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Abstract

Many proteins have been shown to function via liquid-liquid phase separation. Com-
putational modeling could offer much needed structural details of protein condensates
and reveal the set of molecular interactions that dictate their stability. However, the
presence of both ordered and disordered domains in these proteins places a high de-
mand on the model accuracy. Here, we present an algorithm to derive a coarse-grained
force field, MOFF, that can model both ordered and disordered proteins with con-
sistent accuracy. It combines maximum entropy biasing, least-squares fitting, and
basic principles of energy landscape theory to ensure that MOFF recreates experimen-
tal radii of gyration while predicting the folded structures for globular proteins with
lower energy. The theta temperature determined from MOFF separates ordered and
disordered proteins at 300 K and exhibits a strikingly linear relationship with amino
acid sequence composition. We further applied MOFF to study the phase behavior of
HP1, an essential protein for posttranslational modification and spatial organization
of chromatin. The force field successfully resolved the structural difference of two HP1
homologs, despite their high sequence similarity. We carried out large scale simulations

with hundreds of proteins to determine the critical temperature of phase separation
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and uncover multivalent interactions that stabilize higher-order assemblies. In all, our
work makes significant methodological strides to connect theories of ordered and disor-
dered proteins and provides a powerful tool for studying liquid-liquid phase separation

with near-atomistic details.



INTRODUCTION

Many proteins encoded by eukaryotic genomes contain disordered regions that do not adopt
well-defined tertiary structures. % Disordered domains could facilitate the target search pro-
cess while retaining protein-binding specificity via the folding-upon-binding mechanism."® It
has recently become widely appreciated that another important property of these intrinsically
disordered proteins (IDPs) lies in their collective behavior.?!? The multivalent interactions
that are intrinsic to them can drive the formation of membraneless organelles, including

2 superenchancers,'® and heterochromatin'*'® through the

stress granules,!' P granules,®
liquid-liquid phase separation mechanism. The increased protein concentration in these or-
ganelles could lead to more efficient biochemical reactions. %17 Characterizing the structural
details of these condensates could provide crucial insight into the function of the cellular
processes. While progress is being made, connecting the atomistic properties of IDPs to the
global structure, composition, and dynamics of the organelles remains challenging. %19

One prominent example of IDPs is heterochromatin protein 1 (HP1), a key component
of constitutive heterochromatin.?**? HP1 consists of ordered, conserved chromo (CD) and
chromoshadow (CSD) domains connected via a variable disordered hinge region. The CD
helps to recruit the protein to chromatin segments marked with histone H3 trimethylation
(H3K9me3), while the CSD domain enables dimerization and also serves as a docking site for
other nuclear proteins.?® In contrast to the canonical view that HP1 proteins are merely ac-
cessory players with no active role in chromatin organization, several studies recently found
them spontaneously form phase-separated liquid droplets. 4152425 These droplets could sup-
port new forms of chromatin structures that differ dramatically from the regular fibril con-
formations.?%2” One noteworthy feature of HP1, which is shared by many of the proteins

involved in forming membraneless compartments, %2

is the presence of both ordered and
disordered domains. This feature has made a high-resolution structural characterization of
the full-length protein and the functional state with many proteins challenging.

Computational modeling could offer much needed structural details of IDPs and their



aggregates and reveal the set of molecular interactions that dictate the stability of liquid
droplets.®® However, the presence of both ordered and disordered domains in these proteins
places a strong demand on the model’s accuracy. All-atom force fields, with their ever-

31736 can in principle, accurately model protein conformations. They

improving accuracy,
are computational expensive though, and long-timescale simulations needed to study slow
conformational rearrangement and aggregation kinetics remain inaccessible for most proteins
of interest. While many coarse-grained force fields have been introduced and proven effective
at predicting the structures of globular proteins,®”3® they cannot be directly generalized to
study IDPs. Separate efforts have been carried out to parameterize force fields specialized for
disordered proteins. 32 These force fields, while succeeding in modeling the phase separation

4243 are not advised for applications of globular proteins.

and IDP structural heterogeneity,
Since the two classes of proteins share the same set of amino acids for their composition, it
is hopeful that a unified force field can be derived to model both of them with consistent
accuracy. Such a consistent force field would greatly facilitate the investigation of IDPs’
collective behaviors in large scale condensates.

