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Abstract— Systems often face constraints at multiple levels.
For example, in coordinating a collection of thermostatically
controlled loads to provide grid services, the controller must
ensure temperature constraints for each load (local constraints)
and distribution network constraints (global constraints) are
satisfied. In this paper, we leverage invariant sets to ensure safe
coordination of systems with both local and global constraints.
Specifically, we develop a method for constructing a controlled
invariant set for a collection of subsystems, modeled as transi-
tion systems, to ensure they indefinitely satisfy the constraints,
based on cycles in individual transition systems. Then, we
develop a control algorithm that keeps the state inside the
maximal controlled invariant set. We apply these algorithms to a
demand response problem, specifically, the tracking of a power
trajectory (e.g., a frequency regulation signal) by a population
of homogeneous air conditioners. The algorithm simultaneously
maintains local temperature requirements and aggregate power
consumption limits, ensuring the control is nondisruptive to
consumers and benign to the distribution network.

I. INTRODUCTION

In cyber-physical systems with many subsystems, there are
local constraints for the safety of the individual subsystems
as well as global constraints on their collective behavior. By
considering the collection of subsystems as one large mono-
lithic system, the problem of safe control synthesis can be
rendered as the problem of computation of an invariant set.
For each state in an invariant set, there exists a control input
that guarantees the next state remains in this invariant set.
Therefore, it is possible to guarantee constraint satisfaction
indefinitely [1]–[3]. There has been some recent interest in
scalable algorithms for computing invariant sets (see e.g., [4],
[5] for the case of linear systems). However, these results are
not applicable to very large scale systems with control inputs
restricted to discrete switches or modes.

In this paper, we develop an approach to compute invariant
sets for a system consisting of a large number of switched
subsystems subject to constraints on subsystems’ states and
on the number of subsystems in certain modes. A variant of
this problem was recently studied in [6], where an algorithm
for finding open-loop periodic switching sequences that
guarantee constraint satisfaction is proposed. In contrast to
open-loop control, in this paper we show how to construct
implicitly defined invariant sets and how to incorporate them
into a Model Predictive Control (MPC) algorithm allowing
us to optimize additional control objectives while ensuring
safety and recursive feasibility. We begin by constructing an
abstracted system that is bisimilar to the original system, and
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we show that a controller safe for the abstracted system is
also safe for the original system. Then, we construct a system
consisting of a large number of homogeneous subsystems
and synthesize a controlled invariant set and a safe controller.

Our formulation and approach are motivated by the prob-
lem of controlling large numbers of thermostatically con-
trolled loads (TCLs), such as residential air conditioners and
water heaters, to provide services to the electric power sys-
tem. TCLs maintain a temperature within a narrow range by
switching on and off. Hundreds to thousands of TCLs can be
coordinated to provide power system services by collectively
tracking a power consumption signal to help the grid balance
supply and demand on timescales of seconds to minutes. A
number of papers (e.g., [7]–[9]) use models of the dynamics
of large collections of TCLs to synthesize reference tracking
controllers that keep TCL temperatures within prescribed
ranges; this is often referred to as non-disruptive control.
However, TCL collections may face additional constraints,
e.g., on the power consumption of the aggregation (or por-
tions of the aggregation) to ensure that TCL control actions
do not cause distribution network constraint violations [10].
There are a variety of approaches to include distribution
network constraints when controlling distributed energy re-
sources [11]–[17]; however, these approaches do not provide
formal safety guarantees (i.e., ensure constraint satisfaction)
considering TCL dynamics and constraints. Ref. [18] uses
ideas from formal methods, specifically [19], to constrain
TCL aggregate variability, but does not consider reference
tracking or supervision.

The contributions of this paper are threefold. First, we
develop a method for generating a controlled invariant set
of a transition system. This method selects some cycles of a
transition system and finds a set of states derived from safe
circulation around the selected cycles. Second, we develop
a control algorithm using the controlled invariant set. By
keeping the state inside the maximal controlled invariant set,
the algorithm’s feasibility is recursively guaranteed. Third,
we apply the control algorithm to a TCL power tracking
problem with constraints on the temperature of each TCL
and power consumption of the aggregation. We benchmark
our approach against three other approaches.

This paper is organized as follows. The notation is given
next and the problem setting is described in Section II.
Section III derives the abstraction of the original subsystem
and the aggregate system. In Section IV, we develop a
method for construction of a controlled invariant set of a
collection of subsystems and, in Section V, we synthesize
a safe control algorithm. We test our approach through
simulations in Section VI and conclude in Section VII.



Notation: The set of non-negative integers is denoted by
N0 = N∪{0}, [X] denotes the set of the integers {1, . . . , X},
and [X]0 denotes [X]∪{0}. The indicator function on set A
is denoted by 1A. We write the Minkowski sum as A⊕B =
{a + b | a ∈ A, b ∈ B}, while the subtraction A 	 B is
defined as the largest solution to X ⊕ B = A. We write
the infinity norm as ‖·‖. We denote the ball with radius r
centered at θ by B(θ, r) := {x | ‖x− θ‖≤ r}. The identity
function in space Rd is denoted by IdRd . The least common
multiplier of l1, . . . , ln is written as lcm(l1, . . . , ln).

II. PROBLEM SETTING

A. Overview

In this section, we describe the application-domain prob-
lem setting. Specifically, we consider a power reference
tracking problem of a collection of TCLs under both local
and global constraints. The aggregate power consumption
of the collection should track a continuous reference signal,
such as an automatic generation control signal (normalized
between -1 and 1) scaled by the power capacity of the
TCLs (i.e., the range within which the reference signal may
vary). However, each TCL can only be switched on/off.
Further, each TCL should maintain its temperature within
a prescribed range, referred to as a dead-band. In addition,
we assume the collection has a global constraint that the
aggregate power consumption of all TCLs is bounded by
prescribed upper/lower bounds to avoid distribution net-
work problems, such as over/undervoltages and transformer
overloading. Under these constraints and given the power
reference signal, the problem of interest is to control the
on/off modes of the TCLs to minimize the difference between
the aggregate power and the reference.

This problem corresponds to a practical setting. The
amount of power capacity that can be deployed safely varies
as a function of distribution network loading since high (low)
loading might restrict allowable increases (decreases) in TCL
demand to avoid voltage issues. The power capacity must
be committed to the ancillary services market in advance,
and so an estimate is made based on load and renewables
forecasts. However, the actual network-safe power bounds
are not known until real-time. This paper explores cases in
which more capacity is committed than deliverable in real-
time because of poor forecasts, specifically, cases in which
the reference signal leaves the range between the upper/lower
power bounds needed to protect the distribution network.
While it would seem that this contradiction between the
reference signal and the power bounds could be resolved
by the grid, in U.S. competitive electricity markets, the
Independent System Operator procures and deploys ancillary
services and the utility operates the distribution network, and
the two entities do not yet coordinate to resolve such issues.

