
574 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 3, APRIL 2021

Fast Search of the Optimal Contraction
Sequence in Tensor Networks

Ling Liang , Jianyu Xu, Lei Deng , Member, IEEE, Mingyu Yan , Xing Hu, Zheng Zhang , Member, IEEE,
Guoqi Li , Member, IEEE, and Yuan Xie , Fellow, IEEE

Abstract—Tensor network and tensor computation are widely
applied in scientific and engineering domains like quantum physics,
electronic design automation, and machine learning. As one of the
most fundamental operations for tensor networks, a tensor con-
traction eliminates the sharing orders among tensors and produces
a compact sub-network. Different contraction sequence usually
yields distinct storage and compute costs, and searching the optimal
sequence is known as a hard problem. Prior work have designed
heuristic and fast algorithms to solve this problem, however, several
issues still remain unsolved. For example, the data format and
data structure are not efficient, the constraints during modeling
are impractical, the search of the optimal solution might fail, and
the search cost is very high. In this paper, we first introduce a
logk order representation and design an adjacency matrix-based
data structure to efficiently accelerate the search of the optimal
contraction sequence. Then, we propose an outer product prun-
ing method with acceptable overhead to reduce the search space.
Finally, we use a multithread optimization in our implementation
to further improve the execution performance. We also present in-
depth analysis of factors that influence the search time. This work
provides a full-stack solution for optimal contraction sequence
search from both high-level data structure and search algorithm
to low-level execution parallelism, and it will benefit a broad range
of tensor-related applications.

Index Terms—Tensor contraction, adjacency matrix, BFS
algorithm, search space reduction, multithread optimization.

I. INTRODUCTION

T ENSOR networks are widely applied in a wide range of
applications. The most well-known fields are many-body

quantum physics [1]–[5], matrix product states and projected en-
tangled pair states [6]–[11], multiscale entanglement renormal-
ization ansatz [12], [13], and quantum circuit design [14], [15].
Besides the applications in quantum physics, tensor networks are

Manuscript received June 2, 2020; revised November 7, 2020; accepted
January 6, 2021. Date of publication January 15, 2021; date of current version
March 29, 2021. This work was supported by National Science Foundation
under Grants 1725447 and 1817037. The guest editor coordinating the review
of this manuscript and approving it for publication was Prof. Sergiy Vorobyov.
(Corresponding author: Lei Deng.)

Ling Liang, Jianyu Xu, Lei Deng, Mingyu Yan, Xing Hu, Zheng Zhang, and
Yuan Xie are with the Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106 USA (e-mail: lingliang@
ucsb.edu; xu_jy15@ucsb.edu; leideng@ucsb.edu; yanmingyu@ict.ac.cn;
xinghu@ucsb.edu; zhengzhang@ece.ucsb.edu; yuanxie@ucsb.edu).

Guoqi Li is with the Department of Precision Instrument, Center for Brain
Inspired Computing Research, Tsinghua University, Beijing 100084, China (e-
mail: liguoqi@mail.tsinghua.edu.cn).

Digital Object Identifier 10.1109/JSTSP.2021.3051231

recently applied in IC modeling [16] and EDA problems [17].
In addition, tensor networks are capable of compressing the
large-size parameters or data in neural networks [18]–[20] or
signal processing algorithms [21], [22].

Tensor contraction, a process of computing a tensor network
by eliminating the sharing orders among pairs of tensors, is
one of the most fundamental operations in tensor network
processing [23]. In a tensor network, the contraction operation
iteratively merges two nodes into one until the whole network
cannot be merged anymore. Different contraction sequence can
result in distinct memory and compute costs. Therefore, finding
the optimal contraction sequence which consumes less compute
or storage resources is critical for reducing the consequent
contraction cost.

