Overcoming the Memory Hierarchy Inefficiencies in
Graph Processing Applications

Jilan Lin, Shuangchen Li, Yufei Ding, Yuan Xie
University of California, Santa Barbara, Santa Barbara 93117, USA
{jilan, shuangchenli, yufeiding, yuanxie}@ucsb.edu

Abstract—Graph processing participates a vital role in mining
relational data. However, the intensive but inefficient memory
accesses make graph processing applications severely bottle-
necked by the conventional memory hierarchy. In this work,
we focus on inefficiencies that exist on both on-chip cache and
off-chip memory. First, graph processing is known dominated by
expensive random accesses, which are difficult to be captured
by conventional cache and prefetcher architectures, leading to
low cache hits and exhausting main memory visits. Second, the
off-chip bandwidth is further underutilized by the small data
granularity. Because each vertex/edge data in the graph only
needs 4-8B, which is much smaller than the memory access
granularity of 64B. Thus, lots of bandwidth is wasted fetching
unnecessary data.

Therefore, we present G-MEM, a customized memory hi-
erarchy design for graph processing applications. First, we
propose a coherence-free scratchpad as the on-chip memory,
which leverages the power-law characteristic of graphs and only
stores those hot data that are frequent-accessed. We equip the
scratchpad memory with a degree-aware mapping strategy to
better manage it for various applications. On the other hand, we
design an elastic-granularity DRAM (EG-DRAM) to facilitate
the main memory access. The EG-DRAM is based on near-data
processing architecture, which processes and coalesces multiple
fine-grained memory accesses together to maximize bandwidth
efficiency. Putting them together, the G-MEM demonstrates a
2.48x overall speedup over a vanilla CPU, with 1.44x and
1.79x speedup against the state-of-the-art cache architecture and
memory subsystem, respectively.

I. INTRODUCTION

In many application domains, we use graphs to abstract
the data of interests and excavate information from them,
such as social networks, financial transactions, and knowledge
databases [1], [2], [3], [4]. Graph processing thus emerges as
an important workload. Although graph processing algorithms
could vary depending on different application scenarios, they
usually suffer from the same bottleneck: the dominated and
expensive memory accesses.

We identify that there are two challenging inefficiencies in
the existing memory hierarchy for graph processing: on-chip
cache inefficiency and off-chip bandwidth inefficiency. (a) The
on-chip cache inefficiency is caused by the poor locality in
graph processing. Graph processing is widely known to be
filled with random memory access, due to the unpredictable
and sophisticated connections between vertices [5]. Since tra-
ditional cache and prefetcher architecture are usually designed
for patterned accesses, they fail to capture the randomly
accessed data desired by graph processing applications. Lots

This work was supported in part by NSF 1816833 and 1719160.

of work has reported the low cache hits of 10% 40% in graph
applications [6], [7], since the traditional cache hierarchy is
difficult to predict and capture the random access pattern. (b)
The off-chip bandwidth inefficiency comes from the small
data granularity in graph processing. First, traditional graph
processing algorithms usually assign 4B/8B integers or floats
to represent the vertex data [8], [9], which are reported to take
more than 80% of the memory accesses [10]. However, current
commercial DRAM memory generally supports the accessing
granularity of 64B that aligns with the cacheline size [11],
and the 4B/8B data appears to be all we need from the 64B
cacheline due to the poor locality. Therefore, lots of off-chip
memory bandwidth is wasted fetching unnecessary data.

Extensive efforts have been made toward improving the
efficiency of memory hierarchy. From the on-chip cache side,
researchers have found that nature graphs are well-known
to be power-law distributed [12], [13], meaning few high-
degree vertices are frequently accessed. Prior work managed
to leverage this interesting property: OMEGA [14] designed a
distributed scratchpad to store high-degree vertices, requiring
a fixed data flow and programming model and thus losing the
flexibility to process various graph applications; GRASP [10]
customized the existing cache to enable the ability to iden-
tify and store such vertices, but the time-consuming graph
reordering highly limits the performance. From the off-chip
memory perspective, prior work sought system-level solutions
by adopting specialized dataflows, which takes a more se-
quential access pattern to alleviate the fine-grained off-chip
traffic. For instance, the X-STREAM [15] proposed an edge-
centric processing flow that streams through all edges to
update the source and destination vertices, and thus the off-
chip accesses are streaming-patterned. However, the changed
processing flow could introduce a large overhead of reading
unnecessary data. Generally, not all edges are active during one
iteration. Prior work has reported that there are only 10%-20%
vertices remaining active [16], indicating lots of edges are not
needed in the edge-centric processing.

To achieve both high flexibility and performance, we present
G-MEM, a customized memory hierarchy design for graph
processing. We design the G-MEM based on two insights:
First, as specialized cache architectures could limit the appli-
cation flexibility or bring significant hardware cost, a software-
managed on-chip memory is leveraged to facilitate access to
the hot vertices in a graph. Second, the coarse-grained data
in the memory bus comes from multiple DRAM devices in a
DRAM DIMM, we could expect finer-grained accesses with

fewer DRAM devices. Specifically, we design a coherence-
free scratchpad on-chip memory, since the power-law charac-
teristic of graphs is hardly captured by the traditional cache
hierarchy. To facilitate the use of the scratchpad memory, we
further propose a graph-aware mapping strategy to manage
the scratchpad from the software level. In addition, we design
an elastic-granularity memory subsystem based on near-data
processing (NDP) architecture that has been widely studied in
prior work. We make up our elastic DRAM DIMM with off-
the-shelf DRAM devices, and each DRAM device provides 8B
data access. We equip the DIMM with a gather-scatter unit,
which processes and coalesces multiple fine-grained memory
accesses together to maximize the bandwidth efficiency.
We summarize the contributions of this paper as follows:

e We design a coherence-free scratchpad as the on-chip
memory, coming with a proposed degree-aware vertex
remapping strategy to exploit the graph’s power low
nature (Section III-B).

e We propose an off-chip memory composed of elastic-
granularity DRAMs (EG-DRAMs) to coalesce fine-
grained accesses and boost the bandwidth efficiency
(Section III-C).