Fig. 1 provides a concrete example of the problem setting.
The TCL aggregation has committed in advance to provide
the power capacity between the dashed black lines; however,
in real time, the TCL aggregate power is constrained between
the solid black lines, e.g., to mitigate unforecasted voltage
issues. The reference signal (blue) should be tracked as
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Fig. 1: Reference tracking with aggregate power constraints.

well as possible given the power bounds, and so the new
target is the truncated reference (dotted yellow line). The
simplest option would be to design a controller to track
the truncated reference; however, there is no guarantee that
this reference can be tracked perfectly while satisfying each
TCL’s temperature constraints. Another option could be to
develop an MPC approach that requires every state in the
horizon to belong to the constraint set; however, there is no
guarantee that this MPC problem will remain feasible recur-
sively. To overcome these issues, we augment the MPC with
constraints coming from an implicit controlled invariant set,
which guarantees both constraint satisfaction and recursive
feasibility. We compare our approach with these two simpler
approaches through numerical simulations in Section VI.

B. Assumptions, Models, and Formal Problem Statement

We assume i) TCLs are homogeneous in thermal/electrical
parameters, experience the same ambient temperature, and
are not affected by noise; ii) the ambient temperature is
constant over time; iii) the upper/lower power bounds are
constant over time; and iv) the temperature setpoint and
dead-band are constant over time. The first two assumptions
can be easily relaxed to handle mild heterogeneity and small
deviations in ambient temperature (as explained at the end of
Section III-A), but we keep them to simplify the exposition
of the main results. The last two assumptions are required
for our current formulation; we will explore ways to make
the setting more realistic in future work.

The system of interest is constructed as follows. Let the
number of TCLs in the system be NTCL and the temperature
of ith TCL at time t be Ti(t) whose domain is [Tlow, Tup].
We assume that temperature evolution of each TCL follows
specific discrete-time dynamics, which depend on whether it
is turned on or off. We write the on/off mode of ith TCL
as µi(t). Then, we can represent the temperature evolution
dynamics using the affine model developed in [20]{
Ti(t+ 1) = aTi(t) + (1− a)(Ta −Rthptr) if µi(t) = on
Ti(t+ 1) = aTi(t) + (1− a)Ta if µi(t) = off,

(1)
where Ta is the ambient temperature. Parameter a equals
exp(−∆t/(RthCth)), where ∆t is the sampling time, Rth is
the thermal resistance, and Cth is the thermal capacitance.
Parameter ptr represents the thermal energy transfer rate,
which is positive for a cooling TCL and negative for a
heating TCL.



If we denote the temperature dead-band by [T , T ] (T <
Tup, T > Tlow), the following becomes the local temperature
constraint of each TCL

Ti(t) ∈ [T , T ] ∀t ∈ N0, i ∈ [NTCL]. (2)

The power consumption of each TCL in on mode, de-
noted p, equals ptr/ζ, where ζ is the coefficient of per-
formance. The aggregate power consumption Pagg(t) equals∑NTCL
i=1 p1on(µi(t)) and the aggregate power constraint is

P agg ≤
NTCL∑
i=1

p1on(µi(t)) ≤ P agg ∀t ∈ N0, (3)

where P agg, P agg are the upper and lower aggregate power
bounds. Since, for homogeneous TCLs, the aggregate power
is proportional to the number of on-mode TCLs, this con-
straint can be converted to

N on ≤ Non(t) ≤ N on ∀t ∈ N0, (4)

where Non(t) =
∑NTCL
i=1 1on(µi(t)) is the number of on-mode

TCLs, and N on, N on are equal to
⌊
P agg
p

⌋
,
⌈
P agg
p

⌉
.

Problem 1. Given the system described above, synthesize
a controller to choose µi(t) for all i = 1, . . . , NTCL that
guarantees the satisfaction of the constraints (2), (4), while
trying to minimize the performance measure |Pagg(t)−r(t)|,
where r(t) is a reference signal.

III. ABSTRACTION AND AGGREGATION OF A
COLLECTION OF SWITCHED SUBSYSTEMS

We now consider a general setup where the goal is to
coordinate a collection of switched subsystems subject to
safety constraints. We first define an original subsystem with
continuous state, and construct a state-abstracted subsystem
by discretizing the state space. Furthermore, we construct
an aggregate system from the state-abstracted subsystems;
we use the aggregate system in the following sections to
synthesize controllers.

A. System models & abstraction

We start by introducing the transition systems formalism
we use to model discrete-time dynamics [21].

Definition 1. A transition system T is a tuple (X,U,→, Y ),
where X is a set of states, U a set of actions,→⊂ X×U×X
a transition relation, and Y : X → Rn an output function.

We denote (x, u, x′) ∈→ as x u−→ x′ for short.

Definition 2. Given a transition system T = (X,U,→, Y ),
a safe set Xsafe ⊂ X , and input constraints Usafe ⊂ U , a set
Xinv is a controlled invariant with respect to (T,Xsafe, Usafe)
if Xinv ⊂ Xsafe and for all x ∈ Xinv there exists u ∈ Usafe

such that for all x′ with x
u−→ x′, we have x′ ∈ Xinv.

The union of all controlled invariant sets with respect to
(T,Xsafe, Usafe) is called the maximal controlled invariant
set for (T,Xsafe, Usafe).

Definition 3. Given N identical copies of a transition
system T = (X,U,→, Y ), the product transition sys-
tem is given by T×N = (XN , UN ,−−→

×N
, Y ×N ), where

(x1, . . . , xN )
(u1,...,uN )−−−−−−−→
×N

(x′1, . . . , x
′
N ) if and only if xi

ui−→
x′i for all i ∈ [N ]; and Y ×N : (x1, . . . , xN ) 7→
(Y (x1), . . . , Y (xN )).

We employ the following relation between transition sys-
tems that gives a notion of closeness between two systems.
We later use this notion to construct finite representations for
discrete-time dynamics.

Definition 4. Two transition systems T1 = (X1, U,−→
1
, Y1)

and T2 = (X2, U,−→
2
, Y2) are ε-approximately bisimilar if

there exists a relation R ⊂ X1 × X2 such that the sets
R(x1) = {x2 : (x1, x2) ∈ R} and R−1(x2) = {x1 :
(x1, x2) ∈ R} are non-empty for all x1, x2, and such that
for all (x1, x2) ∈ R, all of the following are satisfied.
• ‖Y1(x1)− Y2(x2)‖≤ ε.
• if x1

u−→
1
x′1, there exists x2

u−→
2
x′2 s.t. (x′1, x

′
2) ∈ R.