In this paper, we introduce a new algorithm to parameterize coarse-grained protein force
fields with implicit solvation. We generalize the maximum entropy optimization algorithm
by ensuring that for globular proteins, the force field predicts an energy gap between the
native conformation and the unfolded or partially folded structures. The maximum en-
tropy optimization algorithm was developed for parameterizing transferable IDP force fields
using biasing energies derived from experimental constraints.?*%° Energy gap maximiza-
tion, on the other hand, has been a successful strategy for deriving force fields of folded
proteins. 4% The resulting force field, MOFF, indeed provides a more balanced set of in-
teractions that can predict the radii of gyration of both ordered and disordered proteins.
The theta temperatures determined using MOFF classify the two types of proteins by the

biological temperature at 300 K. They exhibit a striking linear relationship on the protein

sequence composition. We applied MOFF to characterize the three homologs of human HP1,



a, B, and . Simulations succeeded at predicting the relative size of the homologs despite
their high sequence similarity, and revealed multivalent, charged interactions that stabilize
the more collapsed HP1la conformations. The computational efficiency of the force field
enabled direct simulations of the phase separation process. These large scale simulations
helped quantify the critical temperature of the proteins and uncovered higher-order protein
clusters mediated via the same interactions that cause the collapse of dimers. We anticipate
MOFF to be a useful tool for studying IDPs and provide its implementation in GROMACS
(https://github.com/ZhangGroup-MITChemistry /MOFF).

METHODS

Coarse-grained Protein Force Field

We modeled proteins with a coarse-grained representation for efficient conformational sam-
pling and large scale simulations of phase separation. Each amino acid is represented with
one bead at the a-carbon position. The chemical properties of each bead are provided in
Table S1. The potential energy for quantifying the stability of a protein structure r is defined

as

UMOFF(T) = Ubackbone + Umemory + Uelectrostatics + Ucontact- (1)

Upackbone 18 Tesponsible for maintaining the backbone geometry of the protein and consists
of the bond, angle, and dihedral potentials. Upemory helps stabilize protein secondary struc-
tures. These two terms are dependent on input protein conformations. Ugectrostatics describes
electrostatic interactions between charged residues with the Debye-Hiickle theory. We used
a distance-dependent dielectric constant to more accurately capture the change in the solva-
tion environment upon protein folding®%5! (Figure S1). The last term Ugyptacs is the amino
acid type dependent pairwise contact potential. Parameters that quantify the strength of

such interactions will be derived using the algorithm introduced in the next section to en-



sure consistency for both ordered and disordered proteins. The full functional form of the

potential energy is given in the Supporting Information (SI).

Amino Acid Contact Potential from Maximum Entropy Optimiza-
tion

Efficient modeling of protein molecules is a problem of long-standing interest in computa-
tional biophysics. Numerous algorithms have been introduced to parameterize coarse-grained
force fields with implicit solvation for globular proteins.3"??757 One class of algorithms that
is of relevance to this study is inspired by the energy landscape theory,®® ¢! which states that
an energy gap between the folded native structure and unfolded conformations is necessary
and sufficient for ensuring reliable protein folding on a reasonable timescale. Several force
fields have been introduced via maximization of the energy gap and successfully applied to
predict protein structures and study folding kinetics.46-49

The force fields designed for globular proteins often need to be adjusted when applied for
IDPs. 4042 Maximum entropy optimization has become widely popular in recent years%2-69
as an efficient means to improve the agreement between modeling and experiment. While
optimization can be used during post-processing to reweight the simulated structure en-

62,70,71

semble, correction terms can also be directly introduced to the force field to alter

64,73,7 linear corrections are optimal and incur the

simulation outcomes. ™ As shown in Refs.,
least amount of the bias to the model. We further designed an iterative algorithm (see SI for
details) to create a transferable force field by reparameterizing the protein-specific correction

terms into pair-wise contact potentials between amino acids, 4*

AeC = aR,. (2)

C is the contact matrix that indicates the number of contacts for each pair of amino acids in a

given structure. Ae is the list of changes to the pairwise amino acid specific contact energy.



aR, is the biasing energy based on the radius of gyration (R,) derived from maximum
entropy optimization. When solved over an ensemble of structures collected for a large
set of proteins in the training set, the changes to the contact energy matrix (Ae€) can be
determined. The resulting force field (MOFF-IDP) is transferable and reproduces the radius
of gyration for various IDPs.

