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Abstract

Many proteins have been shown to function via liquid-liquid phase separation. Com-

putational modeling could offer much needed structural details of protein condensates

and reveal the set of molecular interactions that dictate their stability. However, the

presence of both ordered and disordered domains in these proteins places a high de-

mand on the model accuracy. Here, we present an algorithm to derive a coarse-grained

force field, MOFF, that can model both ordered and disordered proteins with con-

sistent accuracy. It combines maximum entropy biasing, least-squares fitting, and

basic principles of energy landscape theory to ensure that MOFF recreates experimen-

tal radii of gyration while predicting the folded structures for globular proteins with

lower energy. The theta temperature determined from MOFF separates ordered and

disordered proteins at 300 K and exhibits a strikingly linear relationship with amino

acid sequence composition. We further applied MOFF to study the phase behavior of

HP1, an essential protein for posttranslational modification and spatial organization

of chromatin. The force field successfully resolved the structural difference of two HP1

homologs, despite their high sequence similarity. We carried out large scale simulations

with hundreds of proteins to determine the critical temperature of phase separation
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and uncover multivalent interactions that stabilize higher-order assemblies. In all, our

work makes significant methodological strides to connect theories of ordered and disor-

dered proteins and provides a powerful tool for studying liquid-liquid phase separation

with near-atomistic details.
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INTRODUCTION

Many proteins encoded by eukaryotic genomes contain disordered regions that do not adopt

well-defined tertiary structures.1–6 Disordered domains could facilitate the target search pro-

cess while retaining protein-binding specificity via the folding-upon-binding mechanism.7,8 It

has recently become widely appreciated that another important property of these intrinsically

disordered proteins (IDPs) lies in their collective behavior.9,10 The multivalent interactions

that are intrinsic to them can drive the formation of membraneless organelles, including

stress granules,11 P granules,12 superenchancers,13 and heterochromatin14,15 through the

liquid-liquid phase separation mechanism. The increased protein concentration in these or-

ganelles could lead to more efficient biochemical reactions.16,17 Characterizing the structural

details of these condensates could provide crucial insight into the function of the cellular

processes. While progress is being made, connecting the atomistic properties of IDPs to the

global structure, composition, and dynamics of the organelles remains challenging.18,19

One prominent example of IDPs is heterochromatin protein 1 (HP1), a key component

of constitutive heterochromatin.20–22 HP1 consists of ordered, conserved chromo (CD) and

chromoshadow (CSD) domains connected via a variable disordered hinge region. The CD

helps to recruit the protein to chromatin segments marked with histone H3 trimethylation

(H3K9me3), while the CSD domain enables dimerization and also serves as a docking site for

other nuclear proteins.23 In contrast to the canonical view that HP1 proteins are merely ac-

cessory players with no active role in chromatin organization, several studies recently found

them spontaneously form phase-separated liquid droplets.14,15,24,25 These droplets could sup-

port new forms of chromatin structures that differ dramatically from the regular fibril con-

formations.26,27 One noteworthy feature of HP1, which is shared by many of the proteins

involved in forming membraneless compartments,28,29 is the presence of both ordered and

disordered domains. This feature has made a high-resolution structural characterization of

the full-length protein and the functional state with many proteins challenging.

Computational modeling could offer much needed structural details of IDPs and their
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aggregates and reveal the set of molecular interactions that dictate the stability of liquid

droplets.30 However, the presence of both ordered and disordered domains in these proteins

places a strong demand on the model’s accuracy. All-atom force fields, with their ever-

improving accuracy,31–36 can in principle, accurately model protein conformations. They

are computational expensive though, and long-timescale simulations needed to study slow

conformational rearrangement and aggregation kinetics remain inaccessible for most proteins

of interest. While many coarse-grained force fields have been introduced and proven effective

at predicting the structures of globular proteins,37,38 they cannot be directly generalized to

study IDPs. Separate efforts have been carried out to parameterize force fields specialized for

disordered proteins.39–42 These force fields, while succeeding in modeling the phase separation

and IDP structural heterogeneity,42,43 are not advised for applications of globular proteins.

