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the integration region in Eq.(2), is:

S ′ :
{

r ′ = R ; 0 ≤ θ ′ ≤ π

2
; 0 ≤ φ ′ < 2π

}

. (3)

Axial symmetry helps the calculation of the potential
along the axis of symmetry, ~r = (0, 0, z). For such a
case, one writes:

V (0, 0, z) = k σ R2

∫ π/2

0

dθ ′ sin θ ′

∫

2π

0

dφ ′
1√

z2 +R2 − 2 z R cos θ ′

. (4)
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FIG. 2: Plot of V (0, 0, z) in units of kQ/R as a function of
dimensionless distance, z/R (solid line). The result is com-
pared to the Coulomb potential counterpart, kQ/|z| (dotted
line).

The reason why the integral above can calculated in a
straightforward manner by introducing a new variable,

t = z2 + R2 − 2 z R cos θ ′ hinges on the fact that the
scalar product (dot product) of the two position vectors
~r = (0, 0, z) and ~r ′ written as ~r · ~r ′ = z z ′ simplifies in a
considerable manner for this special case. For the given
system of coordinates, due to the hemispherical shape,
z ′ = R cos θ ′, thus ~r · ~r ′ = z z ′ = z R cos θ ′. The final
result obtained is:

V (0, 0, z) =
k Q

R

1

z

(

√

z2 +R2 − |z −R|
)

. (5)

A plot of V (0, 0, z) is shown in Fig. 2.
The value of the potential at the center (z = 0), at the

”northern” pole (z = R) or at any point of interest along
the z axis of the ”northern” hemispherical surface (for
instance, z = −R) can be calculated from Eq.(5). The
following results apply:

V (0, 0, z = 0) =
k Q

R
; V (0, 0, z = R) =

√
2
k Q

R
, (6)

and

V (0, 0, z = −R) =
(

2−
√
2
) k Q

R
. (7)

The next step to attemp is the calculation of the potential
at some point on the ”equatorial” line, for example, at
~r = (x = R, 0, 0). By using the same approach as for the
calculation of V (0, 0, z), one ends up with the following
quantity:

V (x = R, 0, 0) =
1√

2 (2π)

k Q

R

∫ π/2

0

dθ ′ sin θ ′

∫

2π

0

dφ ′
1√

1− sin θ ′ cosφ ′
. (8)

Efforts to calculate the above integral by using standard
integration techniques did not succeed to generate any
compact analytical result and we ended up with very
complicated terms when reducing the expression to a
one-variable integral. We tried to calculate the integral
by using symbolic computation software15 but also this
effort was not succesful.
On the other hand, symmetry considerations suggest

that the result for the potential should be simple not only

for a point on the ”equatorial” line, but also for any ar-
bitrary point on the ”equatorial” plane (z = 0). Let us
consider an arbitrary point, (x, y, z = 0) on the ”equato-
rial” plane. The potential at this point may be written as

V (ρ, z = 0) and depends only on ρ =
√

x2 + y2 (which

is the same as r =
√

x2 + y2 + z2 for z = 0).

Let us now choose a new system of coordinates,
(X,Y, Z) with origin at the center as shown in Fig. 3
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heavily on properties of various types of special functions
such as Legendre polynomials. Furthermore, this infinite
series does not appear that can be expressed in terms of
simple functions and can be calculated only numerically.
To conclude, in this work we studied the nature of

the electrostatic potential created by a ”northern” hemi-
spherical surface with uniform surface charge density.
This problem is of interest to a broad audience of re-
searchers and educators working on the field of electro-
statics or electrodynamics20. We derived exact compact
analytic expressions for the electrostatic potential that
apply to some special cases by using a mathematical ap-
proach that optimally utilizes the axial symmetry of the
body. We also speculated on the nature of general solu-
tion at an arbitrary point in space hinting that it may be
calculated as an infinite series, but not in a compact an-
alytical form. An interesting mathematical integral for-
mula is obtained in the form of the expression in Eq.(12)
as a simple by-product of the approach used.
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