• if x2
u−→
2
x′2, there exists x1

u−→
1
x′1 s.t. (x′1, x

′
2) ∈ R.

We consider a system which includes a collection of N
homogeneous switched individual subsystems with M differ-
ent modes. Let θi(t) ∈ Θ be the state of the ith subsystem
at time step t, where Θ ⊂ Rd is a compact invariant domain.
The state θi(t) obeys the difference equation

Si : θi(t+ 1) = fµi(t)(θi(t)), µi : N0 → [M ], (5)

where µi(t) is the mode of system i at time t and is
the control input. For TCLs, θi corresponds to Ti and fµ
corresponds to the affine dynamics in (1). For convenience,
we drop the index i in the rest of this subsection.

The discrete-time dynamics in (5) can be equivalently
represented as a transition system

S = (Θ, [M ],−→, IdRd), (6)

where θ
µ−→ θ′ if and only if θ′ = fµ(θ). We want to construct

another transition system, called an abstraction of S, that
is approximately bisimilar to S and that has finitely many
states.

To guarantee the existence of an abstraction that is approx-
imately bisimilar to S, we make the following assumption,
which also holds for the temperature evolution dynamics in
(1).

Assumption 1. For every m ∈ [M ], fm is a local contrac-
tion, that is, there exist constants Lm ∈ [0, 1), cm > 0 such
that

‖fm(θ1)− fm(θ2)‖≤ Lm‖θ1 − θ2‖ (7)

for every θ1, θ2 ∈ Θ with ‖θ1 − θ2‖≤ cm.

For the original system S, we construct an abstraction by
uniformly discretizing Θ. For a given grid size η > 0, we
define an abstraction function γη : Θ→ Θ⊕ B(0, η/2) as

γη(θ) = η ·
⌊
θ

η

⌋
+
η

2
1. (8)



The inverse mapping γinv
η can also be defined for any Ξ ⊂

γη(Θ) as γinv
η (Ξ) := {θ ∈ Θ | ∃ξ ∈ Ξ s.t. γη(θ) = ξ}.

Using this abstraction function γη , we define the state-
abstracted system of S as

Sη = (γη(Θ), [M ],−→
η
, IdRd), (9)

where ξ
µ−→
η
ξ′ if and only if γη(fµ(ξ)) = ξ′. That is, the

transition relation between the states of Sη is constructed by
finding the closest grid point ξ′ that will be reached at the
next time step in a certain mode if the original system starts
from a given grid point ξ.

The following lemma, a discrete-time variant of those in
[22], [23], states a condition for S and Sη to be bisimilar.

Lemma 1. If ε and η are such that (1 − Lm)ε ≥ η/2 for
all m ∈ [M ], then S and Sη are ε−approximately bisimilar.

One important consequence of S and Sη being
ε−approximately bisimilar is that if S and Sη have the initial
conditions θ(0) and ξ(0)

.
= γη(θ(0)), respectively, and if

they are driven by the same input sequence µ for all time,
then their states θ and ξ remain ε close for all time, i.e.,
‖θ(t)− ξ(t)‖≤ ε for all t ∈ N0.

A few remarks on Assumption 1 are in order. As shown
in [22], for any continuous-time incrementally input-to-state
stable system, there is a time discretization that ensures satis-
faction of this assumption. Also note that, by Assumption 1,
for any 0 < ε ≤ minm∈[M ] cm, there is a small enough
η > 0 that satisfies the condition of Lemma 1. Moreover, if
the contraction in each fm is strong enough, it is possible
to handle disturbances (e.g., different ambient temperatures
in the TCL problem) or mild parameter variations in the
dynamics as in [6].

B. Collection of homogeneous subsystems with safety con-
straints

Now, consider a collection of homogeneous subsystems
subject to both local and global constraints similar to (2)
and (4). Suppose that we have N switched subsystems
(which corresponds to NTCL in the TCL problem), each
modeled with an identical transition system S as in (6). Then
the collection can be represented with the product transition
system S×N , together with an abstract version S×Nη . We
denote the state and input of S×Nη by θ := (θ1, . . . , θN ) and
µ := (µ1, . . . , µN ), where each θi, µi is the state and input
of ith subsystem.

We would like to choose the inputs µ(t) in a way that the
state of each subsystem always avoids a prescribed common
unsafe set U (which corresponds to [Tlow, T ) ∪ (T , Tup] in
the TCL problem). That is, defining the safe set of product
system Θsafe := (Θ \ U)N , we want θ(t), to be in Θsafe ⊂
ΘN for all times. In addition, we impose input constraints,
namely mode-counting constraints, that restrict the number
of subsystems in mode m at any given time into an interval
[Nm, Nm] (which corresponds to [N on, N on] in the TCL

problem). That is, the actions of S×N should be limited to

Usafe := {(µ1, . . . , µN ) | Nm ≤
N∑
i=1

1m(µi) ≤ Nm,

∀m ∈ [M ]},
which can be used to capture constraints of the form (4).

Now, we can establish the relationship between controlled
invariant sets of S×N and of S×Nη via the following theorem.

Theorem 1. Assume that S and Sη are ε-approximately
bisimilar. Let Θmax be the maximal controlled invariant
set for (S×N ,Θsafe, Usafe), Θmax−

η (δ1) be the maximal con-
trolled invariant set for (S×Nη , γη(Θsafe 	 B(0, δ1)), Usafe),
and Θmax+

η (δ2) be the maximal controlled invariant set for
(S×Nη , γη(Θsafe ⊕ B(0, δ2)), Usafe). If δ1 > ε + η/2 and
δ2 > ε− η/2, then the following statements hold.

1) γinv
η (Θmax−

η (δ1)) ⊕ B(0, ε − η/2) ⊂ Θmax ⊂
γinv
η (Θmax+

η (δ2))	 B(0, ε− η/2).
2) If the trajectory of S×Nη starting at ξ ∈ Θmax−

η (δ1) stays
inside γη(Θsafe	B(0, δ1)) under an input sequence µ∗ :
N0 → Usafe, then for every θ ∈ ΘN satisfying ‖θ−ξ‖≤
ε, the trajectory of S×N starting at θ stays inside the
safe set Θsafe under the same input sequences µ∗.

