first equality follows from the fact that 1) u itself is white, and 2) each
neighbor of u is either white or blue, so that N+(u) can be partitioned into
N+(u) ∩ Wi−1 and N(u) ∩ Bi−1. The inequality follows because
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∑

v∈N+(u)

y(v) ≥ 1 from Eq. 2 in P with S = {u},

and
∑

v∈N+(u)∩Wi−1

y(v) <
1
2
.

In this case, we color u blue:

Ri := Ri−1,

Bi := Bi−1 + u,

Wi := Wi−1 − u.

Note that while the design of the protocol relies on knowing the solution to
P, the protocol itself is distributed where each red or blue node can run its part
locally. In the following lemma, we use the coloring rounds i ≥ 1 to inductively
prove the correctness of the protocol.

Lemma 1. For each i ≥ 1, the protocol solves the multiparty equality problem
in the subgraph G[Ri ∪ Bi].

Proof. We proceed inductively. For the base case, i = 1. We have that R1 = r
and B1 = N(r). If there is no mismatch between inputs, then clearly all nodes
output 0. If there is a mismatch, then it must necessarily be between r and a
blue node b ∈ N(r). Since node r broadcasts its entire input, so node b is able
to check that x(r) �= x(b) and so outputs 1, as required.

For the inductive step, assume that the protocol solves the multiparty equal-
ity problem in the subgraph G[Ri−1 ∪ Bi−1]. We show that it also solves the
problem in the subgraph G[Ri ∪ Bi]. If there is a mismatch between inputs of
two nodes in Ri−1 ∪ Bi−1, then we are done by induction. So assume that all
nodes in Ri−1 ∪ Bi−1 have the same input. Let u ∈ N(Bi−1) be the white node
selected in round i. There are two corresponding cases to consider.

1. u got colored red in round i. Let b ∈ Bi−1 ∩ N(u) be a neighbor of u which
was blue at the end of round i − 1. Recall that all nodes in Ri−1 ∪ Bi−1 have
identical input. If x(u) �= x(b), then b will output 1, as required. So suppose
x(u) = x(b). Therefore all nodes in Ri ∪ Bi−1 have identical input. Consider
an arbitrary node b′ ∈ Bi − Bi−1 which got colored blue in round i. By
construction, b′ ∈ N(u). So b′ receives the entire input of u. If x(b′) �= x(u),
then b′ will output 1. If x(b′) = x(u), then b′ will output 0, as required.

2. u got colored blue in round i. Recall that u is the only node that got colored
either red or blue in round i, i.e., Wi−1 − Wi = {u}. Also, we have that

∑

v∈N(u)∩Bi−1

y(v) ≥ 1
2
.

So u must have received a total of at least q/2 = � code symbols from nodes
in Bi−1. u re-computes these code symbols on its own input x(u) and checks
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against the received values. Since all nodes in Bi−1 have the same input, by
the property of RS codes, u outputs 0 if and only if x(u) is the same as the
inputs of nodes in Bi−1.

Therefore the protocol solves the multiparty equality problem in the subgraph
G[Ri ∪ Bi], as required.

The following lemma bounds the transmission cost of the protocol.

Lemma 2. The cost of transmission of the protocol is at most 4k · ∑u∈V y(u).

Proof. The total number of bits transmitted by the red nodes is k times the
number of red nodes, say t. Let i1 < i2 < · · · < it be the rounds where nodes
r1, r2, . . . , rt got colored red. We have that

t =
t∑

j=1

1

≤
t∑

j=1

(
2 ·

∑

v∈N+(rj)∩Wij−1

y(v)
)

≤ 2 ·
∑

u∈V

y(u).

For the first inequality, recall that
∑

v∈N+(rj)∩Wij−1
y(v) ≥ 1/2 for all j ∈ [1, t]

since rj got colored red in round ij . For the last inequality, note that N+(rj) ∩
Wij−1 and N+(rj′)∩Wij′ −1 are disjoint for any distinct j, j′ ∈ [1, t]. To see this,
assume j < j′ so that N+(rj) ∩ Wij′ −1 is empty because rj got colored red and
its neighborhood blue in round ij . Thus, the total number of bits transmitted
by red nodes is upper bounded by 2k · ∑u∈V y(u).

For the blue nodes, recall that each blue node u transmits q · y(u) code sym-
bols, each of which consists of k/� bits. So, the total number of bits transmitted
by the blue nodes is at most

k

�
·
∑

u∈V

q · y(u) =
2k

q
· q ·

⎛

⎝
∑

u∈V

y(u)

⎞

⎠

= 2k ·
∑

u∈V

y(u),

where the first equality follows from � = q/2.
It follows that the total number of bits transmitted by both the red and the

blue nodes in the protocol is at most 4k · ∑
u∈V y(u).

Proof (Proof of Theorem 2). A protocol that solves the multiparty equality prob-
lem is given in this section. The proof of correctness follows from Lemma 1 while
the transmission cost is bounded in Lemma 2.
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7 Conclusion and Open Problems

In this paper we have studied the multiparty equality problem under the local
broadcast model on arbitrary graphs. We established a lower bound to the trans-
mission cost using two-way partitions of nodes. We identified simple protocols
and observed that they can cost Ω(log n) times the lower bound in certain graphs.
This is in contrast to the point-to-point model where simple protocols are within
a factor 2 of the lower bound [1]. We also presented linear protocols, based on
Reed-Solomon codes, that cost at most 4 times the lower bound.

We finish the paper with some open problems:

1. Can the lower bound be improved? Note that the lower bound for the point-to-
point communication model [1] is also based on two-way partitions of nodes.
If a better lower bound exists for the local broadcast model, can the same
technique be used to improve the lower bound for the point-to-point model,
or vice versa?

2. Can we improve on the given upper bound?
3. In this work, we considered the transmission costs of the protocols (Sect. 3).

What do the protocols look like if they minimize reception cost instead?
Let costP (G) be the cost of an optimal protocol under point-to-point com-
munication on a graph G. Let costT (G) and costR(G) be the transmission
and reception costs of corresponding optimal protocols under local broadcast
on a graph G. Then we have the following relationship between the three
quantities.

costT (G) ≤ costP (G) ≤ costR(G).

The first inequality follows from the fact that any protocol Pp designed for
the point-to-point model can be converted into a protocol Pb for the local
broadcast model by having each node broadcast all the messages it transmits
in P , without paying any additional transmission cost. The second inequality
follows from the fact that any protocol Pb designed for the local broadcast
model can be converted into a protocol Pp for the point-to-point model by
having each node transmit all of its messages in Pb to all of its neighbors via
point-to-point transmissions in Pp, without paying any additional reception
cost.

4. A more generalized problem is where each node is assigned a weight. This
weight is the per bit cost paid for communication by the node. This model
generalizes both the transmission and reception cost variants.

5. In this work, we have considered static protocols (see Sect. 3) where the trans-
mitters at each time step and the number of bits transmitted by each node are
both independent of the input. Do “dynamic” protocols perform any better
under local broadcast?
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