Since the two classes of proteins share the same set of amino acids for their composition, it

is hopeful that a unified force field can be derived to model both of them with consistent

accuracy. Such a consistent force field would greatly facilitate the investigation of IDPs’

collective behaviors in large scale condensates.

In this paper, we introduce a new algorithm to parameterize coarse-grained protein force

fields with implicit solvation. We generalize the maximum entropy optimization algorithm

by ensuring that for globular proteins, the force field predicts an energy gap between the

native conformation and the unfolded or partially folded structures. The maximum en-

tropy optimization algorithm was developed for parameterizing transferable IDP force fields

using biasing energies derived from experimental constraints.44,45 Energy gap maximiza-

tion, on the other hand, has been a successful strategy for deriving force fields of folded

proteins.46–49 The resulting force field, MOFF, indeed provides a more balanced set of in-

teractions that can predict the radii of gyration of both ordered and disordered proteins.

The theta temperatures determined using MOFF classify the two types of proteins by the

biological temperature at 300 K. They exhibit a striking linear relationship on the protein

sequence composition. We applied MOFF to characterize the three homologs of human HP1,
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α, β, and γ. Simulations succeeded at predicting the relative size of the homologs despite

their high sequence similarity, and revealed multivalent, charged interactions that stabilize

the more collapsed HP1α conformations. The computational efficiency of the force field

enabled direct simulations of the phase separation process. These large scale simulations

helped quantify the critical temperature of the proteins and uncovered higher-order protein

clusters mediated via the same interactions that cause the collapse of dimers. We anticipate

MOFF to be a useful tool for studying IDPs and provide its implementation in GROMACS

(https://github.com/ZhangGroup-MITChemistry/MOFF).

METHODS

Coarse-grained Protein Force Field

We modeled proteins with a coarse-grained representation for efficient conformational sam-

pling and large scale simulations of phase separation. Each amino acid is represented with

one bead at the α-carbon position. The chemical properties of each bead are provided in

Table S1. The potential energy for quantifying the stability of a protein structure r is defined

as

UMOFF(r) = Ubackbone + Umemory + Uelectrostatics + Ucontact. (1)

Ubackbone is responsible for maintaining the backbone geometry of the protein and consists

of the bond, angle, and dihedral potentials. Umemory helps stabilize protein secondary struc-

tures. These two terms are dependent on input protein conformations. Uelectrostatics describes

electrostatic interactions between charged residues with the Debye-Hückle theory. We used

a distance-dependent dielectric constant to more accurately capture the change in the solva-

tion environment upon protein folding50,51 (Figure S1). The last term Ucontact is the amino

acid type dependent pairwise contact potential. Parameters that quantify the strength of

such interactions will be derived using the algorithm introduced in the next section to en-
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sure consistency for both ordered and disordered proteins. The full functional form of the

potential energy is given in the Supporting Information (SI).

Amino Acid Contact Potential from Maximum Entropy Optimiza-

tion

Efficient modeling of protein molecules is a problem of long-standing interest in computa-

tional biophysics. Numerous algorithms have been introduced to parameterize coarse-grained

force fields with implicit solvation for globular proteins.37,52–57 One class of algorithms that

is of relevance to this study is inspired by the energy landscape theory,58–61 which states that

an energy gap between the folded native structure and unfolded conformations is necessary

and sufficient for ensuring reliable protein folding on a reasonable timescale. Several force

fields have been introduced via maximization of the energy gap and successfully applied to

predict protein structures and study folding kinetics.46–49

The force fields designed for globular proteins often need to be adjusted when applied for

IDPs.40–42 Maximum entropy optimization has become widely popular in recent years62–69

as an efficient means to improve the agreement between modeling and experiment. While

optimization can be used during post-processing to reweight the simulated structure en-

semble,62,70,71 correction terms can also be directly introduced to the force field to alter

simulation outcomes.72 As shown in Refs.,64,73,74 linear corrections are optimal and incur the

least amount of the bias to the model. We further designed an iterative algorithm (see SI for

details) to create a transferable force field by reparameterizing the protein-specific correction

terms into pair-wise contact potentials between amino acids,44

∆εC ≡ αRg. (2)

