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Abstract.

Wind-induced dynamic response of the nonlinear structure is critical for the structural safety and reliability. The

traditional approaches for this response including observation or simulation focus on the structural health monitoring, the
experiment, or finite element model development. However, all these approaches require high cost or computational investment.
This paper proposes to predict the wind-induced dynamic response of the nonlinear structure with a novel deep learning
approach, LSTM, and applies this in a structural lifeline system, the transmission tower-line system. By constructing the
optimized LSTM architectures, the proposed method applies to both the linear structure, the single transmission tower and the
nonlinear structure, the transmission tower-line system, with promising results for the dynamic and extreme response prediction.
It can conclude that the layers and the hidden units have a strong impact on the LSTM prediction performance, and with proper
training data set, the computational time can significantly decrease. A comparison surrogate model developed by CNN is also
utilized to demonstrate the robustness of the LSTM-based surrogate model with limited data scale.
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1. Introduction

The structural dynamic response induced by severe
windstorms is one of the main reasons that cause structural
damage or collapse (Repetto and Solari 2010). In 2018,
Hurricane Michael, attacked Mexico Beach and Florida,
with 1584 out of 1692 buildings damaged in Mexico Beach
and more than 1000 buildings damaged or destroyed in
Florida, Alabama and Georgia (NOAA 2018). In 2019,
Hurricane Dorian made landfall and caused numerous
powerlines damaged, which impacted more than 190,000
people in coastal South Carolina (NOAA 2019). Due to the
temporal and spatial stochastic characteristics of the wind
loads, wind-induced vibration is a vital index to evaluate the
structural condition like the damage or fail of the high-rise
buildings, bridges, and the transmission infrastructures.

The traditional approaches to obtain the wind-induced
vibration includes the structural health monitoring (SHM),
field or laboratory experiment, and the finite element model
development. Structural health monitoring is a favorable
method to detect the structural response during its service
period by implementing monitors (Ghoshal e al. 2000, Ni
et al. 2007, Jang et al. 2010, Park et al. 2016). Wong et al.
(2000) employed SHM by installing the monitors at the top
and the deck level of the bridges to obtain the structural
wind response of three cable-supported bridges in Tsing Ma
Control Area. The wind rose diagrams, deck responses,
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wind turbulence intensities and spectra are all obtained in
this process. Park et al. (2008) utilized a linear mass shaker
and an active tuned mass damper to simulate the building’s
wind induced response and the results demonstrated that
this excitation system can reproduce the structural response
of each structural floor. Park and Oh (2018) implemented
this on the tallest building in Korea, Lotte World Tower and
concluded that the difference of damping was induced by
wind excitation. Field or laboratory experiment is another
satisfying approach to observe the structural vibration
induced by wind loads (Levitan et al. 1991, Tamura et al.
2002, Zhu et al. 2012). The researchers conducted the field
test to have the full-scale measurement of the continuous
and simultaneous wind-induced structural response (Chen et
al. 2001a, b, Molinari et al. 2011); and to compare the full-
scale field test with the wind tunnel measurement (Zhang
and Li 2018, Hua ef al. 2019). The finite element model is
also a popular method to simulate the structural dynamic
response during wind loads (Geurts ez al. 1998, Hamada et
al. 2010). Hong et al. (2011) developed a finite element
model of an existing suspension bridge and updated the
model to predict its wind-excited dynamic response with
promising accuracy. Fu et al. (2016) generated the finite
element model of the transmission tower and predicted its
dynamic response during the wind and rain load. Different
wind attack angles and wind spectrums are considered in
this process and the reliability of the transmission tower are
obtained as well. He er al. (2018) employed a three-
dimensional finite element model of the low-rise wood-
frame building to observe the dynamic response during the
wind loading. They concluded that the response generated
from the finite element model demonstrates the reasonable
agreement with the experimental results. However, the
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SHM and the field or laboratory experiment is usually
limited by the site condition and the expense. The finite
element model is usually computationally expensive,
especially for the reliability or regional analysis considering
a large set of uncertainties.

With the development of the machine learning methods,
employing the surrogate model to predict the structural
dynamic response has stimulated researchers to explore.
The existing literature focuses on obtaining the extreme
structural performance and the time history response during
the wind loads (Le and Caracoglia 2020, Fang ef al. 2020,
Micheli et al. 2020). For the extreme structural
performance, Oh ef al. (2019) derived the surrogate model
of a tall building during the wind loads to estimate the
maximum and minimum strains with high accuracy
compared with the experimental data. The results prove that
this machine learning-based model can capture the
uncertainties that are not available for the finite element
model, and it can avoid big data collection. Hu ef al. (2020)
extended this work and developed surrogate models based
on four different machine learning methods. They
summarized that the generative adversarial networks
(GANSs) have the best performance to predict the pressure
coefficients and predict them based on 30% dataset, which
largely saves the cost of the wind tunnel tests. The research
about developing the surrogate model of structural time
history analysis during the wind loads is limited. Xue et al.
(2020) utilized Convolutional Neural Network (CNN) to
predict the dynamic response of the transmission tower
during the extreme wind. The results illustrate promising
results that this surrogate model can estimate the time
history response, the extreme displacement, and the
reliability of the transmission tower’s performance.
Moreover, the uncertainties of the wind profiles and
spectrums are captured by this CNN based surrogate model.

