A two-dimensional electron gas suspended above a neutralizing background
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We consider a two-dimensional electron gas system consisting of a layer of electrons suspended
above its jellium neutralizing background counterpart. We investigate the energy of the system in
the Hartree-Fock approximation as a function of separation distance between the layer of electrons
and the background. We find that the energy of the system is influenced by the separation distance
in such a way that the new energy contribution originating from such a separation behaves as an
effective kinetic energy term. The increase of the overall energy with increase of the separation
distance adversely affects the stability of electron liquid states at high density. The results are
derived for a fully spin-polarized (spinless) system of electrons but can easily be generalized to a

spin unpolarized state.
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I. INTRODUCTION

Experimental progress in fabrication techniques has
stimulated a renewed interest to study the properties of
two-dimensional electron gas (2DEG) systems. The most
commonly manufactured 2DEG system is the 2D layer of
electrons found in metal-oxide-semiconductor field-effect
transistors (MOSFETSs) and related systems!™. The
electrons underneath the gate oxide are confined to the
semiconductor-oxide interface when the transistor is in
inversion mode and, thus, occupy well defined energy
levels. The potential well in the direction transverse to
the interface is then tuned in such a way that only the
lowest energy quantum level is occupied. Under these
conditions, the motion of the electrons transverse to the
interface is frozen and, hence, the system can be consid-
ered essentially two-dimensional (2D). For simplicity, it
is assumed from now on, that we are dealing only with
2DEG systems at absolute zero temperature.

Another very common method to fabricate a 2DEG
system relies on confining electrons at the interface be-
tween two semiconducting materials at a heterojunc-
tion®?. This is the preferred method to fabricate 2DEG
systems for quantum Hall studies'®'® by confining the
electrons to a triangular quantum well that freezes the
motion in the direction perpendicular to the interface.
Electrons confined to the interface of such heterojunc-
tions (for example, GaAS/AlGaAs) exhibit much higher
mobilities than those in MOSFETSs. One can also confine
electrons to the surface of a material as done decades ago
for free electrons on the surface of liquid helium. The new
twist of present-day fabrication techniques is that one
can now create atomically thin solid 2D materials (the
most famous example is graphene) where the electrons
are confined to a quasi-ideal 2D space.

The standard model in condensed matter physics used

to study a 2DEG system is that of an electron gas in
a jellium neutralizing positive background. In the uni-
form jellium model, the electrons interact via a Coulomb
interaction while immersed in a uniform, positive neu-
tralizing background'” 1. It is assumed that the system
of electrons is in the same layer as the 2D jellium back-
ground. Despite its simplicity, such a model provides a
sound theoretical approach to describe the most impor-
tant properties of the system and has been used to study
a 2DEG under various approximations?%-2!.

This model has been very useful in the understand-
ing of possible quantum phase transitions that occur in a
2DEG system when density is varied from high to low
values. The system of electrons is typically in a lig-
uid state at high density, but crystallization to a 2D
Wigner solid state occurs at low densities???3. Note
that an infinite 2DEG is uniquely characterized by its
electron number density which is a single constant num-
ber in the thermodynamic limit?*. The precise value of
the density at which the transition from a liquid state
to a Wigner solid happens is still the object of many
current numerical studies?®>3° given the miniscule differ-
ences in energy between these two quantum phases. The
simplest treatment of a 2DEG system involves use of an
anti-symmetrized Slater determinant wave function®! as
in the Hartree-Fock (HF) approximation®?33. This ap-
proach allows one to obtain an analytical result for the
total energy of the system in the form of two compet-
ing terms represented by the kinetic and the potential
(exchange) energy term. Other energy terms collectively
refered to as the correlation energy are ignored3* 37,

Minor modifications of any quantum model may have
a huge influence on the properties and energy stability of
the system. Based on this observation, in this work, we
consider the properties of a 2DEG system in which the
2D layer of electrons is parallel and separated by a finite



distance from the plane of the 2D jellium background.
Assuming that the (effective) mass of electrons is con-
stant and isotropic, one expects that all the properties of
the system in the thermodynamic limit depend on two
single parameters, the average interparticle distance and
the separation distance between the layer of electrons and
2D jellium background. The key objective of this study
is to see how the overall energy of the 2DEG system is
affected by the separation distance between the electrons
and the 2D jellium background and whether there are any
subtle effects originating from this newly added element.
The results are derived for a fully spin-polarized (spin-
less) 2DEG system of electrons. The generalization of
the model to a spin unpolarized state is straightforward.

