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A common problem in electrostatics is determining the electrostatic potential due to a uniformly
charged straight wire. The solution of this problem illustrates well the types of calculations that
one must perform in order to obtain the electrostatic potential or field of a given continuous charge
distribution. In this work, we reconsider and solve the problem of a uniformly charged straight
wire via a new method that is different from the popular direct integration approach found in the
majority of physics textbooks. The outcomes of the two methods are compared and the results
suggest several interesting mathematical formulas involving special functions.
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I. INTRODUCTION

The study of electrostatics starts with the properties
of charged point particles and corresponding discrete sys-
tems made up of them. Very often a large system of point
charges is so closely-packed that the average separation
distance between them is much smaller than the distance
from the system to some point of interest in space. In
such a situation, the system of charges can be modeled
as a continuous charge distribution. The definition of
the electrostatic potential and field can be easily gener-
alized if a charge distribution is continuous rather than
discrete. For instance, to evaluate the electrostatic po-
tential created by a continuous charge distribution, we
simply divide the charge distribution into infinitesimal
small elements and treat each piece as a point charge. We
then use the laws of electrostatics to calculate the elec-
trostatic potential due to these elements at some point
in space. Finally, we evaluate the total electrostatic po-
tential due to the charge distribution at that point by
summing the contributions of all the elementary charges.
It is well known that there are three types of continu-

ous charge distribution systems: (i) Linear charge distri-
bution; (ii) Surface charge distribution; and (iii) Volume
charge distribution. With very few exceptions that ap-
ply to regular bodies with very high symmetry (such as
a conducting spherical shell), the equilibrium charge dis-
tribution (that makes the body an equipotential) is not
uniform. However, finding the precise way how a total
charge is distributed over the length, area or volume of
an arbitrarily-shaped body is one of the most difficult
problems in potential theory. It suffices to say that even
the simple-looking problem of finding the exact equilib-
rium charge distribution on a finite straight conducting
wire does not have an entirely clear answer1–5

To avoid these difficulties, one usually resorts to the
assumption of a uniformly distributed charge. Books
of electrostatics generally contain several examples, in
which it is assumed that the charge is uniformly dis-
tributed on a line, on a surface, or throughout a volume.
One of the most common examples found in the litera-

ture is that of calculating the electrostatic potential due
to a uniformly charged straight wire (also known as the
problem of a uniform line of charge, a uniformly charged
rod, and similar names). The standard solution method
for this problem is direct integration. The approach leads
to the desired result in straightforward way. We believe
that this is the reason why this approach is adopted by
the absolute majority of the textbooks in circulation6–11.

The purpose of this work is to present a solution of this
problem by a new method that is different from the com-
monly used direct integration approach. The idea to ex-
plore other possibilities and solutions is rooted in the be-
lief that such an approach might lead to interesting new
mathematical and physical insights. Comparison of the
solutions of the same problem obtained via two different
methods may allow one to ”uncover” novel (uncommon)
identities of interest. Furthermore, this approach may
allow one to expand the mathematical treatment of the
problem (for instance, by including special functions or
integral formulas that are seldomly seen in standard text-
books). This is precisely the situation that we encounter
when we solve this problem via the method reported in
this work. The treatment leads us to a class of special
functions known as error functions and certain integral
formulas involving error functions that are not encoun-
tered when the problem is solved via direct integration.
In addition, we also report a quite interesing integral for-
mula involving the difference of two divergent integrals
that, under certain conditions, is non-divergent and can
be expressed in terms of a natural logarithmic function.

The paper is organized as follows: In Section II we
present a quick derivation of known results obtained by
using the direction integration method. This provides a
fast track introduction for the reader to understand the
notation and various formulas that appear in the litera-
ture. In Section III we explain our new solution method
of the problem. In Section IV we compare various re-
sults obtained from the two methods and highlight some
interesting mathematical identities that result from this
process. In Section V we provide some concluding re-
marks and summarize the findings.
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III. NEW METHOD

When applying this new solution method to this prob-
lem, we first write the expression for the electrostatic
potential in general form as:

V (x, y, z) = ke λ

∫ +l

−l

dz′

|~r − ~r ′| , (11)

where ~r = (x, y, z) is an arbitrary point in space and ~r ′ =
(x ′ = 0, y ′ = 0, z ′) is the vector position of the element of
charge along the the wire. The new method of calculation
hinges upon the use of the following transformation for
the Coulomb term 1/|~r − ~r ′| which we write as:

1

|~r − ~r ′| =
2√
π

∫ ∞

0

du e−u2 (~r−~r ′)2 . (12)

We subsitute the result from Eq.(12) into Eq.(11) and
change the order of integration. After some straightfor-
ward algebra the final result reads:

V (ρ, z) = ke λ
2√
π

∫ ∞

0

du e−u2 ρ2

f(u, z, l) , (13)

where ρ2 = x2 + y2 ≥ 0 and f(u, z, l) represents the
following auxiliary function:

f(u, z, l) =

∫ +l

−l

dz ′ e−u2 (z−z ′)2 . (14)

Note that we denote the electrostatic potential as V (ρ, z)
in Eq.(13) in order to highlight the cylindrical symmetry
of the problem. Earlier, we denoted such a potential more
generally as V (x, y, z) in Eq.(11). The explicit calcula-
tion of f(u, z, l) is done in Appendix B. The expression
that we use is the one from Eq.(B7) and is given below:

f(u, z, l) =

√
π

2u

{

erf
[

u
(

|z|+ l
)]

− erf
[

u
(

|z| − l
)]}

.

(15)
By subsituting f(u, z, l) from Eq.(15) to Eq.(13) one has:

V (ρ, z) = ke λ

{
∫ ∞

0

du

u
e−u2 ρ2

erf
[

u
(

|z|+ l
)]

−
∫ ∞

0

du

u
e−u2 ρ2

erf
[

u
(

|z| − l
)]

}

. (16)

The integrals in Eq.(16) can be carried out by using the
following integral formula:

∫ ∞

0

dx

x
e−a2 x2

erf(c x) = sinh−1

(

c

|a|

)

, (17)

where it is assumed that a and c are real parameters. In
the above expression, sinh−1(x) is an inverse hyperbolic
sine function:

sinh−1(x) = ln
(

x+
√

x2 + 1
)

. (18)

The formula in Eq.(17) is a ”tweaked” version of formula
6.293, page 650 of Ref.[ 16] and can be found in special-
ized published literature, for instance, see Eq.(B6) and
Eq.(D7) of Ref.[ 17] that applies to the c = 1 case.
Use of the formula in Eq.(17) for the two integrals in

Eq.(16) leads to the following result:

V (ρ, z) = ke λ

[

sinh−1

( |z|+ l

ρ

)

− sinh−1

( |z| − l

ρ

)]

.

(19)
The final result in Eq.(19) represents the final expression
for the electrostatic potential due to a uniformly charged
straight wire obtained through this method. One should
expect the expression in Eq.(19) to be fully equivalent to

the one in Eq.(8) that was obtained via direct integra-
tion. We leave it as an exercise to the reader to show
that the expression in Eq.(19) is equivalent to the one in
Eq.(8). The check is straightforward. One starts from
Eq.(19) and rewrites it carefully in terms of the natural
logarithmic function by using the defining formula of the
inverse hyperbolic sine function in Eq.(18). What is ap-
pealing to us is the fact that the equivalence of the final
results obtained with two different methods may suggest
some interesting mathematical formulas that otherwise
are not clearly visible. Indeed, it will be shown in the
following discussions that this is the case.

IV. DISCUSSIONS

Let’s first discuss the form of the electrostatic potential
for few special cases. Such would be the expression of the
electrostatic potential along the z axis. The calculation
when V (ρ = 0, z) should be done with care since we
already know that the potential is infinite (divergent)
for |z| ≤ l. One strategy is to work directly with the
expression in Eq.(19) and obtain carefully its ρ → 0 limit.
This can be done by going back to expressions involving
natural logarithmic functions. However, as we will show
below, it turns out to be a much better choice for the
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wealth of mathematical transformations uncovered if we
start the calculation of V (ρ = 0, z) from the expression

in Eq.(16). By subsituting ρ = 0 in Eq.(16) one has:

V (ρ = 0, z) = ke λ

{
∫ ∞

0

du

u
erf [u (|z|+ l)]−

∫ ∞

0

du

u
erf [u (|z| − l)]

}

. (20)

Each of the two integrals in Eq.(20) individually diverges,
however, their difference may or may not diverge. In fact,

we were able to prove in Appendix C that the following
mathematical formula applies:

∫ ∞

0

dx

x

[

erf (a x)− erf (b x)
]

=











































+ ln
(

a
b

)

; a > 0 and b > 0 ,

− ln
(

|a|
|b|

)

; a < 0 and b < 0 ,

+∞ ; a > 0 and b < 0 ,

−∞ ; a < 0 and b > 0 .