It is worth noting that IDP force fields, either modified from existing ones designed for
globular proteins or parameterized from scratch, often cannot be applied to predict the size
and structure of folded proteins. Therefore, there appears to be a disconnect between folded
and unfolded proteins. Force fields often only work on one of them, but not the other. This
paper introduces a new algorithm to parameterize force fields that can be applied to model
both ordered and disordered proteins with consistent accuracy.

The starting point of the algorithm is still the iterative maximum entropy optimization
(see Figure 1). While our previous study focused on IDPs, here we added globular proteins as
well in the training set to build a consistent force field. In addition, we borrowed ideas from
the energy landscape theory to enforce that the total contact energy of the PDB structure
is lower than that of any structure sampled in computer simulations, up to some tolerance.

Mathematically, this constraint can be expressed as

€ Cppp < € Cyin, (3)

where € = A€ + € is the new pair-wise contact energy updated with the correction term
from Eq. 2. Thus, using the interior-point algorithm, ™ we simultaneously solved Eq. 2 for
all proteins in our training set under the constraint of Eq. 3 for the ordered proteins (Figure
1). In practice, we added an additional term, Yo, to the right hand side of Eq. 3. ~
is a flexible tolerance parameter used to tune the strength of the constraint, and ogjp, is
the standard deviation of the contact energy estimated for each protein using simulations

performed in the previous iteration. To aid the convergence of the algorithm, we used



> [

MD Simulation

] |

For folded proteins

e 2
e, 00 0 L c
L R - ’ 4 g
. E 5 r E’ .‘.‘. :.o'o‘ Entropy {F }
i.\ see ,5" « o .' '
&y, 4 ;r;" Unfolded
9 L ";»-% r:’f;'*n’g _J Experiment
@ ~Oe\ (P
R @ Energy 7
é) Molten globule (MG)
S [Maximum Entropy Optimization}
= — _
e w3 git
S LN o 0y c / "‘>
g | TR ¥
. : E Folded (PDB)
% : ° ‘5}1 ()
e T
L ZL P e
e Eoerert { Energy Landscape Theory }
AECSim = aRg% J EPDB < EMG
Force Field

Corrections

Figure 1: Illustration of the algorithm that combines maximum entropy optimization and
energy gap constraint for force field parameterization.

single value decomposition (SVD) to reduce noise and placed an additional constraint on the
change in amino acid contact energies from one iteration to the next. As seen previously,**
the relationship between energy and contact formation is not perfectly linear, requiring this

entire algorithm to be done iteratively.

Details on Molecular Dynamics Simulations

We implemented MOFF in GROMACS™ to perform molecular dynamics simulations with
a time step of 10 fs. Replica exchange simulations were performed with temperatures at
300, 320, 340, 360, 380, and 400K to enhance conformational sampling. Exchanges between
neighboring replicas were attempted at every 100 steps, with all odd pairs on odd attempts

and all even pairs on even attempts. Langevin dynamics was used to control the temperature



with a coupling constant of 1 ps.

The simulations used for force field optimization were initialized from PDB structures
for ordered sequences, or I-TASSER predictions for disordered sequences.”” Proteins were
placed in cubic boxes with side lengths of 50 nm to prevent them from contacting the periodic
images. Simulations lasted for 4 x 107 steps, and protein configurations were sampled at every
20000 steps. We excluded the first 107 steps for equilibration. More simulation details can
be found in the SI Section: Simulation Details on Force Field Optimization.

