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Abstract

Liquid-liquid phase separation drives the formation of biological condensates that play essen-

tial roles in transcriptional regulation and signal sensing. Computational modeling could provide

high-resolution structural characterizations of these condensates and help uncover physicochem-

ical interactions that dictate their stability. However, many protein molecules involved in phase

separation often contain multiple ordered domains connected with flexible, structureless linkers.

Simulating such proteins necessitates force fields with consistent accuracy for both folded and dis-

ordered proteins. We provide a critical review of existing coarse-grained force fields for disordered

proteins and highlight the challenges in their application to folded proteins. After discussing ex-

isting algorithms for force field parameterization, we propose an optimization strategy that should

lead to computer models with improved transferability across protein types.
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Introduction1

Proteins perform the majority of tasks within the cell. Their proper functions were believed2

to depend crucially on maintaining unique and stable three-dimensional (3D) structures. The3

structure-function relationship has led to significant efforts in studying the protein folding problem.4

Yet, recent studies suggest that a considerable fraction of eukaryotic proteomes is disordered [1,5

2]. These intrinsically disordered proteins (IDPs) challenge traditional concepts of the structure-6

function relationship since their native states do not correspond to unique structures, but consist of7

an ensemble of heterogeneous conformations [3, 4]. The structural heterogeneity and disorderness8

could be of functional importance. They may be advantageous for multivalent interactions and9

mediating the formation of biological condensates through liquid-liquid phase separation [5–7].10

The lack of well-defined 3D conformations for IDPs has made their structural characterization11

difficult. Techniques such as Förster resonance energy transfer (FRET), and small-angle X-ray12

scattering (SAXS), while offering valuable insights into the conformational ensemble, could not13

resolve the structural heterogeneity with atomic resolution. The experimental challenges in de-14

scribing IDPs make computational modeling an attractive alternative. However, many existing15

force fields were optimized for ordered proteins and struggle to capture the size and flexibility of16

IDPs [8, 9]. As such, numerous groups have revised existing force fields or created new ones to17

ensure their accuracy in modeling IDPs [10–16].18

Despite the progress in force field development, state-of-the-art computer models still face19

challenges describing folded and disordered proteins with consistent accuracy. As the same 2020

amino acids encode both protein types, it should be possible, in principle, to create a unified force21

field for their modeling. Such a force field will enjoy a wide variety of applications. It would22

allow more accurate characterization of the stability of folded and misfolded structures to study23

disordered proteins that fold upon binding to a partner. In addition, it will enable simulations of24

proteins that include ordered regions separated by flexible, disordered linkers, a feature commonly25

seen in those that drive the formation of membraneless organelles.26

In this review, we track the progress toward developing force fields applicable to both folded27

and disordered proteins. We review existing force fields for simulating IDPs, with a focus on28
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coarse-grained models. We highlight the inherent difficulty for applying force fields optimized29

for IDPs to study folded proteins or vice versa due to their distinct compositional bias. Force30

field parameterization algorithms, including both top-down and bottom-up approaches, are then31

discussed in the context of their applicability for ensuring consistent performance for both protein32

types. Finally, we discuss an optimization strategy that emphasizes the inclusion of folded and33

disordered proteins in training set to help improve force field transferability.34

Coarse-grained Force Fields for Disordered Proteins35

All-atom force fields have been rather successful at studying protein folding and predicting36

protein structures. Improvements made in the torsion potentials and nonbonded interactions fur-37

ther allowed their application to disordered proteins, as discussed in several recent reviews [14–38

16]. However, conformational sampling, which is crucial for disordered proteins, can be compu-39

tationally challenging for single proteins and may become prohibitively costly for studying the40

aggregation of multiple proteins. Therefore, there is broad interest in developing coarse-grained41

force fields for simulating IDPs.42

Coarse-grained explicit solvent models could strike a good balance between accuracy and effi-43

ciency. The MARTINI force field follows a four-to-one mapping strategy to represent four heavy44

atoms with a single coarse-grained bead and has been used to study the phase behavior of IDPs45