However, some limitations exist in the previous
research: 1) The surrogate model for the time history
response of the structure during the wind is limited. The
entire time history of the structure provides integrated
information of the structural performance, which helps
further analysis or reinforcement. 2) The current research
about the surrogate model development applies to the linear
structure, the transmission tower, while to the authors’ best
knowledge, research involves the large nonlinearity of the
structure during the wind loads is at the initial stage. Large
nonlinearity performance of the structure is challenging for

the finite element model development, computation, and the
surrogate model development. 3) The dataset generation for
the surrogate model development is a tedious task with the
high computational requirement. The surrogate model
developed by CNN (Xue et al. 2020) required generating
100 samples with 600 seconds time history response of the
transmission tower. However, when it comes to the
nonlinearity analysis, this data amount could be a burden.
To fill this gap, this paper proposes to employ Long
Short Term Memory (LSTM), an improved recurrent neural
network (RNN) to develop the surrogate model of the
transmission tower/tower-line system during the wind loads
to capture the dynamic linear and nonlinear response. The
initial concept of RNN was proposed by Hopfield (1982) to
build a neural network with a function of content
memorization. An improvement was made by Jordan (1986)
to integrate it with backpropagation and utilize logistic as
the activation function. Later, another improvement was
proposed by Elman (1990) who designed a full connected
RNN. However, RNN cannot predict long sequence that
had long time dependence due to the problems of gradient
vanishing and gradient explosion. To solve this issue, long
short-term memory (LSTM) networks were reported
(Hochreiter and Schmidhuber 1997) by introducing a cell
consisting of a forget gate, input gate, and output gate. After
that, LSTM has been used as a deep learning method to
predict time sequences in various areas. To date, the LSTM
is mainly utilized on the seismic response prediction of the
structures. Zhang et al. (2019) employed LSTM to predict
the nonlinear structural response during the seismic loads.
The results demonstrate that this is a robust approach for the
nonlinear structural response during the large seismic
intensities. However, the application proposed is limited to
a single input system, the feasibility and performance of
LSTM with multiple inputs still require investigation.
Dynamic wind loads are composed by the mean and
fluctuating wind when conducting the structural dynamic
analysis. The mean wind is generated based on the
theoretical formulas such as the power law or logarithm law
(ASCE 1999). The fluctuating wind is a stochastic process
generated from a power spectrum and the spatial correlation
is realized by a cross-spectral density spectrum (Davenport
1961). Hence, a strong temporal and spatial correlation of
the wind loads is presented for the dynamic analysis, which
increases the complexity to develop the LSTM-based
surrogate model. Such temporal and spatial correlation will
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Fig. 1 The flowchart of an LSTM-based surrogate model development
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be amplified to large scale spatial distributed structures such
as bridges and transmission towers-line system. To
investigate the performance of LSTM model with complex
loading and structural setup, this paper utilizes the
transmission tower-line system as a target structure, the
flowchart is demonstrated in Fig. 1.

By constructing the appropriate architecture of LSTM
from the generated training data, the dynamic response of
the linear and nonlinear structure during the wind loads are
obtained. In the following sections, the architecture of
LSTM, the LSTM cell, and its application to the
infrastructure are presented. The numerical model of the
transmission tower/tower-line generation during the wind
loads for the dataset of the surrogate model development
are introduced in Section 3. A set of tests to optimize the
LSTM architecture, including its layers, hidden units, and
the training dataset choices, are conducted in Section 4.
Section 5 applies the constructed LSTM architecture on the
single transmission tower, a linear structure and the
transmission tower-line system, a nonlinear structure to test
its performance. A surrogate model developed by CNN is
chosen as an index to compare the performance with the
surrogate model developed by LSTM. In Section 6, the
architecture and performance of LSTM are summarized,
and the future work is discussed as well.

2. Methodology

As discussed in the previous section, LSTM is an
advanced approach to obtain the nonlinear structural
dynamic response during the seismic loads while its
application in the wind engineering is not fully explored.
This paper will employ LSTM to develop the surrogate
model of the nonlinear structural response during the
intensive wind by constructing the architecture of LSTM,
discussing its cell and applying it into the surrogate model
development of the civil infrastructure.