However, this might be a very hard problem. On one hand,
to find the contraction sequence with optimal compute cost is
proved to be NP-hard in [24]. On the other hand, for any ten-
sor network, the optimal storage cost of contraction sequences
equals the treewidth of its line graph, which has been proved
by [25]. Since the problem of computing the treewidth of a
graph is NP-hard in general, it is a rational hyphothesis that the
problem of finding the contraction sequence with optimal stor-
age cost is also a hard problem. Therefore, designing heuristic
search algorithms seems the only way to find the contraction
sequence with optimal storage or compute cost. There exist
both depth-first constructive search (DFS) algorithms [24] and
breadth-first constructive search (BFS) algorithms [26], [27] to
do this search. Dynamic programming can also be applied to
solve this problem [27], [28]. These techniques go through all
possible contraction sequences before determining the optimal
one.

However, the search space grows exponentially as the network
size increases. Some algorithms have also been investigated in
order to shrink the original search space. For the storage cost,
an optimization algorithm is proposed in [29], but this method
does not guarantee an optimal sequence. For the compute cost,
cost capping is used to prune the sequences that cost more
than the optimal one, and some outer product constraints are
added to further reduce the search space [27]. However, the
search complexity depends on the variance of the sharing or-
ders between tensors. In addition, some algorithms have been
proposed to accelerate the search of contraction sequences in
closed tensor networks (i.e. the tensor network being contracted
into a scalar) [30]. A polynomial search solution is proposed

1932-4553 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8534-6494
https://orcid.org/0000-0002-5172-9411
https://orcid.org/0000-0002-6915-955X
https://orcid.org/0000-0002-2292-0030
https://orcid.org/0000-0002-8994-431X
https://orcid.org/0000-0003-2093-1788
mailto:lingliang@penalty -@M ucsb.edu
mailto:xu_jy15@ucsb.edu
mailto:leideng@ucsb.edu
mailto:yanmingyu@ict.ac.cn
mailto:xinghu@ucsb.edu
mailto:zhengzhang@ece.ucsb.edu
mailto:yuanxie@ucsb.edu
mailto:liguoqi@mail.tsinghua.edu.cn


LIANG et al.: FAST SEARCH OF THE OPTIMAL CONTRACTION SEQUENCE IN TENSOR NETWORKS 575

TABLE I
VARIABLE DEFINITION

by [31] for considering both storage and compute costs, however,
their solution is only effective for the tree structure.

Based on the observations from prior work, several issues
should be considered in the search of the optimal contraction
sequence. First, since the search space is vast, efficient data
format and data structure indeed matter and should be designed
to accelerate the search process. Second, we should propose an
algorithm which can find the optimal solution based on the data
structure, shrink the search space, and fit general tensor networks
without specific structure constraints. At last, the search time
should be superior. In order to make the optimal contraction
search more efficient, we propose the following techniques. (1)
We design a search algorithm based on the adjacency matrix
structure which is friendly to data access and network update.
(2) Since the outer product between two tensors can be pruned
from the search space, we design an efficient algorithm to
identify the prunable tensors. (3) Finally, we adopt multithread
optimization for parallel execution of our search algorithm,
which can further improve the efficiency.1 Our proposed method
will benefit a broad range of applications that rely on tensor
computation.

II. PRELIMINARIES

In this section, we first introduce the background of tensor,
tensor contraction, and the problem definition of finding the
optimal contraction sequence of a tensor network in Section II-
A. Then, in Section II-B, we describe the vanilla BFS search
algorithm that we adopt as the basis of our algorithm design.

A. Tensor Network Contraction

Tensor: The variables commonly used in this paper are listed
in Table I. We define a tensor in a network as τi. Tensor can
be regarded as generalization of vector and matrix to represent
high-order data. The number of orders in a tensor is denoted as
M , and the length of the m-th order is denoted as Nm

τi
, where

M,Nm
τi

∈ Z+. Any element in a tensor can be represented as
τi(n

0
τi
, n1

τi
, . . ., nM−1

τi
) where we have nm

τi
∈ {0, 1, . . ., Nm

τi
−

1}.
In Fig. 1, we show the tensor format of vector, matrix and cube.