II. MODEL

We consider a 2DEG system of N electrons, namely,
a single 2D layer of electrons separated by an arbitrary
distance, d from a neutralizing 2D jellium background oc-
cupying an area, A. Any theoretical model for a 2DEG
assumes overall charge neutrality of the system. The
simplest way to ensure that the total system is charge
neutral is to place the 2DEG in presence of a uniformly
distributed positive background of equal, but opposite
charge®®39. The separation distance, d enters as a new
parameter in this model in addition to the electron num-
ber density that is written as:

N 1
Po = A - 7T(7"S aB)2 ) (1)
where rg is the dimensionless Wigner-Seitz parameter
and ap is the Bohr radius. For an infinite 2DEG system
in the thermodynamic limit, pg is constant as N — oo
and A — oo. A schematic view of the system under
consideration is shown in Fig. 1.
We assume that we are dealing with a fully spin-
polarized (spinless) system of electrons described by the
Hamiltonian:

H=T+V, (2)

where

N
A p
T= ! 3
> @
is the kinetic energy operator and
V:‘A/ee‘f"?eb“‘f/bba (4)

is the potential energy operator that represents, respec-
tively, the electron-electron (ee), electron-background
(eb) and background-background (bb) interaction poten-
tial energy operators.

The ee potential energy operator is written as:

) 1 N N
Vee:§zzv(m_7?j‘>v (5)
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FIG. 1: Schematic view of a 2DEG system (filled circles)
separated by a distance d from the neutralizing 2D jellium
background layer.
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is the Coulomb interaction potential between two elec-
trons with charge —e (e > 0) and k. is Coulomb’s electric
constant. Note that ; ; are 2D vectors. The eb potential
energy operator is written as:

N
Vo=-p [ @ uli-rh, @
i=174

where
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with d > 0 being the separation distance between the
layer of electrons and the 2D jellium background layer.
The 2D vector 7 in Eq.(7) represents the continuous
background coordinate while vectors 7; are position vec-
tors of electrons. The bb energy term is written as:

A p2
Vip = i/ d%/ d*r’ (|7 —7'|) =
2 Ja A
2
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where the background dummy variables, ¥ and 7’ have
been replaced by 71 and 75 under the sign of the integral.

A normalized N-particle wave function that is properly
antisymmetric and is an eigenstate of the many-particle
free Hamiltonian is constructed as a Slater determinant of




the ortho-normalized single-particle space-spin orbitals:

1 o o
) = = Det {05, (7)., 05, (W)}, (10)

where the single-particle states are ortho-normalized 2D
1 k7
VA
conditions being imposed. In a short-hand notation,
(0) = (¥|O|P)/(T|T) represents the quantum expec-
tation value of operator O with respect to wave function,
W).

plane waves, ¢p(7) = with periodic boundary

where p(7) = Zjvzl |z (7)|? is the one-particle density
J

function, p(71,7) = Z;\;l 73 (71)* S, () is the so-
called one-particle density matrix and r;; = |7; — 7| > 0
is the separation distance between particles ¢ and j.

One can prove that the expectation value of V, can
be written as:

wm:—méfnmmﬁfmwmg, (13)

where we substituted the dummy variable 7 in Eq.(7)
by 7. Obviously, the expectation value of Vj, is:

2
(Vi) = 0 / d2ry / &y v(r12) . (14)
2 Ja A
Without any lack of generality, let us rewrite the po-

J

The expectation value of the total kinetic energy op-
erator can be written as:

() =5 er, ()

where ep = % k% is the Fermi energy and k% = 47 pg

for the case of a fully spin-polarized (spinless) 2DEG.