2.1 Architecture of LSTM

In general, the dynamic response of wind-induced
infrastructure is temporal dependent, i.e., the structural
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response at time step A depends on a series of inducements
in the previous steps. Thus, the selected surrogate model for
sequence prediction should memorize the useful message in
the previous time steps. As mentioned above, recurrent
neural network (RNN) is a machine learning method to
capture information in a sequence and has been widely used
in a neural language process (Mirowski and Vlachos 2015,
Yin et al. 2017, Morchid 2018) while it can only memorize
a few steps and may fail in the case of long term
dependence (Zhang et al. 2019). To overcome this
drawback, long short-term memory (LSTM) elaborately
merges short memory and long memory by introducing gate
control units, which will be discussed in the following
sections. Hence, this paper adopts LSTM to predict the
wind-induced dynamic response.

Fig. 2 illustrates the overall architecture of deep LSTM,
which involves the input layer, Istm layers, fully
connected layers, and the output layer. The input data is a
temporal sequence {X,X¢,, ..., X¢,}, where t,, is the time
length of the sequence, and X, denotes the wind speeds of
the study points on the structure at time t;. The X, is
calculated as {vpl,vpz,...vpi, ...}tiT, in which Vp, is the
wind speed at point p;. The processed results of the cell are
¢t and hf, where c/ is the cell state and hj, is the
hidden state. These two outputs and X,  are then

processed by the next cell in the same layer. In this process,
the cell state c,}i is used to deliver information at time step
t; to the cells at successive time steps, and the hidden state
h%l. is the input of a cell in the next Istm layer. The
detailed operation of Istm cell will be discussed in Section
2.2. It should be noted that the hidden state is a vector
combined with several units (called hidden units) rather
than a single unit. It makes the remembered information
more representative. After calculating the first Istm layer,
the subsequent Istm layers repeat the same processing.
After that, it is connected by the fully connected (FC)
layers. To reduce overfitting, half units in the FC layer are
randomly selected and dropped. Finally, a regression output
layer is created to generate a dynamic response.
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Fig. 3 Detailed operation of LSTM cell

2.2 Core component of memorization- the LSTM
cell

The most remarkable feature of LSTM is that it deploys
gates in a cell to merge short memory (information in a
short time length) and long memory (information in a long
time length). These gates calculate the importance of the
information and decide to keep or forget the information.
The operation details of LSTM cell are shown in Fig. 3,
which involves three gates: forget gate (marked as D),
input gate (marked as @), and output gate (marked as Q).
In this figure, there is an unbroken vertical arrow that
transforms information from the previous time steps to the
latter time steps through the cell state ctll.. There are two
updates for cell state: one is generated by the forget gate,
and another is the input gate.

First of all, the forget gate is designed to determine
whether the new input in the current step should be dropped
or not. To accomplish this goal, an activation function is
introduced to produce an output value between 0~1 based
on the input. The input is memorized if the output is close
to 1; otherwise, the input is dropped if the output is close to
0. Herein, this research selects sigmoid since it is one of the
simplest activation functions that can efficiently generate
output within 0~1. It should be noted that other activation
functions (e.g., ReLu) cannot constrain the output in a
range, which is not satisfied with the purpose of designing
gates in the LSTM. It is the same reason to utilize sigmoid
function in the rest two gates. Therefore, a sigmoid function
is developed as Eq. (1), where wy and by are the weight
and bias respectively, to process the hidden state h%l._ , in
the previous step and the input X, in the current step. The
pointwise multiplication between the result f;, of forget
gate and the cell state ctli_ , is then calculated to obtain an
updated cell state. If' f;, is close to 0, the cell state from
previous time steps will be dropped; If' f;; is close to 1, the
information will be memorized and transformed to the
following time steps. In this way, the information can be
memorized in a long-time step, which is the improvement
from classical RNN.

fe,=o(ws- [h%i—l’Xti] + by) (1

The input gate is to deliver new information into the cell
state, including a sigmoid operation and a tanh operation.
As it generates an output between -1~1 with a center of

zero, tanh operation is selected. The gradient around zero
is large enough to increase the model convergence. The
tanh operation does not determine whether the input
should be memorized or not, but only amplifies or
reproduces the input. Similar to the forget gate, the hidden
state h%l._l and the input X, are processed by a sigmoid
function to get an importance factor I, Meanwhile, h%i_ )
and X, are passed to a tanh function to generate
candidate values Eti for updating the state cell. The

sigmoid and tanh operations are expressed in Egs. (2)-(3),
where wy,c and by are the weight and bias, respectively.

At last, the importance factor I, and the candidate values
Eti are multiplied together, and the result is added to the
cell state. By now, the cell state is updated as ctli and ready
to transform to the Istm cell in the next time step. If Iy,
reach 0, the Et,- plays a vital role in the updated cell state
and vice versa.