(21)

We also checked the correctness of the formula in Eq.(21)
with Wolfram’s Mathematica software18. The result in
Eq.(21) basically states that the difference of two diverg-
ing integrals involving parameters a and b (where a and b
are assumed real) turns out to be a well-behaved function
if a and b have both the same sign. The case a > 0 and
b > 0 applies to our case in Eq.(20). If such a condition
is violated, for example if a > 0 and b < 0, the quantity
in Eq.(21) is singular (±∞).

By observing the form of the integrals in Eq.(20) one
concludes that the conditions in Eq.(21) leading to a non-
divergent logarithmic result are met when |z| > l. Note
that the integrals in Eq.(20) correspond to parameters
a = |z|+ l and b = |z| − l in Eq.(21). Having simultane-
ously both a > 0 and b > 0 leads to the condition |z| > l
being satisfied. For such a case:

V (ρ = 0, |z| > l) = ke λ ln

( |z|+ l

|z| − l

)

. (22)

This result is in agreement with the previously derived
expression in Eq.(9). By the same token, for |z| < l the
formula in Eq.(21) would lead to V (ρ = 0, |z| ≤ l) = ∞
consistent with the result in Eq.(10).
Another compact formula that one can obtain from

Eq.(19) is that for the electrostatic potential on the z = 0
plane that bisects the straight wire:

V (ρ, z = 0) = ke λ 2 sinh−1

(

l

ρ

)

. (23)

Overall, the new solution method highlighted in this

work turns out to be a very fertile ground to derive var-
ious mathematical identities and integral formulas that
are not often dealt with in the mainstream literature.
In this process, we encountered interesting definite in-
tegrals involving the error function in combination with
other functions as well as a rather peculiar integral for-
mula shown in Eq.(21) that we have not seen before in
popular books of integrals.

V. CONCLUSIONS

Only in relatively simple cases can the expression for
the electrostatic potential of a charged body be obtained
in a closed analytic form. Such is the case study of a
uniformly charged straight wire for which the exact ex-
pression of the electrostatic potential can be be obtained
by carrying out the required integrations. A direct in-
tegration approach is the method of choice to solve this
problem and appears in the majority of textbooks dealing
with electrostatics and/or electromagnetism. The pur-
pose of this work that lays out a novel solution method
to this problem is not to suggest that the direction in-
tegration approach should be avoided. On the contrary,
the direct integration approach should be the method of
choice to solve this problem on account of its simplicity.

The key message that we would like to transmit is that
we can gain a lot by solving a given problem by a differ-
ent method. This approach is very beneficial because
it allows one to have a fresh new look on a well known
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problem from a different perspective. Additionally, this
approach can be very enriching from a pedagogical point
of view since it may allow one to uncover novel mathe-
matical expressions or identities that otherwise are not
routinely seen. For instance, the current method that we
used to solve the problem allowed us to obtain several
one-dimensional integral expressions involving a special
class of functions known as error functions. In the pro-
cess, we also had the opportunity to deal with certain
type of integrals involving products of error functions,
exponential functions and power functions that gener-
ally are found only in specialized textbooks or papers.
One such rather peculiar formula is the one reported in
Eq.(21) which we have not seen it before in standard
handbooks of integrals. In a nutshell, we believe that the
approach considered in this work has clear pedagogical
values.
Furthermore, the employed method can also be of in-