« We optimize the extension in the memory controller and
the DDR4 protocol, to save the bandwidth demand and
area overhead of the EG-DRAM (Section III-D).

o The Sniper-based [17] simulation demonstrates a 2.48x
overall speedup over a vanilla CPU, with 1.44x and
1.79x speedup against the state-of-the-art cache archi-
tecture and memory subsystem, respectively.

II. PRELIMINARIES

In this section, we introduce the preliminaries for future dis-
cussions, including graph processing basics, characterizations
of graph workloads, and the related work.

VertexD 0 | 2 3 4
Property mmmm

Offset

Neighbor ID

Fig. 1. A CSR graph formatted with 3 arrays: Property array denotes the
value in each vertex; Offset array denotes the index of the vertex’s neighbors,
which locate at the Neighbor ID array.

A. Graph Processing Basics

Graph Data Layout: Graphs are usually stored vertex by
vertex in a dense format, with neighbors attached to each
vertex, since the edge connectivity between vertices is very
sparse. For example, compressed Sparse Row (CSR) is a
common-used data structure to represent a graph [18], as
shown in Fig. 1. The property array stores the value of each
vertex, for example, the PageRank score in the PageRank
algorithm or the vertex depth in the Breadth-First-Search
algorithm. The structural information is stored in 2 arrays:
Offset array and Neighbor ID array. The offset array records

the begin and end indices of the neighbors for each node,
which can be found from the neighbor ID array.

Power-law Distribution: Natural graphs usually has a
unique feature: power-law degree distribution [12], [13]. This
means most vertices have relatively few neighbors while only a
few have many neighbors (e.g., celebrities in a social network).
A power-law degree probability distribution is formulated by:

P(d) ~d (1)

where the P(d) denotes the probability that a vertex has a
degree d, and the exponent « indicates “skewness” of the
distribution (higher o« means more vertices have low degrees).

Parallel Graph Processing: Graph workloads are tradi-
tionally processed in either a vertex-centric or an edge-centric
manner [19], [20]. In vertex-centric processing, the property
of a vertex is calculated in accordance with its neighbors’
properties. Updating properties can be done by computing all
vertices, or propagating from vertices that have their prop-
erties changed to neighbors. This process is usually iterative
until convergence. Similarly, in edge-centric processing, the
computation goes over edges instead of vertices, where the
update is achieved through pushing the information from the
source to the destination over a particular edge. Edge-centric
processing brings more localities when streaming edges, but
may also introduce extra data traffic as high-degree vertices
can be read many times without cached.

Both vertex-centric and edge-centric processing can be
accelerated by exploiting parallelism. We can spawn parallel
threads to process individual vertices in the vertex-centric
processing, or different edges in the edge-centric processing.
Thus, lots of parallel graph processing frameworks and bench-
marks are proposed accordingly, based on various parallel
programming libraries such as OpenMP (multi-thread) and
MPI (multi-machine) [21], [8], [19], [15].

B. Memory Hierarchy Inefficiencies

In this section, we introduce the characterizations of graph
workloads to identify the memory hierarchy bottleneck.

BFS + LJ

Num. DRAM
Accesses

Num. DRAM
Accesses

Vertex Degree

Fig. 2. The relationship between the vertex degree (shown in z-axis) and the
number of memory accesses to it (shown in y-axis). Four graph applications
are evaluated on two datasets: LiveJournal and Wiki.

First, random access nature severely degrades the perfor-
mance of on-chip caches. Lots of work has reported the low

cache hits in graph applications [6], [10], since traditional
caches are difficult to predict and capture the random access
pattern. Typically, a cache hit ratio of 10%-20% is observed in
the L2 cache, while a 30%-60% hit is observed in the LLC [6],
[10]. Due to the power-law property, few high-degree vertices
are frequently accessed. As shown in Fig. 2, we find the
number of accesses to each vertex is literally linearly related
to its degree. This gives us a hint that the on-chip memory
should leverage the native feature from graph datasets.

100%
80%
60%
0% 16.6% 12.1%
20% 12.1%

0%

13.2%
14.7% 13.6%

9.2% 14.6%
16.6% . 0
7 3% 152%) 13.1%

PageRank Connect Component Breadth-First-Search Max Computation
(PR) (CC) (BFS) (MC)

mWiki ®LiveJournal m Orkut

Fig. 3. The bandwidth efficiency on the 8 graph processing workloads, which
is measured as average touched data in a cacheline.

Second, a cacheline is underutilized due to the fine-grained
memory accesses pattern. Modern DDR4 DRAM is designed
to comply with a 64B cacheline in caches. However, previous
studies revealed that the granularity of memory accesses in
graph applications can be as small as 4B or 8B [9], [7]. To
quantitatively evaluate the exact granularity that graph appli-
cations demand, we investigate what percentage of the 64B
cacheline is actually torched. As demonstrated in Fig 3, we
extracted the memory traces from various graph applications
and derived the percentage of used cacheline by averaging the
touched data size within a time window. Besides, the vertex
property data is set to be 4B. We find that even with a large
memory window of 128, only less than 20% of 64B data are
used. This means more than 80% of the memory bandwidth
is wasted in fetching unnecessary data.