Iti = O-(WI ' [hgi_llXti] + bI) (2)
C., = tanh(wc - [hi_, X.,] + b¢) (3)

The final output gate is to generate the new hidden state.
There are also two steps in this gate: sigmoid operation and
tanh operation. The sigmoid operation is for the hidden
state h%l._ , and the input X, and the function is shown in
Eq. (4), where w, and b, are the weight and bias,
respectively. The tanh operation is for the updated cell
state ctll. and expressed in Eq. (5). The sigmoid and tanh
outputs are multiplied, and the result is set as the updated
hidden state hj,. Besides, the new hidden state hy, is
duplicated and passed to the Istm cell in next Istm layer
(Fig. 2).

oti = O-(WO ' [h%i_l'Xti] + bo) (4)

tc,, = tanh(cf) (5)

2.3 Application in civil infrastructure response
prediction under dynamic inputs

There are two scenarios of LSTM applications to
structure response prediction during dynamic inputs: 1)
predicting the complete sequence of the dynamic response
of the structure, and 2) predicting the extreme response of
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the structure. The former scenario generates a surrogate
model that can replay and predict the dynamic response
under the wind inducement. The latter scenario is to obtain
the extreme state that may cause the failure of the structure
under the strong wind.

(1) Complete Sequence Prediction. The output is the
complete sequence of dynamic response
Y, Y, Ye,, o, Yy}, where ¢, is the time length of the
sequence, and Y, is a response vector consisted of the

displacements of all interested points at time ;.

(2) Extreme Response Prediction. The output is the
extreme value in the complete dynamic response: Y4, =
max{¥y,Y,, .Y, ..., ¥, }. Thus, the right layer in Fig. 2
will be redesigned as Y ,,,,. Unlike the complete sequence
prediction, this scenario only predicts one value, the most
critical index for structural failure. In other words, it is
efficient to predict the desired value with less computation
cost.

To evaluate the performance of LSTM on structure, this
paper introduces a widely used RMSE (root mean square
error) as the criterion. The expression of RMSE is presented
in Eq. (6), where Y, is the predicted value, and y,; is the
target value.

1 n
RMSE = |~ = ya)® ©)

i

3. Numerical modeling of the transmission
tower/tower-line structure system during wind
loadings

In this paper, the proposed LSTM architecture is implied
to predict the dynamic response of the transmission
tower/tower-line during the wind load. There are two
reasons to choose the transmission tower/tower-line system
as the representative structure. 1) As a vital lifeline
structure, the transmission tower/tower-line system is
vulnerable to the extensive wind because of its complex
vibration. The geometric nonlinearity of this transmission
tower/tower-line system is one of the critical factors that
leads to structural damage. 2) In three-dimensional space,
the transmission tower/tower-line system is configured by
thousands of nodes. Wind loads are complex on this
structure with time and spatial correlation. Therefore, the
transmission tower/tower-line system is representative to
generate the data set for the LSTM architecture development.

3.1 Development finite element model of
transmission tower-line system

To generate the dataset for training and testing purpose,
the finite element model of the transmission tower/tower-
line system is developed by ANSYS/LS-DYNA as Fig. 4

N

J
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Fig. 4 Finite Element Model of Transmission Tower/
Tower-Line System

demonstrates. This initial transmission tower is from Tort et
al. (2017) and redesigned (Xue et al. 2020). This is a
suspension tower with 31.5 m height and 200 m span
between two transmission towers. The cross sections of the
transmission towers are L-shaped. The sag of both ground
line and conductor is 2.9 m and 3.7 m. There are thousands
of nodes of the transmission tower-line system, which
makes it impossible to add the wind load on each node. This
paper chooses 79 representative points with 5 and 4 points
on each transmission tower and line, respectively. The
dynamic wind loadings are added on these representative
points to obtain the linear and nonlinear response of the
transmission tower/tower line system. Wind load generation
is presented in Section 3.2. The top displacement D1 of the
middle transmission tower is considered as the index of the
dynamic response of the transmission tower/tower-line
system.

3.2 Wind load input and structural dynamic
response

The complexity of the wind load is due to its temporal
and spatial correlation. The stochastic wind V(t) is
simulated by the mean wind V and the fluctuating wind V;
as shown in Eq. (7). According to ASCE 7-98 (ASCE
1999), the mean wind profile changes along with the height
by a power law as Eq. (8).

V) =T+, %)
1% Z\¢
N

where V,, is usually taken as the reference wind at 10 m
height; z is the height of the mean wind speed; z;, is the
reference height; a is determined by the ground roughness.

The temporal and spatial correlation of the fluctuating
wind is realized by a Gaussian stationary random process
and the Davenport spectrum (Davenport 1961). By the
Cholesky  decomposition, the  fluctuating  wind
v; (yj, zj,t) is obtained as Egs. (9)-(10).

)
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Fig. 5 Dynamic response of the middle transmission tower-line system

l

m
w; = —-1DAw + NAw, 1,2, N (10)

where H(w) is from the Cholesky decomposition; Aw is
the frequency increment.

As the dynamic wind is simulated, the wind load on
each node of the transmission tower/tower-line system can
be calculated as Eq. (11).

