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Obtaining the interaction energy between two uniformly charged hemispherical surfaces in com-
pact analytical form seems to be an impossible task to achieve under arbitrary conditions. However,
we show in this work that one can obtain the interaction energy between two identical hemispherical
surfaces with uniform surface charge density for the special condition of them touching each other
along the ”equator”. The mathematical solution method that we apply is remarkable in that the
bulk of the treatment is analytic with the only drawback of having to rely on knowledge of certain
special functions and their properties.
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I. INTRODUCTION

From the point of view of geometry, a sphere has rota-
tional symmetry around any axis through its center and
reflection symmetry across any plane through its cen-
ter. Any system which has these properties is considered
spherically symmetric. For instance, solid spheres and
spherical shells are spherically symmetric. Now let us
assume that some charge is contained in a spherically
symmetric body in such a way that its density at a given
point does not depend on direction. For instance, as-
sume that a spherical surface is uniformly charged with
constant surface charge density or a solid sphere contains
charge with constant volume charge density1. This is the
scenario of a charge distribution with spherical symme-
try. However, if the same spherical surface is charged so
that the ”northern” hemispherical surface has uniform
surface charge density, σ1 while its ”southern” counter-
part has a different value, σ2 6= σ1 then this system lacks
spherical symmetry. Another example of a spherical sur-
face with surface charge density dependent on polar co-
ordinates is provided by the standard case study of the
surface charge density induced on a grounded sphere as
a result of the presence of a point charge outside the
sphere2. This problem illustrates well the application of
the method of images.

If the charge distribution has spherical symmetry, its
electric field must have spherical symmetry and be a ra-
dial vector. A second repercussion of the spherical sym-
metry is that the electric field’s magnitude only depends
on the distance from the center of the distribution. As a
result, a system of spherical coordinates with origin cor-
responding to the center of symmetry is ideally suited
for the calculation of the electric field at an arbitrary
point in a rather easy way. For instance, one can use
Gauss’s law as illustrated by many such results widely
available in the literature3–7. In spherical coordinates,
one can write the volume charge density as ρ(r, θ, φ) and

the surface charge density as σ(r, θ, φ) where, in spherical
coordinates, r ≥ 0 is radial distance, 0 ≤ θ ≤ π is polar
angle and 0 ≤ φ < 2π is azimuthal (longitudinal) angle.
If we have ρ(r) or σ(r), then the system has spherical
symmetry.

It is well known that the interaction energy between
any two charged arbitrarily shaped bodies cannot be cal-
culated analytically. For this reason, analysis of struc-
tures with certain symmetry is of considerable interest in
electrostatics8–14. Case studies such as uniformly charged
solid spheres or spherical surfaces can be found in many
textbooks. The calculation of the electrostatic interac-
tion energy between two uniformly charged spheres or
spherical surfaces is straightforward. The reason why this
calculation is so easy has to do with the spherical sym-
metry of each of bodies and their charge distributions.
From these examples, many undergraduate students get
the wrong impression that any system with symmetry
can be elegantly handled through various “tricks”.

The current work tries to dispel this “misunderstand-
ing” and aims to point out that “tricks” (such as Gauss’s
law, etc.) have no application even for a relatively simple-
looking system such as that of two interacting uniformly
charged hemispherical surfaces touching each other along
the ”equator”. Absence of spherical symmetry for this
case in point forces one to use more refined approaches
that rely on non-trivial properties of special mathemati-
cal functions. It is fair to say that a good number of un-
dergraduate students find such mathematical approaches
difficult to grasp and somehow unrelated to what they en-
counter in a physics class. This mindset is part of a wider
problem where undergraduate students, often, have diffi-
culty in grasping the connection of such mathematics to
real life situations. Therefore, the current problem that
we solve is a very good example of the connection of ab-
stract mathematical methods to a real physics problem.