We take the cube as an example, which is is a third-order tensor,
i.e. M = 3. In this example the length of orders are N0

τ2
= 3,

N1
τ2

= 4, andN2
τ2

= 2. We highlight an element in τ2 which can
be denoted as τ2(1, 2, 0). We can also use graph representation

1https://github.com/liangling76/tensor-contraction-sequence-searching

Fig. 1. Examples of tensors with different order configuration. The top sub-
figures visualize the original tensors; the middle and bottom subfigures show
the graph representation of tensors.

to denote a tensor, where a vertex is a tensor and an edge stands
for one of its orders.

Tensor Contraction under logk Order Representation:
Fig. 2(a) shows an example of the tensor contraction between
two tensors. In this example, τ0 and τ1 are two third-order
tensors. We useT I to represent a tensor after contraction, where
I denotes the subscript set of involved original single tensors,
e.g. here T I = T 01. In this example, T 01 is a two-order tensor
(i.e. matrix). The element in tensor T 01, such as T 01(2, 1), can
be calculated from the contraction between τ0 and τ1 by

T 01(2, 1) =

N0
τ0∑

α=0

N1
τ0∑

β=0

τ0(α, β, 2)× τ1(α, β, 1). (1)

In Fig. 2(b), we termN2
τ0

andN2
τ1

as free orders which have only
one end. These orders will be preserved after the contraction.
Furthermore, τ0 and τ1 share two orders that have the same ends,
which are remarked as N0

τ0τ1
and N1

τ0τ1
. We call them sharing

orders and we haveNm
τiτj

= Nm
τjτi

. The contraction between two
tensors can be interpreted as eliminating sharing orders between
two source tensors and preserving all free orders in the new
tensor after the contraction.

In this paper, we define the compute expense as how many
multiplication operations are required for the contraction. In
this example, in order to get one element in T 01 we need 8

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/liangling76/tensor-contraction-sequence-searching


576 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 3, APRIL 2021

Fig. 2. Illustration of the tensor contraction operation between two tensors:
(a) Graph representation of two third-order tensors τ0 and τ1. The free orders
include N2

τ0 and N2
τ1 , the sharing orders are N0

τ0 , N0
τ1 , N1

τ0 , and N1
τ1 ; (b)

Normal graph representation of the tensor contraction operation; (c) logk (here
k = 2) graph representation of the tensor contraction operation.

multiplications (i.e. N0
τ0τ1

×N1
τ0τ1

). Hence, 64 multiplications
in total (i.e. N2

τ0
×N0

τ0τ1
×N1

τ0τ1
×N2

τ1
) are needed to finish

the contraction between τ0 and τ1. Moreover, the new tensor
T 01 will consume additional storage space, which is defined as
the storage expense in this paper. In this example, the storage
expense of T 01 is 8 (i.e. N2

τ0
×N2

τ1
).

In order to simplify the calculation of expense, we adopt
the logk representation of each order in a tensor as suggested
by [31], where k can be an arbitrary positive value. With the
logk representation, we denote the free and sharing orders with
solid lines as Fig. 2(c). In this example, we set k = 2, then we
calculate the log2 value of each order and denote the free orders
as FOT I

. In this example, we now have FOτ0 = log2N
2
τ0

= 2
and FOτ1 = log2N

2
τ1

= 1. In a similar way, the sharing orders
are also collected together and further denoted as SOT IT J

(note that SOT IT J
= SOT JT I

). In this example, SOτ0τ1 =
log2(N

0
τ0τ1

×N1
τ0τ1

) = log2N
0
τ0τ1

+ log2N
1
τ0τ1

= 3. The logk
representation of collected free and sharing orders are

summarized as

FOT I
=

∑
m

logkN
m
T I

, {Nm
T I

∈ free orders of T I},

(2)

SOT IT J
=

∑
m

logkN
m
T IT J

. (3)

Then we use ST I
to denote the data size of each tensor as

ST I
= FOT I

+
∑
J

SOT IT J
, where J /∈ I. (4)