[17–20]. However, achieving quantitative accuracy often requires further fine-tuning the force field46

[18–20], including strengthening protein-water interactions or weakening protein-protein interac-47

tions. A similarly coarse-grained force field, SIRAH, was introduced by Pantano and coworkers48

[21]. Unlike MARTINI, SIRAH avoids using artificial constraints to fix secondary structures and49

could, in principle, predict protein structures de novo. Its well-balanced secondary structure po-50

tentials succeed in stabilizing the crystal structure of folded proteins [21] and reproducing the51

conformational flexibility of IDPs [22].52

Numerous groups have also made progress in developing coarse-grained implicit solvent mod-53

els, which are highly efficient and ideal for large-scale aggregation and phase separation simula-54

tions. AWSEM-IDP [23] utilizes the framework from the Associative Memory, Water Mediated,55

Structure, and Energy Model (AWSEM) introduced by Wolynes and coworkers [24]. To model56
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IDPs, Wu et al. reduced the strength of secondary structure terms and introduced biasing poten-57

tials on the radius of gyration (Rg), the value of which can be obtained from SAXS experiments or58

all-atom simulations. Baul et al. [25] introduced the self-organized polymer (SOP) coarse-grained59

model for IDPs by weakening the interaction potential among amino acids from the original SOP60

model [26]. SOP-IDP succeeded at resolving the sequence-specific heterogeneity between Aβ4061

and Aβ42 [27]. Mioduszewski et al. [28] introduced a pseudo-improper dihedral potential to cap-62

ture backbone and side-chain interactions in a one-bead-per-residue model for IDPs.63

The hydrophobicity scale (HPS) model describes the interactions among amino acids with64

a simplified treatment of electrostatic energy and a short-range contact potential parameterized65

based on amino acid hydrophobicity [29]. It has been successfully applied to study the liquid-66

liquid phase separation of low complexity domains [30]. This model has been improved recently to67

capture temperature-dependent effects on solvent-mediated interactions [31], to account for cation-68

π interactions [32], and to better reproduce IDP radius of gyrations [33–35]. Latham and Zhang69

parameterized MOFF-IDP by introducing correctional contact potentials derived from SAXS data70

to the HPS model [36]. They showed that MOFF-IDP can reproduce Rg for a set of IDPs and71

succeed at de novo predictions, including the conformational change upon phosphorylation [37].72

The various implicit solvent models differ in their resolutions and efficiency, and are suited73

for investigating different problems. For example, AWSEM-IDP brings along all the benefits of74

the original model, which uses three beads to represent each amino acid. In particular, AWSEM75

adopts a sophisticated energy function with many-body potentials and was shown to predict protein76

structures [24] and protein-protein binding interfaces [38] well. On the other hand, AWSEM-77

IDP is also computationally more expensive than HPS and related models using only one bead78

per amino acid. The difference in efficiency can be substantial when simulating large systems,79

rendering HPS and related models more appealing for phase separation studies.80

Inconsistency between Folded and Disordered Protein Force Fields81

It’s worth noting that the coarse-grained IDP force fields, in general, are not applicable to82

globular proteins. Many of the force fields were introduced for studying large-scale simulations of83

liquid-liquid phase separation and used somewhat simplified representations, with only one or two84
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Figure 1: Existing coarse-grained protein force fields are often limited to either folded or disordered proteins, but not

both. For example, MJ performs well on folded (A) but not disordered (B) proteins. The opposite trend can be seen

for MOFF-IDP, an IDP force field introduced in Ref. [36]. The interaction matrices between amino acids for the two

force fields are shown in parts C (MOFF-IDP) and D (MJ). The energy function for MJ can be found in Ref. [39], and

interactions among amino acids are based on a scaled Miyazawa-Jernigan (MJ) potential by a factor of 0.6.