To stabilize tertiary contacts of globular domains in HP1, we augmented MOFF with
additional biases derived from the initial structures. These biases were limited to individual
ordered domains and dimer interfaces. They do not impact our prediction of the radius of
gyration and inter-dimer interactions. More details on these biases are provided in SI Section:
Folding potential for HP1 tertiary structure stabilization. We built initial structures for HP1
dimers using RaptorX, ™ with the crystal structure of the HP1ae CSD domain as a template
(PDB: 3I3C). These structures were placed in cubic boxes with side lengths of 50 nm. Five
independent simulations that lasted for 5 x 10® steps were performed, and samples were
taken every 5 x 10% steps. The first 10® steps were excluded for equilibration. Clustering
was done following the gromos clustering algorithm.™

Slab simulations performed to study HP1 phase separation are explained in the SI Section:

HP1 Slab Simulation Details.

RESULTS AND DISCUSSION

Parameterization of the Consistent Force Field

We applied an iterative optimization algorithm to parameterize the tertiary contact poten-
tials of a coarse-grained force field (Eq. 1) and ensure consistent accuracy for both IDPs
and ordered proteins. Details of the algorithm can be found in the Methods Section. As

illustrated in Figure 1, it matches the simulated radius of gyration of protein molecules with



experimental values via maximum entropy optimization.” In addition, we enforce the con-
straint that, for folded proteins, the energy of the native structure is lowest, i.e., there is
a gap between folded and unfolded configurations. This gap is necessary to ensure reliable
protein folding into the native state. A total of 23 proteins, including seven ordered and 16
disordered (Table S2), were included in the training set. We ensured that ordered proteins
cover a variety of secondary structures, and that monomeric Small Angle X-ray Scattering
(SAXS) measurements are available for all proteins to determine R,. We tracked the percent

error given by
snn ReXP

N ; 100 % Re"p (4)
to measure the improvement caused by our optimization. The sum is taken over all N = 23
proteins in our training set. Rf]ﬁp is the experimental radius of gyration for the i-th protein,
and R;ﬁ? is the corresponding simulated value estimated from the average of 1500 structures
sampled with the latest force field parameters. In addition to tracking the percent error on
our training set, we monitored the performance of the force field on an independent validation
set as well (Table S3). The validation set includes four ordered and four disordered proteins.
We terminated the optimization when the percent error on the validation set fails to decrease
upon two consecutive iterations. Starting values of the amino acid contact energies were set

as the Miyazawa-Jernigan (MJ) potential®

scaled by a factor of 0.4. The scale factor was
determined as the value with the least percent error for proteins in the training set (Figure
S2). We gradually relaxed the constraint defined in Eq. 3 by increasing the tolerance term
along the iterations (Figure S3).

As shown in Figure S3, the iterative algorithm succeeds in gradually improving the force
field accuracy. The percent error begins at 33.6, but reaches 9.6 by the final iteration. Im-
portantly, the resulting force field (MOFF) outperforms the initial one built from the MJ
potential for every protein in the training set (Figure 2A). When examining the validation

set, we again noticed that (MOFF) improves relative to both MJ and MOFF-IDP, where

MOFF-IDP is a force field parameterized specifically for IDPs using the maximum entropy

10
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Figure 2: Comparison between experimental and simulated radius of gyration (R,) for pro-
tein molecules in the training (A) and validation (B) set. In addition to the force field in-
troduced in this paper (MOFF, orange), we included simulation results using the Miyazawa-
Jernigan potential (MJ, blue) and a previous version of MOFF optimized for IDPs (MOFF-
IDP, yellow) as well. Error bars represent standard deviation after block averaging.

optimization algorithm.%* The percent error for proteins in the validation set is 17.9, com-
pared to 51.2 and 41.2 for MOFF-IDP and MJ respectively (Figure 2B). In particular, we
note that the new force field significantly improves on the ordered proteins (low R,) relative

to MOFF-IDP. This improvement likely stems from the newly added ordered proteins in the
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Figure 3: MOFF succeeds in creating energy gaps for folded proteins. (A) Contact energy
of the folded structure (orange) relative to those sampled in simulation (blue) for 1wla. The
energy gap 0F is defined as the difference between the folded energy and the average simu-
lated energy. (B) 0 for all folded proteins in the training set. (C) Probability distribution
of the root mean squared displacement (RMSD) relative to the folded structure for 1wla at
300 K.

training set for force field parameterization. MOFF performs better than the other two force
fields on all but one protein, 4cpv.