In this example, we have Sτ0 = FOτ0 + SOτ0τ1 = 5. Finally,
the calculations of storage expense (SE) and compute expense
(CE) for contracting two tensors under the logk representation
are governed by

SET IT J
= ST IJ

= ST I
+ ST J

− 2SOT IT J
, (5)

CET IT J
= ST I

+ ST J
− SOT IT J

= ST IJ
+ SOT IT J

.
(6)

For instance, we yield SEτ0τ1 = 3 and CEτ0τ1 = 6 in this
example. The real storage and compute expenses under this
format are kSET IT J (i.e. 23 = 8 here) and kCET IT J (i.e.
26 = 64 here), respectively. In the rest of this paper, we use the
logk representation unless otherwise specified. From Equation
(2)–(6), it is easy to observe that the logk representation could
transform the complex multiplicative calculations to simpler
additive ones, which accelerates the processing.

Tensor Network Contraction: In Fig. 3(a), we give an ex-
ample of tensor network with four tensors. In this example, we
randomly assign the network topology, the free order of each
tensor and sharing orders between tensors. In this tensor net-
work, the original single tensor τ2 occupies the highest storage
space according to Equation (4), i.e. Sτ2 = FOτ2 + SOτ0τ2 +
SOτ1τ2 = 14.

For a tensor network with V tensors, V − 1 contraction
steps in total are required to contract the network into one
tensor. We use sq to represent a contraction sequence. We
present an arbitrary contraction sequence in Fig. 3(b), i.e. sq =
(((τ0τ1)τ2)τ3). In each contraction step, the highlighted tensors
are selected to perform a contraction. In particular, we take the
first contraction step to illustrate the contraction operation. In
this step, τ0 and τ1 are selected for contraction. As mentioned
earlier, the contraction first eliminates the sharing orders be-
tween these two tensors. Then, two tensors coalesce into one and
the sharing orders connected with other tensors will be merged if
they have the same ends after contraction. At last, the free orders
of these two contracted tensors are also collected together.

Contraction Sequence with the Lowest Maximum Ex-
pense: Usually, a contraction sequence can be evaluated by total
contraction expense [27], [30], [32] or maximum contraction
expense [25], [29], [31]. The total contraction expense is the sum
of storage or compute expense at every contraction step; while
the maximum contraction expense considers the maximum stor-
age or compute expense across all contraction steps. In essence,
the maximum contraction expense becomes close to the total
contraction expense when the length of each order is large [31].

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 



LIANG et al.: FAST SEARCH OF THE OPTIMAL CONTRACTION SEQUENCE IN TENSOR NETWORKS 577

Fig. 3. Example of tensor network contraction: (a) A tensor network with
randomly assigned topology and order values; (b) An arbitrary contraction
sequence; (c) The contraction sequence with the lowest maximum SE; (d) The
contraction sequence with the lowest maximum CE.

Moreover, the maximum contraction expense would be a prefer-
able evaluation metric in practical hardware system. The reason
is that for a hardware system, while the off-chip resource is
usually sufficient, the on-chip resource for both memory and
compute is very limited due to the concern on chip area and
fabrication cost. Thus, the algorithm is actually executed step
by step with frequent data exchange between off-chip memory
and on-chip buffer, rather than hold all the contraction steps on
the chip. In this sense, the maximum contraction expense can
predict the hardware running performance better. Therefore, in
this paper we adopt the maximum SE (MS) and the maximum
CE (MC) as the evaluation metrics to measure the contraction
cost of a given contraction sequence:

MS = maxt SE(sqt), MC = maxt CE(sqt) (7)

where t represents the step index and sqt refers to the t-step
tensor contraction in the entire contraction sequence.