F = 0.5pV (t)*CrAp, (11)
where p, Cr and A,, are the air density, drag coefficient
nd the projected area respectively.

As the top displacement of the transmission tower is
usually chosen as the failure or damage index, here is the
dynamic response after adding the dynamic wind loads on
the top of the middle of the transmission tower-line system
as shown in Fig. 5.
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Fig. 6 RMSE:s of different layer numbers

4. LSTM architecture optimization

As mentioned in Section 3, the layer numbers and the
hidden units of the LSTM architecture, are the two
parameters that may affect the prediction performance of
the LSTM network. According to the existing studies
(Cabada et al. 2020, Reimers and Gurevych 2017, Zhou and
Song 2020), different architectures of deep learning
methods may significantly differ in the computational time
and prediction accuracies. Besides, the scale of the training
dataset is another fundamental factor that may cause the
difficulty due to the processing time for different data size
and the generalization ability for different data coverage.
Hence, this section will discuss the influence of LSTM
architecture (layer numbers and hidden units) and training
dataset on the LSTM performance. The prediction accuracy
(the aforementioned RMSE) and the computational time are
selected to evaluate the performance. Simultaneously, to
save the computational time for both the data generation
and training, the dynamic response of the linear structure,
the single transmission tower during the wind load is
employed. The constructed architecture will be tested on the
nonlinear structure, the transmission tower-line system in
ection 5. The dynamic winds are added on the nodes of the
transmission tower as Fig. 4 demonstrates. The top
displacement, D1 as shown in Fig. 4, is chosen as the index
for the dynamic response of the transmission tower. As
stated above, the input of LSTM is the wind loads that
applied to the representative points in the transmission
tower/tower-line system, and the output is the top
displacement of the transmission tower. This FEM model is
utilized to generate the training and testing dataset. The
training and testing dataset involved in this paper are
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Fig. 7 Prediction performance under different LSTM layer number
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Table 1 Computational time under different layer numbers

Layers 1 2 3 4 5 6 7 8
Training (s) 1722 29.63  40.64  53.15 67.34 7937 91.15 110.81
Testing (s) 0.10 0.11 0.10 0.13 0.14 0.13 0.14 0.17

implemented on a computer with the specifications of Intel
17-8920H CPU, Navidia GTX 9470, and 16 GB RAM.

4.1 Influence of LSTM architecture on the
prediction performance

In this section, the influence of LSTM architecture on
the prediction accuracy is discussed. 400 samples of the
dynamic response of the transmission tower induced by
wind speed of 35 m/s are simulated. 5 seconds time length
with a sampling frequency of 10 Hz are chosen as in the
previous literature (Xue et al. 2020), this time length with
proper time convention has highest accuracy with
appropriate computational time. Among these samples, 240
samples (60%) are used as training dataset, 80 samples
(20%) are used as validation dataset, and 80 samples (20%)
are used as testing dataset.
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0.03
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Fig. 8 RMSEs under different hidden units
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4.1.1 Optimization of LSTM layers

To evaluate the layer numbers, this research designs
eight different cases from 1 layer to 8 layers. The number of
hidden units for each layer is 200. The RMSEs of these
eight cases are shown in Fig. 6, which contains the
performance on training, validation, and testing datasets. It
clearly illustrates when there are 3 layers, the RMSE is
smallest. In addition, the prediction accuracy decreases with
the increase of the layer numbers. Fig. 7 illustrates the
dynamic responses predicted by different cases, which
shows that the first three cases (1 layer, 2 layers, and 3
layers) have a better performance than the other cases. In
addition, the computational times of both training and
testing datasets significantly increase along the increase of
layer numbers (Table 1). In summary, the LSTM layer
numbers influence the prediction accuracy and
computational time simultaneously. Thus, this research
selects 3 layers as the optimized LSTM network, which has
the lowest RMSE and acceptable computational time.

4.1.2 Optimization of LSTM hidden units

The hidden units in LSTM denote the parameter
numbers in the hidden state (Fig. 2) and store the short
memory. To evaluate the impact of hidden units on the
LSTM performance, this research designs the cases of
different unit numbers from 5, 10, 20, 30, 40, and 50 to 800
with an increase of 50. The optimized 3 layers are used to
discuss the hidden unit optimization. The RMSE and
computational time under different hidden unit numbers are
shown in Fig. 8 and Table 2, respectively. It’s found that:
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Fig. 9 Prediction of top displacement of transmission tower under wind loading with different hidden units

Table 2 Computational time under different hidden units

Hidden units 5 10 20 30 40 50 100 150
Training (s) 33.63 31.81 3287 2793 3183 28.50 30.11 32.09
Testing (s) 0.08 0.10 0.11 0.11 0.10 0.11 0.10 0.10

Hidden Units 200 250 300 350 400 450 500
Training (s) 4173 4246 4781 6038 61.68 7477  79.06
Testing (s) 0.11 0.11 0.12 0.13 0.12 0.12 0.12
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(1) when the hidden number varies from 50 to 200, RMSE
fluctuates in a small range, while when the hidden numbers
are out of the range, the RMSE increases significantly; and
(2) the computational time also increases smoothly with the
growing hidden units. In addition, the dynamic responses
predicted by the LSTMs with different hidden unit are
illustrated in Fig. 9, which is consistent with the previous
two findings. The predicted responses with hidden units
from 50 to 200 are close to the target response, while the
predicted responses with hidden units out of the range are
far away from the target response. It demonstrates the
selection of hidden units should not be extremely small or
large. Therefore, this research selects 200 as the hidden
units in the remaining discussion.