C. Related Work

Cache and Prefetcher Architectures: Prior work has
broadly discussed the opportunity of graph-specialized caches
and prefetchers to improve the data locality for on-chip
memory. OMEGA [14] is a distributed scratchpad memory
to store high-degree vertices, requiring a fixed data flow
and programming model to process the vertex mapping and
communication; GRASP [10] extended the existing cache to
enable the ability to identify and manage these hot vertices,
but it requires the time-consuming graph reordering. On the
other hand, indirect memory prefetcher (IMP) [22] is designed
for applications that exhibit pointer-chasing behavior. But IMP
could prefetch lots of unnecessary data. DROPLET [6] further
improved IMP with dedicated units to identify the property,
offset, and neighbor ID data explicitly, and thus fetches
those vertices associated with currently cached vertices more
precisely. HATS [5] also speculates the vertex data processed
in the core and issues prefetches over the entire community
of these vertices. Both DROPLET and HATS require a fixed
data structure in the application, such that the hardware could

directly recognize and operate on the graph data and generate
prefetching commands.

OMEGA | GRASP | IMP | DROPLET | HATS | G-MEM
[14] [10] [22] [6] [5] (ours)
Flexiblity X v v X X v
Performance v X X v v v
TABLE I

COMPARISON OF G-MEM’S ON-CHIP MEMORY WITH PRIOR WORK.

G-MEM differs from the prior work by achieving both
high flexibility and performance, as shown in Table I. We put
a general-purpose scratchpad as the on-chip memory, which
does not require one particular data layout and data flow and
could fit into various application scenarios. Instead, we design
a data allocation strategy based on a lightweight reordering
algorithm to manage the scratchpad from the software level.

Memory Subsystem Design: There are relatively fewer
studies on a specialized off-chip memory to accelerate
graph processing. Dynamic-Granularity Memory Subsystem
(DGMS) [23] and Adaptive-Granularity Memory Subsystem
(AGMS) [24] leveraged narrowed memory bus to achieve fine-
grained memory accesses. As a memory channel contains both
command/address (C/A) bus and data bus, such designs only
narrow the width of data bus but still need the same C/A
bus. Therefore, the C/A bus then becomes a huge overhead
considering the limited pin fan-out from the chip. We will
explain this in detail in Section 3.2. On the other hand, Gather-
Scatter DRAM [25] designs a DRAM memory that is able to
perform strided gather/scatter memory access. However, as the
conventional strided prefetcher does not work for the random
memory accesses, this fix-pattern gather-scatter DRAM is not
preferable for graph processing workloads.

G-MEM leverages the recent near-data processing (NDP)
technology (specifically DRAM-based NDP technology),
which puts a special-function unit on the DRAM DIMM to
operate data near the memory and meet different applica-
tion demands [26], [27], [28]. The key idea is to pack the
sophisticated and fine-grained memory requests together on
the DRAM DIMM and send them back to the processor.
Therefore, G-MEM boosts the bandwidth efficiency without
introducing overhead to the system bandwidth.

III. G-MEM ARCHITECTURE

In this section, we present the architecture design of G-
MEM. We first give an overview of G-MEM, followed by the
coherence-free scratchpad design, degree-aware vertex remap-
ping scheme, and the NDP-based elastic DRAM memory.

A. Overview

Fig. 4 presents an overview of the G-MEM architec-
ture, which includes the on-chip coherence-free scratchpad
(CF-scratchpad) and off-chip elastic-granularity DRAM (EG-
DRAM). First, we make the scratchpad memory coherence-
free by having it share the memory space with DRAM. There-
fore, each core can access it with a designated address space
without maintaining the coherence between the scratchpad
and the DRAM. We further propose a degree-aware vertex
remapping scheme to manage the scratchpad from the software

. HC) 1
rocessor i [DMMo

Rank.0

@)

=) B
—

Rank.|
LI-l | LI-D LI-l | LI-D M—'G_Dj Addr G M_'G_'j
| " | | " | T T T Inst. Decoder
H Response Buffer | L5 (RS
: [TTTITTTTITIIITTITT] -
(o] (L= fu-p] T | Y i
; | DQBus CIA Bus|
Coherence-Free [EG-DI'MM) [EG-DIIMM) i
Scratchpad (EGDIMM | [EG-DIMM] i(d)
. I I-bit 4-bit 4-bit 4-bit
EG-DIMM EG-DIMM
Memory | EG-DIMM [T) I) CA [RD] Data_Size [Data_Count [Request_ID |
Controller | Extension [EG'DIIMM) (EG‘DI|MM) 8B B 8B a8 B
N — DQ [Addr 0] Addr_I] Addr 2| Addr_3 [Addr_4 Fo ey
annel anne

Fig. 4. The overview of G-MEM de;ign. (a) A multicore process equipped with G-MEM, including a coherence-free scratchpad and extended memory
controller. (b) The elastic-granularity (EG) memory channels connected to the processor. (c) The microarchitecture of the elastic-granularity DRAM, which
achieves fine-grained access by separating DRAM devices. (d) The instruction format of EG-DRAM, with packing multiple memory requests together.

level. Second, we design the elastic-granularity DRAM as
the off-chip memory. We leverage the near-data processing
(NDP) technology to access the on-DIMM DRAM devices
individually and achieve fine-grained data access. We also
design the instruction format by leveraging the unused address
line and data line in the PRECHARGE command to ensure
compatibility with the commodity DDR4 interface.

BN @
O0xBIFA B
~
5 = ol
Q o o
[RD] 0xA31E £ e
g = |
[RD[0x8C38B NEIE
Packed
[RBJ 0x9DB | R sl | | Request
On-chip Off-chip

Fig. 5. The data flow in the G-MEM hierarchy. Four read requests are issued
from cores, where one is served by the on-chip scratchpad and the other three
go through the off-chip EG-memory.

Fig. 5 gives an illustrative data flow in G-MEM. Four
read requests to different fine-grained data are issued from
cores, which transit through the interconnection between core
and scratchpad. The scratchpad identifies that the address of
request #1 locates within itself and sends the desired data back.
Then, the other three requests are forwarded to the memory
controller. With the EG-DRAM extension unit, the memory
controller packs those requests together and sends them to the
off-chip EG-DRAM. Thus, three reads could be served with
only one memory walk to boost the bandwidth efficiency.

