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Abstract7

Byzantine consensus is a classical problem in distributed computing. Each node in a synchronous8

system starts with a binary input. The goal is to reach agreement in the presence of Byzantine faulty9

nodes. We consider the setting where communication between nodes is modelled via an undirected10

communication graph. In the classical point-to-point communication model all messages sent on an11

edge are private between the two endpoints of the edge. This allows a faulty node to equivocate, i.e.,12

lie differently to its different neighbors. Different models have been proposed in the literature that13

weaken equivocation. In the local broadcast model, every message transmitted by a node is received14

identically and correctly by all of its neighbors. In the hypergraph model, every message transmitted15

by a node on a hyperedge is received identically and correctly by all nodes on the hyperedge. Tight16

network conditions are known for each of the three cases.17

We introduce a more general model that encompasses all three of these models. In the local18

multicast model, each node u has one or more local multicast channels. Each channel consists of19

multiple neighbors of u in the communication graph. When node u sends a message on a channel,20

it is received identically by all of its neighbors on the channel. For this model, we identify tight21

network conditions for consensus. We observe how the local multicast model reduces to each of22

the three models above under specific conditions. In each of the three cases, we relate our network23

condition to the corresponding known tight conditions. The local multicast model also encompasses24

other practical network models of interest that have not been explored previously, as elaborated in25

the paper.26
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1 Introduction33

Byzantine consensus is a classical problem in distributed computing introduced by Lamport34

et al [12, 14]. There are n nodes in a synchronous system. Each node starts with a binary35

input. At most f of these nodes can be Byzantine faulty, i.e., exhibit arbitrary behavior.36

The goal of a consensus protocol is for the non-faulty nodes to reach agreement on a single37

output value in finite time. To exclude trivial protocols, we require that the output must be38

an input of some non-faulty node.39

In this paper, we study consensus under the local multicast model. We formalize this40

model in Section 2. Intuitively, nodes are connected via an undirected graph G. A local41

multicast channel is defined by a sender and a set of receivers. Each node u may potentially42

serve as the sender on multiple local multicast channels. When node u sends a message on43

one of its local multicast channels, it is received identically and correctly by all the receivers44
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29:2 Byzantine Consensus with Local Multicast Channels

in the channel. This model generalizes the following models that have been considered before45

in the literature.46

1. Point-to-point communication model: In the classical point-to-point communication model,47

each edge uv in the communication graph represents a private link between the nodes u48

and v. This model is well-studied [1, 4, 12, 13, 14]. It is well-known that n ≥ 3f + 1 and49

node connectivity at least 2f + 1 are both necessary and sufficient in this model.50

2. Local broadcast model: Recently, we [8] studied consensus under the local broadcast model51

[2, 11], where a message sent by any node is received identically by all of its neighboring52

nodes in the communication graph. We obtained that minimum node degree at least 2f53

and node connectivity at least
⌊
3f/2

⌋
+ 1 are both necessary and sufficient for Byzantine54

consensus under the local broadcast model [8].55

3. Hypergraph model: A hypergraph is a generalization of graphs consisting of nodes and56

hyperedges. Unlike an edge in a graph, a hyperedge can connect any number of nodes.57

For a communication network modelled as a hypergraph, a message sent by a node u on58

a hyperedge e (that contains u) is received identically by all nodes in the hyperedge e.59

Communication networks modelled as hypergraphs have been studied in the literature60

[6, 7, 15]. Ravikant et al [15] gave tight conditions for Byzantine consensus on (2, 3)-61

hypergraphs.1 As discussed in Section 4, this result extends to general undirected62

hypergraphs as well.63

The classical point-to-point communication model allows a faulty node to equivocate [3],64

i.e., send conflicting messages to its neighbors without this inconsistency being observed65

by the neighbors. For example, a faulty node z may tell its neighbor u that it has input 0,66

but tell another neighbor v that it has input 1. Since messages on each edge are private67

between the two endpoints, so node u does not overhear the message sent to node v and vice68

versa. The local broadcast model and the hypergraph model restrict a faulty node’s ability69

to equivocate by detecting such attempts. In the local broadcast model, a faulty node’s70

attempt to equivocate is detected by its neighboring nodes in the communication graph. In71

the hypergraph model, a faulty node’s attempt to equivocate on a hyperedge is detected72

by the nodes in that hyperedge. In our local multicast model, a faulty node’s attempt to73

equivocate on a single multicast channel is detected by the receivers in that channel.74

In this work, we introduce the local multicast model, that unifies the models identified75

above, and make the following main contributions:76

1. Necessary and sufficient condition for local multicast model: In Section 3, we77

present a network condition and show that it is both necessary and sufficient for Byzantine78

consensus under the local multicast model. The identified condition is inspired by the79

network conditions for directed graphs [9, 17], where node connectivity does not adequately80

capture the network requirements for consensus. We present a simple algorithm, inspired81

by [8, 9, 17].82

2. Reductions to the existing models: The two extremes of the local multicast model83

are 1) each channel consists of exactly one receiver, and 2) each node has exactly one84

multicast channel. These correspond to the point-to-point communication model and the85

local broadcast model, respectively. In Section 4, we discuss how the network condition86