beads for the amino acids. The models were not expected to predict tertiary structures of folded85

proteins with high accuracy at this resolution. However, many of the force fields also over-predict86

the radius of gyration for globular proteins, indicating too weakened interactions among amino87

acids (Figure 1A). Similar effects are seen in force fields parameterized for folded proteins, which88

are often not transferable to IDPs and tend to predict overly collapsed structures (Figure 1B).89

The inconsistency between force fields for folded and disordered proteins is not unique to90

coarse-grained models. All-atom force fields suffer similar issues. Significant efforts have been91
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devoted to reparameterize the existing force fields to improve their accuracy at modeling disor-92

dered proteins [14–16]. However, as pointed out by Shaw and coworkers [40], many atomistic93

force fields still struggle at achieving consistent accuracy for modeling the size and secondary94

structure propensities for disordered proteins and the tertiary structures of folded proteins.95

The difficulty in parameterizing force fields with consistent accuracy for both protein types can96

be partly attributed to their distinct sequence composition. Many IDPs are depleted of hydropho-97

bic residues, which promote collapse and folding of globular proteins [41]. Instead, they favor98

stretches of polar, uncharged residues. Such motifs prevent secondary structure formation but may99

still drive protein compaction into structureless globules due to the favorable self-solvation [42].100

Alternatively, some IDPs possess a higher frequency of charged amino acids and leverage the101

overall charge composition and patterning for their structural features [43]. Because of the lack of102

overlap in the sequence space, there is no guarantee that force fields parameterized primarily on103

one type of protein will be transferable to the other.104

Algorithms for Coarse-grained Force Field Parameterization105

Could one live with two sets of force fields for folded and disordered proteins, respectively?106

While intellectually less satisfying, such a solution could still be of practical use. The answer is,107

unfortunately, no. A survey on human proteins has revealed that a considerable amount of residues108

(30%) were found to be disordered for a significant fraction (24%) of proteins [42]. Therefore,109

many proteins contain a mixture of domains with distinct structural features and cannot be clas-110

sified into the binary category of folded or disordered. To study such proteins, force fields that111

provide consistent treatment for both protein types must be introduced. Algorithms developed for112

optimizing force fields of globular proteins [8, 9], which we group into top-down and bottom-up113

approaches, offer inspirations on how one might achieve such consistency.114

Top-down approaches rely on experimental data for force field parameterization. For ordered115

proteins, the large set of high-resolution structures resolved by X-ray crystallography provide116

a valuable resource. In addition, the energy landscape theory for protein folding [44–46] offers117

critical insight into the interactions among amino acids. For a protein to fold reliably into the native118

state or the crystal structure, the contacts found in the native state must be stronger than the ones119
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found in unfolded or non-native conformations. This constraint is often described as the folding120

temperature (T f ) to be higher than the glass transition temperature (Tg), or pictorially, the funneled121

energy landscape [47]. Numerous algorithms have been introduced to parameterize coarse-grained122

force fields that satisfy constraints from the energy landscape theory, including optimization of the123

ratio Tf/Tg [48], Z-score optimization [49], maximizing the energy gap between the native and124

non-native conformation [50], etc.125

Bottom-up approaches typically start with an ensemble of structures collected from all-atom126

simulations, and differ in the specific properties of the ensemble used for force field parameter-127

ization. For example, iterative Boltzmann inversion (IBI) [51], and inverse Monte Carlo [52]128

approaches attempt to match radial distribution functions (RDF) between pairs of particles com-129

puted from coarse-grained and atomistic simulations. We note that the ideal target property to130

be reproduced should be the probability distribution of the coarse-grained structural ensemble.131