4.2 Impact of training dataset on the prediction
performance

The size of training dataset is a critical parameter that
can affect the prediction accuracy and the computational
time of LSTM. A large dataset typically can obtain a
promising prediction accuracy due to the strong generali-
zation while more computing resources are involved in
processing data. In this section, 3 layers and 200 hidden
units optimized in the previous sections, are selected as the
LSTM architecture. To train the network, a series of
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Fig. 10 RMSEs under different training samples

samples of the dynamic response of transmission tower are
simulated. Each sample has 50 data points with a time
length of 5 seconds and a frequency of 10 Hz, and the
inducement wind is 35 m/s. To make the performance of
different cases comparable, 100 samples are selected as a
consistent testing dataset. The training samples vary from
50 to 800, in which 70% are training dataset, and 30% are
validation dataset.

The RMSEs for the LSTMs trained by different data
points are shown in Fig. 10, which demonstrates that the
when the number of training data points are smaller than
300 samples x50 data points, the RMSE is worse and
worse with the decrease with the training samples. The
RMSE has small vibrations when the number of training
data points is larger than 400 samples x50 data points. Fig.
11 presents the dynamic responses predicted by the LSTMs
with different data points. It is found that the responses with
larger data points are much closer to the target response
than small data points. The computational times under
different training data points are summarized in Table 3,
which shows an increase of computational time with the
increase of data points. Combining the results in Fig. 10 and
Table 3, we can conclude that there is a trade-off between
the RMSEs and the computational time when selecting the
scale of training data points. The optimized number of
training data points used in this research is 400 samples
X 50 data points with a low RMSE and a reasonable
computational time.

5. Results and discussion

This section evaluates the constructed LSTM
architecture in Section 4 and compares its prediction
performance with another deep learning method,
Convolutional Neural Network (CNN), in the aspects of the
full-time history response and the extreme value of the
linear and nonlinear structure.
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Fig. 11 Prediction performance under different training samples

Table 3 Computational time under different training samples

Data Points

(sample* data point) 100x50  200x50

30050 400x50

500%50 600x50 700x50 800x50

Training (s) 17.22 29.63 40.64
Testing (s) 0.10 0.11 0.10

53.15 67.34 79.37 91.15 110.81
0.13 0.14 0.13 0.14 0.17
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Fig. 13 Dynamic response comparison of LSTM and CNN (Linear system)

5.1 Index to evaluate the prediction performance
by LSTM architecture

The full-time history and the extreme performance of
the structural dynamic response are two vital indexes to
assess its damage or collapse. To show the superiority of the
LSTM, CNN is developed as the comparison method. As
demonstrated in our previous work (Xue et al. 2020), the
wind loads on the structure are time and spatially correlated
and can be formed as an image format, which is the typical
input of CNN. Thus, CNN is an alternative method to
predict the dynamic response of infrastructure. This
research applies the CNN architecture (Fig. 12) in Xue et al.
(2020) to this research as the comparison method.

As shown in Fig. 12, CNN contains three convolutional
layers (consisted of convolution, activation, and pooling), a
full connected layer, and a regression output layer. The
kernel size and kernel number of the three convolutional
layers are (7,8), (5,16), (3,32), respectively. A window with
10 data points is introduced to split the input into several
small stacks, which are the inputs of the CNN. The window
is moved point by point to split each sample, and the
prediction is the last value of each window.

5.2 Dynamic response prediction performance of
single transmission tower (linear system)

First, this research selects a single transmission tower,
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a linear system, as a study case to demonstrate the
prediction capability of LSTM for dynamic response of the
structure. The CNN architecture described above is utilized
as the compared deep learning method. Two scenarios will
be discussed here: (1) prediction of complete sequence,
which can entirely provide the dynamic response of
transmission tower; and (2) prediction of the maximum
displacement, which indicates the extreme state of the tower
under wind inducement.

The selected LSTM networks are three layers with 200
hidden units, the optimized architecture in the previous
section. To obtain a promising performance, the data points
used to train the network are 400 samples with 5 seconds
wind time history and 10 Hz sampling frequency, in which
360 samples are training datasets, and 40 samples are
validation samples. Another 100 samples are constantly
designed to as testing dataset. To prove the robustness, the

selected methods are tested on a low wind speed of 20 m/s,
and an extensive wind speed of 60 m/s.