The first statement of the theorem says that one can use the
collection of abstracted subsystems to closely approximate
the maximal invariant set of the original collection. The sec-
ond statement says control inputs computed for the collection
S×Nη of abstracted subsystems can be used to guarantee
the safety of the original collection. Hence, we focus on
computing controlled invariant sets for (S×Nη , γη(Θsafe 	
B(0, δ1)), Usafe) where δ1 is bigger than ε+ η/2.

C. Aggregate system

As an alternative representation of the collection S×Nη of
state-abstracted subsystems, we now construct an aggregate
system following [23]. Our goal is to use the aggregate
system to compute (implicitly defined) invariant sets to
guarantee safety for arbitrary controllers, as opposed to the
specific open-loop control approach in [23].

We first represent the state-abstracted system as a graph.
Suppose that γη(Θ) = {ξ̃1, . . . , ξ̃K}, where K is the number
of element of this set. Then, Sη can be represented as a graph
G = (V,E), each node νk ∈ V of which corresponds to a
state ξ̃k, and each edge of which corresponds to potential
transitions in Sη labeled with corresponding set of modes.
That is, (νi, νj) ∈ E if and only if there exists µ ∈ [M ] such
that ξ̃i

µ−→
η
ξ̃j and the edge (νi, νj) is labeled with all such

modes µ.
We define the state of the aggregate system x ∈ NMK

0 to
be the number of subsystems in each node of the graph G
in a specific mode. Here, a subsystem being in a node νk
means, the state of that subsystem has the value ξ̃k. The (m−
1)K+kth element of x, denoted by xm,k, corresponds to the
number of subsystems in node νk with mode m. Also, we
let the input u ∈ NM(M−1)K

0 be the number of subsystems
changing from a mode to another. The element um1,m2,k



of input represents the number of subsystems in node νk
changing the mode from m1 to m2. Then, it is shown in
[23] that x evolves according to the linear dynamics

Γη : x(t+ 1) = Ax(t) +Bu(t), (10)

where A,B are based on the incidence matrices of the graph
G at each mode and they describe how the subsystems move
around the nodes of the graph depending on the chosen
mode. The state space X and the admissible input space
U(x) of this system are obtained as follows.

X =

{
x ∈ NMK

0 :
M∑
m=1

K∑
k=1

xm,k = N

}

U(x) =

{
u ∈ NM(M−1)K

0 : 0 ≤
∑
m2

um1,m2,k ≤ xm1,k

}
(11)

The local and global constraints can also be imposed on
the aggregate system as state constraints

Xsafe := {x ∈ X : ∀m ∈[M ], ∀k ∈ Ĩ, xm,k = 0,

Nm ≤
K∑
k=1

xm,k ≤ Nm

}
,

(12)

where Ĩ := {k | ξ̃k ∈ (γη(Θ) \ γη((Θ \ U) 	 B(0, δ1)))}
denotes the indices of unsafe state values in γη(Θ).

A mapping from the states of the aggregate system Γη to
the states of the state-abstraction system Sη is

Θmap(x) :=

{
ξ ∈ γη(ΘN ) :

M∑
m=1

xm,k =

N∑
i=1

1ξ̃k(ξi)

∀k ∈ [K]},

The next theorem shows that inclusion in a controlled
invariant set is preserved by this mapping.

Theorem 2. For any controlled invariant set X ′ of Γη in
Xsafe, the set Θmap(X ′) is a controlled invariant set with
respect to (S×Nη , γη(Θsafe 	 B(0, δ1)), Usafe).

The aggregate system Γη is a linear system with integer-
valued states and inputs. Its state space, control constraints
and the safe set are all described by linear inequalities
(11),(12). Crucially, the dimension of the state Γη does not
depend on the number of subsystems. If we can compute an
invariant set for this aggregate system, then by Theorems 1
and 2, we can use this invariant set to compute a safe
policy for S×N . However, there are two challenges: (i) the
integrality constraints, (ii) even if we relax the integrality
constraints, the dimension of Γη is still out of reach of the
existing invariant set computation tools for linear systems
[4], [6]. In the next section, we show how we can utilize the
structure in (10) to compute invariant sets for this system.

IV. CONTROLLED INVARIANT SET GENERATION USING
CYCLES

In this section, we introduce a method which constructs a
controlled invariant set for the aggregate system using cycles

of the graph G. The invariant set generated by this method
includes states that have a periodic input sequence leading
to periodic trajectories inside Xsafe.

Suppose that C is a cycle in the graph G whose transitions
between nodes are labeled with their corresponding modes.
We denote the nodes of C by (ν̃C,1, . . . , ν̃C,|C|) and its labels
by µ̃C = (µ̃C,1, . . . , µ̃C,|C|) ∈ [M ]|C|; if the state of Sη is
in ν̃C,l and the input is chosen to be µ̃C,l, the state moves
to the next node ν̃C,l+1 (or, ν̃C,1 if l = |C|).

The first step of constructing an invariant set is to choose
some labeled cycles C1, . . . , Cn from graph G which are
composed of only the nodes corresponding to the safe states;
every node ν̃Cj ,l of each cycle Cj satisfies ν̃Cj ,l 6= νk for
all k ∈ Ĩ. Hence, every subsystem circulating around one of
these cycles always satisfies the safe constraint on the state.

Now, we show how to assign all the subsystems over
the nodes of C1, . . . , Cn at initial time step in a way that
the mode-counting constraints would never be violated if
every subsystem circulates around its assigned cycle from
that initial assignment. Let lj be the length of cycle Cj
and let an initial assignment to the cycle Cj be a vector
βj = (βj(1), . . . , βj(lj)), where βj(l) represents the num-
ber of subsystems assigned to ν̃Cj ,l. Since each subsystem
should be assigned to one and only one cycle at anytime,∑n
j=1

∑lj
l=1 βj(l) = N should be satisfied. Also, under

the assumption that every subsystem circulates around its
assigned cycle, the number of subsystems in mode m after
q steps is given by

n∑
j=1

∑
l s.t.

µ̃Cj,l
=m

βj((−q + l mod lj) + 1). (13)

Note that, due to periodicity, after lcm(l1, . . . , ln) steps, all
subsystems will come to their initial assignments. Therefore,
the mode-counting constraints {Nm, Nm}m∈[M ] hold if the
number of subsystems in mode m is between Nm and Nm

for all q = 1, . . . , lcm(l1, . . . , ln), which is equivalent to the
following condition

Nm ≤
n∑
j=1

∑
l s.t.