1 i.e., each hyperedge consists of either 2 or 3 nodes.
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for the local multicast model reduces to the network requirements for the point-to-point87

model and the local broadcast model at the two extremes. On the other hand, if the88

multicast channels are induced from the hyperedges in a hypergraph, then this corresponds89

to the hypergraph model. In this case, the network condition reduces to the network90

requirements of the undirected hypergraph model given by Ravikant et al [15]. Moreover,91

our algorithm for the local multicast model works for all the three models identified here92

as well.93

3. Extensions to other models: The local multicast model also captures some other94

models of practical interest (see Section 5). For instance, consider the scenario where95

nodes are connected via a wireless network. This can be modelled as local multicast96

over a graph G1. Separately, the nodes are also connected via a bluetooth network,97

modelled using local multicast over a graph G2 (with the same node set as G1). Then98

the union of these networks G1 ∪G2 can be captured using the local multicast model as99

well. As another example, consider the scenario where nodes are connected via point-100

to-point channels. Additionally, nodes are also connected via a wireless network with101

local broadcast guarantees. As before, this can also be captured using the local multicast102

model. Our algorithm works for these cases as well.103

In our recent work [10], we have generalized the results in this paper to the directed local104

multicast model. The directed local multicast model corresponds to directed hypergraphs105

where each directed hyperedge models a multicast channel with a single sender and a non-106

empty set of receivers. The tight condition obtained in [10] for the directed case is a natural107

extension of the tight condition obtained here for the undirected case. The results and proofs108

in [10] are more general and encompass the results in this paper.109

2 System Model and Problem Formulation110

We consider a synchronous system of n nodes. Nodes communicate using local multicast111

channels. Each node u has a set of multicast channels ζu. Each multicast channel χu ∈ ζu112

is defined by the sender u and a non-empty set of receivers. For example, {v, w} ∈ ζu is a113

multicast channel of sender u with two receivers v and w. By convention used here, u is114

not included in the set of receivers. However, trivially, each node receives its own message115

transmissions as well. The communication between nodes is bidirectional so that if a node116

v ∈ χu for some channel χu ∈ ζu, then there exists a channel χv ∈ ζv such that u ∈ χv. A117

message m sent by a node u on a multicast channel χu is received identically and correctly118

by all nodes in χu. Moreover, each recepient v ∈ χu knows that m was sent by u on channel119

χu. We assume that each multicast channel is a FIFO communication channel.120

The communication graph G = (V (G), E(G)) is an undirected graph where V (G) is the121

set of n nodes and uv ∈ E(G) is an edge of G if and only if there are channels χu and χv at122

nodes u and v, respectively, such that u ∈ χv and v ∈ χu. Nodes u and v are neighbors in G.123

Observe that each multicast channel χu consists of a non-empty subset of the neighbors of u,124

such that each neighbor of u is in at least one channel in ζu.125

Neighborhood: For a set S ⊆ V (G), a node v ∈ V (G) − S is a neighbor of S if it is126

a neighbor of some node u ∈ S. More generally, for two disjoint sets A,B ⊆ V (G),127

ΓG(A,B) defined below is the set of neighbors of B in A.128

ΓG(A,B) :=
{
u ∈ A | ∃v ∈ B : uv ∈ E(G)

}
.129

DISC 2021



29:4 Byzantine Consensus with Local Multicast Channels

Adjacent: For two disjoint sets A,B ⊆ V (G), we use A→G B (read as A is “adjacent”130

to B in G) to denote that either131

(i) B = ∅, or132

(ii) nodes in B have at least f + 1 neighbors in A in the graph G, i.e.,133 ∣∣ΓG(A,B)
∣∣ ≥ f + 1.134

A Byzantine faulty node may exhibit arbitrary behavior. In Byzantine consensus problem135

each node starts with a binary input and must output a binary value satisfying the following136

constraints, in the presence of up to f Byzantine faulty nodes.137

1. Agreement: All non-faulty nodes must output the same value.138

2. Validity: If a non-faulty node outputs b ∈ {0, 1}, then at least one non-faulty node must139

have input b.140

3. Termination: All non-faulty nodes must decide in finite time.141

It is easy to show that f < n is necessary for Byzantine consensus. So we assume f < n142

throughout the paper.143

Node split144

We now introduce the notion of a node split that is used to specify the necessary and sufficient145

condition under the local multicast model. As seen later, we will use the notion of node split146

to simulate possible equivocation by a faulty node. Intuitively, by splitting a node v, we147

are creating two copies of v and dividing up the channels amongst the two copies. Figure 1148

shows two examples of node split. Formally, splitting a node v in G creates a new graph G′149

as follows.150

The node v is replaced by two nodes v0 and v1.151

We add an edge v0v1 to E(G′).152

We add a multicast channel
{
v1} to v0 and a multicast channel

{
v0} to v1.153

For every multicast channel χv of node v in G, choose exactly one of v0 and v1 as node154

v′. Create a multicast channel χ′v′ of v′ with χ′v′ =
{
u | u ∈ χv

}
, i.e., each neighbor of v155

in χv is assigned to χ′v′ .156

The above step adds edges to E(G′), of the form uv′ such that v′ ∈
{
v0, v1}, but v′ is157

not assigned to any multicast channel at node u. We specify these assignments as follows.158

Consider an edge uv′, for v′ ∈
{
v0, v1}, in G′. For each multicast channel χu of node u159

in G, such that v ∈ χu, add v′ to the corresponding multicast channel χ′u in G′. Now160

each neighbor w of u in G′ is part of at least one multicast channel at node u.161