C is the contact matrix that indicates the number of contacts for each pair of amino acids in a

given structure. ∆ε is the list of changes to the pairwise amino acid specific contact energy.
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αRg is the biasing energy based on the radius of gyration (Rg) derived from maximum

entropy optimization. When solved over an ensemble of structures collected for a large

set of proteins in the training set, the changes to the contact energy matrix (∆ε) can be

determined. The resulting force field (MOFF-IDP) is transferable and reproduces the radius

of gyration for various IDPs.

It is worth noting that IDP force fields, either modified from existing ones designed for

globular proteins or parameterized from scratch, often cannot be applied to predict the size

and structure of folded proteins. Therefore, there appears to be a disconnect between folded

and unfolded proteins. Force fields often only work on one of them, but not the other. This

paper introduces a new algorithm to parameterize force fields that can be applied to model

both ordered and disordered proteins with consistent accuracy.

The starting point of the algorithm is still the iterative maximum entropy optimization

(see Figure 1). While our previous study focused on IDPs, here we added globular proteins as

well in the training set to build a consistent force field. In addition, we borrowed ideas from

the energy landscape theory to enforce that the total contact energy of the PDB structure

is lower than that of any structure sampled in computer simulations, up to some tolerance.

Mathematically, this constraint can be expressed as

ε′CPDB ≤ ε′Csim, (3)

where ε′ = ∆ε + ε is the new pair-wise contact energy updated with the correction term

from Eq. 2. Thus, using the interior-point algorithm,75 we simultaneously solved Eq. 2 for

all proteins in our training set under the constraint of Eq. 3 for the ordered proteins (Figure

1). In practice, we added an additional term, γσsim to the right hand side of Eq. 3. γ

is a flexible tolerance parameter used to tune the strength of the constraint, and σsim is

the standard deviation of the contact energy estimated for each protein using simulations

performed in the previous iteration. To aid the convergence of the algorithm, we used
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Figure 1: Illustration of the algorithm that combines maximum entropy optimization and
energy gap constraint for force field parameterization.

single value decomposition (SVD) to reduce noise and placed an additional constraint on the

change in amino acid contact energies from one iteration to the next. As seen previously, 44

the relationship between energy and contact formation is not perfectly linear, requiring this

entire algorithm to be done iteratively.

Details on Molecular Dynamics Simulations

We implemented MOFF in GROMACS76 to perform molecular dynamics simulations with

a time step of 10 fs. Replica exchange simulations were performed with temperatures at

300, 320, 340, 360, 380, and 400K to enhance conformational sampling. Exchanges between

neighboring replicas were attempted at every 100 steps, with all odd pairs on odd attempts

and all even pairs on even attempts. Langevin dynamics was used to control the temperature
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with a coupling constant of 1 ps.

The simulations used for force field optimization were initialized from PDB structures

for ordered sequences, or I-TASSER predictions for disordered sequences.77 Proteins were

placed in cubic boxes with side lengths of 50 nm to prevent them from contacting the periodic

images. Simulations lasted for 4×107 steps, and protein configurations were sampled at every

20000 steps. We excluded the first 107 steps for equilibration. More simulation details can

be found in the SI Section: Simulation Details on Force Field Optimization.

To stabilize tertiary contacts of globular domains in HP1, we augmented MOFF with

additional biases derived from the initial structures. These biases were limited to individual

ordered domains and dimer interfaces. They do not impact our prediction of the radius of

gyration and inter-dimer interactions. More details on these biases are provided in SI Section:

Folding potential for HP1 tertiary structure stabilization. We built initial structures for HP1

dimers using RaptorX,78 with the crystal structure of the HP1α CSD domain as a template

(PDB: 3I3C). These structures were placed in cubic boxes with side lengths of 50 nm. Five

independent simulations that lasted for 5 × 108 steps were performed, and samples were

taken every 5 × 104 steps. The first 108 steps were excluded for equilibration. Clustering

was done following the gromos clustering algorithm.79

Slab simulations performed to study HP1 phase separation are explained in the SI Section:

HP1 Slab Simulation Details.