B. Coherence-Free Scratchpad

In this section, we introduce our coherence-free scratchpad
that locates in the same memory address space with DRAM,
We then present how is the scratchpad memory managed at
the software level.

1) Opportunity of using scratchpad memory: Concerning
that some higher-degree vertices are accessed much more
frequently than other vertices and hardware prefetchers are
unlikely to predict such memory access pattern, a scratchpad
memory that is managed at the software level is more ap-
pealing to store these high-degree vertices. Also, compared
with a large shared cache, the scratchpad memory brings the
benefits of easier hardware implementations and no tag ac-
cess/hierarchy traverse time, meaning a smaller area overhead
and lower access latency. A similar idea has been exploited
in OMEGA [14], which equips each core with a scratchpad
memory to store high-degree vertices by reducing the cache
size. However, we here focus on a more general and flexible
design and minimizing the traffic between scratchpad and main
memory.

Mem Req
switch e

i

DRAM Scratchpad

Memory

048200 0008

Memory
Controller
Scratchpad |,

Fig. 6. Coherence-Free Scratchpad

2) Avoiding coherency by memory space partitioning.: To
eliminate the coherence between scratchpad and DRAM and
reduce the bandwidth demand, we propose a heterogeneous
memory subsystem consisting of both scratchpad and DRAM,
meaning the scratchpad shares the same address space with
DRAM and works as a fast main memory.

As shown in Fig. 6, first, when allocating the memory
addresses, the memory management unit records a reserved
memory space that is as large as the scratchpad memory.
For instance, a 32MB scratchpad memory takes the address
from 0x80000000 to 0x82000000, and any data allocated
within this address belongs to the scratchpad. Then, when
a memory request comes down to the memory controller, a
switch determines to either route the request to the scratchpad
or bypass it to the DRAM controller only according to the
address of this request. Therefore, we make the scratchpad

transparent to the program at run-time, and no special control
of different data flows is required.

3) Graph-Aware Scratchpad Management: The system-
level management of the scratchpad memory such as memory
allocating mentioned above can be achieved by the memory
management unitMMU) [29], [30] where the scratchpad can
be treated as another piece of memory in a similar way
as the non-uniform memory access (NUMA) in multi-socket
CPU [31]. We would like to explain more in detail about the
software-level managing for the scratchpad memory. For large-
scale graphs, we can only expect a small portion of vertices
can fit into the on-chip scratchpad memory. As discussed in
Section II-B, this small portion is preferable to be the high-
degree vertices that are quite frequently accessed. However,
the problem is these vertices are not stored continuously and
also randomly exist in the node array.

Key idea: We propose a degree-aware vertex remapping
scheme to tackle the issue of random distributed high-degree
vertices. The scheme manages to exchange high-degree ver-
tices to the front tail of the vertex array, such that they
would locate in sequential address space in the scratchpad.
For example, for a graph with 100 vertices, the vertex 0-9
are almost high-degree vertex and locate in the scratchpad
while vertex 10-99 with relative lower degrees remain in the
DRAM. In addition, since we do not essentially need to sort
the vertices but just separate them instead, the algorithm only
needs to scan over the vertex array and identify a high-degree
vertex by a threshold, so heavy reordering is not required.

As illustrate in Algorithm 1, we maintain 2 vertex pointers,
Dlow and ppign, for recording the current low-degree vertex
and searching the next high-degree vertex, respectively. A
degree threshold is used to determine whether a vertex is high-
degree or low-degree. As we find the expected p;,, within
the scratchpad region and one pj,;4;, outside the scratchpad,
we switch the properties of these 2 vertices and pair them
into a map. The algorithm terminates when we go to the end
of the scratchpad or the total number of vertices, indicating
that we already have enough hot vertices in the scratchpad
or we cannot find any more hot vertices. In terms of the
algorithm complexity, in the worst case, it takes at most
O(N) + O(E - S) time under the condition that we switch
out all the vertices in the scratchpad. However, since it is
unlikely to face such many high-degree vertices and the size of
the scratchpad is relatively small, the computation complexity
in normal cases is around C' - O(F). Note that, existing pre-
processing frameworks usually provide techniques like vertex
sorting [8]. Our proposed vertex ID remapping strategy can
be easily embedded into the pre-processing step.

Choice of degree threshold: According to prior study on
power-law distribution, nature graphs usually have a skewness
factor o ~ 2 [32]. This means we can pick a fixed degree
threshold for most graphs with such prior knowledge. For
a specific scratchpad size and graph statistics (number of
vertices), we can decide what percentage of vertices can be
loaded into the scratchpad. And thus, the threshold is selected
according to Eq. (1). On the other hand, the choice of threshold

Algorithm 1: Degree-Aware Vertex Remapping

1 INPUT: Graph G{V, E}, degree threshold 0;5., and Opigp ,
number of vertices in the scratchpad S (S < |V]).
2 begin

3 Initialize: N = |V/|; Vertex pointers piow = 0, Phigh =
vs; Vertex map Vinap;

4 while p;o, < vs do

5 if prow.degree() > 6100 then

6 Plowt+;

7 continue;

8 end

9 while ppign < Vv do

10 if prign.degree() < Onign then
11 p;”'gh++;

12 continue;

13 end

14 &ptemp = &phigh;

15 &phigh = &plow;

16 &plow = &phigh; /I Switch Plows Phigh
17 Vinap-insert(Piow, Prigh);

18 break;

19 end

20 end

21 # pragma omp parallel for

22 for e in E do

23 if e.source in Viqp then

24 | e.source = Vinaple.source]

25 end

26 if e.dest in Vp,qp then

27 | e.dest = Vinaple.dest]

28 end

29 end
30 end

is not necessarily precise, since we only need to cache part of
the hot vertices into the scratchpad.