Observe that for every node u ∈ V (G′), each of its multicast channels in G′ corresponds162

to a single multicast channel in G, except for the two channels
{
v1} and

{
v0} at nodes v0

163

and v1, respectively (where node v was split). Similarly, for every node u ∈ V (G), each of164

its multicast channels in G corresponds to a single multicast channel in G′.165

To split two nodes u and v in G, we first split u to obtain G′. We then split v to obtain166

G′′ from G′. The order of splits does not matter. This process naturally extends to splitting167

multiple nodes as well. For a set F ⊆ V (G), let ΛF (G) be the set of all graphs that can be168
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v

u w z

G− v

G

v0 v1

u w z

G′1 −
{
v0, v1}

G′1

v0 v1

u w z

G′2 −
{
v0, v1}

G′2

v0 v1

u w z

G′3 −
{
v0, v1}

G′3

(a) Splitting a single node v. Only the channels in ζv are drawn here. There are two channels in ζv : {u,w}
and {w, z}, drawn with blue and red colors, respectively. There are three possible graphs in Λ{v}(G),
other than G, corresponding to the assignment of channels when v is split into v0 and v1. These are
depicted as G′

1, G′
2, and G′

3.

v u

wz

G

v0

v1 u0

u1

wz

G′

(b) Splitting two nodes u, v in a 4-node graph G. Directed edges of the same color, pointing out from the
same sender node, represent a single channel. G′ is obtained by splitting nodes u and v into u0, u1 and
v0, v1, respectively. The cyan channel is assigned to v1, the violet channel is assigned to v0, and the red
channel is assigned to u0.

Figure 1 Examples of the node split operation.
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29:6 Byzantine Consensus with Local Multicast Channels

obtained from G by splitting some subset of nodes in the set F . For a graph G′ ∈ ΛF (G),169

we use F ′ to denote the set of nodes in G′ that correspond to nodes in F in G, i.e.,170

F ′ :=
(
V (G′) ∩ F

)
∪
(
V (G′)− V (G)

)
.171

Note that there are two choices in the node split operation above which give rise to all172

the graphs in ΛF (G):173

1. choice of which nodes in F to split, and174

2. assignment of multicast channels for each split node.175

As needed, we will occasionally clarify these choices to specify how a graph G′ ∈ ΛF (G) was176

constructed by splitting some nodes in F .177

3 Main Result178

The main result of this paper is a tight characterization of network requirements for Byzantine179

consensus under the local multicast model. Consider a graph G′ ∈ ΛF (G) obtained from G180

by splitting some nodes in a set F . Recall that we use F ′ to denote the set of nodes in G′181

that correspond to nodes in F in G.182

I Theorem 1. Under the local multicast model, Byzantine consensus tolerating at most f183

faulty nodes is achievable on graph G if and only for every F ⊆ V (G) of size at most f ,184

every G′ ∈ ΛF (G) satisfies the following: for every partition2 (L,C,R) of V (G′), either185

1. L ∪ C →G′ R− F ′, or186

2. R ∪ C →G′ L− F ′.187

While we allow a partition to have empty parts, the interesting partitions are those where188

both L and R are non-empty, but C can be possibly empty. In Section 4, we show that when189

the local multicast model corresponds to the point-to-point, local broadcast, or hypergraph190

model, the above condition reduces to the corresponding known tight network conditions in191

each of the three cases.192

We prove the necessity of Theorem 1 in Section 6. In Section 7, we give an algorithm to193

constructively show the sufficiency. The above condition is similar to the network condition194

for directed graphs in the point-to-point communication model [16, 17] and in the local195

broadcast model [9]. Note that [9, 16, 17] deal with consensus on arbitrary directed graphs,196

where connectivity constraints do not adequately capture the tight network requirements. In197

this paper, we are interested in undirected graphs. However, since the local multicast model198

is quite general and captures various models with different connectivity requirements, it is199

plausible that no concise network connectivity property will be able to properly characterize200

the tight condition.201

For convenience, we give a name to the condition in Theorem 1.202

I Definition 2. A graph G satisfies condition LCR with parameter F if for every G′ ∈ ΛF (G)203

and every partition (L,C,R) of V (G′), we have that either204

2 with a slight abuse of terminology, we allow a partition of a set to have empty parts.
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1. L ∪ C →G′ R− F ′, or205

2. R ∪ C →G′ L− F ′.206

We say that G satisfies condition LCR, if G satisfies condition LCR with parameter F for207

every set F ⊆ V (G) of cardinality at most f .208

4 Reductions to Other Models209

In this section, we discuss how condition LCR relates to the tight conditions for the classical210

point-to-point communication model, the local broadcast model, and the hypergraph model.211

Point-to-piont Channels212

The classical point-to-point communication model corresponds to the case where each213

multicast channel in the graph consists of a single receiver node, so that the communication on214

an edge uv is private between the two nodes u and v. Under the point-to-point communication215

model, it is well known that n ≥ 3f + 1 [5, 12, 14] and node connectivity at least 2f + 1216

[4, 5] are both necessary and sufficient for consensus on arbitrary undirected graphs.217