The optimization also succeeded at ensuring that the folded structure is lower in energy
than the unfolded configurations. The energy gap, defined as the difference between the mean
contact energy of the simulated structures and the contact energy of the folded structure

(Figure 3A), is indeed positive for all the globular proteins in the training set (Figure 3B).

12



Upon a close inspection of the protein configurations simulated with the converged force field
at 300 K, we observed deviations from the native conformations. As shown in Figure 54,
the probability distributions of the root mean squared displacement (RMSD) from the PDB
structure peak around 1.5 nm for most proteins. It is worth noting that several proteins do
sample configurations close to the native state with RMSD less than 0.5 nm. In particular,
1wla shows a bimodal distribution with one of the peaks located at 0.5 nm (Figure 3C).
Furthermore, simulated annealing simulations were able to predict structures with small
RMSD values for three of the seven proteins (Figure S5). These improvements seem to be
related to secondary structure content. For example, MOFF performs best on 1wla, which

is an a-helical protein, while it performs worst on 5tvz, which is a §-sheet protein.

MOFF Identifies Sequence Features to Differentiate Ordered and

Disordered Proteins

To gain insight into the molecular interactions that dictate MOFF’s success in predicting
protein sizes, we performed a hierarchical clustering on the contact energy matrix based
on euclidean distances between column vectors. The resulting clusters generally sort the
amino acids into groups with increasing hydrophobicity (Figure 4A and Table 1). We note
that because electrostatic interactions were modeled separately, the clustering based on the
contact potential alone may not strictly follow a typical hydrophobicity ordering. When
evaluating the frequency of encountering the various amino acid clusters in the ordered
and disordered proteins from our training set, we found that cluster 3 consists of mainly
hydrophilic amino acids and is significantly enriched in disordered proteins. On the other
hand, the hydrophobic cluster 6 is more often seen in folded proteins. Similar trends have
been seen in more expansive studies, which compared the frequency of amino acids in the
DisProt database with the frequency in the PDB.8%%2 The example configurations shown in
Figure 4C further highlights the spatial distribution of the various clusters in an ordered and

a disordered protein.

13
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Figure 4: MOFF differentiates “ordered” and “disordered” amino acids with distinct contact
energy patterns. (A) Hierarchical clustering of MOFF contact energy between amino acid
pairs (€77 in Eq. S16). (B) Comparison of the amino acid frequency by cluster in the ordered
(blue) and disordered (orange) portions of our training set. (C) Spatial distribution of amino
acid clusters in example structures of an ordered (3mzq, left) disordered protein (NSP, right).
Amino acids are shown in the same coloring scheme for clusters as in part A.

The presence of well-defined amino acid clusters that sets apart ordered proteins from
disordered ones provides an intuitive explanation of the distinct size distribution of the two
protein types. The “disordered” amino acids from cluster 3 are mainly repulsive and will lead
to the more expanded structure seen in IDPs; the “ordered” amino acids from cluster 6, on the
other hand, are attracted to most of the other residues and tend to localize in the interior of

collapsed proteins. The interaction energy among amino acids also explains the performance
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Table 1: Amino acid clusters determined from hierarchical clustering of MOFF contact
energy.

Cluster Amino Acids
Cluster 1 (red) MET
Cluster 2 (brown) ARG
Cluster 3 (green) PRO ASN ASP GLY
Cluster 4 (orange) HIS PHE LYS SER ALA VAL LEU THR TYR
Cluster 5 (cyan) GLN GLU
Cluster 6 (blue) ILE TRP CYS

of the three force fields shown in Figure 2. Compared to the MJ potential (Figure S6),
interactions between hydrophilic residues are more repulsive in MOFF. Similar results were
seen with MOFF-IDP, where repulsive interactions rescue IDPs from over collapse. However,
when ordered proteins are also included in the training set, we see these repulsive interactions
grow stronger, as well as the development of stronger contact energy among hydrophobic
residues. These changes are likely necessary to balance the collapse of ordered sequences and
the swelling of disordered sequences.