µ̃Cj,l
=m

βj((−q + l mod lj) + 1) ≤ Nm

∀q ∈ [lcm(l1, . . . , ln)], ∀m ∈ [M ].
(14)

Concepts related to cycles are illustrated in Fig. 2.
Then, we define the set of “good” aggregate cycle as-

signments, which satisfy the conditions described above, as
follows

Ω := {(β1, . . . , βn) ∈ N
∑

j lj
0 :

n∑
j=1

lj∑
l=1

βj(l) = N and (14) holds

}
.

(15)

Also, we define the mapping from the space of assign-
ments of a cycle into the state space of Γη , which computes
the number of subsystems in each mode at each node of G
corresponding to a cycle assignment vector. For a cycle C



Fig. 2: Cycle C1 has nodes (ν̃C1,1, ν̃C1,2, ν̃C1,3) and labels µ̃C1 =
(1, 2, 1) and cycle C2 has nodes (ν̃C2,1, ν̃C2,2) and labels µ̃C2 =
(1, 2). On the left, the cycle assignments (shown inside the nodes)
are β1 = (1, 2, 3) and β2 = (4, 5). At step q = 1 (left), the 1-mode
count, given by Eq. (13), is 1+3+4 = 8 and the 2-mode count is
2+5. After applying (µ̃C1 , µ̃C2), at step q = 2 (right), the 1-mode
and 2-mode counts are 10 and 5, respectively. The mode-counting
conditions on the assignments β1 and β2 should be checked for
lcm(3, 2) = 6 steps.

with labels µ̃C , this linear mapping ΦC,µ̃C
: Nl0 → NMK

0 is
defined as

(ΦC,µ̃C
(β))m,k =

∑
l:ν̃C,l=νk
µ̃C,l=m

β(l), (16)

where (ΦC,µ̃C
(β))m,k, the (m − 1)K + kth element of

ΦC,µ̃C
(β), corresponds to the number of subsystems in mode

m with state at node νk assigned to cycle C.
Let Xcyc be the set obtained by applying the above map-

ping to Ω with respect to the cycles C1, . . . , Cn, specifically,

Xcyc = {x ∈ NMK
0 : ∃(β1, . . . , βn) ∈ Ω,

s.t. x =
n∑
j=1

ΦCj ,µ̃Cj
(βj)

}
.

(17)

Observe that Xcyc corresponds to a set of states of Γη , every
element of which has a periodic input sequence which rotates
all the subsystems around C1, . . . , Cn they are assigned
to, while ensuring the mode-counting constraint indefinitely.
From this fact, we obtain the following theorem.

Theorem 3. Xcyc is a controlled invariant set of the system
Γη under the constraint set Xsafe.

An explicit representation of Xcyc can be obtained by
projection of the integral-valued set defined by linear equa-
tions and inequalities in the variable (x, β) ∈ N

∑n
i=1 li+MK

0

to the state space X ⊂ NMK
0 . However, projection is

intractable [24] when the dimension of the state and the cycle
assignments are large. On the other hand, for the purposes
of checking whether a state x is in Xcyc or computing a u ∈
U(x) that guarantees invariance, we do not need an explicit
representation; we can just use the linear representation in
(x, β)-space, which renders both operations integer linear
programs. Hence, we work with the implicit representation
of Xcyc and incorporate it into the safe control algorithm
introduced in the next section. Before we move on, the
relationship between the main results regarding invariance
are summarized in Fig. 3.

Inv set
of S×N

Inv set
of S×N

η

Inv set of Γη
Implicit Inv

set Xcyc

Thm 1

Thm 2

Thm 3

Fig. 3: Relation between invariant sets of the systems.

V. INVARIANT-SET-DRIVEN MPC

In this section, we propose an MPC-based control algo-
rithm, referred to as Invariant-set-driven MPC. The algorithm
keeps the state of the aggregate system inside its maximal
controlled invariant set using Xcyc as a terminal condition.
This algorithm solves the following program at every time
step t ∈ N0 for a given horizon length h

min
h∑
τ=0

c(xt+τ |t)

s.t. xt+τ+1|t = Axt+τ |t +But+τ |t ∀τ ∈ [h− 1]0 (18a)

ut+τ |t ∈ U(xt+τ |t) ∀τ ∈ [h− 1]0 (18b)

xt|t = x(t) (18c)

xt+h|t =
n∑
j=1

ΦCj ,µ̃Cj
(βj) (18d)

(β1, . . . , βn) ∈ Ω, (18e)

whose variables are xt+τ |t ∈ NMK
0 (∀τ ∈ [h]0), ut+τ |t ∈

NM(M−1)K
0 (∀τ ∈ [h − 1]0), (β1, . . . , βn) ∈ N

∑
j lj

0 , and
c is the cost function. We select the optimal ut|t as the
input u(t) which drives the state to x(t + 1) = xt+1|t. The
formulation forces the last state in the horizon xt+h|t to
be included in the controlled invariant set Xcyc. Terminal
constraints that guarantee recursive feasibility are common
in the MPC literature [25]. Different from explicitly-defined
invariant sets, we exploit the fact that every element of Xcyc
is mapped from an element of Ω (from (17)) and use this
implicit representation in cycle assignments space. Use of
the terminal constraint leads to the following result.

Theorem 4. Suppose that the initial state x(0) belongs to
Xcyc. Then, the program (18) has a feasible solution at any
time step t ∈ N0. In addition, the trajectory x(t) generated
by above algorithm always belongs to the maximal controlled
invariant set Xmax of the aggregate dynamics Γη for every
t ∈ N0.

The performance of the algorithm improves with more
cycles C1, . . . , Cn and/or larger horizons h. However, this
also increases the number of variables and inequalities, which
increases the online computational burden. This trade-off
needs to be taken into account when these choices are made.

VI. SIMULATION RESULTS

In this section, we compare the performance of the
Invariant-set-driven MPC to several benchmark algorithms.
We first describe the benchmark algorithms. Then, we run



several numerical experiments that show how the bench-
marks can fail while the Invariant-set-driven MPC is able
to ensure safety.

In all experiments, we use a cost function of the form

c(x) =

∣∣∣∣∣
K∑
k=1

pxon,k − r

∣∣∣∣∣ = |Pagg − r|, (19)

which penalizes the difference between the aggregate power
consumption and a reference r. We control a collection of
air conditioners and set Ta = 32°C, Cth = 1.8 kWh/°C,
Rth = 1.8 °C/kW; p = 6.4 kW, ptr = 16 kW, [Tlow, Tup] =
[3.2, 32] °C, [T , T ] = [22, 23] °C, U = [3.2, 22)∪(23, 32] °C,
NTCL = 10000, [P agg, P agg] = [16, 25.6] MW, N on = 4000,
N on = 2500, N0 = N , N0 = 0, N1 = N on, and N1 = N on.
The TCL parameters are informed by [7].