When G has only point-to-point channels, i.e., each multicast channel consists of a single218

receiver node, then G satisfies condition LCR if and only if n ≥ 3f + 1 and G has node219

connectivity ≥ 2f + 1. We prove this formally in [10]. Therefore, the two models are220

equivalent when only point-to-point channels are present.221

Local Broadcast222

The local broadcast model corresponds to the other extreme where each node in the graph223

has exactly one multicast channel, so that the messages transmitted by a node u are received224

identically and correctly by all neighbors of u. Under the local broadcast model, we [8]225

showed that node degree at least 2f and connectivity at least
⌊
3f/2

⌋
+ 1 are both necessary226

and sufficient for consensus on arbitrary undirected graphs.227

When G has only local broadcast channels, i.e., each node has a single multicast channel,228

then G satisfies condition LCR if and only if G has minimum node degree ≥ 2f and node229

connectivity ≥
⌊
3f/2

⌋
+ 1. We prove this formally in [10]. Therefore, the two models are230

equivalent when only local broadcast channels are present.231

Hypergraphs232

The last model we consider in this section is the hypergraph model. In a hypergraph233

H = (V (H), E(H)), each hyperedge e ∈ E(H) is a subset of nodes e ⊆ V (H). A hyperedge234

e ∈ E(H) is called an |e|-hyperedge. Each hyperedge is effectively a multicast channel, i.e.,235

a message sent by a node u on an edge e ⊇ {u} is received identically and correctly by all236

nodes v ∈ e. However, any node on a hyperedge can act as a sender for this channel. In237

our local multicast model with communication graph G, this corresponds to the case where,238

for every pair of nodes u, v and multicast channel χu of u such that v ∈ χu, there exists a239

channel χv of v such that χv =
(
χu ∪ {u}

)
− v.240

Ravikant el. al. [15] obtained tight conditions for the hypergraph model. We observe that241

while the conditions were presented as a tight characterization for (2, 3)-hypergraphs3 in [15],242

3 H is a (2, 3)-hypergraph if each hyperedge is either a 2-hyperedge or a 3-hyperedge.
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29:8 Byzantine Consensus with Local Multicast Channels

they also hold for general hypergraphs. In our local multicast model, when the communication243

graph G and its local multicast channels correspond to an undirected hypergraph, then244

condition LCR reduces to the tight conditions for hypergraphs given in [15]. The formal245

proof is given in [10].246

5 Application to New Models247

As mentioned in Section 1, the local multicast model also encompasses some other network248

models of practical interest that, to the best of our knowledge, have not been considered249

before in the literature. Suppose the n nodes are connected via a local multicast network250

with graph G1. For example, network connectivity in G1 can be via point-to-point links or251

via wireless channels modelled as local broadcast. Additionally, the n nodes are connected252

via another local multicast network with graph G2. For example, G2 may correspond to253

a wireless network with different frequencies and/or technologies. The complete system,254

where nodes can communicate on channels in G1 as well as on channels in G2, can also be255

characterized by the local multicast model. We omit details for brevity, but this corresponds256

to the natural union of G1 and G2, with each node now having access to its multicast channels257

in G1 as well as its multicast channels in G2.258

6 Necessity of Condition in Theorem 1259

Intuitively, consider a set F ⊆ V (G) of size at most f , such that the graph G violates260

condition LCR with parameter F . With F as a candidate faulty set, the splitting of nodes261

in F captures possible equivocation by nodes in F : a faulty node can behave as if it has262

input 0 on some of its multicast channels and behave as if it has input 1 on the other263

multicast channels. Let G′ ∈ ΛF (G) be a graph obtained by splitting nodes in F . We use264

F ′ to denote the nodes in G′ that correspond to nodes in F in G. Suppose (L,C,R) is a265

partition of G′. Now consider the execution where non-faulty nodes in L have input 0. Since266

R ∪ C 6→G′ L − F ′, nodes in L − F ′ can not distinguish between F and its neighbors in267

R ∪C, i.e., ΓG′(R ∪C,L− F ′) as the set of faulty nodes. So non-faulty nodes in L are stuck268

with outputting 0 in this case. Similarly if non-faulty nodes in R have input 1, then they269

have no choice but to output 1, creating the desired contradiction.270

A formal necessity proof is given in [10] for the directed local multicast model, which271

generalizes the undirected local multicast model considered in this paper. It follows the272

standard state machine based approach [1, 4, 5], similar to [9, 17]. Suppose there exists a set273

F ⊆ V (G), of size at most f , such that G does not satisfy condition LCR with parameter F ,274

but there exists an algorithm A that solves consensus on G. Algorithm A outlines a procedure275

Au for each node u that describes u’s state transitions, as well as messages transmitted on276

each channel of u in each round. Now there exists a graph G′ ∈ ΛF (G) and a partition277

of V (G′) that does not satisfy the requirements of condition LCR. To create the required278

contradiction, we work with an algorithm for G′ instead of A. To see why this works, observe279

that an algorithm A on graph G can be adapted to create an algorithm A′ for a graph280

G′ ∈ ΛF (G) as follows. Each round i in the algorithm A is now split into two sub-rounds i(a)281

and i(b) in A′. We consider each of these rounds separately and specify the corresponding282

steps for each node in G′ for the algorithm A′.283

Round i(a): Each node v ∈ V (G′) ∩ V (G) that was not split runs Av as specified for284

round i. For a node v ∈ V (G′)− V (G) that was split into v0, v1 ∈ V (G′), both v0 and285
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v1 run Av for round i with the following modification. Consider a multicast channel286

χv ∈ ζv of node v in G. Let χ′v0 (resp. χ′v1) be the corresonding multicast channel in G′287

at node v0 (resp. v1). If the algorithm Av wants to transmit a message on χv, then v0
288