RESULTS AND DISCUSSION

Parameterization of the Consistent Force Field

We applied an iterative optimization algorithm to parameterize the tertiary contact poten-

tials of a coarse-grained force field (Eq. 1) and ensure consistent accuracy for both IDPs

and ordered proteins. Details of the algorithm can be found in the Methods Section. As

illustrated in Figure 1, it matches the simulated radius of gyration of protein molecules with
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experimental values via maximum entropy optimization.72 In addition, we enforce the con-

straint that, for folded proteins, the energy of the native structure is lowest, i.e., there is

a gap between folded and unfolded configurations. This gap is necessary to ensure reliable

protein folding into the native state. A total of 23 proteins, including seven ordered and 16

disordered (Table S2), were included in the training set. We ensured that ordered proteins

cover a variety of secondary structures, and that monomeric Small Angle X-ray Scattering

(SAXS) measurements are available for all proteins to determine Rg. We tracked the percent

error given by

1

N

N∑
i=1

|Rsim
g,i −R

exp
g,i |

100×Rexp
g,i

(4)

to measure the improvement caused by our optimization. The sum is taken over all N = 23

proteins in our training set. Rexp
g,i is the experimental radius of gyration for the i-th protein,

and Rsim
g,i is the corresponding simulated value estimated from the average of 1500 structures

sampled with the latest force field parameters. In addition to tracking the percent error on

our training set, we monitored the performance of the force field on an independent validation

set as well (Table S3). The validation set includes four ordered and four disordered proteins.

We terminated the optimization when the percent error on the validation set fails to decrease

upon two consecutive iterations. Starting values of the amino acid contact energies were set

as the Miyazawa-Jernigan (MJ) potential80 scaled by a factor of 0.4. The scale factor was

determined as the value with the least percent error for proteins in the training set (Figure

S2). We gradually relaxed the constraint defined in Eq. 3 by increasing the tolerance term

along the iterations (Figure S3).

As shown in Figure S3, the iterative algorithm succeeds in gradually improving the force

field accuracy. The percent error begins at 33.6, but reaches 9.6 by the final iteration. Im-

portantly, the resulting force field (MOFF) outperforms the initial one built from the MJ

potential for every protein in the training set (Figure 2A). When examining the validation

set, we again noticed that (MOFF) improves relative to both MJ and MOFF-IDP, where

MOFF-IDP is a force field parameterized specifically for IDPs using the maximum entropy
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Figure 2: Comparison between experimental and simulated radius of gyration (Rg) for pro-
tein molecules in the training (A) and validation (B) set. In addition to the force field in-
troduced in this paper (MOFF, orange), we included simulation results using the Miyazawa-
Jernigan potential (MJ, blue) and a previous version of MOFF optimized for IDPs (MOFF-
IDP, yellow) as well. Error bars represent standard deviation after block averaging.

optimization algorithm.44 The percent error for proteins in the validation set is 17.9, com-

pared to 51.2 and 41.2 for MOFF-IDP and MJ respectively (Figure 2B). In particular, we

note that the new force field significantly improves on the ordered proteins (low Rg) relative

to MOFF-IDP. This improvement likely stems from the newly added ordered proteins in the
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Figure 3: MOFF succeeds in creating energy gaps for folded proteins. (A) Contact energy
of the folded structure (orange) relative to those sampled in simulation (blue) for 1wla. The
energy gap δE is defined as the difference between the folded energy and the average simu-
lated energy. (B) δE for all folded proteins in the training set. (C) Probability distribution
of the root mean squared displacement (RMSD) relative to the folded structure for 1wla at
300 K.

training set for force field parameterization. MOFF performs better than the other two force

fields on all but one protein, 4cpv.