Finding the electrostatic interaction energy for such a
system is not an easy task. The process involves trans-
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Eq.(2) and S2 is its counterpart in Eq.(3). One can write the quantity in Eq.(4) by using spherical coordinates as:

U12 = ke σ
2 R4

∫ π/2

0

dθ1 sin θ1

∫ 2π

0

dφ1

∫ π

π/2

dθ2 sin θ2

∫ 2π

0

dφ2

1

|~r1 − ~r2|
. (5)

We attempt the calculation of the above integral by using
an approach that combines the generating expression for
Legendre polynomials with a ”tweak” well-suited for a
hemispherical surface with axial symmetry21.
One knows from the theory of Legendre polynomi-

als22–26 that one can write 1/|~r1 − ~r2| as:

1

|~r1 − ~r2|
=

∞
∑

l=0

rl<
rl+1
>

Pl(cos γ) , (6)

where r< denotes the smaller of r1 and r2, r> denotes the
larger of r1 and r2, Pl(cos γ) are Legendre polynomials
and γ is the angle included between vectors ~r1 and ~r2.
The case of two hemispherical surfaces is special in that:

r1 = r2 = R , (7)

where r1 = |~r1| and r2 = |~r2|. It can be shown that, for
this very special arrangement, the following expansion is
valid (except for the special angles, γ = 0 and π):

1

|~r1 − ~r2|
=

1

R

∞
∑

l=0

Pl(cos γ) ; r1 = r2 = R . (8)

Details on how the above expression is derived are pro-
vided in Appendix A where the discussion relies on the
remarks in pg. 740 of Ref.[ 27]. In a more formal way, one
can think of Eq.(8) as originating from Eq.(6) with the
understanding that can be seen as a limit of r< → R−

and r> → R+ (though this approach is not entirely cor-
rect and the many subleties explained in Appendix A are
lost). It is straightforward to see why the infinite sum
over Legendre polynomials in Eq.(8) diverges for γ = 0
which means ~r1 = ~r2 (r1 = r2 = R). Therefore, the truly
peculiar case is that of γ = π which means ~r1 = −~r2 (and
always r1 = r2 = R). When r1 = r2 = R, one can easily
calculate that:

1

|~r1 − ~r2|
=

1

R

1

2 sin(γ/2)
; r1 = r2 = R . (9)

Comparison of Eq.(9) to Eq.(8) suggests that
∑

∞

l=0 Pl(cos γ) = 1/
[

2 sin(γ/2)
]

for all the values

of γ where the infinite sum over the Legendre polyno-
mials is convergent. If there is a peculiar case such as
γ = π, where the infinite sum over Legendre polynomials
is not convergent in the usual sense, it is common prac-
tice to define the sum in such a way that

∑

∞

l=0 Pl(cos γ)
is simply assigned the value of 1/2 consistent with the
expected result for γ = π. As explained in Appendix A,
in all expressions, the Coulomb factor, 1/|~r1 − ~r2| for
r1 = r2 = R is under the sign of integrals,

∫∫

S1

dS1 (and
∫∫

S2

dS2). Therefore, a few ”problematic” points when
carrying out the integration are not ”worrisome”.

At this juncture, we proceed to substitute the term,
1/|~r1 − ~r2| given from Eq.(8) into the result of Eq.(5)
and write:

U12 = ke σ
2 R4 1

R

∞
∑

l=0

[

∫ π/2

0

dθ1 sin θ1

∫ 2π

0

dφ1

∫ π

π/2

dθ2 sin θ2

∫ 2π

0

dφ2 Pl(cos γ)

]

. (10)

By using the addition theorem for spherical harmonics
one can express Pl(cos γ) in terms of products of asso-
ciated Legendre polynomials, for example, see formula
(3.68) in pg. 111 of Ref.[ 2]. Based on this result, one
can easily check that:

∫ 2π

0

dφ1

∫ 2π

0

dφ2 Pl(cos γ) = (2π)2 Pl(cos θ1)Pl(cos θ2) ,

(11)

where Pl(cos θi) are Legendre polynomials for the polar
angles of vectors ~ri (angles with respect to the z-axis)
and i = 1 and 2. The result in Eq.(11) helps us to write
the quantity in Eq.(10) as:
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U12 = ke σ
2 R4 (2π)2

R

∞
∑

l=0

{[

∫ π/2

0

dθ1 sin θ1 Pl(cos θ1)

][

∫ π

π/2

dθ2 sin θ2 Pl(cos θ2)

]}

. (12)

The expression above can be written more compactly as:

U12 = ke σ
2 R4 (2π)2

R

∞
∑

l=0

{[

∫ 1

0

dxPl(x)

][

∫ 0

−1

dxPl(x)

]}

.