In Fig. 3(b), we calculate the storage and compute expenses
for each contraction step. We find that the first contraction

Fig. 4. Illustration of the BFS algorithm in a network with three tensors. The
tensors surrounded with a big circle are termed as “possible tensors,” and the
two tensors on the same row in a split case that can produce each possible tensor
are termed as “split source tensors”.

step consumes the highest storage expense to store the ten-
sor T 01 after contraction. The first two steps consume the
highest compute expense to calculate tensors T 01 and T 012.
Intuitively, different contraction sequences have different MS
and MC values. The goal of this work is to find a contraction
sequence that has the lowest MS or MC. Fig. 3(c) shows an
expected optimal contraction sequence with the lowest MS,
i.e. sq = (((τ0τ3)τ2)τ1). Both the MS and the MC occur in
the second contraction step. The contraction sequence with the
lowest MC is given in Fig. 3(d), i.e. sq = (((τ0τ3)τ1)τ2). The
MS also occurs in the second contraction step; while the MC
occurs in the last two steps. From the instances, it is easy to
observe that the contraction sequence with the lowest MS (or
MC) cannot guarantee that the sequence has the lowest MC (or
MS). Thus, the metric should be selected in advance to evaluate
the contraction cost in different scenarios.

B. BFS Search Algorithm

In this paper, we adopt the BFS algorithm as the design
basis [26], [27], which is illustrated in Fig. 4. In this example,
the network includes three tensors and we need two contraction
steps to perform the network contraction. We use Setv to denote
the set of possible tensors which are contracted by v original
tensors and have v subscript numbers. Each Setv contains
Cv

V possible tensors, e.g. Set2 = {T 01,T 02,T 12}. For each
possible tensor, we can find Splitv split cases to divide its v
subscript numbers into two sets representing two split source
tensors which can produce that possible tensor in one contraction
step. The search space of each splitv is O(2v). There are three
possible tensors inSet2 (i.e.T 01,T 02, andT 12), each of which
has one split case with two split source tensors that can be
found in Set1. In Set3, the unique possible tensor T 012 has
three split cases, i.e. Split3 = 3, and T 012 can be contracted
through {τ0,T 12}, {τ1,T 02}, or {τ2,T 01} with a contraction
operation between one split source tensor in Set1 and the other
in Set2. The number of split cases for each possible tensor in
Setv is

Splitv =

{∑�v/2�
k=1 Cv

V , if v is odd∑v/2−1
k=1 Cv

V +
C

v/2
V

2 , if v is even
. (8)

In the BFS algorithm, we calculate and save the lowestMS (or
MC) for producing every possible tensor and the corresponding

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 



578 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 3, APRIL 2021

Fig. 5. Overview of the adjacency matrix based contraction sequence search: (a) Original adjacency matrix for sharing orders of a network with four tensors; (b)
Sharing order calculation based on row vectors (R); (c) Original adjacency matrix for sharing orders of the tensor network in Fig. 3; (d) Example of the sharing
order calculation; (e) Adjacency matrix used in the outer product pruning; (f) Outer product vector calculation; (g) Adjacency matrix used in the outer product
pruning of the tensor network in Fig. 3; (h) Example of the outer product vector calculation, and the corresponding disconnected tensor and pruned possible tensor.

split case (the search starts from Set2 to SetV ). Finally, we
only need to consider the contraction expense of the last search
iteration. The reason is that, in the last iteration, the lowest MS
(or MC) of producing all split source tensors can be found in
the previous iterations, which have already been calculated and
saved earlier. Thus, after going through all split cases in the last
iteration, the lowestMS (orMC) to produce each final possible
tensor and the corresponding split case can be acquired. Based
on that we are able to determine the optimal sequence through
the reverse trace of the lowest MS (or MC). The detail of our
algorithm implementation will be introduced in Section III-B.

III. ADJACENCY MATRIX-BASED CONTRACTION SEARCH

In this section, we first describe how to use the adjacency
matrix to update the tensor network during contraction and how
to apply the outer product pruning based on the adjacency matrix
data structure in Section III-A. Then, we introduce the algorithm
details for both the vanilla BFS search and the improved search
with outer product pruning in Section III-B. Finally, we present
the parallelism optimization to further improve the performance
in Section III-C.