The optimization also succeeded at ensuring that the folded structure is lower in energy

than the unfolded configurations. The energy gap, defined as the difference between the mean

contact energy of the simulated structures and the contact energy of the folded structure

(Figure 3A), is indeed positive for all the globular proteins in the training set (Figure 3B).
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Upon a close inspection of the protein configurations simulated with the converged force field

at 300 K, we observed deviations from the native conformations. As shown in Figure S4,

the probability distributions of the root mean squared displacement (RMSD) from the PDB

structure peak around 1.5 nm for most proteins. It is worth noting that several proteins do

sample configurations close to the native state with RMSD less than 0.5 nm. In particular,

1wla shows a bimodal distribution with one of the peaks located at 0.5 nm (Figure 3C).

Furthermore, simulated annealing simulations were able to predict structures with small

RMSD values for three of the seven proteins (Figure S5). These improvements seem to be

related to secondary structure content. For example, MOFF performs best on 1wla, which

is an α-helical protein, while it performs worst on 5tvz, which is a β-sheet protein.

MOFF Identifies Sequence Features to Differentiate Ordered and

Disordered Proteins

To gain insight into the molecular interactions that dictate MOFF’s success in predicting

protein sizes, we performed a hierarchical clustering on the contact energy matrix based

on euclidean distances between column vectors. The resulting clusters generally sort the

amino acids into groups with increasing hydrophobicity (Figure 4A and Table 1). We note

that because electrostatic interactions were modeled separately, the clustering based on the

contact potential alone may not strictly follow a typical hydrophobicity ordering. When

evaluating the frequency of encountering the various amino acid clusters in the ordered

and disordered proteins from our training set, we found that cluster 3 consists of mainly

hydrophilic amino acids and is significantly enriched in disordered proteins. On the other

hand, the hydrophobic cluster 6 is more often seen in folded proteins. Similar trends have

been seen in more expansive studies, which compared the frequency of amino acids in the

DisProt database with the frequency in the PDB.81,82 The example configurations shown in

Figure 4C further highlights the spatial distribution of the various clusters in an ordered and

a disordered protein.
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Figure 4: MOFF differentiates “ordered” and “disordered” amino acids with distinct contact
energy patterns. (A) Hierarchical clustering of MOFF contact energy between amino acid
pairs (εIJ in Eq. S16). (B) Comparison of the amino acid frequency by cluster in the ordered
(blue) and disordered (orange) portions of our training set. (C) Spatial distribution of amino
acid clusters in example structures of an ordered (3mzq, left) disordered protein (NSP, right).
Amino acids are shown in the same coloring scheme for clusters as in part A.

The presence of well-defined amino acid clusters that sets apart ordered proteins from

disordered ones provides an intuitive explanation of the distinct size distribution of the two

protein types. The “disordered” amino acids from cluster 3 are mainly repulsive and will lead

to the more expanded structure seen in IDPs; the “ordered” amino acids from cluster 6, on the

other hand, are attracted to most of the other residues and tend to localize in the interior of

collapsed proteins. The interaction energy among amino acids also explains the performance
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Table 1: Amino acid clusters determined from hierarchical clustering of MOFF contact
energy.

Cluster Amino Acids

Cluster 1 (red) MET
Cluster 2 (brown) ARG
Cluster 3 (green) PRO ASN ASP GLY

Cluster 4 (orange) HIS PHE LYS SER ALA VAL LEU THR TYR
Cluster 5 (cyan) GLN GLU
Cluster 6 (blue) ILE TRP CYS

of the three force fields shown in Figure 2. Compared to the MJ potential (Figure S6),

interactions between hydrophilic residues are more repulsive in MOFF. Similar results were

seen with MOFF-IDP, where repulsive interactions rescue IDPs from over collapse. However,

when ordered proteins are also included in the training set, we see these repulsive interactions

grow stronger, as well as the development of stronger contact energy among hydrophobic

residues. These changes are likely necessary to balance the collapse of ordered sequences and

the swelling of disordered sequences.