(13)
Note that the expression in Eq.(13) involves integrals of
Legendre polynomials over half a range, namely, with x
going from 0 to 1 or from −1 to 0. This is in contrast with
all the typical expressions for integrals of Legendre poly-
nomials found in textbooks which are generally written
for the full range of integration with x varying from −1
to 1. In addition to that, the quantity in Eq.(13) involves
a tedious infinite sum over the index, l = 0, 1, . . .∞ that
must be dealt with.

III. RESULTS

By relying on Eq.(1), one can write:

Q2 = σ2 (2π)2 R4 . (14)

As a result, the electrostatic interaction energy in Eq.(13)
can be expressed as:

U12 =
ke Q

2

R

∞
∑

l=0

{[

∫ 1

0

dxPl(x)

][

∫ 0

−1

dxPl(x)

]}

.

(15)
In order to figure out the integrals appearing in Eq.(15),
we calculated exactly some of them for small values of
l = 0, 1, 2, . . .. This is doable given that the Legendre
polynomials, Pl(x) are relatively simple for small values
of l:

P0(x) = 1 , (16)

P1(x) = x , (17)

P2(x) =
1

2

(

3x2 − 1
)

, (18)

P3(x) =
1

2

(

5x3 − 3x
)

. (19)

The results of the calculations show that the values of
the integrals decrease quickly with increase of l. Further-
more, there are recognizable regular patterns of the two

sets of the integrals,
∫ 1

0
dxPl(x) and

∫ 0

−1
dxPl(x) that

suggest that these integrals may be calculated analyti-
cally. In fact, we were able to obtain some very useful

exact analytic results that we explain below. First of all,
one can prove by a simple change of variable from x to
−x, that, quite generally:

∫ 0

−1

dxPl(x) = (−1)l
∫ 1

0

dxPl(x) ; l = 0, 1, 2, . . . .

(20)
This means that one must calculate only the integral,
∫ 1

0
dxPl(x) for values of l = 0, 1, 2, . . . when it comes

to the expression in Eq.(15). Obviously, the simplest

integral,
∫ 1

0
dxPl(x) to calculate is the one for l = 0:

∫ 1

0

dxP0(x) = 1 . (21)

After that, we noted that the integrals
∫ 1

0
dxPl(x) are

all zero for l = 2, 4, 6, . . . (nonzero even values of l that
exclude l = 0). By denoting the index l as l = 2 k where
k = 1, 2, . . . , one writes:

∫ 1

0

dxP2 k(x) = 0 ; k = 1, 2, . . . . (22)

On the other hand, the integrals
∫ 1

0
dxPl(x) are nonzero

for index l = 1, 3, 5, . . . (odd values of l). By denoting
l = 2 k + 1 where k = 0, 1, . . . we were able to obtain the
following result:

∫ 1

0

dxP2 k+1(x) =
(−1)k

22 k+1 (k + 1)

(2 k)!

(k!)2
; k = 0, 1, . . . .

(23)
Having obtained these important mathematical formulas,
we proceed to write the quantity in Eq.(15) as:

U12 = C
ke Q

2

R
, (24)

where we use Eq.(20) to express constant, C as:

C =

∞
∑

l=0

{

(−1)l

[

∫ 1

0

dxPl(x)

]2}

. (25)

By using the results in Eq.(21), Eq.(22) and Eq.(23) one
can write succintly the constant, C in Eq.(25) as:
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C = 1−
∞
∑

k=0

[

∫ 1

0

dxP2 k+1(x)

]2

= 1−
∞
∑

k=0

[

(−1)k

22 k+1 (k + 1)

(2 k)!

(k!)2

]2

. (26)

We first calculated the value of the constant from Eq.(25)
numerically by truncating the infinite sum over l to values
from 0 up to a finite lmax. We denote this quantity as
Cnum. To a high degree of accuracy, the results seem
to converge to the value of (2− 4/π) ≈ 0.726760 as lmax

becomes larger than 200. By using symbolic computation
software28, we were able to verify without any doubt that:

C = 1−
∞
∑

k=0

[

(−1)k

22 k+1 (k + 1)

(2 k)!

(k!)2

]2

= 2− 4

π
. (27)

In Table. I we show the results for the numerically cal-
culated constant, Cnum obtained for several finite values
of lmax ranging from 10 to 160 (in steps of 10) together
with the relative difference, |Cnum−C

C | where C is the ex-
act value from Eq.(27).