(resp. v1) sends the message on χ′v0 (resp. χ′v1), while v1 (resp. v0) ignores this message289

transmission. Observe that, for any node u ∈ χv, u receives messages on the channel290

from exactly one of v0 and v1.291

Round i(b): This round is reserved for the split nodes. Consider a node v ∈ F − V (G′)292

that was split into v0, v1 ∈ V (G′). Node v0 forwards all messages it received in round293

i(a) to v1 and v1 forwards all messages it received in round i(a) to v0. This allows both294

v0 and v1 to run Av in the next round.295

Now, A′ might not solve consensus on G′, or may not even terminate. However, as long296

as care is taken with regards to which nodes are allowed to be faulty in G′ and the input297

of the split nodes, the guarantees for A will imply that A′ does indeed terminate and solve298

consensus on G′. In particular, we want that299

1. the faulty nodes in G′ correspond to at most f nodes in G,300

2. for each node v ∈ F − V ′ that was split into v0, v1 ∈ V ′, either301

a. both v0 and v1 have the same input, or302

b. at least one of v0 and v1 is faulty.303

So for necessity, it is enough to show that no algorithm exists for a hypergraph G′ ∈ ΛF (G),304

under the two conditions identified above. We formalize this property and use it in the305

formal necessity proof in [10].306

7 Algorithm for the Local Multicast Model307

To prove the sufficiency portion of Theorem 1, we work with a different network condition,308

which we will be equivalent to condition LCR. We first introduce some notation that is used309

in the algorithm. For a set of nodes U ⊆ V (G), we use G[U ] to denote the subgraph induced310

by the nodes in U . The multicast channels in G[U ] are obtained from the multicast channels311

in G by removing nodes in V (G)− U from each channel, with some channels possibly being312

deleted entirely. We use G− U to denote the subgraph G[V (G)− U ].313

A path is a sequence of distinct nodes such that if u precedes v in the sequence, then v is314

a neighbor of u in G (i.e., uv is an edge). For a path P and node z, we use z • P to denote315

the path obtained by prefixing the node z to P .316

uv-paths: For two nodes u, v ∈ V (G), a uv-path Puv is a path from u to v. u is called317

the source and v the terminal of Puv. Any other node in Puv is called an internal node318

of Puv. Two uv-paths are node-disjoint if they do not share a common internal node.319

Uv-paths: For a set U ⊂ V (G) and a node v 6∈ U , a Uv-path is a uv-path for some node320

u ∈ U . All Uv-paths have v as terminal. Two Uv-paths are node-disjoint if they do not321

have any nodes in common except the terminal node v. In particular, two node-disjoint322

Uv-paths have different source nodes. By definition, the number of disjoint Uv-paths323

is upper bounded by the size of the set U . Note the difference in definition between324

node-disjoint uv-paths and node-disjoint Uv-paths when U = {u} is a singleton set. The325

former requires only internal nodes to be different, while the latter needs to have different326

source nodes as well. For the former, there can be more than one such node-disjoint path,327

while for the latter, there is at most one.328
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Propagate: For two disjoint node sets A,B ⊆ V (G), we use A  G B (read as A329

“propagates” to B in G) to denote that either330

(i) B = ∅, or331

(ii) for every v ∈ B, there exist at least f +1 node-disjoint Av-paths in the graph G[A∪B].332

We now give a different network condition which is equivalent to condition LCR, but will333

be useful for specifying an algorithm for the local multicast model and proving its correctness.334

Recall that we use F ′ to denote the set of nodes in G′ corresponding to nodes in F in G.335

I Definition 3. A graph G satisfies condition AB with parameter F if for every G′ ∈ ΛF (G)336

and every partition (A,B) of V (G′), we have that either337

1. A G′ B − F ′, or338

2. B  G′ A− F ′.339

We say that G satisfies condition AB, if G satisfies condition AB with parameter F for every340

set F ⊆ V of cardinality at most f .341

I Theorem 4. A graph G satisfies condition LCR if and only if G satisfies condition AB.342

We skip the proof of Theorem 4, which is (almost) identical to proof of Theorem 5.2 in343

[9]. We show the sufficiency of condition AB (and hence condition LCR) constructively. For344

the rest of this section, we assume that G satisfies condition AB. The proposed algorithm345

is given in Algorithm 1. It draws inspiration from algorithms in [8, 9, 17]. Each node v346

maintains a binary state variable γv, which we call v’s γ value. Each node v initializes γv to347

be its input value.348

The nodes use “flooding” to communicate with the rest of the nodes. We refer the reader349

to [8, 9] for details about the flooding primitive. Briefly, when a node u wants to flood a350

binary value b ∈ {0, 1}, it transmits b to all of its neighbors, who forward it to their neighbors,351

and so forth. If a node u receives a message on channel χ, then u appends the channel id of352

χ when fowarding the message to its neighbors. By adding some simple sanity checks, one353

can assume that even a faulty node v does indeed transmit some value when it is v’s turn354

to forward a message. In at most n synchronous rounds, the value b will be “flooded” in G.355

However, faulty nodes may tamper messages when forwarding, so some nodes may receive a356

value b̄ 6= b along paths that contain faulty nodes.357

The algorithm proceeds in phases. Every iteration of the for loop (starting at line 3) is358

a phase numbered 1, . . . , 2f . Let F ∗ denote the actual set of faulty nodes. Each iteration359

of the for loop, i.e. phase > 0, considers a candidate faulty set F . In this iteration, nodes360

attempt to reach consensus, by updating their γ state variables, assuming the candidate set361

F is indeed faulty. Let Z and N be the set of nodes in G− F that have their state variable362

set to 0 and 1, respectively, at the beginning of the iteration. Each iteration has three steps.363

In step (a), each node v floods its γv value.364

In step (b), based on the values received during flooding, each node v creates its estimate365

of the sets Z and N , by ignoring all paths that pass through the candidate faulty set F ,366

i.e., paths that have internal nodes from F . This estimate is created in a manner so that367

1. when F 6= F ∗, this estimate may be incorrect, but368

2. when F = F ∗, this estimate is indeed correct.369
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Algorithm 1 Proposed algorithm for Byzantine consensus under the local multicast
model: Steps performed by node v are shown here.