A. Benchmark algorithms

1) Benchmark 1: We use a basic MPC algorithm and
require every state in horizon to be within Xsafe

min
h∑
τ=0

∣∣∣∣∣
K∑
k=1

px
t+τ |t
on,k − r(t+ τ)

∣∣∣∣∣
s.t. (18a), (18b), (18c) hold

xt+τ |t ∈ Xsafe ∀τ ∈ [h]0

2) Benchmark 2: We truncate the reference signal as
shown by the dotted yellow line in Fig. 1 and use MPC
to track the truncated signal r̂(t), computed as

r̂(t) =


r(t) if P agg ≤ r(t) ≤ P agg

P agg if r(t) < P agg

P agg if r(t) > P agg.

The MPC problem is

min
h∑
τ=0

∣∣∣∣∣
K∑
k=1

px
t+τ |t
on,k − r̂(t+ τ)

∣∣∣∣∣
s.t. (18a), (18b), (18c) hold,

x
t+τ |t
m,k = 0 ∀m ∈ {on, off}, k ∈ Ĩ, τ ∈ [h]0. (20)

where (20) imposes the local temperature constraints on
TCLs.

3) Benchmark 3: Again using MPC, this algorithm re-
quires the state at next time step to belong to the invariant
set Xcyc

min
h∑
τ=0

∣∣∣∣∣
K∑
k=1

px
t+τ |t
on,k − r(t+ τ)

∣∣∣∣∣
s.t. (18a), (18b), (18c) hold

xt+1|t =
n∑
j=1

ΦCj ,µ̃Cj
(βj)

(β1, . . . , βn) ∈ Ω
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Fig. 4: Benchmark 1 can fail because the approach does not
guarantee recursive feasibility (left), while invariant-set-driven MPC
is recursively feasible and ensures safety (right).

B. Numerical Experiments

1) Experiment 1: In this experiment, we demonstrate a
case where Benchmark 1 fails but Invariant-set-driven MPC
ensures constraint satisfaction though tracking performance
suffers. We choose a constant reference signal that is safe
(i.e., within the network-safe power bounds) but untrackable
because every TCL is initialized near the boundary of its
dead-band. For Invariant-set-driven MPC, the set of chosen
cycles include every elementary cycle. We set ∆t = 60 s,
ε = 0.3, η = 0.003, δ1 = 3.003, and h = 1.

Fig. 4 shows the tracking performance of both controllers.
Benchmark 1 (left) stops when the trajectory goes outside of
the maximal invariant set because the program does not have
feasible solution. This occurs when a large number of off-
mode TCLs are next to the upper bounds of their temperature
dead-bands, and they are forced to be turned on to stay
inside the dead-band. In contrast, Invariant-set-driven MPC
(right) turns on the TCLs in advance to prevent too many
TCLs being simultaneously turned on at the boundary of the
dead-band, which makes the state stay inside the maximal
controlled invariant set.

2) Experiment 2: In this experiment, we demonstrate
the drawbacks of Benchmarks 2 and 3 and the superior
performance of Invariant-set-driven MPC by using an unsafe
reference signal. Parameters and selected cycles for Bench-
mark 3 and Invariant-set-driven MPC are the same as in the
first experiment, except T = 180.

Fig. 5 shows the tracking performance of each controller
and Table I compares them. The reference signal is safe
at first, but then goes outside of the network-safe power
bounds. Benchmark 2 (left), which uses the truncated ref-
erence signal, violates the power bounds; it is unable to
track the truncated reference signal and, in trying to, TCLs
synchronize and the aggregate power starts to oscillate. Both
Benchmark 3 and Invariant-set-driven MPC stay within the
power bounds but Benchmark 3 has a larger tracking error
since it is more conservative; notice the tracking errors even
during the first part of the simulation when the reference
signal is safe and trackable. Therefore, we can conclude that
Invariant-set-driven MPC has the best overall performance
in that it has lower tracking error than Benchmark 3 and
ensures all constraints are satisfied unlike Benchmark 2. All
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Fig. 5: Tracking of unsafe reference signal. BM 2 violates network-safe power bounds. BM 3 is conservative compared to Invset MPC.

TABLE I: Performance comparison

BM 2 BM 3 Invset MPC

Tracking Error 4.56× 103 5.75× 103 5.66× 103

Constraint Violations Yes None None
Average Time (s) 0.44 4.48 2.62

computation times are shorter than ∆t so all methods could
be employed in practice.

VII. CONCLUSIONS

This paper proposed a method to construct controlled
invariant sets by finding states that have a periodic trajectory
inside a safe set. It also proposed an MPC-based safe control
algorithm for systems composed of homogeneous switched
subsystems with local and global constraints. The control
algorithm uses an implicit representation of the invariant set,
which mitigates the computational burden. It also requires the
state to be within the invariant set only in the last step of the
MPC horizon, which is shown to be less conservative than a
benchmark approach that requires the state to always remain
within the invariant set. The approach is further benchmarked
against two naive strategies that are shown to break down
under certain reference signals. In contrast, the proposed
approach always satisfies the safety constraints.

Future work will explore way to relax some of the as-
sumptions used to derive the results in an effort to make the
approach more applicable to the TCL power tracking prob-
lem that motivated this work. In particular, we will explore
ways of handling time-varying ambient temperature, power
bounds, and temperature setpoints, along with compressor
lock-out constraints.
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APPENDIX

Proofs for Section III:

Proof of Lemma 1. Follows by from [23] where αm(x) =
Lmx acts as the class K-functions in their proof for a fixed
sampling time.

To prove the theorems in section III, the following lemmas
are used.

Lemma 2. Abstraction function has the following properties:
P1. For any set Θ′ ⊂ Θ:

γη(Θ′) ⊂ (Θ′ ⊕ B(0, η/2)) (21)
Θ′ ⊂ γη(Θ′ ⊕ B(0, η/2)) (22)

P2. If xd ∈ γη(Θ) and xd /∈ γη(X) for a set X ⊂ Θ, then
‖xd − x‖≥ η/2 for any x ∈ X .

P3. Let γinv
η be the inverse mapping of γη defined for

any Ξ ⊂ γη(Θ) as γinv
η (Ξ) := {θ ∈ Θ | ∃ξ ∈

Ξ s.t. γη(θ) = ξ}, then

γinv
η (Ξ) ⊂ Ξ⊕ B(0, η/2). (23)

Lemma 3. If ξ ∈ γη(ΘN ) and δ > ε + η/2, γη(Θsafe 	
B(0, δ)) is a subset of Θsafe 	 B(0, ε).