terest from the perspective of addressing similar prob-
lems that arise in disciplines such as electrostatics or
mathematical physics. For example, this method can be
used to solve more complicated problems that go beyond
a uniformly charged straight wire such as the calcula-
tion of the electrostatic potential created by a uniformly
charged two-dimensional (2D) rectangular plate or by a
uniformly charged three-dimensional (3D) cuboid object.
Let’s illustrate the application of the method by consider-
ing the most difficult case of a uniformly charged cuboid.
We consider a cuboid that has a volume Lx Ly Lz and
contains a total amount of charge Q which is uniformly
spread over its volume. This situation results in a vol-
ume charge density, ρ0 = Q/(Lx Ly Lz). Assume that
the origin of a Cartesian system of coordinates is taken
at the center of the cuboid and the axes are parallel to
its edges. By following the same notation as for the case
of the uniformly charged straight wire, we say that a
point in the 3D cuboid region has coordinates such that:
−lx ≤ x′ ≤ +lx, −ly ≤ y′ ≤ +ly, −lz ≤ z′ ≤ +lz where
Lx = 2 lx, Ly = 2 ly and Lz = 2 lz. The electrostatic po-
tential created by the uniformly charged cuboid at some
arbitrary point in space can be written as:

V (x, y, z) = ke ρ0

∫ +lx

−lx

dx′

∫ +ly

−ly

dy′
∫ +lz

−lz

dz′
1

|~r − ~r ′| ,

(24)
where ~r = (x, y, z) is an arbitrary point in space and ~r ′ =
(x ′, y ′, z ′) is the vector position of the element of charge
within the cuboid region. It is straightforward to use
the current method which relies on the transformation of
1/|~r − ~r ′| according to Eq.(12) and obtain the following
result:

V (x, y, z) = ke ρ0
2√
π

∫ ∞

0

du f(u, x, lx) f(u, y, ly) f(u, z, lz) .

(25)
This time, there are three auxiliary functions under the
sign of the integral. Although an explicit analytic cal-
culation of the resulting integrals might be challenging,
the expression obtained in Eq.(25) as a one-dimensional

integral is very easy to handle from the perspective of nu-
merical methods. To conclude, this example illustrates
well the power and elegance of this method when ex-
tended to more realistic uniformly charged bodies that
occupy a more complicated multi-dimensional space.
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APPENDIX A: CALCULATION OF V (ρ, z) BY
DIRECT INTEGRATION

The quantity to calculate is:

V (ρ, z) = ke λ

∫ +l

−l

dz′
√

ρ2 + (z − z′)2
, (A1)

where in cylindrical coordinates ρ2 = x2 + y2 ≥ 0 and
−∞ < z < +∞. We use direct integration to obtain the
explicit expression for V (ρ, z). Two slightly different ap-
proaches denoted as (a) and (b) are followed to complete
the integration.

1. Approach (a)

In approach (a) we introduce the following auxiliary
variable,

u = z − z ′ . (A2)

This allows us to rewrite the expression in Eq.(A1) as:

V (ρ, z) = ke λ

∫ z+l

z−l

du
√

ρ2 + u2
. (A3)

The following integration formula applies:
∫

dx√
x2 + a2

= ln
(

x+
√

x2 + a2
)

. (A4)

As a result:

V (ρ, z) = ke λ ln
(

u+
√

u2 + ρ2
)

∣

∣

∣

∣

∣

u=z+l

u=z−l

. (A5)

We denote the final result as Va(ρ, z) where (a) implies
that this expression was obtained via approach (a) and
write it as:

Va(ρ, z) = ke λ ln

[

√

ρ2 + (z + l)2 + (z + l)
√

ρ2 + (z − l)2 + (z − l)

]

. (A6)
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2. Approach (b)

In approach (b) we introduce the following auxiliary
variable,

u = z ′ − z . (A7)

This allows us to rewrite the expression in Eq.(A1)
slightly differently as:

V (ρ, z) = ke λ

∫ +l−z

−l−z

du
√

ρ2 + u2
. (A8)

We use again the integration formula in Eq.(A4). This
leads to:

V (ρ, z) = ke λ ln
(

u+
√

u2 + ρ2
)

∣

∣

∣

∣

∣

u=+l−z

u=−l−z

(A9)

We denote the result as Vb(ρ, z) where (b) implies this
expression was obtained via approach (b). After minor
arrangements we write it as:

Vb(ρ, z) = ke λ ln

[

√

ρ2 + (z − l)2 − (z − l)
√

ρ2 + (z + l)2 − (z + l)

]

. (A10)

APPENDIX B: FUNCTION f(u, z, l)

The following function is defined by the integral:

f(u, z, l) =

∫ +l

−l

dz′ e−u2 (z−z′)
2

, (B1)

where all quantities are real. We introduce the new
dummy variable v = z − z′. This change of variables
allows us to write the expression in Eq.(B1) as:

f(u, z, l) =

∫ z+l

z−l

dv e−u2 v2

. (B2)