C. Elastic-Granularity DRAM

In this section, we introduce our design for the elastic-
granularity DRAM (EG-DRAM). Additionally, we design the
instruction format for accessing multiple fine-grained data in
a packed request.

1) Challenge and opportunity in conventional DRAM:
Given that on average 14.0% of one 64B cache line (around
9B) is actually accessed in graph applications as characterized
in Section II-B, a memory access granularity of 8B seems
to be more reasonable and efficient. However, the current
DDR4 DRAM is burst-oriented and designed to fit with the
64B cache line size [11]. This is then the smallest granularity
we can expect per transaction. Even though the DDR4 offers
configurable burst length (for example, setting burst length
from 8 to 2 to access 16B data each time), but this only
affects memory controller settings on the processor side but
not the DRAM. As a result, the DRAM still sends 16B data
and another 48B invalid data back to the controller, meaning
that we cannot actually have bandwidth gain from changing
the burst.

The opportunity inspiring our EG-DRAM comes from the
DRAM’s internal hierarchy. Generally, a DRAM DIMM is

organized as rank, chip, bank, row and column. When
accessing DRAM, we have to specify the addresses and choose
which rank, bank, row, and column the data is located in,
but all the chips within the same rank share these addresses.
Each DRAM chip (or DRAM device) outputs 4- or 8-bit data
(what is called x4 chip or x8 chip) every clock edge. With 8
dual-edge clocks of bursting, 4B or 8B fine-grained data could
be expected from a single chip.

2) Elastic-Granularity (EG) DRAM design.: The key idea
of EG-DRAM is cutting down the number of DRAM chips
for each individual memory access. As shown in Fig. 4(c),
the EG-DRAM mainly consists of the instruction FIFO, in-
struction decoder, command (CMD)/address (Addr) generator,
and input/response buffer. Multiplexers are also used to bypass
the EG-DIMM logic and serve regular memory requests.

Instruction FIFO & instruction decoder: The instruction
FIFO receives packed memory requests from both the C/A
bus and DQ bus (which is first cached at the input buffer).
The multiplexer determines if the coming request is an EG-
instruction, such that it pushes the request to the instruction
FIFO or directly forwards it to the DRAM devices. The
instruction decoder reads from the FIFO and dispatches the
request to different DRAM devices separately, such that finer-
grained data could be achieved.

Command & address generators: Each DRAM device is
equipped with individual command/address generators. They
are finite-state machines that follow the standard DDR4 pro-
tocol and work as signal generators to activate the DRAM
device. To minimize their area overhead, we simplify and
optimize the states within them, which will be discussed in
Section III-D.

Input & response buffer: Since the regular DDR4 channel
is synchronized but our EG-instruction is processed asyn-
chronously, the two buffers are used to cache the data from/to
the DQ bus. The input buffer stores the instruction from the
DQ bus, while the response buffer cache the data for a packed
request.

3) EG-instruction format.: The goal of designing EG-
instruction is the compatibility with DDR4 protocol, such
that the memory controller can communicate with EG-DRAM
through standard DDR4 memory channels. Inspired by FIR-
DRAM [33], we issue ENMC instructions from the memory
controller with PRECHARGE command combining special
addresses and data. For example, according to the DDR4
JEDEC specification [11], for a 4Gb DIMM with 8 x8§ DRAM
chips, the row address space consumes 14 bits, i.e., AO-A13 in
the C/A bus, and the data bus is 64-bit. Normal PRECHARGE
command sets all the row address bits to be low, since no row
information is needed. Therefore, an ENMC instruction could
be accommodated by sending a PRECHARGE command but
turning on the row address signals.

Given this insight, we design the ENMC instruction format-
ted in 13-bit command (line A0-A12) and 64B data (DQ bus).
As shown in Fig. 4 (d), in the command line, we use 1 bit to
denote request type (read or write), while the data size, data
count, and request ID are specified with 4 bits respectively. On

the other hand, the 64B (under bursting) in the DQ bus are
used for the addresses for these requests. It is mandatory that
the multiple requests packed in one instruction are the same
type and accessing the same data size, such that the returned
data could be formatted in a strided pattern. Note that for a
write instruction, the DQ bus needs 2 bursts to send both the
addresses and data.

D. Memory Controller Extension and Optimization

In this section, we introduce the extension to the existing
memory controller for EG-DRAM. We then optimize the
DDR4 commands for better C/A bus efficiency.

1) Memory controller extension.: To encode and issue the
EG-instruction, we need to extend the memory controller. The
main task of the extension unit is to scan the memory request
queue through a fixed window and coalesce the proper requests
together as a packed instruction. It leverages the address map-
ping unit to identify those requests within the same DRAM
rank, such that they could be packed simultaneously. Note that,
the data type of vertex properties in a graph are fixed for one
workload, i.e., they are either float, int, or long. Therefore,
finding data of the same size is not difficult.

2) DDR4 protocol optimization.: Two design considera-
tions motivate the optimization for the existing protocol: First,
since we currently need the C/A bus to send both regular
DDR4 commands (PRECHARGE, ACTIVATE, READ, etc)
and EG-instruction, the memory controller may encounter
C/A bandwidth bottleneck during the execution. Second, the
limited on-DIMM area requires us to minimize the size of
command/address generator, since they are copied individually
for each DRAM device and could be a large overhead.
Therefore, the goal of the optimization is to reduce the number
of commands in the DDR4 protocol, which could save both
the bandwidth and area.