It is a standard calculation to prove that the expecta-
tion value of V.. can be expresed as:

1 1
(Vee) = */ d*ry p(ﬁ)/ d*ry p(72) v(riz) — */ d*ry / d*ra |p(F1,7) 7 v(ri2) | (12)
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tential vg(r12) in Eq.(13) as v(r12)+vq(r12) —v(r12) which
Ae Veb

allows us to express: (V) = (Vio) 4+ (Vi) + (Vi) as:
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For the present case scenario, we have:

—

p(1) = p(72) = po - (16)

As a result, the quantity in Eq.(15) becomes:

() :—%/Ad%l /Adzmp(ﬁ,@)ﬁ o(ra) — p /Ad2r1 /Ad2r2 [vatna) — o(r12)] - (17)
[

The total energy of the system is obtained from:
(H) = (T) + (V). (18)

The energy per particle in the thermodynamic limit is
calculated from e(d) = (H)/N and can be expressed as:

_ AV(d)

e(d) = e(d =0) + Ae(d) ; N

Ae(d)

(19)

where e(d = 0) corresponds to the standard HF en-
ergy per particle (kinetic and exchange) for a fully spin-
polarized 2DEG system in the thermodynamic limit with
the understanding that the electrons and the background

are on the same 2D plane and

AV (d) = p3 /Ad27°1 /AdQTz {0(7“12)—%(7“12) , (20)

is a new energy term due to the separation distance be-
tween the layer of electrons and the neutralizing 2D jel-
lium background. As stated earlier, all the results above
apply to a fully spin-polarized (spinless) 2DEG system.
Extension of such results to a spin unpolarized state or,
in general, to a partially spin-polarized state in which
N, electrons have spin "a” ("up”) and Ng electrons

have spin ”$” ("down”) values is straightforward. The



methodology and the main features of the formalism are
discussed in the Appendix.

III. RESULTS AND DISCUSSION

It is widespread in the literature to express the energies
of a 2DEG system in units of Rydbergs (Ry):

K2 k. €2

72 =
2may  2ap

1Ry = : (21)

where ap = h?/(m k. €?) is the Bohr radius. The density
of a 2DEG is typically expressed in terms the Wigner-

J

AV(d) = ke 62 pg/ d27‘1 / d2’l”2(
A A

To obtain correctly the result in the thermodynamic limit
(N = 00 ; A— oo but pg = N/A constant), we initially
assume that the surface area is very large (but finite) and
has circular disk symmetry, A = m R?. It is only at the
end of the calculations that we take the explicit limit of
R — oo (when necessary). One can facilitate an analytic
calculation of the four-dimensional integral in Eq.(23) by
using the 2D Fourier transform*! method:

F(k) = [ dre®7 f(7) |

o (24)
[(7) = [ e e FTR(E)

where F(k) is the 2D Fourier transform of f(7), k and 7
are 2D vectors, ¢ = v/—1 is the imaginary unit and the
integration extends over all space. It is a simple exercise

J

It is a well-known result in analysis that either integral of
2 Ji(kR)
(k R)

J1(x) is a Bessel function of the first kind and k = |k| > 0.

the last two ones in Eq.(27) results in 27 R , where

J

AV(d)

Ae(d) =

Seitz dimensionless parameter, 5 defined in Eq.(1). The
expression of e(d = 0) for a fully spin polarized 2DEG is
known*’ and reads:

e (2101

2
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where the first term represents the kinetic energy per
particle while the second term is the (exchange) potential
energy per particle.