We next attempted to establish a more quantitative relationship between protein size,
interaction energy, and the sequence. Towards that end, we first computed the theta tem-
perature, Ty, by monitoring the change of scaling exponent v as a function of temperature.
v measures the variation of spatial distance between two residues ¢ and j versus their linear
distance in sequence, R o |i — j|”. At Ty, proteins behave like an ideal Gaussian chain and
v = 1/2. As the temperature decreases from above to below Tj, one expects the proteins
to become more compact and transition from swollen polymers to collapsed globules, as can
be seen in Figure 5A-B. Tj, therefore, provides a direct measure of the interaction strength
within a protein. Strikingly, MOFF predicts that the biological temperature provides a clear
cut between ordered and disordered proteins, with the corresponding 7y above and below
300 K, respectively. Such a partition indicates that MOFF treats the two types of proteins
as polymers in a poor or good solvent and is consistent with the results shown in Figure 2.

The interaction potential of a protein and Ty is ultimately dictated by the underlying

15
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Figure 5: MOFF uncovers a linear relationship between protein theta temperature and
sequence composition. (A) Polymer scaling exponent (v) as a function of T' for ordered
(blue) and disordered (orange) protein sequences in our training set. Error bars represent
standard deviation after block averaging. (B) Theta temperature (7j) for proteins in the
training set. The 300K mark is highlighted as a guide for the eye. (C, D) Comparison
between values of T predicted using a linear equation of sequence composition (Eq. 5)
and determined from molecular dynamics simulations for proteins in the training (C) and
validation (D) set. p is the Pearson correlation coefficient between the two data sets, and
the dashed black line represents perfect agreement.

sequence. Given the similarity among amino acids in their contact energy, we wondered
whether a simple relationship between Ty and the sequence composition can be found. Us-
ing the least absolute shrinkage and selection operator (LASSO),® we determined a linear
regression model to fit Ty with a minimal set of amino acid clusters identified in Figure 4.

The model that minimizes the mean squared error adopts the following expression

Ty = —528¢y — 47cs + 33Ty + 1921¢ + 41, (5)
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where ¢; is the percent of the sequence that is from cluster i (Figure S7). The fitted values
are strongly correlated with the simulated ones despite our neglect of clusters 1 and 5 in the

8485 since

expression (Figure 5C). This expression supports the notion of hydrophobic effec
amino acids from clusters 4 and 6 are mostly hydrophobic, and they contribute positively to
the theta temperature by promoting protein collapse. It is also consistent with our conclusion
that IDPs are more expanded because of their enrichment in residues from cluster 3. Arg,
which is the sole residue in cluster 2, appears to be effective at reducing Ty as well, potentially
resulting from electrostatic repulsion.

We further computed Ty for proteins in the test set and observed separation between
ordered and disordered proteins at 300 K again (Figure S8). Notably, 7 computed from
replica exchange simulations are in good agreement with the values predicted using Eq. 5,

with a Pearson correlation coefficient of 0.87 between the two (Figure 5D). Therefore, the

linear relationship between Ty and the sequence composition is general and transferable.

Multivalent Interactions Differentiate HP1 Homologs

After validating its accuracy in modeling the size of both ordered and disordered proteins,
we applied MOFF to characterize the structure and phase behavior of human HP1. We first
investigated the difference between the two isoforms, HP1a and HP1/3. Previous experimen-
tal studies on the HP1 dimers showed that HP15 takes an open conformation, while HP1«
is more collapsed. 486 The size difference is particularly striking considering the sequence
similarity between the two proteins. As shown in Figure 6A, the ordered regions that in-
clude chromodomain and chromoshadow domain share a sequence identity over 80%. Even
the disordered N-terminal extension, hinge region, and C-terminal extension have a sequence
similarity of over 30%.%7