5.2.1 Prediction of complete dynamic response

time series

After training the surrogate model based on the LSTM
and the CNN, two networks are generated and validated
with the testing dataset. Six samples for 20 m/s and 60 m/s
are randomly selected and shown in Fig. 13, which
demonstrates the superiority of LSTM. Although CNN can
capture the rough trend of the dynamic response, the
predictions of CNN are much far away from the targets on
both 20 m/s and 60 m/s. Conversely, the LSTM can not
only capture the trend of dynamic response but also predict
more accurate values than that predicted by CNN.

The RMSEs of training, validation, testing datasets
predicted by LSTM and CNN are shown in Fig. 14, which
demonstrates for both 20 m/s or 60 m/s, the RMSEs of
LSTM are entirely lower than CNN. This phenomenon
indicates the superiority of LSTM for predicting the
dynamic response. Even though the previous studies (Sun et
al. 2017, Xue et al. 2020, and Wu and Jahanshahi 2019)
have demonstrated the capability of the CNN to predict the
dynamic response, the data points (time length X wind
frequency) of each sample used in those studies are much
longer than 50. Thus, when the data scale is limited for the
further nonlinear structure analysis, CNN is not as suitable
as LSTM to predict its dynamic response.

5.2.2 Extreme value prediction performance of
linear single transmission tower
Another discussion is about the maximum displacement
in the dynamic response of each sample as the maximum
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Table 4 RMSE and time comparison between different LSTM architectures

RMSE Training RMSE Validation RMSE Testing Training time (s) Test time (s)

LSTM 1L-5U 0.055 0.070 0.068 17.89 0.11
LSTM_1L-200U 0.045 0.065 0.061 22.82 0.12
LSTM_1L-500U 0.043 0.053 0.051 31.13 0.12

LSTM 3L-5U 0.042 0.045 0.043 34.13 0.11
LSTM_3L-200U 0.034 0.039 0.035 51.05 0.13
LSTM_3L-500U 0.041 0.047 0.045 107.37 0.12

LSTM 8L-5U 0.037 0.039 0.036 80.50 0.15
LSTM_S8L-200U 0.069 0.069 0.069 133.94 0.15
LSTM_S8L-500U 0.069 0.071 0.068 281.37 0.19

response is the indication of the extreme state of O Trning
transmission tower under the inducement of strong wind. I Validation -
The maximum displacement leads to the severe state 0.4 - I Testing ]
directly with a less computational cost. _

The error between the target and the predicted £o03
maximum response for each sample in the testing dataset is g
plotted in Fig. 15, including the cases of 20 m/s and 60 m/s. 202
As shown, the errors of LSTM prediction are less than 0.01
m for 20 m/s and less than 0.04 m for 60 m/s. This o1y |
promising result proves the capability of LSTM to predict . | BEN “H LN

the maximum response of transmission tower. Similar to the
prediction of the complete sequence, the errors of the
LSTM prediction are always smaller than that of CNN.
What’s more, the error difference between the LSTM and
CNN are more significant than the complete sequence
prediction (Fig. 13), which represents that the LSTM is
more suitable in predicting the maximum response than
CNN.

5.3 Dynamic response prediction performance of
transmission tower-line system
(nonlinear system)

To expand the application of LSTM prediction from the
linear structural system to the nonlinear system, a set of the
transmission tower-line system are simulated for the
dataset. Different LSTM architectures are constructed to
test if the architecture developed by the linear structural
system works for the nonlinear system. After that, the
LSTM application in predicting the dynamic response and
the extreme value of the transmission tower-line system and
the comparison between the LSTM and the CNN is
presented. There are a totally 500 samples, in which 320
samples are the training dataset, 80 samples are the
validation dataset, and 100 samples are the testing dataset.
Each sample has 50 data points with a time length of 5
seconds and a frequency of 10 Hz.

5.3.1 Optimal LSTM architecture validation

As discussed in Section 4, both the number of the
LSTM layers and hidden units have a significant impact on
the dynamic response prediction of the single transmission
tower during the dynamic wind. To extend this linear
structure to a nonlinear structural system, it is reasonable to
test the developed LSTM architecture on the nonlinear

LSTM-20m/s CNN-20m/s LSTM-60m/s CNN-60m/s

Fig. 16 RMSEs comparison of dynamic response predicted
by LSTM and CNN (Nonlinear system)

structure. Therefore, nine different LSTM architectures with
1, 3, 8 layers, and 5, 200, 500 hidden units are developed.
Besides, the wind speed used in this section is 60 m/s.

The training, validation and testing RMSE and the
training and testing time for the nonlinear structure,
transmission tower-line system, are recorded and
summarized as Table 4. It shows that the impact of different
architectures on LSTM prediction agrees with the
discussion in Section 4. The overall RMSEs are on the same
scale as the results of linear structure (Fig. 14), and the best
performance also happens in the case of 3 LSTM layers
with 200 units. Herein, this research chooses 3 layers and
200 units as the architecture for the LSTM application to
nonlinear structure.