TABLE I: Numerical values, Cnum ≈

∑

lmax

l=0

{

(−1)l

[

∫

1

0
dxPl(x)

]

2
}

with lmax chosen to have

values ranging from 10 to 160 in steps of 10 together with
the relative difference, |Cnum−C

C
| where C is the exact value

from Eq.(27).

lmax Cnum |Cnum−C

C
| lmax Cnum |Cnum−C

C
|

10 0.728195 2.0× 10−3 90 0.726780 2.8× 10−5

20 0.727139 5.2× 10−4 100 0.726776 2.2× 10−5

30 0.726931 2.4× 10−4 110 0.726773 1.8× 10−5

40 0.726857 1.3× 10−4 120 0.726771 1.5× 10−5

50 0.726823 8.7× 10−5 130 0.726770 1.4× 10−5

60 0.726804 6.1× 10−5 140 0.726769 1.2× 10−5

70 0.726792 4.4× 10−5 150 0.726767 9.6× 10−6

80 0.726785 3.4× 10−5 160 0.726767 9.6× 10−6

In conclusion, the final exact analytical result for the
electrostatic interaction energy in Eq.(24) is:

U12 =
(

2− 4

π

) ke Q
2

R
, (28)

where Q is the total amount of charge held in each of
the two hemispherical surfaces and R is their radius. We
remind the reader that the two hemispherical surfaces
are uniformly charged and touch each other along the
”equator”.

IV. CONCLUSIONS

We considered the problem of two identical hemispher-
ical surfaces of radius R touching each other along the
”equator”. The two bodies contain the same charge and,
thus, are uniformly charged with the same surface charge
density. Because of lack of spherical symmetry, the an-
alytic calculation of the interaction energy between such
a pair of interacting hemispherical surfaces is a problem
yet to be solved under general conditions. Despite the
challenging nature of this problem, this work shows that
an exact analytic result is possible for such a quantity for
at least some special circumstances.
For the scenario in which the two hemispherical sur-

faces touch each other along the ”equator”, we know that
the charge distribution on each of the bodies does not
have spherical symmetry. Nevertheless, the system still
retains axial symmetry. Presence of axial symmetry is
the key ingredient that leads to a succesful implemen-
tation of the current solution method. Absence of axial
symmetry, for instance, when the ”northern” hemispher-
ical surface is lifted and rotated at some nonzero angle
relative to the ”southern” hemispherical surface will lead
to a problem that, in our opinion, is impossible to solve
analytically.
Based on the arguments mentioned above, the model

of two uniformly charged hemispherical surfaces consid-
ered in this work represents a unique case scenario that
is rarely encountered in the mainstream literature. The
few examples involving hemispherical surfaces that are
available in the literature use special methods or the
Maxwell stress tensor approach to compute the net force
exerted on the ”northern” hemispherical surface of a uni-
formly charged spherical surface by its ”southern” coun-
terpart20,29. Another approach that deals with the force
of repulsion between the two hemispherical surfaces of a
uniformly charged spherical surface is given at Ref.[ 30].
In few words, the calculation of the interaction energy for
such a system is difficult and the objective of the present
work is to fill in this gap.
For this reason, this work can be of interest to a

wide audience of physics educators31 as well as some re-
searchers working on the field of electrostatics32–34 or
opto-electronic materials35,36. In particular, we believe
that the results reported in this work would be of great in-
terest to undergraduate students and university teachers,
because this problem illustrates very well key concepts
of electrostatics involving a wide range of mathemati-
cal tools (special functions, expansions, infinite sums and
numerical calculations). One also may envision devices
where the described physical situation can be checked
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experimentally. For example, imagine a capacitor-like
system made up of two electrodes where the typical
square/rectangular or circular plates of a conventional
capacitor have been replaced by hemispherical ones. As-
sume that the two electrodes are very close to each other
in such a way as to closely resemble the geometry of
Fig. 1 with the only difference of charges being +Q and
−Q. This would be a neat experimental realization of the
present model where the experimentally measured capac-
itance can be compared with the one expected which can
calculated by following established recipies37,38. Lastly,
the result obtained in Eq.(28) can be useful to computa-
tional physicists to gauge the efficacy of numerical meth-
ods. The numerical calculation of the four-dimensional
integral in Eq.(5) is not at all simple but, we believe, can
be done numerically via various schemes. Knowing its
precise value can help those involved with computational
work to identify schemes and/or algorithms that have the
best accuracy and stability in a numerical computation.
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APPENDIX A: SPECIAL EXPANSION