We performed replica exchange simulations of the HP1 dimers. Similar to experimental
studies, we find that HPla takes a more collapsed configuration at 300 K, with R, =
3.24 + 0.08 nm, compared to R, = 4.26 £ 0.08 nm for HP1/ (Figure 6B). These results

17
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Figure 6: MOFF resolves the structural difference between HP1a and HP15. (A) Cartoon
diagrams for the two HP1 homologs, with the disordered regions shown in yellow and or-
dered regions in blue and green. The red numbers indicate sequence identity between the
two proteins for various regions.®” (B) Probability distributions of the radius of gyration
(R,) for HP1la (blue) and HP1p (orange). Dashed lines show mean values of each distri-
bution. (C) Contact maps of HP1la (top right) and HP15 (bottom left), with cross-dimer
interactions shown in the diagonal quadrants. (D) Representative structures of HP15 and
HP1la determined from the most populated cluster. The coloring scheme is the same as in
part A.

compare more favorably to experimental values of 3.59 nm and 4.7 nm than those from MJ
and MOFF-IDP (Table S4).1486

We found that multivalent interactions between charged residues cause the more com-
pact configurations of HP1a. These interactions are evident in the contact maps shown in
Figure 6C for HP1la (upper triangle) and HP1/ (lower triangle). The off-diagonal quadrants
correspond to interactions between the two monomers. For HP13, these interactions are

mostly limited to the dimerization of the chromoshadow domain. The contacts are more
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widespread in HP1la and arise from charged interactions between positive residues from the
chromodomain or hinge regions and the negative counterparts of the chromoshadow or C-
terminal extension domains. Such contacts can be readily seen in the central structure of
the most populated cluster shown in Figure 6D. The clustering was performed over the sim-
ulated structural ensemble based on RMSD (Figure S9). On the contrary, we see that in
HP13, the hinges are completely extended, and there are minimal interactions between the
two monomers.

We also simulated a third homolog, HP1v, and found an intermediate size in between
HPla and HP18 (Figure S10). We were unable to find SAXS data for this protein, and

future experiments could help validate the prediction.

Homolog Specific HP1 Phase Separation

The multivalent interactions found in HP1a are weak and can come undone to form more
extended structures. These structures give rise to the long tail of the probability distri-
bution of R, (Figure 6B) and become more stable at higher temperatures (Figure S11).
The extended configurations could facilitate contacts between different dimers to promote
liquid-liquid phase separation.

We performed slab simulations*®* with 100 dimers of HP1lo, HP13, or HP1y to di-
rectly probe their phase behavior. Starting from configurations with a high concentration of
protein molecules in a cubic box, we extended the simulation box along the z direction by
~ 20 times. The system was then relaxed under constant volume simulations with periodic
boundary conditions to reach desired temperatures. After equilibration, protein molecules
will either disperse throughout the simulation box (Figure 7TA), or stabilize into two phases
with different concentrations (Figure 7B). A total of ten simulations with temperatures rang-
ing from 150 K to 400 K were performed for each protein. We monitored the dynamics of
these simulations by tracking the size of the largest cluster of HP1 dimers as a function of

time. As shown in Figure S12, while low-temperature simulations preserve the initial dense

19



HP1q
HP1J
HP1y

Temperature (K)
N
(&)
o

AN

0 10 20 30
Concentration (mM)

D .
) . e AN
ST e _' © )
S oo )\‘ N o’ ,
SBC NI A
Gz S
DO y
ot ¢) S,
v"f' G‘ao
(P,
Q "f!‘x
J,

SR

Figure 7: MOFF enables quantitative simulations of HP1 phase separation. (A) Example
configurations from slab simulations of HP1a at 350 (top) and 300 (bottom) K. (B) Phase
diagram and critical temperature for HP1a (blue), HP1 (orange), and HP1y (yellow). (C,

D) Representative cluster structures formed with three (C) and seven (D) HPla dimers.
The coloring scheme is the same as in Figure 6A.

phase, proteins begin to shake off as the temperature increases, leading to a drop in the

cluster size.