The RDF corresponds to a lower-dimensional projection of this distribution. Due to the loss of132

information upon projection, even a perfect reproduction of RDF does not guarantee an accu-133

rate approximation of the original, high-dimensional conformational distribution [53]. The force134

matching method [54–56] aims to reproduce the forces acting on coarse-grained sites estimated135

from the atomistic structural ensemble. Shell introduced the relative entropy algorithm to min-136

imize entropy loss upon coarse-graining [57]. Both methods strive to improve the agreement137

between conformation distributions estimated from coarse-grained and all-atom models.138

Machine learning based methods have gained popularity in recent years [58]. In particular,139

neural networks provide flexible fitting of complex functions and are ideal for parameterizing high140

dimensional free energy surfaces and probability distributions from mean forces [59, 60]. Re-141

cently, Wang et al. introduced the CGnets method to directly parameterize coarse-grained models142

[61, 62]. CGnets was shown to out-perform traditional force matching methods in reproducing143

crucial features of the free energy surface. Alternatively, the free energy surface can be accurately144

represented by deep generative models, as shown by Noé et al. [63] and others [64–66]. Deep145

generative models do not require mean forces, and directly parameterize the probability distribu-146

tions using conformations collected from MD simulations via maximum likelihood optimization.147

We note that current studies on machine learning based methods have mainly focused on param-148
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Figure 2: Illustration of the optimization strategy that combines top-down and bottom-up approaches to derive force

fields with consistent accuracy. The training data used for parameter optimization consist of structure ensembles

collected for a list of folded and disordered proteins. Ideally, the ensembles should be generated from atomistic simu-

lations and further curated with experimental data. Bottom-up approaches such as energy matching or relative entropy

minimization can be used to derive coarse-grained force field parameters that best approximate the conformational

distribution of each protein. Importantly, top-down approaches can be introduced as additional constraints to enforce

lower energy of the native state for folded proteins.

eterizing system-specific models. Additional work is needed to demonstrate their usefulness for149

deriving transferable force fields.150

Strategy for Deriving Unified Force Fields with Consistent Accuracy151

The use of experimental data to benchmark force fields as in top-down approaches could help152

ensure their transferability. Vitalis and Pappu introduced ABSINTH, an atomistic implicit solvent153

model that describes the solvation free energy using a combination of a direct mean-field interac-154

tion (DMFI) and the screening of polar interactions [67]. Parameters of ABSINTH were chosen155

to stabilize the folded states of two small proteins and reproduce NMR coupling constants and the156
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polymeric properties of intrinsically disordered peptides. More recently, the force field has been157

updated with improved dihedral angles [68] and used to study proteins that undergo liquid-liquid158

phase separation [69]. Ferrie and Petersson introduced a reweighting scheme to switch fragment159

memory libraries between the two sets that reproduce secondary structure propensities for folded160

and disordered proteins, respectively [70]. When implemented into Rosetta Modeling Suite, the161

authors showed that the platform now performs well for predicting the structures for a list of folded162

and disordered proteins.163

Since modern force fields often consist of a large set of parameters, a manual, systematic search164

of the entire parameter space can be challenging and even infeasible for a large set of experimental165

data. In that regard, bottom-up methods mentioned in the previous section are advantageous to166

enable near-autonomous force field optimization. Using a similar functional form as in ABSINTH167

for the solvation free energy, Bottaro et al. carried out systematic optimizations of parameters in168

the potential to match explicit solvent simulation data for an α−helical peptide and the GB1 hairpin169

[71]. They found that the resulting force field, EEF1-SB, performs well for unstructured proteins170

with an increased sampling of expanded conformations while maintaining the native structure of171

several folded proteins.172

Combining top-down and bottom-up approaches may lead to new force field optimization173

strategies that are particularly helpful at ensuring the consistency between folded and disordered174

proteins (Figure 2). For example, as in bottom-up approaches, the coarse-grained force field could175

be parameterized using data collected from all-atom simulations. As all-atom force fields them-176

selves have not yet achieved the desired accuracy, it is crucial to curate the simulated structural177