Opportunity: We find that there are generally 3 steps to
access the DRAM: precharge (write back the current opened
row), row activate (open another row), and column access
(read/write the data), all of which have corresponding com-
mands in the DDR4 protocol. Since the command bus is not
double-rate, meaning 3 cycles are needed compared with the
4 data cycles. However, as the graph applications are filled
with random memory accesses, we may hardly gain much
row buffer hit and the current opened row appears to write
back again and again. This means letting the data wait at the
row buffer does not bring much benefit and we could save
one cycle by precharging the row buffer automatically after
the column read/write operations.

Therefore, we re-design the finite-state machine in
both the memory controller and command/address gen-
erator, by replacing all READ/WRITE commands with
READ_AP/WRITE_AP. Thus, the C/A bus or signal gener-
ators only need to send 2 commands for one access. This
eliminates the precharge command, and only 2 cycles in the
command bus are occupied in accessing 4-cycle data, leaving
half of the command bandwidth being idle.

IV. EVALUATION

In this section, we present the evaluation results of our G-
MEM. We first clarify our experiment methodology. Second,
we present the comparison of G-MEM to prior work, along
with the sensitivity studies. Finally, we discuss the area and
power overhead in the EG-DRAM architecture.

A. Methodology

Evaluation Tools: We evaluate the G-MEM based on trace-
based and cycle-accurate simulations through the Sniper multi-
core simulator [17], with modifications on the memory hier-
archy and DRAM subsystem. With the interface provided in
Sniper, we model the power consumption and area breakdown
with McPAT [34].

Configurations: We configure a 32-thread system with
four memory channels, while each thread has 32KB LI1-D
and 32KB L1-I caches. The scratchpad size is set as 32MB,
considering we do not enable L2 cache. Each memory channel
consists of 4 DDR4-2666 ranks, and each rank has 8x8
DRAM chips that add to a total capacity of 8Gb. In addition,
we synthesize our EG-logic with TSMC 28nm technology,
running on the frequency of 400MHz. The input buffer and
response buffer have the size of 512B respectively, aligned
with the size of maximal requests.

Baselines: Since we targeting general-purpose graph pro-
cessing, we take the performance of a vanilla 32-thread CPU
as the main evaluation baseline. For the overall performance,
an NVIDIA Tesla V100 is also used for comparison, which has
5120 threads and 960GB/s memory bandwidth. We emphasize
that this may not be a fair comparison since our G-MEM is
designed specifically for the memory hierarchy in CPU, and
it only has about 32 threads and 80GB/s bandwidth.

On the other hand, we compare the coherence-free scratch-
pad (CF-scratchpad) with the GRASP, a recent domain-specific
cache design for graph analytics [10]. Then, we choose the
Gather-Scatter DRAM (GS-DRAM) [25] as the baseline for
EG-DRAM. We clarify that GS-DRAM is not designed specif-
ically for graph processing, and the strided gather/scatter may
not be preferable for random accesses. However, GS-DRAM
is still closely related to EG-DRAM, as we both customize
DRAM to collect multiple requests in one transaction.

Datasets Type Nodes Edges
wiki-topcast (Wiki) Hyperlink 1,791,489 28,511,807
soc-LiveJournall (LJ) | Social Network | 4,847,571 68,993,773
Orkut Communities 3,072,441 117,185,083
Friendster Communities | 65,608,366 | 1,806,067,135
TABLE II

FOUR DATASETS THAT ARE EVALUATED AMONG FOUR ALGORITHMS.

Graph Workloads: We use 2 algorithms: PageRank (PR),
connected component (CC) from GAP benchmarks [8] (for
static graphs), and 2 algorithms: bread-first searching (BFS)
and max computation (MC) from SAGA benchmarks [35] (for
streaming graphs). These two benchmarks have no fixed pro-
gramming model and well-optimized codes for multithreading,
and thus are considered as state-of-the-art benchmarks. Four

datasets are used from the SNAP dataset collection [36], as
shown in Table II. Moreover, GAP processes datasets into
the CSR format, while SAGA stores them as adjacency lists.
For graph algorithms running on GPU, we use the GunRock
framework [37].

B. Performance

In this section, we demonstrate the performance results of
G-MEM, including the performance speedups compared with
the CPU baseline and prior work.

8.79 11.44

X GPU Out of Memor:

2.48
1.68

o N b~ O~

PR CC

Wiki

BFS

PR CC

BFS
Friendster GM
EG-DRAM Only m EG-DRAM + Scratchpad V100 GPU

m CPU Baseline

Fig. 7. The overall performance of G-MEM compared with the CPU baseline.
We configure the G-MEM without/with the coherence-free scratchpad.

1) Overall Performance.: Fig. 7 shows G-MEM’s over-
all performance results compared with the CPU and GPU
baseline, where two configurations (without/with the scratch-
pad) are used to present the performance breakdown of on-
chip scratchpad and off-chip DRAM. First, G-MEM with-
out/with the scratchpad achieves 1.68/2.48x speedup on av-
erage over the CPU baseline respectively. This indicates both
the coherence-free scratchpad and elastic-granularity DRAM
offers considerable speedups to the system. Second, benefiting
from large thread-count and higher bandwidth, GPU provides
an excellent performance than CPU with 4.08x speedup.
However, the main drawback of GPU is its capacity. As shown,
GPU fails to run large-scale graphs such as Friendster and thus
is not the perfect platform for graph processing.

1.53
| I 1.06 I
CC BFS MC

Wiki y Orkut GM
CPU Baseline GRASP m CF-Scratchpad (ours)

3

2
' ||I|||| |
0

CC BFS MC CC BFS MC

PR F PR F PR

F

Fig. 8. The end-to-end performance of CF-scratchpad compared against the
GRASP, where both the graph reordering in GRASP and our vertex remapping
are included in the performance.