We next attempted to establish a more quantitative relationship between protein size,

interaction energy, and the sequence. Towards that end, we first computed the theta tem-

perature, Tθ, by monitoring the change of scaling exponent ν as a function of temperature.

ν measures the variation of spatial distance between two residues i and j versus their linear

distance in sequence, R ∝ |i− j|ν . At Tθ, proteins behave like an ideal Gaussian chain and

ν = 1/2. As the temperature decreases from above to below Tθ, one expects the proteins

to become more compact and transition from swollen polymers to collapsed globules, as can

be seen in Figure 5A-B. Tθ, therefore, provides a direct measure of the interaction strength

within a protein. Strikingly, MOFF predicts that the biological temperature provides a clear

cut between ordered and disordered proteins, with the corresponding Tθ above and below

300 K, respectively. Such a partition indicates that MOFF treats the two types of proteins

as polymers in a poor or good solvent and is consistent with the results shown in Figure 2.

The interaction potential of a protein and Tθ is ultimately dictated by the underlying
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Figure 5: MOFF uncovers a linear relationship between protein theta temperature and
sequence composition. (A) Polymer scaling exponent (ν) as a function of T for ordered
(blue) and disordered (orange) protein sequences in our training set. Error bars represent
standard deviation after block averaging. (B) Theta temperature (Tθ) for proteins in the
training set. The 300K mark is highlighted as a guide for the eye. (C, D) Comparison
between values of Tθ predicted using a linear equation of sequence composition (Eq. 5)
and determined from molecular dynamics simulations for proteins in the training (C) and
validation (D) set. ρ is the Pearson correlation coefficient between the two data sets, and
the dashed black line represents perfect agreement.

sequence. Given the similarity among amino acids in their contact energy, we wondered

whether a simple relationship between Tθ and the sequence composition can be found. Us-

ing the least absolute shrinkage and selection operator (LASSO),83 we determined a linear

regression model to fit Tθ with a minimal set of amino acid clusters identified in Figure 4.

The model that minimizes the mean squared error adopts the following expression

Tθ = −528c2 − 47c3 + 337c4 + 1921c6 + 41, (5)
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where ci is the percent of the sequence that is from cluster i (Figure S7). The fitted values

are strongly correlated with the simulated ones despite our neglect of clusters 1 and 5 in the

expression (Figure 5C). This expression supports the notion of hydrophobic effect84,85 since

amino acids from clusters 4 and 6 are mostly hydrophobic, and they contribute positively to

the theta temperature by promoting protein collapse. It is also consistent with our conclusion

that IDPs are more expanded because of their enrichment in residues from cluster 3. Arg,

which is the sole residue in cluster 2, appears to be effective at reducing Tθ as well, potentially

resulting from electrostatic repulsion.

We further computed Tθ for proteins in the test set and observed separation between

ordered and disordered proteins at 300 K again (Figure S8). Notably, Tθ computed from

replica exchange simulations are in good agreement with the values predicted using Eq. 5,

with a Pearson correlation coefficient of 0.87 between the two (Figure 5D). Therefore, the

linear relationship between Tθ and the sequence composition is general and transferable.

Multivalent Interactions Differentiate HP1 Homologs

After validating its accuracy in modeling the size of both ordered and disordered proteins,

we applied MOFF to characterize the structure and phase behavior of human HP1. We first

investigated the difference between the two isoforms, HP1α and HP1β. Previous experimen-

tal studies on the HP1 dimers showed that HP1β takes an open conformation, while HP1α

is more collapsed.14,86 The size difference is particularly striking considering the sequence

similarity between the two proteins. As shown in Figure 6A, the ordered regions that in-

clude chromodomain and chromoshadow domain share a sequence identity over 80%. Even

the disordered N-terminal extension, hinge region, and C-terminal extension have a sequence

similarity of over 30%.87

We performed replica exchange simulations of the HP1 dimers. Similar to experimental

studies, we find that HP1α takes a more collapsed configuration at 300 K, with Rg =