In order to calculate the second energy contribution to
the total energy per particle in Eq.(19), let us rewrite the
quantity AV (d) in Eq.(20) more explicitly as:

N = ke e®4po (TR?) /Ooodk <1 _ e—dk) [Jlli/gRR)r |

1 _ 1 ) (23)
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to calculate that:
o 1 2T >
2 ikT _ —d|k|
/d ret ——s —7 = 7 e . (25)

Based on this result, one uses the second expression in
Eq.(24) to write:

1 :/ &’k =ik ri—r3) 2T —ali|
Vi — 72+ d? (2m)? |&|
(26)

Note that the result in Eq.(26) is also valid for d = 0.
After substituting the expression from Eq.(26) (for d # 0
and d = 0) into Eq.(23) and rearranging the dependencies
we obtain:

(27)

(

After casting the integral in polar coordinates and noting
that po ™ R? = N, we arrive at the expression:

(28)



At this juncture, we rewrite the quantity shown above
as:

Jl(l’)r.

x

Ae(d) = ke e* 4 po (7 R) /Ooodx (1 - eﬂ“) [

(29)
One knows that:

. 2
/ dx {Jl (x)] = 4 .
0 z 3
However, there is work do be done to calculate the second
integral of the form:

fla) = /000 dre ** {Mr ,

(30)

- (31)

where a = d/R > 0 and f(a) denotes an auxiliary func-

tion. The integral in Eq.(31) can be calculated analyti-
cally and may be written as:

(4—a®)E <—;2>+(4+a2)K (—é)] ,

(32)
where K (m) and E(m) are, respectively, complete elliptic
integrals of the first and second kind:

a a

2 67

K = [ R — (33)
0 /1 —msin?) ’
and
E(m) = /OW/QdG\/l “msin20) . (34)

Recall that, until now, we have not yet taken the ther-
modynamic limit. This means that the expressions above
are very general. One has R — oo in the thermodynamic
limit. Since we know that Ae(d) is zero for the case
d = 0, let us consider d # 0 (and finite) which implies

a = d/R — 0 in the thermodynamic limit. One can
verify that in this limit:
flam0)m — — &4 0(?) (35)
T T3 2 '

Therefore, one can easily deduce from the result in
Eq.(35) that the value of A¢(d) in the thermodynamic
limit reads:

Ae(d) = kee? po (27)d . (36)
The expression above can be rewritten as:
4 d kee?
Ae(d) = e (37)

- — )
rs ap 2ap

By looking at the expression in Eq.(37) one notices that
the separation distance d affects more the high density
states (small 7,) in the sense that, for the same value of

0.2

0.1+

FIG. 2: Energy per particle, e(d) as a function of r, for
five values of the separation distance parameter, d/ap =
0,0.1,0.2,0.3 and 0.4 (from left to right) corresponding to a
fully spin-polarized 2DEG system in which the layer of elec-
trons is separated from the background layer by a distance,
d. Note how the minimum of energy shifts to larger values of
rs as d/ap increases from d/ap = 0 (first left curve) to 0.4
(last right curve). The energy per particle is given in units of

ke 62/(2(13).

d/ap, the overall energy of a state with small ry is raised
more than the energy of its counterpart with larger rs.
We know that liquid electronic states are typically sta-
ble at high density, while Wigner solid states stabilize
at low density. This means that we expect that sepa-
ration would adversily affect the energy stability of the
liquid states and should likely enhance the Wigner crys-
tallization process. We knew that the energy term Ae(d)
would act as an upward positive correction to the overall
energy. However, we are somehow surprised to see that
such a term acts as an effective kinetic energy by being
proportional to 1/r? exactly as (T)/N o 1/r2.

By combining the result in Eq.(22) with that in Eq.(37)
and substituting in Eq.(19) one writes the total energy
per particle in this model as:

In Fig. 2 we show the dependence of the energy per
particle, €(d) as a function of ry for values of d/ap =
0,0.1,0.2,0.3 and 0.4. While the overall energy per par-
ticle increases, one also notices that the minimum of en-
ergy is obtained for values of r¢ that grow larger as d/ap
increases.



IV. CONCLUSIONS

To conclude, we considered a modified 2DEG model in
which the 2D layer of electrons is suspended and sepa-
rated by an arbitrary distance from the neutralizing 2D
jellium background layer. We found that the separation
of the layer of electrons from the 2D jellium background
acts as an effective kinetic energy that increases the over-
all energy of the system. The effective increase of kinetic
energy by the separation effect is more pronounced at
high density (small r,) values.