1 Each node has a binary input value in {0, 1}.
2 Each node v maintains a binary state γv ∈ {0, 1}, initialized to the input value of v.
3 For each F ⊆ V such that |F | ≤ f :
4 Step (a): Flood value γv.
5 if v ∈ F then skip steps (b) and (c)

6 Step (b):

7 Create a graph G′v by splitting all nodes in F as follows. Set

F ′ :=
{
u0 | u ∈ F

}
∪
{
u1 | u ∈ F

}
and V (G′v) := (V (G)− F ) ∪ F ′.

The edges and channels of G′v are as determined by the split operation, with the
following choices: For every node z ∈ F and a multicast channel χz ∈ ζz :

8 if ∃w ∈ χz such that w ∈ V (G)− F then
9 identify a single wv-path Pwv in G− F (Lemma 7).

10 if v received 0 from z along the path z • Pwv in step (a), such that the
initial message was sent by node z on channel χz then assign χz to z0.

11 else assign χz to z1.
12 else
13 assign χz to z1.

14 For each node u ∈ V − F , identify a single uv-path Puv in G− F (Lemma 7).
Note that path Pvv trivially exists (Pvv contains only v). Initialize a partition
(Zv, Nv) of V (G′v) as follows,

Zv := {u0 | u ∈ F} ∪
{
u ∈ V − F | v received value 0 along Puv in step (a)

}
,

Nv := {u1 | u ∈ F} ∪ (V − F − Zv).

Step (c):

15 if Zv  G′v
Nv − F then set Av := Zv and Bv := Nv

16 else set Av := Nv and Bv := Zv

17 if v ∈ Bv − F then
// by construction, the paths of interest in G naturally

correspond to paths in G′v.

18 if in step (a), v received a value δ ∈ {0, 1} identically along any f + 1
node-disjoint Avv-paths in the graph G′v[A ∪ (B − F )] = G′v − (Bv ∩ F ) then

19 set γv := δ

20 Output γv
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In step (c), based on the estimates created in step (b), a node v may update its γv370

value. The rules for updates ensure that371

1. when F 6= F ∗, for each non-faulty node v, its state γv at the end of the iteration equals372

the γ value of some non-faulty node at the beginning of the iteration (Lemma 5).373

2. when F = F ∗, all non-faulty nodes have identical γ values at the end of this iteration374

(Lemma 6).375

At the end, after all iterations of the main for loop, each output node v outputs its γv376

value.377

The correctness of Algorithm 1 relies on the following two key lemmas, which are proven378

in Section A. Recall that we use F ∗ to denote the actual set of faulty nodes.379

I Lemma 5. For a non-faulty node v ∈ V − F ∗, its state γv at the end of any given phase380

of Algorithm 1 equals the state of some non-faulty node at the start of that phase.381

I Lemma 6. Consider a phase > 0 of Algorithm 1 wherein F = F ∗. At the end of this382

phase, every pair of non-faulty nodes u, v ∈ V − F ∗ have identical state, i.e., γu = γv.383

Lemma 5 ensures validity, i.e., that the output of each non-faulty node is an input of384

some non-fautly node. It also ensures that agreement among non-faulty nodes, once acheived,385

is not lost. Lemma 6 ensures that agreement is reached in at least one phase of the algorithm.386

These two lemmas imply correctness of Algorithm 1 as shown in Section A.387

8 Conclusion388

In this paper, we introduced the local multicast model which, to the best our knowledge,389

has not been studied before in the literature. The local multicast model encompasses the390

point-to-point, local broadcast, and hypergraph communication models, as well as some new391

models which have not been considered before. We identified a tight network condition for392

Byzantine consensus under the local multicast model, along the lines of [9, 17], and proved393

its necessity and sufficiency. When the local multicast model represents one of point-to-point,394

local broadcast, or hypergraph communication models, we showed how the identified network395

condition reduces to the known tight requirements for the corresponding case.396

A natural extension to complete the local multicast model is to consider a directed397

communication graph, which corresponds to directed hypergraphs, and generalizes the398

directed cases of point-to-point and local broadcast models. In our recent work [10], we have399

extended the results in this paper to the directed setting. The natural extension of condition400

LCR to the directed case is the tight network condition for directed local multicast. We refer401

the reader to [10] for more details.402
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A Proof of Correctness of Algorithm 1461

In this section, we show correctness of Algorithm 1 when the communication graph G462

sastisfies condition AB. For the rest of this section, we assume that G satisfies condition AB.463

Throughout this section, we use F ∗ to denote the actual set of faulty nodes. We first prove464

Lemma 5.465

Proof of Lemma 5. Fix a phase > 0. Note that a node updates its state only in step (c).466

Suppose a node v updates its state γv to α. Then, as per the update rules in step (c),467

v must have received the value α identically along f + 1 node-disjoint Avv-paths in step468