The following integral formula is used:

∫

dx e−a2 x2

=

√
π

2 a
erf (a x) , (B3)

where erf(x) = 2/
√
π
∫ x

0
dt e−t2 is an error function and

a is a real constant. Straightforward algebra leads to:

f(u, z, l) =

√
π

2u

{

erf
[

u
(

z+l
)]

−erf
[

u
(

z−l
)]}

. (B4)

One can easily conclude that f(u, z, l) is an even function
of z by looking at Eq.(B1) as well as Eq.(B4):

f(u, z, l) = f(u,−z, l) . (B5)

Recall that the error function is an odd function:

erf(x) = −erf(−x) . (B6)

This means that, without any loss of generality, one can
rewrite the function f(u, z, l) in Eq.(B4) as:

f(u, z, l) =

√
π

2u

{

erf
[

u
(

|z|+ l
)]

− erf
[

u
(

|z| − l
)]}

.

(B7)
Writing the function in terms of the absolute value of |z|
is quite convenient from the perspective of not having to
deal with negative values of z separately.

APPENDIX C: INTEGRAL
I(a, b) =

∫

∞

0

dx

x

[

erf(a x)− erf(b x)
]

We want to calculate the following integral:

I(a, b) =

∫ ∞

0

dx

x

[

erf(a x)− erf(b x)
]

, (C1)

where a and b are assumed real. We know that integrals
of the form,

∫∞

0
dx
x
erf(c x) diverge (c assumed real). Ob-

viously, the sign of c determines whether the integral goes
to +∞ or −∞ given that erf(x) is an odd function of x.
This means that, intuitively speaking, I(a, b) may have
a chance of being finite (different from ±∞) when: (i)
both a > 0 and b > 0 or (ii) both a < 0 and b < 0. To
facilitate the precise calculation of I(a, b) in Eq.(C1), let
us introduce a convergence factor, ε > 0 and write:

I(a, b) = lim
ε→0

∫ ∞

0

dx

x
e−ε2 x2

[erf(a x)− erf(b x)] .

(C2)
The convergence factor make the integrals non-singular
and each of them can be calculated from the formula
below:

∫ ∞

0

dx

x
e−ε2 x2

erf(c x) = sinh−1

(

c

|ε|

)

, (C3)

which applies for any parameter ε and c assumed real.
Note that the formula in Eq.(C3) is an iteration of the
formula in Eq.(17) with a slightly different notation. Ap-
plication of this formula leads immediately to:

I(a, b) = lim
ε→0

[

sinh−1
(a

ε

)

− sinh−1
(b

ε

)]

, (C4)

where ε = |ε| > 0 in our case. At this juncture, we
revert back to expressions in terms of natural logarithmic
functions by recalling that sinh−1(x) = ln(x+

√
x2 + 1).

After some straightforward algebra, we have:

I(a, b) = lim
ε→0

ln

(

a+
√
a2 + ε2

b+
√
b2 + ε2

)

. (C5)

The limit in Eq.(C5) should be calculated with care. The
conclusion is obvious when a > 0 and b > 0 where one
obtains:

I(a, b) = ln

(

a

b

)

; a > 0 ; b > 0 . (C6)
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Likewise, it is not difficult to see that I(a, b) diverges to
±∞ when a and b have opposite signs:

I(a, b) = ln

(

a+ |a|
b+ |b|

)

=







+∞ ; a > 0 and b < 0

−∞ ; a < 0 and b > 0 .

(C7)
However, one still should be careful when calculating the
limit in Eq.(C5) when both a < 0 and b < 0. In our view,
the simplest way to understand this case is to rewrite the
expression in Eq.(C1) for a < 0 and b < 0 as:

I(a < 0, b < 0) = −
∫ ∞

0

dx

x

[

erf(|a|x)− erf(|b|x)
]

,

(C8)

where we wrote a = −|a| < 0, b = −|b| < 0 and used
the fact that erf(x) is an odd function of x. With help
from the formula in Eq.(C6) that applies to the quantity
in Eq.(C1) when the arguments of the error functions are
both positive, one has:

I(a < 0, b < 0) = − ln

(

|a|
|b|

)

; a = −|a| < 0 ; b = −|b| < 0 .

(C9)
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