2) Compared with prior work.: As shown in Fig. 8, we
compare the end-to-end performance of CF-scratchpad with
the GRASP, the state-of-the-art cache design for graph an-
alytics [10]. We achieve 1.44x average speedup against the
GRASP. Specifically, we find GRASP only achieves 1.06x
speedup over the CPU baseline (indeed, GRASP reported
1.04x speedup originally in the paper). This is caused by
the large preprocessing overhead included in the end-to-end
performance. As GRASP relies on heavy graph reordering
algorithms to fit the high-degree vertices into caches, the

exhausting reordering time migrates the performance gaining
from the hardware. Different from GRASP, our degree-aware
vertex remapping is threshold-based and lightweight, such that
incurring low overhead to the performance.

1.72
| | | i |

PR CC BFS MC

Orkut GM
u EG-DRAM (ours)

3

2

o|||‘|||I||||
B

PR CC BFS MC | PR CC

e
Wiki 1]

= CPU Baseline Gather-Scatter DRAM

F

Fig. 9. The performance of EG-DRAM compared against the GS-DRAM. The
near-baseline performance of GS-DRAM is because the strided gather/scatter
are not preferred in graph processing.

Fig. 9 shows the comparison between GS-DRAM and EG-
DRAM, and we achieved 1.79x speedup over the GS-DRAM.
As we mentioned before, GS-DRAM may not be suitable
for graph workloads. It only explores the strided gather and
scatter, and hardly coalescing requests among the randomly
distributed data. Therefore, the performance of GS-DRAM is
expected to be similar to regular DRAM in the random-access
scenario. Our EG-DRAM overcomes this issue by exploiting
more complicated on-DIMM logic to serve an individual
request from each DRAM device, so the bandwidth is easily
saturated.

C. Sensitivity Study

In this section, we analyze the sensitivity of G-MEM with
different hardware configurations, including the scratchpad
size and the DRAM device width.

PR CcC BFS MC PR cC BFS MC PR CcC BFS MC

Wiki 8]
m 64MB Scratchpad m 32MB Scratchpad

Orkut

1 6MB Scratchpad m 8MB Scratchpad

Fig. 10. The scratchpad hit ratio under different scratchpad size settings,
varying from 8MB to 64MB.

1) Sensitivity to different scratchpad size. : We use the
scratchpad hit ratio to demonstrate the efficiency of scratchpad,
as higher hit ratio leads to reduced off-chip memory traffic.
As shown in Fig. 10, we vary the size of scratchpad from
8MB to 64MB and compare their hit ratio. We find that
larger scratchpad always outperforms the smaller ones. With
increasing the capacity by 2x, we observe an higher hit ratio
increased by 10.3%, 11.5% and 7.4% for 16MB, 32MB and
64MB respectively. This indicates that we cannot expect a
linear increase of the hit ratio from enlarging the capacity.
Considering the trade-off between area and efficiency, we take
the size of 32MB as our system configuration.

2) Sensitivity to different DRAM configurations. : We con-
figure the DRAM device on the EG-DIMM to x8 chip and
x 16 chip, which results in 8B and 16B accessing granularity

25
2

15
10
05
00

PR cC BFS MC PR cC BFS MC PR cC BFS MC

Wiki y
m CPU Baseline m x16 DRAM

Orkut
x8 DRAM

Fig. 11. The performance results under twvo DRAM device configurations.

for each transaction. As shown in Fig. 11, we find that except
for the PR on Wiki, the x8 DRAM demonstrates a better
performance than the x16 DRAM by 11%. For the PR on
Wiki, the x8 DRAM appears less efficient than the x16
DRAM, which aligns with our explanation in Section IV-B1:
this workload explores more sequential accesses, resulting in
a better performance for a coarser-grained DRAM.

D. Power and Area Breakdown

Area (mm?2)|Power (mW) Area (mm?2)|Power (mW)
Inst. FIFO 0.017 14.2 Inst. Decoder 0.002 2.3
Input Buffer 0.034 284 Response Buffer 0.034 284
CMD/Addr Gen. 0.159 149.6 MC Extension 0.020 17.7

EG-DRAM — Area 0.266rnm?; Total Power 240.6mW

‘ CF-Scratchpad — Area 28.94mm?; Total Power 1.32W

TABLE III
AREA AND POWER ESTIMATION OF EG-DRAM’S OVERHEAD AND
CF-SCRATCHPAD MEMORY.

Table III shows the breakdown area and power estimation of
EG-DRAM overhead. The total area of EG logic is 0.247mm?,
and the total power is 224.1mW, which are quite insignificant
considering the area and power of DRAM DIMM are in the
order of hundred mm? and W [38]. Specifically, the command
and address generators take 64.3% of the total area and 66.8%
of the total power. The buffers compose 27.5% of the total area
and 25.3% of the total power. Moreover, the control logic,
including instruction FIFO and instruction decoder take 7.7%
of the total area and 7.4% of the total power. Finally, the
area and power of the CF-scratchpad are about 28.94mm?
and 1.32W, respectively. This is acceptable considering CPU

usually has an area of hundreds of mm?.

V. CONCLUSION

In this paper, we present G-MEM, a customized memory
hierarchy design for graph processing applications. First, we
propose a coherence-free scratchpad as the on-chip memory,
which leverages the power-law characteristic of graphs and
only stores those hot data that are frequent-accessed. We equip
the scratchpad memory with a graph-aware mapping strategy
to better manage it for various applications. On the other hand,
we design an elastic-granularity memory subsystem based on
near-data processing (NDP) architecture, which processes and
coalesces multiple fine-grained memory accesses together to
maximize the bandwidth efficiency. Putting them together, the
G-MEM demonstrate a 2.48x overall speedup over a vanilla
CPU, with 1.44x and 1.79x speedup against the state-of-the-
art cache architecture and memory subsystem, respectively.

[1]

[2

—

[3

[t

[4]

[5]

[6

=

[7]

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

E. Agirre, A. Barrena, and A. Soroa, “Studying the wikipedia hy-
perlink graph for relatedness and disambiguation,” arXiv preprint
arXiv:1503.01655, 2015.