(a). Since there are at most f faulty nodes, so at least one of these paths, say P , must469

have neither any faulty internal node nor a faulty source node. Since α was received along470

P , which has only non-faulty internal nodes, so the source node of P , say u, flooded α in471

step (a) of this phase. Since u is non-faulty, so γu had value α at the start of this phase.472

Therefore, the state of node v at the end of this phase equals the state of a non-faulty node473

u at the start of this phase. J474

Before proving Lemma 9, we need some intermediate results. We first show that in every475

iteration of the main for loop, the paths in step (b) do exist.476

I Lemma 7. In any phase > 0 of the algorithm with a candidate faulty set F , for any two477

nodes u, v ∈ V (G)− F , there exists a uv-path in G− F .478

Proof. Suppose for the sake of contradiction that there exist two nodes u, v ∈ V (G) − F479

such that there is no uv-path in G−F . Let A be the set of nodes that are reachable by node480

u in G− F , and let B = V −A. Note that481

(i) |F | ≤ f ,482

(ii) u ∈ A = A− F so that A− F 6= ∅, and483

(iii) v ∈ B − F so that B − F 6= ∅.484

Now, there are no edges between A and B − F . Since |F | ≤ f , so there are at most f485

node-disjoint Av-paths and at most f node-disjoint Bu-paths in graph G. Therefore, we486

have487

1. A 6 G B − F , and488

2. B 6 G A− F .489

Since G ∈ ΛF (G), so condition AB is violated, a contradiction. J490

When a non-faulty node wants to flood a value b ∈ {0, 1}, it sends a single value b on491

all of its multicast channels. But a faulty node might send different messages on different492

channels. Note however, that even a faulty node must send the exact same value on a single493

multicast channel.494

I Lemma 8. Consider a phase > 0 of Algorithm 1 wherein F = F ∗. For any two non-faulty495

nodes u, v ∈ V (G) − F ∗, we have G′u = G′v in step (b) of this phase. Furthermore, if in496

step (a) of this phase, faulty node z ∈ F ∗ transmitted 0 (resp. 1) on one of its channels497

χz ∈ ζz, such that χz − F ∗ is non-empty, then in step (b) of this phase χz is assigned to498

z0 (resp. z1) in G′u = G′v.499
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Proof. Consider the phase where F = F ∗ and any two non-faulty nodes u, v ∈ V (G)− F ∗.500

Observe that the node set of the two graphs G′u and G′v are the same. For the edges and501

channels, by construction, it is sufficient to show that for any z ∈ F ∗, the assignment of502

multicast channels to z0 and z1 in the split operation is the same in G′u as in G′v. Consider503

an arbitrary node z ∈ F ∗ and a multicast channel χz ∈ ζz at node z. There are two cases to504

consider:505

Case 1: There exists a node w ∈ χz such that w ∈ V (G)− F ∗.506

Let w be any arbitrary such node. By Lemma 7, there exists a wu-path (resp. wv-path)507

in G − F ∗. Let Pwu (resp. Pwv) be any arbitrary wu-path (resp. wv-path) identified508

by u (resp. v) in line 9. Note that Pwu (resp. Pwv) does not contain any faulty nodes.509

Therefore, a message transmitted by z on χz, is received by u (resp. u) along z • Pwu510

(resp. z • Pwv) untampered. Therefore, in step (a), if z transmitted 0 on channel χz,511

then u (resp. v) received value 0 from z along z • Pwu (resp. z • Pwv). So, in line 11,512

node u (resp. node v) assigns χz to z0 in G′u (resp. G′v). Similarly, if z transmitted 1 on513

channel χz in step (a), then both u and v assign χz to z1 in G′u and G′v, respectively.514

Case 2: There does not exist any node w ∈ χz such that w ∈ V (G)− F ∗.515

In this case, in line 13, both u and v assign χz to z1 in G′u and G′v, respectively.516

In both cases, we have that the multicast channel χz was assigned identically by both u and517

v. As shown in Case 1, if z transmitted 0 (resp. 1) on χz and χz − F ∗ is non-empty, then518

χz was assigned to z0 (resp. z1) by both u and v, as required. J519

I Lemma 9. Consider a phase > 0 of Algorithm 1 wherein F = F ∗. Let520

Z :=
{
u0 | u ∈ F

}
∪
{
w ∈ V (G)− F ∗ | w flooded value 0 in step (a) of this phase

}
521

N :=
{
u1 | u ∈ F

}
∪
{
w ∈ V (G)− F ∗ | w flooded value 1 in step (a) of this phase

}
.522

523

For any two non-faulty nodes u, v ∈ V (G) − F ∗, we have Zu = Zv and Nu = Nv in step524

(b) of this phase.525

Proof. Consider the phase where F = F ∗ and any two non-faulty nodes u, v ∈ V (G)− F ∗.526

We show that Z ⊆ Zv and N ⊆ Nv (resp. Z ⊆ Zu and N ⊆ Nu). Since Z ∪N = Zu ∪Nu =527