5.3.2 Dynamic response prediction performance of
nonlinear transmission tower-line system

The RMSEs of the training, validation, and testing
datasets predicted by the LSTM and CNN are summarized
in Fig. 16, involving 20 m/s and 60 m/s. It clearly
demonstrates that the LSTM has lower RMSEs than CNN
on both 20 m/s and 60 m/s. The dynamic response of the
target, the LSTM, and CNN prediction are shown in Fig.
17. It’s also found that the LSTM prediction can achieve
promising RMSEs for both 20 m/s and 60 m/s. The
dynamic responses predicted by the LSTM are close to the
target and can successfully capture the trends. In addition,
the results show that the predicted responses, for both
LSTM and CNN based surrogate models, are much
smoother than the target responses as the length of response
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Fig. 17 Dynamic responses of LSTM and CNN (Nonlinear system)

is only five seconds with fifty data points, which are limited
in the prediction for the nonlinear structure. Currently, the
proposed system can capture the outlines of the dynamic
responses. Meanwhile, the prediction results for 20m/s
appear larger deviations due to the small amplitudes of the
dynamic responses for 20 m/s. Nevertheless, we can draw a
conclusion that the LSTM is capable of predicting the
dynamic response of the nonlinear structure under both
small and strong wind inducements. In summary, the
surrogate model developed by CNN is not as suitable as the
LSTM to predict the dynamic response of the nonlinear
structure.

5.3.3 Extreme value prediction of nonlinear
transmission tower-line system wind
response

To evaluate the LSTM performance on the extreme state

of the nonlinear system, the maximum displacement from
the dynamic response of each sample is extracted and
predicted. Similarly, a comparison analysis with CNN is
implemented as well. The differences between the true
value and the predicted value for each sample from the
testing dataset (20 m/s and 60 m/s) are enumerated in Fig.
18, which shows that the LSTM has lower errors in most
samples than the CNN. It is consistent with the RMSEs of

the complete sequence predicted by the LSTM (Fig. 16) and
provides another evidence that the LSTM is more capable
of predicting the maximum displacement of the nonlinear
system than CNN.

6. Conclusions

The dynamic response induced by a severe windstorm
may result in structural failure and cause other disasters
(i.e., power outage after the hurricane). Thus, an efficient
and accurate model for dynamic response prediction is
urgent for infrastructure safety. This research proposes an
advanced method that adopts long short-term memory
(LSTM) to predict the structure dynamic response and
apply it in the transmission tower-line system. Firstly, the
numerical models of transmission tower/tower-line system
were designed and simulated by LS-DYNA. Based on the
detailed discussion of the LSTM structure, the optimization
of LSTM architecture was implemented from the aspects of
LSTM layers and hidden units. Meanwhile, the impact of
different scales of training dataset on prediction
performance was analyzed as well. After that, this research
applied the optimized LSTM in the linear system
(transmission tower) and the nonlinear system (transmission
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tower-line) with the optimized training dataset to predict the
complete sequence of dynamic response and the maximum
response. The convolutional neural network (CNN) was
selected as the compared method. According to the previous
discussion, five lessons have been learned and summarized
as follows:

e The architectures of LSTM have a significant
influence on the prediction performance. The
architecture with 3 LSTM layers and 200 hidden
units can achieve the best prediction results in the
selected cases of this research.

e There is a trade-off between the prediction accuracy
and the computational cost when selecting the
training dataset. The larger training dataset can have
better prediction accuracy with longer computational
cost, and vice versa. According to the discussion, the
training dataset with 400 samples is an equilibrium
that can have an acceptable prediction RMSEs with
low computational time.

e The LSTM can be applied to predict the complete
sequence of the dynamic response for both linear
system and nonlinear system. The LSTM can capture
not only the dynamic trend but also obtain low
RMSE, which demonstrates the LSTM capability of
dynamic response prediction.

e The maximum response from each sample of both
linear system and nonlinear system can be accurately
predicted by the LSTM with low RMSE. Since the
maximum response normally is the criterion of
structural failure under the inducement of severe

windstorm, it represents that the LSTM is capable of
predicting the extreme state of the linear and
nonlinear system.

o Compared with the OCNN, the LSTM has
comprehensive  superiority in predicting the
complete sequence of dynamic response and the
maximum response for both linear system and
nonlinear system with limited data scale.

In conclusion, this research develops a LSTM-based
surrogate model that can accurately predict the wind-
induced dynamic response and the maximum response for
both the linear system and the nonlinear system. This
method can be further applied in other infrastructures to
predict the wind-induced dynamic response. In the future,
the authors will apply this surrogate model in the regional
structural response during the wind loads with realistic wind
profiles and proper sampling methods.
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