J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anatomy of
the facebook social graph,” arXiv preprint arXiv:1111.4503, 2011.

X. Shao, J. Xie, T. Hong, and A. Jost, “System and method for identity-
based fraud detection through graph anomaly detection,” Jul. 21 2009,
uS Patent 7,562,814.

J. Pujara, H. Miao, L. Getoor, and W. Cohen, “Knowledge graph
identification,” in International Semantic Web Conference. Springer,
2013, pp. 542-557.

A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting locality in graph analytics through hardware-accelerated
traversal scheduling,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2018, pp. 1-14.
A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and
Y. Xie, “Analysis and optimization of the memory hierarchy for graph
processing workloads,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 1EEE, 2019, pp. 373—
386.

S. Eyerman, W. Heirman, K. D. Bois, J. B. Fryman, and I. Hur, “Many-
core graph workload analysis,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis, ser. SC °18. 1EEE Press, 2018, pp. 22:1-22:11.

S. Beamer, K. Asanovi¢, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2016, pp. 1-13.

P. Faldu, J. Diamond, and B. Grot, “Domain-specialized cache manage-
ment for graph analytics,” in 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 1EEE, 2020, pp.
234-248.

JEDEC, “Jesd79-4 - jedec,” https://www.jedec.org/category/technology-
focus-area/main-memory-ddr3-ddr4-sdram, 2017.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Presented as part of the 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12), 2012, pp. 17-30.
L. A. Adamic and B. A. Huberman, “Power-law distribution of the world
wide web,” science, vol. 287, no. 5461, pp. 2115-2115, 2000.

P. Sakarda, T. Brandt, and H. H. Wu, “Memory manager for heteroge-
neous memory control,” Aug. 4 2009, uS Patent 7,571,295.

A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 2013, pp. 472-488.

M. Yan, X. Hu, S. Li, A. Basak, H. Li, X. Ma, I. Akgun, Y. Feng, P. Gu,
L. Deng et al., “Alleviating irregularity in graph analytics acceleration: a
hardware/software co-design approach,” in Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microarchitecture, 2019,
pp. 615-628.

T. E. Carlson, W. Heirman, S. Eyerman, 1. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions
on Architecture and Code Optimization (TACO), 2014.

J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135-146.

R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Computing Surveys (CSUR), vol. 48, no. 2, p. 25,
2015.

Z. Meng, A. Koniges, Y. H. He, S. Williams, T. Kurth, B. Cook,
J. Deslippe, and A. L. Bertozzi, “Openmp parallelization and opti-
mization of graph-based machine learning algorithms,” in International
Workshop on OpenMP. Springer, 2016, pp. 17-31.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “Imp: Indirect memory
prefetcher,” in Proceedings of the 48th International Symposium on
Microarchitecture, 2015, pp. 178-190.

D. H. Yoon, M. K. Jeong, M. Sullivan, and M. Erez, “The dynamic gran-
ularity memory system,” in 2012 39th Annual International Symposium
on Computer Architecture (ISCA). 1EEE, 2012, pp. 548-560.

D. H. Yoon, M. K. Jeong, and M. Erez, “Adaptive granularity memory
systems: A tradeoff between storage efficiency and throughput,” in
Proceedings of the 38th annual international symposium on Computer
architecture, 2011, pp. 295-306.

V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Gather-scatter dram: In-dram address
translation to improve the spatial locality of non-unit strided accesses,” in
Proceedings of the 48th International Symposium on Microarchitecture,
2015, pp. 267-280.

L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee et al., “Recnmp:
Accelerating personalized recommendation with near-memory process-
ing,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2020, pp. 790-803.

Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory
processing architecture for embeddings and tensor operations in deep
learning,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 740-753.

——, “Tensor casting: Co-designing algorithm-architecture for personal-
ized recommendation training,” arXiv preprint arXiv:2010.13100, 2020.
J. E. Zolnowsky, C. L. Whittington, and W. M. Keshlear, “Memory
management unit,” Sep. 25 1984, uS Patent 4,473,878.

B. Egger, J. Lee, and H. Shin, “Scratchpad memory management for
portable systems with a memory management unit,” in Proceedings of
the 6th ACM & IEEE International conference on Embedded software.
ACM, 2006, pp. 321-330.

J. S. Kimmel, R. A. Alfieri, A. Miles, W. K. McGrath, M. J. McLeod,
M. A. O’connell, and G. A. Simpson, “Operating system for a non-
uniform memory access multiprocessor system,” Aug. 15 2000, uS
Patent 6,105,053.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, ‘“Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Presented as part of the 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12), 2012, pp. 17-30.
Y.-C. Kwon, S. H. Lee, J. Lee, S.-H. Kwon, J. M. Ryu, J.-P. Son,
O. Seongil, H.-S. Yu, H. Lee, S. Y. Kim et al., “25.4 a 20nm
6gb function-in-memory dram, based on hbm2 with a 1.2 tflops pro-
grammable computing unit using bank-level parallelism, for machine
learning applications,” in 2021 IEEE International Solid-State Circuits
Conference (ISSCC), vol. 64. 1EEE, 2021, pp. 350-352.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2009, pp. 469-480.

A. Basak, J. Lin, R. Lorica, X. Xie, Z. Chishti, A. Alameldeen,
and Y. Xie, “Saga-bench: Software and hardware characterization of
streaming graph analytics workloads,” IEEE, pp. 12-23, 2020.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the gpu,” in
ACM SIGPLAN Notices, vol. 51, no. 8. ACM, 2016, p. 11.

Micron, “3-dimensional stack (3ds) ddr4 sdram,”
https://www.micron.com/-/media/client/global/documents/products/data-
sheet/dram/ddr4/16gb_32gb_x4_x8_3ds_ddr4_sdram.pdf, 2019.