Proof. Suppose ξ is an element of γη(Θsafe 	 B(0, δ)) and
δ > ε+ η/2. Then, by Lemma2, P1, we have

∀u′ ∈ UN , ‖ξ − u′‖≥ δ − η

2
> ε, (24)

Thus, we can obtain the following

ξ ∈ (Θ \ (U ⊕ B(0, ε)))N ⊂ Θsafe 	 B(0, ε).

Therefore, γη(Θsafe 	B(0, δ)) is a subset of Θsafe 	B(0, ε).

Proof of Theorem 1. The proof is separated into two parts
which the first part shows γinv

η (Θmax−
η (δ1))⊕B(0, ε−η/2) ⊂

Θmax and the second statement, and the second part shows
Θmax ⊂ γinv

η (Θmax+
η (δ2))	 B(0, ε− η/2).

1) Let δ1 be larger than ε − η/2 and ξ be an element of
Θmax−
η (δ1). Then, an aggregated input sequences µtr(t)

and an aggregated trajectories ξtr(t) exist which satisfy

ξtr(t)
µtr(t)−−−→
η,×N

ξtr(t+ 1) ∀t ∈ N0

ξtr(t) ∈ γη(Θsafe 	 B(0, δ1)) ∀t ∈ N0 (25)
µtr(t) ∈ Usafe ∀t ∈ N0 (26)
ξ = ξtr(0).

For any element θ which satisfies ‖θ−ξ‖≤ ε, let θtr(t)
be the aggregated trajectories started from θ under the
aggregated input sequences µtr(t) in S×N (i.e. θtr(0) =

θ, θtr(t)
µtr(t)−−−→
×N

θtr(t + 1)). By the assumption that S

and Sη is ε-bisimilar, ‖ξtr(t) − θtr(t)‖ is smaller than
or equal to ε. Moreover, from Lemma 3 and (25), we
have ξtr(t) ∈ Θsafe 	 B(0, ε). Therefore, the following
statement holds,

θtr(t) ∈ (Θsafe 	 B(0, ε))⊕ B(0, ε) = Θsafe. (27)

which validates the second statement.
In addition, we can conclude that θ is included in Θmax

from (26), (27). Since this holds for any element ξ in
Θmax−
η (δ1) and any θ satisfying ‖θ − ξ‖≤ ε, we can

conclude that every element θ in Θmax−
η (δ1) ⊕ B(0, ε)

also belongs to Θmax. Therefore, Θmax−
η (δ1)⊕B(0, ε) ⊂

Θmax. Using the property of γinv
η in (23), the following

is obtained,

γinv
η (Θmax−

η (β))⊕ B(0, ε− η/2) ⊂ Θmax−
η (β)⊕ B(0, ε)

⊂ Θmax
(28)

2) For any element θ of Θmax, an aggregated input se-
quences µtr(t) and an aggregated trajectories θtr(t) exist
which satisfy the following.

θtr(t)
µtr(t)−−−→
×N

θtr(t+ 1) ∀t ∈ N0

θtr(t) ∈ Θsafe ∀t ∈ N0 (29)
µtr(t) ∈ Usafe ∀t ∈ N0 (30)
θ = θtr(0).

For any ξ ∈ γη(ΘN ) satisfying ‖ξ − θ‖≤ ε, let ξtr(t)
be the aggregated trajectories started from ξ under the
aggregated input sequences µtr(t) in S×Nη (i.e. ξ(0) =

ξ, ξtr(t)
µtr(t)−−−→
η,×N

ξtr(t + 1)). By the assumption of ε-

bisimilarity between S and Sη , norm ‖θtr(t) − ξtr(t)‖
is equal to or smaller than ε. Using this and (29), the
following can be shown.

ξtr(t) ∈ Θsafe ⊕ B(0, ε). (31)

From (22), (31), we can show the following inclusion
relationship for every δ2 ≥ ε− η/2.

ξtr(t) ∈ γη((Θsafe ⊕ B(0, ε))⊕ B(0, η/2))

⊂ γη(Θsafe ⊕ B(0, δ2)).
(32)

From (30), (32), we can conclude that ξ is included in
Θmax+
η (δ2). Since this holds for any element θ in Θmax,

and any ξ ∈ γη(ΘN ) satisfying ‖ξ − θ‖≤ ε, we can
conclude that every element ξ in (Θmax ⊕ B(0, ε)) ∩
γη(ΘN ) also belongs to Θmax+

η (δ2).
For any element θ+ of Θmax ⊕ B(0, ε − η/2), ξ′ =
γη(θ+) is an element of γη(Θmax⊕B(0, ε−η/2)). From
(21), the following is obtained.

ξ′ ∈ γη(Θmax⊕B(0, ε−η/2)) ⊂ Θmax⊕B(0, ε). (33)

By applying first statement of the theorem, we have

ξ′ ∈ Θmax+
η (δ2),

which also means that θ+ belongs to γinv
η (Θmax+

η (δ2)).
Therefore, Θmax ⊕ B(0, ε − η/2) is a subset of
γinv
η (Θmax+

η (δ2)) and therefore,

Θmax ⊂ γinv
η (Θmax+

η (δ2))	 B(0, ε− η/2)

By 1) and 2), the statement holds.



Proof of Theorem 2:

Proof. Suppose ξ = (ξ1, . . . , ξn) is an element of Θmap(X ′).
Then, x ∈ X ′ exists which satisfies ξ = Θmap(x). Since x
belongs to Xsafe, the following is obtained from (12)

N∑
i=1

1ξ̃k(ξi) =
M∑
m=1

xm,k = 0 ∀k ∈ Ĩ.

Thus, ξ belongs to γη(Θsafe 	 B(0, δ1)).
By the property of controlled invariant set, u ∈ U(x)

and x′ exist which satisfy x′ = Ax + Bu ∈ X ′. Let the
policy µ = (µ1, . . . , µN ) be consistent with the modes of
the individual subsystem’s transition induced by u, and ξ
moves to ξ′ under µ (i.e. ξ

µ−−−→
η,×N

ξ′). Then, µ satisfies

(10) and ξ′ is equal to Θmap(X ′). Thus, ξ′ is an element of
Θmap(X ′).

Therefore, Θmap(X ′) is a controlled invariant set of Sη .

Proofs for Section IV :

Let Lq(β′) be q-step shifted cycle assignment from β′ =
(β′1, . . . , β

′
l) which is defined as follows.