ensemble with experimental data, for example, via maximum entropy optimization [72–78]. Since178

the dataset would inevitably be finite, it is helpful to enforce constraints based on the energy land-179

scape theory for ordered proteins as in top-down approaches to reduce the parameter space further180

and improve the robustness of force field optimization.181

The optimization strategy introduced by Latham and Zhang offers some hints on how to com-182

bine different approaches in practice [39]. They constructed the reference structural ensembles183

using a coarse-grained model parameterized with the Miyazawa-Jernigan (MJ) potential. The en-184

sembles, which included seven folded and sixteen disordered proteins, were corrected with SAXS185
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Figure 3: The force field introduced by Latham and Zhang in Ref. [39], MOFF, achieves consistent accuracy in

predicting the size of both ordered (purple) and disordered (green) proteins.

data to ensure that the simulated Rg of different proteins match experimental values. Force field186

parameters were then tuned to reproduce the relative energy, and therefore, the probability density187

of individual conformations. The particular energy matching scheme introduced by the authors188

allowed them to ensure that the native states of folded proteins are lower in energy than the un-189

folded configurations. The resulting force field, termed MOFF, was shown to be transferable190

across folded and disordered proteins in predicting protein sizes (Figure 3). In favorable cases, the191

model succeeded in folding globular proteins to their native states.192

Generalizing the Latham and Zhang strategy to structural ensembles built from all-atom simu-193

lations requires additional research. In particular, since the free energies of protein structures from194

all-atom simulations are unknown, their energy-matching approach cannot be directly applied.195

One can, in principle, use the relative entropy minimization approach to derive coarse-grained196

force fields. However, its computational overhead may become too costly, especially when a large197

list of proteins is included in building structural ensembles.198
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Annotated references203

• [22] ** The coarse-grained explicit solvent model, SIRAH, allows de novo prediction of204

secondary structures. It offers impressive performance in predicting tertiary structure of205

folded proteins and reproducing the radius of gyration for disordered proteins.206

• [25] * A new coarse-grained force field tuned for IDPs provides impressive accuracy in207

predicting to small-angle X-ray scattering profiles.208

• [31] ** The authors introduced a novel way to incorporate temperature effect into the coarse-209

grained force field. These corrections allowed them to differentiate between upper critical210

temperature and lower critical temperature when studying the liquid-liquid phase separation211

of IDPs.212

• [33] * The authors improved their hydrophobicity scale model by sampling various hy-213

drophobicity measures and fitting parameters, resulting in a new force field that improves214

predictions of Rg and phase behavior.215

• [34] * The authors derived a data-driven hydrophobicity scale and coarse-grained force field216

for phase-separating proteins using the force balance method.217

• [36] * The authors systematically optimized a coarse-grained force field for IDPs to repro-218

duce experimental radius of gyration via a maximum entropy optimization algorithm.219

• [39] ** Latham and Zhang introduced a novel optimization algorithm to parameterize a220

coarse-grained force field that achieved consistent accuracy for both folded and disordered221

proteins.222

• [61] * The authors introduced a deep learning approach to parameterize the coarse-grained223

force field via a force-matching scheme.224
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• [63] ** Deep generative models were used to parameterize complex probability distribu-225

tions of molecular conformations. Such models offer new methodologies for free energy226

calculations and force field parameterizations.227

• [68] ** The authors introduced grid based terms to improve the dihedral angles of the AB-228

SINTH implicit solvation model and force field paradigm. The resulting model, ABSINTH-229

C, maintains folded structures of ordered proteins and shows improvements in predicting230

the secondary structure of homopolypeptides.231

• [70] * The authors introduced a reweighting strategy that improved the accuracy of the232

Rosseta software in predicting the structural ensemble of IDPs without compromising its233

performance for folded proteins.234

• [72] * The authors purpose using Bayesian reweighting to balance sources of error, and235

apply this method to model NMR chemical shifts of an IDP.236
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