Results for the electrostatic potential of a uniformly charged hemispherical surface
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We study the form of the electrostatic potential created by a hemispherical surface with uniform
surface charge density. We specifically consider a ”northern” hemispherical surface and try to obtain
analytical expressions for the electrostatic potential at an arbitrary point in space. Some compact
analytical results are obtained for special cases and an interesting mathematical integral formula
is derived as a by-product of the approach. The results suggest that a general expression for the
electrostatic potential at an arbitrary point in space, if possible, would be very hard to obtain in

compact analytical form.
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The calculation of the electrostatic potential created by
a charged body! leads to a better understanding of how
charged systems interact with each other? and how much
energy they can store®*. This information is very impor-
tant to gain insight into the electrostatic properties®® or
opto-electronic features of many materials® 2. A com-
pact analytic expression for the electrostatic potential
created by a uniformly charged hemispherical surface at
some arbitrary point in three-dimensional (3D) space is
not readily available in the literature'®!4. Absence of
spherical symmetry is a major factor that makes this cal-
culation quite challenging. Nevertheless, making use of
the existence of axial symmetry in the system may serve
as a good starting point to reconsider this problem.

The model under consideration is a uniformly charged
"northern” hemispherical surface. The hemispherical
surface has a radius, R and contains a total arbitrary
charge, @ that is uniformly distributed on the surface.
The uniform surface charge density of the system is:

7= ZWQRQ ' )

The system of coordinates is chosen in such a way that
the center of the "northern” hemispherical surface is the
origin of a Cartesian system of coordinates, the z axis is
oriented towards the "northern” pole and represents the
axis of symmetry while the "equatorial” plane lies on the
x—y plane (z = 0 plane). A view of the system projected
on the y = 0 plane is shown in Fig. 1. For this choice
of the coordinative system, the body has axial symme-
try about the z axis. Therefore, based on considerations
of symmetry, the electrostatic potential created at some
arbitrary point in 3D space, V (z,y, z) = V(7) can be con-
veniently expressed as V(p, z) in cylindrical coordinates
where p?> = 22 + y? or V(r,0) in spherical coordinates
where 72 = 22 + 9%+ 22 and 6 is the polar angle (relative
to z axis). We believe that it should be straightforward
for a reader to understand the notation used for various
expressions in different systems of coordinates without
much elaborations by looking at the context.
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FIG. 1: Schematic view (projected on the y = 0 plane) of a
”northern” hemispherical surface. The hemispherical surface
has a radius, R and is uniformly charged with charge, @ re-
sulting in a constant surface charge density, 0 = Q/(27 R?).

The electrostatic potential created by a uniformly
charged "northern” hemispherical surface at some arbi-
trary location, ¥ = (z,y, z) can be written as:

V(F):ka/ dS’ ——- IF’I , (2)
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where k is Coulomb’s electric constant, o is the surface
charge density from Eq.(1), dS’ = R?>df’ sinf’d¢’ is an
elementary surface (0’ is the polar angle, while ¢’ is the
azimuthal angle) and 7/ = (z’,y’, 2’) is the position of
the elementary charge on the ”"northern” hemispherical
surface (with the constraint that »’ = |F/| = R). For
this choice of the system of coordinates, the domain oc-
cupied by the "northern” hemispherical surface, namely



the integration region in Eq.(2), is:

;0g¢’<27r}. (3)
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FIG. 2: Plot of V(0,0, z) in units of kQ/R as a function of
dimensionless distance, z/R (solid line). The result is com-
pared to the Coulomb potential counterpart, k Q/|z| (dotted
line).

The reason why the integral above can calculated in a
straightforward manner by introducing a new variable,

J

V(z=R,0,0) =

Efforts to calculate the above integral by using standard
integration techniques did not succeed to generate any
compact analytical result and we ended up with very
complicated terms when reducing the expression to a
one-variable integral. We tried to calculate the integral
by using symbolic computation software'® but also this
effort was not succesful.

On the other hand, symmetry considerations suggest
that the result for the potential should be simple not only

Axial symmetry helps the calculation of the potential
along the axis of symmetry, ¥ = (0,0,z). For such a
case, one writes:

1
VZ2Z+RZ—2zRcosO

(

t = 22+ R?2 — 22 R cosf’ hinges on the fact that the
scalar product (dot product) of the two position vectors
7=(0,0,2) and ¥/ written as 7 7' = z z’ simplifies in a
considerable manner for this special case. For the given
system of coordinates, due to the hemispherical shape,
2" = Rcosf’, thus 7+ 7' = 22" = 2 R cos’. The final
result obtained is:

V(0,0,2) = % 2 (V2+m-:-R). ()

A plot of V(0,0, 2) is shown in Fig. 2.