3.24 ± 0.08 nm, compared to Rg = 4.26 ± 0.08 nm for HP1β (Figure 6B). These results
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Figure 6: MOFF resolves the structural difference between HP1α and HP1β. (A) Cartoon
diagrams for the two HP1 homologs, with the disordered regions shown in yellow and or-
dered regions in blue and green. The red numbers indicate sequence identity between the
two proteins for various regions.87 (B) Probability distributions of the radius of gyration
(Rg) for HP1α (blue) and HP1β (orange). Dashed lines show mean values of each distri-
bution. (C) Contact maps of HP1α (top right) and HP1β (bottom left), with cross-dimer
interactions shown in the diagonal quadrants. (D) Representative structures of HP1β and
HP1α determined from the most populated cluster. The coloring scheme is the same as in
part A.

compare more favorably to experimental values of 3.59 nm and 4.7 nm than those from MJ

and MOFF-IDP (Table S4).14,86

We found that multivalent interactions between charged residues cause the more com-

pact configurations of HP1α. These interactions are evident in the contact maps shown in

Figure 6C for HP1α (upper triangle) and HP1β (lower triangle). The off-diagonal quadrants

correspond to interactions between the two monomers. For HP1β, these interactions are

mostly limited to the dimerization of the chromoshadow domain. The contacts are more
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widespread in HP1α and arise from charged interactions between positive residues from the

chromodomain or hinge regions and the negative counterparts of the chromoshadow or C-

terminal extension domains. Such contacts can be readily seen in the central structure of

the most populated cluster shown in Figure 6D. The clustering was performed over the sim-

ulated structural ensemble based on RMSD (Figure S9). On the contrary, we see that in

HP1β, the hinges are completely extended, and there are minimal interactions between the

two monomers.

We also simulated a third homolog, HP1γ, and found an intermediate size in between

HP1α and HP1β (Figure S10). We were unable to find SAXS data for this protein, and

future experiments could help validate the prediction.

Homolog Specific HP1 Phase Separation

The multivalent interactions found in HP1α are weak and can come undone to form more

extended structures. These structures give rise to the long tail of the probability distri-

bution of Rg (Figure 6B) and become more stable at higher temperatures (Figure S11).

The extended configurations could facilitate contacts between different dimers to promote

liquid-liquid phase separation.

We performed slab simulations40,43 with 100 dimers of HP1α, HP1β, or HP1γ to di-

rectly probe their phase behavior. Starting from configurations with a high concentration of

protein molecules in a cubic box, we extended the simulation box along the z direction by

∼ 20 times. The system was then relaxed under constant volume simulations with periodic

boundary conditions to reach desired temperatures. After equilibration, protein molecules

will either disperse throughout the simulation box (Figure 7A), or stabilize into two phases

with different concentrations (Figure 7B). A total of ten simulations with temperatures rang-

ing from 150 K to 400 K were performed for each protein. We monitored the dynamics of

these simulations by tracking the size of the largest cluster of HP1 dimers as a function of

time. As shown in Figure S12, while low-temperature simulations preserve the initial dense
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Figure 7: MOFF enables quantitative simulations of HP1 phase separation. (A) Example
configurations from slab simulations of HP1α at 350 (top) and 300 (bottom) K. (B) Phase
diagram and critical temperature for HP1α (blue), HP1β (orange), and HP1γ (yellow). (C,
D) Representative cluster structures formed with three (C) and seven (D) HP1α dimers.
The coloring scheme is the same as in Figure 6A.

phase, proteins begin to shake off as the temperature increases, leading to a drop in the

cluster size.