Using the identified HP1 clusters, we further partitioned the system into two phase
regimes and computed the corresponding protein concentration in each phase at high tem-

peratures (Figure 7C). We then determined the critical temperature, T, by fitting the
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concentrations as a function of temperature using the following expression

pr —pr = A(Te — T)Ba (6)

with 8 = 0.325.%3 The resulting values for the three homologs are 306.7, 252.9, and 268.0
K respectively (Figure S13). The higher T of HP1a indicates that its dense phase is more
stable than other homologs. This conclusion is in agreement with experimental observations
that only HP1a can phase separate in vitro at room temperature, while HP13 and HP1~y
cannot. %25 On the other hand, similar results obtained using MJ or MOFF-IDP suggest
that those two force fields struggle to capture the complexity of HP1 phase behavior (Table
S5).

We found that the multivalent interactions that drive the collapse of HP1a dimer indeed
mediate inter-dimer interactions. For example, contacts between the N terminal extension
(NTE) and the NTE, Chromodomain (CD), and hinge region of other dimers can be readily
seen in the example clusters shown in Figure 7D,E. The interactions are also evident in the
contact map between dimers (Figure S14 red box). Our results agree with previous exper-
imental studies, which proposed that NTE bridges dimers through charged interactions. 4
In addition, we also observed inter-dimer interactions mediated by C-terminal extension
(CTE) (Figure S14 green box). The inter-dimeric contacts are largely preserved in clusters
of HP15 and HP1~, though at a weaker strength (Figure S15, S16). These highly patterned,

multivalent interactions are, therefore, consistent across homologs.

CONCLUSIONS

In this work, we introduced an algorithm to parameterize force fields that can be used to
study both ordered and disordered proteins with consistent accuracy. We combined principles
of the energy landscape theory with the maximum entropy optimization to recreate exper-

imental radii of gyration for ordered and disordered proteins while simultaneously ensuring
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that the folded structures are lower in energy than the unfolded ones. The resulting force
field, which we term as MOFF, indeed outperforms two existing force fields that work well
for globular proteins or IDPs to recreate protein size. The force field further helped identify
two clusters of amino acids critical for determining protein size and the theta temperature.

When applied to the human HP1, MOFF successfully resolves the structural difference
between three homologs with high sequence similarity. It identified non-specific, charged
interactions that stabilize a more collapsed configuration in HP1a than HP14. In addition,
the force field was shown to be computationally efficient for studying phase separation. We
determined the critical temperature for the three homologs. The values agree with qualitative
experimental observations that only HP1a can phase seperate. Our simulations also provided
structural insight into the condensates. The multivalent interactions found in dimers can
now bridge contacts across dimers to mediate cluster formation.

We note that while MOFF can reliably predict the size of globular proteins, it has not yet
achieved consistent accuracy for de novo structure prediction. When studying large proteins
with both ordered and disordered regions, it is beneficial to include biases that stabilize
the tertiary structure and prevent partial unfolding. Notably, these biases can be limited
to individual globular domains so that they do not impact the overall protein size. Their
strength can be tuned to reproduce the root mean squared fluctuation determined using
short atomistic simulations. With the ordered regions restricted to the PDB conformations,
MOFF should provide an accurate description of interactions between domains within the
same protein and interactions between proteins as demonstrated for HP1. We provided
scripts in the GitHub to facilitate simulation setup.

Despite the progress made in this work, there is room for improving MOFF further. As
detailed in the SI Section: Mathematical Fxpressions of Energy Function, the secondary
structure potential of the force field is protein-specific and non-transferable. A more predic-
tive secondary structure model may improve the force field’s accuracy in simulating glob-

ular structures and in capturing the conformational flexibility of IDPs.®® Furthermore, we
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grouped all nonbonded interactions between amino acids into a single contact potential. A
more refined functional form that differentiates short-range direct contacts from long-range
interactions mediated by water molecules may prove beneficial. 4>% Additionally, generalized

maximum entropy algorithms® and Bayesian approaches® 2

can be incorporated into the
force field optimization procedure to better account for error and uncertainty in experimental
data. More advanced algorithms that maximize the ratio of the folding temperature versus
the glass transition temperature can also be adopted to better sculpt the funneled energy

landscape for globular proteins. 6
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