Lj+lq′(β
′) = (β′j+1, . . . , β

′
l, β
′
1, . . . , β

′
j) ∀j ∈ [l], q′ ∈ N0,

Lemma 4. Suppose that β = (β1, . . . , βn) ∈ N
∑

j lj
0

is an element of Ω. For any integer q, Lq(β) =
(Lq(β1), . . . , Lq(βn)) also belongs to Ω.

Proof of Lemma 4. For any integer s,
∑lj
l=1 Ls(βj)l =∑lj

l=1 βjl holds. Therefore, the following is easily obtained.

n∑
j=1

lj∑
l=1

Ls(βj)l =
n∑
j=1

li∑
l=1

βj(l) = N (34)

In addition, the following inequalities hold.

n∑
j=1

∑
l s.t.

µ̃Cj,l
=m

Ls(βj)(−q+l mod lj)+1

=
n∑
j=1

∑
l s.t.

µ̃Cj,l
=m

βj((−q + l − s mod lj) + 1)

(35)

Using (14) to (35), the following is obtained

Nm ≤
n∑
j=1

∑
l s.t.

µ̃Cj,l
=m

Ls(βj)(−q+l mod lj)+1 ≤ Nm

∀q ∈ [lcm(l1, . . . , ln)], ∀m ∈ [M ],

(36)

From (34) and (36), Lk(β) satisfies all the conditions in
the definition (15), and belongs to Ω.

Proof of Theorem 3. We first show that Xcyc is a subset
of Xsafe. For any element x of Xcyc, there exists β =
(β1, . . . , βn) ∈ Ω which satisfies x =

∑n
j=1 ΦCj ,µ̃j (βj).

From the definition of Ω in (15) and the mapping function
(16), the following is obtained.

K∑
k=1

xm,k =
K∑
k=1

n∑
j=1

ΦCj ,µ̃j
(βj)m,k

=
K∑
k=1

n∑
j=1

∑
(l:ν̃Cj,l

=νi,µ̃jl=m)

βj(l)

=
n∑
j=1

 K∑
i=1

∑
(l:ν̃Cj,l

=νi,µ̃jl=m)

βj(l)


=

n∑
j=1

∑
l:µ̃jl=m

βj(l)

Since βj satisfy the inequalities in (14), we obtain the
following.

Nm ≤
K∑
k=1

xk,m ≤ Nm ∀m ∈ [M ] (37)

Moreover, the following holds by using ν̃Cj ,l 6= νk for all
k ∈ Ĩ

xm,k =
n∑
j=1

∑
(l:ν̃Cj,l

=νk,µ̃jl=m)

βj(l) = 0 ∀k ∈ Ĩ. (38)

By (37) and (38), x is an element of Xsafe. Therefore, Xcyc
is a subset of Xsafe.

Next, we show the recurrence property of Xcyc. Let β′

be the one-step shifted cycle assignment from β (i.e. β′ =
(L1(β1), . . . , L1(βn))). By the Lemma 4, it is obvious that
β′ is also an element of Ω, and thus x′ =

∑
j ΦCj ,µ̃j

(β′j)
belongs to Xcyc. Since transition from x to x′ can be
conducted by one-step cycle shifting, it is obvious that there
is an input u ∈ U(x) driving x to x′ (i.e. x′ = Ax + Bu)
which shows the recurrence property of Xcyc.

Therefore, Xcyc is a controlled invariant set in Xsafe.

Proofs for section V:

Proof of Theorem 4. It can be shown by principle of math-
ematical induction.

1) When t = 0,
Since Xcyc is a controlled invariant set, there exist a
sequence of states xτ ∈ Xcyc (τ ∈ {0, . . . , h}), inputs
uτ ∈ U(xτ ) (τ ∈ {0, . . . , h−1}), and (β′1, . . . , β

′
n) ∈ Ω

which satisfy

x0 = x(0)

xτ+1 = Axτ +Buτ ∀τ ∈ {0, . . . , h− 1}
xτ ∈ Xcyc ∀τ ∈ {0, . . . , h}

xh =

n∑
j=1

ΦCj ,µ̃j (β′j).

If we substitute xτ for xτ |0 , uτ for uτ |0, and β′j for βj ,
all the constraints of the program hold. Therefore, this
program has a feasible solution, and an optimal solution
xτ |0 = x

τ |0
∗ , uτ |0 = u

τ |0
∗ , and βj = βj∗ exist.



Now assume that there exists τ ′ ∈ {0, . . . , h} such that
x
τ ′|0
∗ does not belong to Xmax. Since every state outside

of Xmax cannot be driven into Xmax by any input, xτ |0∗
for any τ ∈ {τ ′, . . . , h} does not belong to Xmax.
However, from x

h|0
∗ =

∑n
j=1 ΦCj ,µ̃j

(β′j∗) where
(β1∗, . . . , βn∗) belongs to Ω, xh|0∗ is an element of Xcyc

. Since Xcyc is a subset of Xmax, xh|0∗ belongs to Xmax

which is a contradiction.
By the contradiction, xτ |0∗ belongs to Xmax for any τ ∈
{0, . . . , h}. Thus, the state at the next time step x(1) =

x
1|0
∗ belongs to Xmax. Therefore, the statement has been

proved for the case of t = 0.
2) Assume that the statement holds when t = t′ ∈ N0,

which is equivalent to the statement that the program at
t = t′ is feasible and x(t′ + 1) belongs to Xmax.
Let the optimal solution obtained at t = t′ be xt

′+τ |t′
∗ ,

u
t′+τ |t′
∗ . Since x

t′+h|t′
∗ is an element of Xcyc, there

exists ut
′+h ∈ U(x

t′+h|t′
∗ ) such that xt

′+h+1 =

Ax
t′+h|t′
∗ + But

′+h belongs to Xcyc. If we substitute
the variables of the program at t = t′ + 1 as follows,

xt
′+τ+1|t′+1 = x

t′+τ+1|t′
∗ τ ∈ {0, . . . , h− 1}

xt
′+h+1|t′+1 = xt

′+h+1

ut
′+τ+1|t′+1 = x

t′+τ+1|t′
∗ τ ∈ {0, . . . , h− 2}

ut
′+h|t′+1 = ut

′+h,

the constraints of the program are satisfied. Therefore,
the program at t = t′ + 1 is feasible.
Moreover, we can prove that x(t′+2) = x

t′+2|t′+1
∗ from

this program at t = t′ + 1 belongs to Xmax by taking
the similar procedure as 1).
Therefore, the statement holds at t = t′ + 1.

By 1) and 2), the statement is proven.
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