Using the identified HP1 clusters, we further partitioned the system into two phase

regimes and computed the corresponding protein concentration in each phase at high tem-

peratures (Figure 7C). We then determined the critical temperature, TC , by fitting the
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concentrations as a function of temperature using the following expression

ρH − ρL = A(TC − T )β, (6)

with β = 0.325.43 The resulting values for the three homologs are 306.7, 252.9, and 268.0

K respectively (Figure S13). The higher TC of HP1α indicates that its dense phase is more

stable than other homologs. This conclusion is in agreement with experimental observations

that only HP1α can phase separate in vitro at room temperature, while HP1β and HP1γ

cannot.14,25 On the other hand, similar results obtained using MJ or MOFF-IDP suggest

that those two force fields struggle to capture the complexity of HP1 phase behavior (Table

S5).

We found that the multivalent interactions that drive the collapse of HP1α dimer indeed

mediate inter-dimer interactions. For example, contacts between the N terminal extension

(NTE) and the NTE, Chromodomain (CD), and hinge region of other dimers can be readily

seen in the example clusters shown in Figure 7D,E. The interactions are also evident in the

contact map between dimers (Figure S14 red box). Our results agree with previous exper-

imental studies, which proposed that NTE bridges dimers through charged interactions.14

In addition, we also observed inter-dimer interactions mediated by C-terminal extension

(CTE) (Figure S14 green box). The inter-dimeric contacts are largely preserved in clusters

of HP1β and HP1γ, though at a weaker strength (Figure S15, S16). These highly patterned,

multivalent interactions are, therefore, consistent across homologs.

CONCLUSIONS

In this work, we introduced an algorithm to parameterize force fields that can be used to

study both ordered and disordered proteins with consistent accuracy. We combined principles

of the energy landscape theory with the maximum entropy optimization to recreate exper-

imental radii of gyration for ordered and disordered proteins while simultaneously ensuring
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that the folded structures are lower in energy than the unfolded ones. The resulting force

field, which we term as MOFF, indeed outperforms two existing force fields that work well

for globular proteins or IDPs to recreate protein size. The force field further helped identify

two clusters of amino acids critical for determining protein size and the theta temperature.

When applied to the human HP1, MOFF successfully resolves the structural difference

between three homologs with high sequence similarity. It identified non-specific, charged

interactions that stabilize a more collapsed configuration in HP1α than HP1β. In addition,

the force field was shown to be computationally efficient for studying phase separation. We

determined the critical temperature for the three homologs. The values agree with qualitative

experimental observations that only HP1α can phase seperate. Our simulations also provided

structural insight into the condensates. The multivalent interactions found in dimers can

now bridge contacts across dimers to mediate cluster formation.

We note that while MOFF can reliably predict the size of globular proteins, it has not yet

achieved consistent accuracy for de novo structure prediction. When studying large proteins

with both ordered and disordered regions, it is beneficial to include biases that stabilize

the tertiary structure and prevent partial unfolding. Notably, these biases can be limited

to individual globular domains so that they do not impact the overall protein size. Their

strength can be tuned to reproduce the root mean squared fluctuation determined using

short atomistic simulations. With the ordered regions restricted to the PDB conformations,

MOFF should provide an accurate description of interactions between domains within the

same protein and interactions between proteins as demonstrated for HP1. We provided

scripts in the GitHub to facilitate simulation setup.

Despite the progress made in this work, there is room for improving MOFF further. As

detailed in the SI Section: Mathematical Expressions of Energy Function, the secondary

structure potential of the force field is protein-specific and non-transferable. A more predic-

tive secondary structure model may improve the force field’s accuracy in simulating glob-

ular structures and in capturing the conformational flexibility of IDPs.88 Furthermore, we
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grouped all nonbonded interactions between amino acids into a single contact potential. A

more refined functional form that differentiates short-range direct contacts from long-range

interactions mediated by water molecules may prove beneficial.49,89 Additionally, generalized

maximum entropy algorithms65 and Bayesian approaches90–92 can be incorporated into the

force field optimization procedure to better account for error and uncertainty in experimental

data. More advanced algorithms that maximize the ratio of the folding temperature versus

the glass transition temperature can also be adopted to better sculpt the funneled energy

landscape for globular proteins.46
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