It is known that typical electronic liquid states are en-
ergetically favored at high density as compared to Wigner
solid states. Therefore, one would tend to expect that
such an effective increase of the kinetic energy would ad-
versely affect the energetic stability of the liquid elec-
tronic states in such a way as to further enhance the
Wigner crystallization process. Given the well known
limitations of the HF method, future studies employing
more elaborate Jastrow-Slater wave functions and relying
in accurate quantum Monte Carlo calculations would be
most welcomed to estimate the magnitude of the effects
assessed in this work.
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APPENDIX: FORMALISM FOR ARBITRARY
SPIN POLARIZATION

Consider N, electrons with spin "a” ("up”) and Ng

electrons with spin 7 3” ("down”). Obviously,

No+Nz=N, (A.1)

where N is the total number of electrons. One defines

the spin-resolved number densities, p, = N, /A and pg =
Ng/A where A is the area of the system. One writes:

Pa + PB = Po , (A2)

where pg = N/A is the total number density. One has
N, electrons filling a 2D Fermi disk up to the state with

wave vector kr o and Ng electrons filling a 2D Fermi disk
up to the state with wave vector kr g. For the case of an
arbitrary spin polarization of the system, one considers
a normalized wave function of the form:

W) = [Wa) [¥g) , (A.3)
where |U, 3) are the spin-resolved Slater determinant
wave functions for each species of spin. It is easy to

prove that:
WBa=dmpe 5 Kep=drps.  (Ad)
From Eq.(A.2) and Eq.(A.4) one concludes that:
kB o+ kg =47 (pa+ps) =4mpo . (A.5)

The spin-resolved one-particle density functions are de-
fined as:

N Ng
Z 08, o7 5 ps() = log, 5(PI
j=1 j=1

(A.6)

where ¢ (7) are plane-wave state for spin "a” elec-
J
trons and ¢Ej 6(7:') correspond to the spin ”” counter-

part. Note that:

palF) + ps(F) = p(F) = po .

where p(7) is the total one-particle density function. One
can, similarly, define the spin-resolved one-particle den-
sity matrices:

(A7)

7ﬁ177a2 Z¢k a JQ(FQ) ’
NB
PB(T17F2) :Z¢k 5( ) ¢k g( ) (AS)

At this juncture, we have defined all the key elements
that allow us to derive general expressions that apply to
a 2DEG system with arbitrary spin polarization.

It is easy to calculate that the expectation value of the
total kinetic energy operator for the spin-resolved system
is:

Nq

<T>:75Fa+i5Fﬁa

X X (A.9)

_ B 12 — B 32
where €po = 5 ki, and €ppg = 5°- ko 5.

One can verify that:
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where p, g(7) are defined in Eq.(A.6) and pag(Fl,Fg)

are defined in Eq.(A.8). The expression for (V,;) can be
written as:

<mﬁ>mﬁfnmmwwmﬁéﬁwﬁﬁﬁ

Although the quantity (Vi) is the same as that in
Eq.(14), we rewrite it below for the sake of completeness:

2
<‘/bb> = %/ d2r1 / d27’2 U(Tlg) .
A A

For a fully spin-polarized state, for instance, one with
all electrons having spin ”«” values:

(A.12)

No=N ; Ny=0, (A.13)
pa(r) =p(F)=po ;5 pa(i)=0, (A.14)
Pa(T1,72) = p(f1,72) #0 5 pa(F,72) =0, (A.15)

&1 [pal) + po0)] [ o [pal7) + pa()] vlrsa)

/ /d r2 | pa(F1, 72)[* v(ria)

/dQTl/dQW 1ps (71, 72)|* v(ri2) ,

(A.10)

(

kpo=4mpo ; kpz=0, (A.16)
and likewise.

On the other hand, for a spin unpolarized state, one
has:

N

N, = Ng = (A17)

S L _ (™) _ po
pa(7) = pp(7) = > =3 (A.18)
pa(rlaFQ) = pB(FhTQ) 7é 0 ) (Alg)

and one can continue this way in a similar fashion.
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