The value of the potential at the center (z = 0), at the
"northern” pole (z = R) or at any point of interest along
the z axis of the "northern” hemispherical surface (for
instance, z = —R) can be calculated from Eq.(5). The
following results apply:

V(0,0,z=0)=% ; V(Q&zzR)zx@%, (6)
and
V(0,02 = —R) = (2= v2) %. (7)

The next step to attemp is the calculation of the potential
at some point on the "equatorial” line, for example, at
7= (x = R,0,0). By using the same approach as for the
calculation of V(0,0, z), one ends up with the following
quantity:

w/2 27
LQ/ de'sma’/ do’ ! . 8)
V2@2nr) Ry 0 V1 —sinf’ cos @’

for a point on the ”equatorial” line, but also for any ar-
bitrary point on the ”equatorial” plane (z = 0). Let us
consider an arbitrary point, (z,y, 2z = 0) on the "equato-
rial” plane. The potential at this point may be written as

V(p,z = 0) and depends only on p = /22 + y? (which

is the same as r = y/22 + y2 + 22 for z = 0).

Let us now choose a new system of coordinates,
(X,Y,Z) with origin at the center as shown in Fig. 3
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FIG. 3: Schematic view of the new system of coordinates,
(X,Y, Z) so that the Z axis is along the vector, g = (z,y)
while the Y axis points towards the ”northern” pole. The X
axis (not shown) is perpendicular to the Y — Z plane pointing
in the direction towards the reader.
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The same technique as the one used for the calculation
of V(0,0,2) leads to a final result for V(p,z = 0) that
reads:
EQ 1

V(p,z=0)=fQ2—p(p+R—lp—RI)- (10)
By further scrutinizing the expression in Eq.(10) one no-
tices that: V(p > R,z =0) =k Q/p while V(p < R,z =
0) = kQ/R. This means that the electrostatic potential
created by a uniformly charged hemispherical surface in
its "equatorial” plane is given by the same expression as
the one that applies to a uniformly charged spherical sur-
face with radius, R containing the same total charge, Q.
Obviously, on the "equatorial” line we have:

V(p:R,z:O):@. (11)
R

Let us return to to the expression in Eq.(8). Although
we were unable to calculate the integral in Eq.(8) using
standard integration techniques, a comparison of Eq.(11)
to Eq.(8) suggests that:

=V2(27) .
(12)
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so that the polar axis, Z is taken along the vector,
7 = (z,y), the Y axis is oriented to point towards the
”northern” pole while the X axis is perpendicular to both
Y and Z as required (pointing towards the reader). We
start from the expression in Eq.(2) where 7 = p. It re-
quires only a little bit of visualization to determine how
to express the domain of space occupied by the hemi-
spherical surface in the new system of coordinates de-
picted in Fig. 3 by noticing that the two relevant angles
are such that 6’ € [0, 7] and ¢’ € [0,7]. The conclusion
is that one can write:

1

This result was checked numerically'®. Efforts to obtain a
compact general expression for the electrostatic potential
at an arbitrary point in space by using approaches similar
to the ones described above do not appear to lead to
feasible integrals.

A general scheme for spherical coordinates that relies
on the transformation of the Coulomb term, 1/|7 — 7|
appearing in Eq.(2) as a function of Legendre polynomi-
als may also be attempted. In physical applications of

Legendre polynomials'®!'” one routinely can write:
1 = rl<
= —— P(cos 13
|’7_"—’ITI| ;7";—"_1 l( ’Y)’ ( )

where r~ denotes the smaller of r and r’, r~ denotes the
larger of r and r’, Pj(cosvy) are Legendre polynomials
and ~ is the angle included between vectors 7 and 7.
Note that cosy = cosf cosf’ + sinf sinf’ cos(¢p — ¢’).
This approach leads to a an infinite series solution of
the potential written as V (r, ) but the expression is nei-
ther simple, nor compact. This scheme exploits the ax-
ial symmetry of the hemispherical surface in a spherical
system of coordinates and utilises suitable mathematical
transformations'®19 that eventually reduce the integral
problem into a final infinite series. The drawback of the
process is that many mathematical transformations rely



heavily on properties of various types of special functions
such as Legendre polynomials. Furthermore, this infinite
series does not appear that can be expressed in terms of
simple functions and can be calculated only numerically.

To conclude, in this work we studied the nature of
the electrostatic potential created by a "northern” hemi-
spherical surface with uniform surface charge density.
This problem is of interest to a broad audience of re-
searchers and educators working on the field of electro-
statics or electrodynamics?’. We derived exact compact
analytic expressions for the electrostatic potential that
apply to some special cases by using a mathematical ap-
proach that optimally utilizes the axial symmetry of the
body. We also speculated on the nature of general solu-
tion at an arbitrary point in space hinting that it may be
calculated as an infinite series, but not in a compact an-
alytical form. An interesting mathematical integral for-
mula is obtained in the form of the expression in Eq.(12)
as a simple by-product of the approach used.
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