Zv ∪Nv, it follows that Z = Zu = Zv and N = Nu = Nv. For a node w ∈ F ∗, the two split528

nodes w0 and w1 are assigned identically by both u and v. So consider an arbitrary node529

w ∈ V (G) − F ∗ = (Z ∪ N) −
{
u0, u1 | u ∈ F ∗

}
. Recall that we are considering the phase530

> 0 of the algorithm where F = F ∗ is the actual set of faulty nodes. There are two cases to531

consider:532

Case 1: w ∈ Z −
{
u0 | u ∈ F ∗

}
, i.e., w 6∈ F ∗ flooded 0 in step (a) of this phase.533

Let Pwv be the wv-path identified by v in step (b). Note that Pwv is contained entirely534

in G−F ∗ so that Pwv does not have any faulty nodes. It follows that, in step (a), since535

w flooded value 0 so v received value 0 along Pwv. Therefore, in step (b), v puts w in536

the set Zv.537

Case 2: w ∈ N −
{
u1 | u ∈ F ∗

}
, i.e., w 6∈ F ∗ flooded 1 in step (a) of this phase.538

Let Pwv be the wv-path identified by v in step (b). Note that Pwv is contained entirely539

in G−F ∗ so that Pwv does not have any faulty nodes. It follows that, in step (a), since540

w flooded value 1 so v received value 1 along Pwv. Therefore, in step (b), v puts w in541

the set Nv.542
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So we have that Z ⊆ Zv and N ⊆ Nv, as required. A symmetric argument gives Z ⊆ Zu543

and N ⊆ Nu. As argued before, this implies that Z = Zu = Zv and N = Nu = Nv. J544

We are now ready to prove Lemma 6.545

Proof of Lemma 6. Consider the phase where F = F ∗. Suppose u, v ∈ V (G)− F ∗ are any546

two non-faulty nodes. By Lemma 9, we have Z = Zu = Zv and N = Nu = Nv, where Z and547

N are as in the statement of Lemma 9. By Lemma 8, we have G′u = G′v, Let G′ = G′u = G′v.548

We use F ′ to denote the set of nodes in G′ corresponding to nodes in F ∗ in G.549

We now show that all non-faulty nodes in V (G)− F ∗ have identical state at the end of550

this phase. Consider step (c) of this phase. If either Z − F ∗ or N − F ∗ is empty, then551

all non-faulty nodes have identical state at the start of the phase and they do not update552

their state in step (c). So suppose that both Z − F ∗ and N − F ∗ are non-empty. Observe553

that, at the start of step (c), all nodes in Z − F ∗ have identical state of 0, while all nodes554

in N − F ∗ have identical state of 1. We show that in step (c) either all nodes in Z − F ∗555

update their state to 1, or all nodes in N − F ∗ update their state to 0.556

Note that G′ ∈ ΛF∗(G). By condition AB, either Z  G′ N − F ′ or N  G′ Z − F ′. We557

consider each case as follows.558

Case 1: Z  G′ N − F ′.559

Consider an arbitrary node v ∈ (Z ∪N)− F ′. In step (c), v sets Av = Z and Bv = N .560

If v ∈ Av−F ′ = Z−F ′, then v has state 0 at the start of this phase and does not update561

it in step (c). So suppose that v ∈ Bv − F ′ = N − F ′. Now, if in step (a) v received562

the value 0 identically along some f + 1 node-disjoint Zv-paths in G′ − (N ∩ F ′), then563

v sets γv = 0 in step (c). We show that such f + 1 node-disjoint Zv-paths do indeed564

exist. Since Z  G′ N − F ′, so there exist f + 1 node-disjoint Zv-paths in G′ − (N ∩ F ′).565

Without loss of generality, only the source nodes on these paths are from Z. For each566

such path, observe that only the source node, say z ∈ Z, can be faulty. If the source567

node z is faulty, then by Lemma 8, and construction of G′ and Z, z sent the value 0 on568

the first channel on this path in step (a). If z is non-faulty, then by construction of569

Z, z flooded value 0 in step (a). Now all other nodes on the path are non-faulty, so v570

received value 0 along this path in step (a). Therefore, v received value 0 identically571

along the f + 1 node-disjoint Zv-paths in step (a), as required.572

Case 2: Z 6 G′ N − F ′ so that N  G′ Z − F ′ by condition AB.573

Consider an arbitrary node v ∈ (Z ∪N)− F ′. In step (c), v sets Av = N and Bv = Z.574

If v ∈ Av − F ′ = N − F ′, then v has state 1 at the start of this phase and does not575

update it in step (c). So suppose that v ∈ Bv − F ′ = Z − F ′. As in Case 1, since576

N  G′ Z − F ′, so there exist f + 1 node-disjoint Nv-paths in G′ − (Z ∩ F ′) such that v577

received the value 1 identically along these paths in step (a). Therefore, v sets γv = 1578

in step (c), as required.579

In both of the cases, all non-faulty nodes have identical state at the end of this phase, as580

required. J581

Using Lemmas 5 and 6, we can now prove the sufficiency of condition AB. Recall that582

by Theorem 4, condition AB is equivalent to condition LCR. Thus this shows the reverse583

direction of Theorem 1.584

Proof of Theorem 1 (⇐ direction). Algorithm 1 satisfies the termination condition because585

it terminates in finite time.586
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In one of the iterations of the main for loop, we have F = F ∗, i.e., F is the actual set of587

faulty nodes. By Lemma 6, all non-faulty nodes have the same state at the end of this phase.588

By Lemma 5, these states remain unchanged in any subsequent phases. Therefore, all nodes589

output an identical state. So the algorithm satisfies the agreement condition.590

At the start of phase 1, the state of each non-faulty node equals its own input. By591

inductively applying Lemma 5, we have that the state of a non-faulty node always equals592

the input of some non-fautly node, including in the last phase of the algorithm. So the593

output of each non-faulty node is an input of some non-faulty node, satisfying the validity594

condition. J595
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