The equation for the generating function of Legendre
polynomials is:

g(t, x) =
1√

1− 2x t+ t2
=

∞
∑

l=0

Pl(x) t
l ; |t| < 1 . (A1)

Let us write the Coulomb potential term, 1/|~r1 − ~r2| as:
1

|~r1 − ~r2|
=

1
√

r21 − 2 r1 r2 cos γ + r22
, (A2)

where r1 = |~r1|, r2 = |~r2| and γ is the angle between the
two vectors. It is obvious how to obtain the expansion
in Eq.(6) by starting from Eq.(A2) and assuming that
r1 6= r2.
However, let us now not make any assumption whether

r1 is larger/smaller than r2 or equal to r2. As a first step
one may recast the expression in Eq.(A2) as:

1

|~r1 − ~r2|
=

1

r1

1
√

1− 2 cos γ r2
r1

+ ( r2r1 )
2
. (A3)

Without any loss of generality, one may also extract r2
out of the square root sign if so one desires. By comparing
the right-hand-side of Eq.(A3) to the definition of g(t, x)
in Eq.(A1) one has no difficulty to identify:

1

|~r1 − ~r2|
=

1

r1
g
(

t =
r2
r1

, x = cos γ
)

. (A4)

Regarding the series expansion in Eq.(A1), it is noted
in pg. 740 of Ref.[ 27] that the series is convergent for
|t| = 1 except for |x| = 1. This is precisely the special
case that we are interested in, because r1 = r2 = R
means t = 1. We know from Eq.(A4) that t = r2/r1 and
x = cos γ. Therefore, the series expansion in Eq.(A4)
will still converge for r1 = r2 = R except for the value
of cos(γ) = ±1 that implies |x| = | cos γ| = 1. In other
words, for the special case of r1 = r2 = R, one can write
the quantity in Eq.(A4) as:

1

|~r1 − ~r2|
=

1

R
g(t = 1, x = cos γ) ; cos γ 6= ±1 . (A5)

The above expression is equivalent to:

1

|~r1 − ~r2|
=

1

R

∞
∑

l=0

Pl(cos γ) ; r1 = r2 = R ; γ 6= 0, π .

(A6)
In a nutshell, the expansion in Eq.(A6) is valid for all an-
gles, γ between two vectors with identical lengths except
the special angles, γ = 0 and γ = π where the infinite
sum over Legendre polynomials is not convergent.

The first angle, γ = 0 is easy to understand, because
it represents a situation in which two vectors with same
length are parallel to each other. Hence, it is obvious
that 1/|~r1 − ~r2| should diverge when ~r1 = ~r2. Note that,
for γ = 0, one has:

∑

∞

l=0 Pl(1) = 1+1+1+1+ . . . → ∞
where one may still argue that the formula in Eq.(A6) is
valid (in the sense that we have ∞ = ∞).

The second angle γ = π means that the two vectors
with same length are oriented anti-parallel to each other,
~r1 = −~r2. This is a very peculiar situation where the
expression in Eq.(A6) would give:

1

2R
=

1

R

∞
∑

l=0

Pl(−1) = 1− 1 + 1− 1 + . . . , (A7)

where the infinite sum would not converge in the usual
sense.

To sum it up, only γ = π is, indeed, a peculiar case if
we express 1/|~r1 −~r2| as in Eq.(A6). However, note that
the Coulomb potential factor, 1/|~r1 − ~r2| for the case
of r1 = r2 = R is under the sign of integrals,

∫∫

S1

dS1

(and
∫∫

S2

dS2) in all expressions. Therefore, it is common

knowledge in calculus when calculating integrals that ex-
clusion of few ”problematic” points (more precisely, re-
placing 1/|~r1 − ~r2| by the quantity involving the infinite
sum in the right-hand-side of Eq.(A6) introduces only
one ”problematic” point, γ = π) when carrying out the
integration (that, in principle, involves an infinite sum of
points) should not be ”worrisome”.
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