A. Data Structure Design

From the above analysis, the only computation during the
search is to calculate SE or CE for each split case of possible
tensors at each iteration according to Equation (5)–(6). Thanks to
the logk representation, these calculations only include additive
operations. However, we still need to get the data size of two
split source tensors in each split case and the sharing order
between them. For faster processing, we propose an efficient
data structure based on adjacency matrix.

A tensor network can be viewed as an undirected graph.
The adjacency matrix format of a network with four tensors
is shown in Fig. 5(a). Note that we do not include free orders
in the adjacency matrix. In general, we define each element
in the matrix to satisfy Eτiτj + Eτjτi = SOτiτj = SOτjτi and
Eτiτi = 0. Any configuration with non-negative elements that
satisfy the above equation is allowed. The extreme configuration

ofEτiτj (orEτjτi )= SOτiτj = SOτjτi andEτjτi (orEτiτj )= 0
is also acceptable.

Sharing Order and Data Size: For a given split case of
a possible tensor at each iteration, the sharing order between
two split source tensors is the summation of all orders that
connect these two tensors as Equation (3). Assume we want
to find the sharing order between two split source tensors τ1 and
T 02, we have SOτ1T 02

= SOτ1τ0 + SOτ1τ2 . Fig. 5(a) boxes
all elements which are required to compute the sharing order
between them. If we directly use the above naive calculation,
the data access to the adjacency matrix according to the tensor
subscripts usually results in large cost due to the random access
pattern in a 2D space and non-reusable additions. To address this
issue, in Fig. 5(b), we design a more efficient way to calculate the
sharing order which requires two steps: (1) For each split source
tensor, all of its involved original rows in the adjacency matrix
are reduced into a new row vector RT I

via the accumulation
operation; (2) For each row vector of the two split source tensors,
the elements whose tensor subscription appears in the other split
source tensor will be selected and added to produce the sharing
order. Specifically, we first get the row vector RT 02

by accumu-
lating the involved original rows in the adjacency matrix andRτ1

from the original adjacency matrix. Then, the sharing order can
be acquired bySOT 02τ1 = RT 02

[1] +Rτ1 [0] +Rτ1 [2]. We use
the tensor network in Fig. 3 as an example to illustrate the sharing
order calculation process. The adjacency matrix of the sharing
orders in the original tensor network is shown in Fig. 5(c). We
first get the row vector RT 02

by summing row vectors RT0
and

Rτ2 as in Fig. 5(d). Then, the sharing order SOT 02τ1 can be
calculated by accumulating the yellow box in RT 02

and the red
boxes in Rτ1 , which equals 8.

It is worthy noting that the saved row vectors (e.g. T 02) will
be frequently reused during the entire search process towards
the optimal contraction sequence, which significantly reduces
the access and calculation costs compared to the naive scheme
solely based on the original adjacency matrix. As the search
iteration goes on, the required new row vectors can be efficiently
obtained given the previously saved row vectors:

RT I
= RT J

+RT K
, J ∪K = I ∧ J ∩K = ∅, (9)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 



LIANG et al.: FAST SEARCH OF THE OPTIMAL CONTRACTION SEQUENCE IN TENSOR NETWORKS 579

which avoids redundant accesses to the original adjacency ma-
trix. Finally we save the row vectors for all possible tensors. Fur-
thermore, the data size of each possible tensor can be obtained
by calculating the SE of an arbitrary split case as Equation (5),
which is also saved for reuse in the calculation of consequent
SEs and CEs during the search.

Outer Product Pruning: The contraction of two tensors
without any sharing order is called an outer product, e.g. the
contraction between τ2 and τ3 in the tensor network provided in
Fig. 3. In prior work, it has been demonstrated, for an arbitrary
tensor network, there always exists a contraction sequence which
achieves the lowest MS or MC and does not include any
possible tensor that has split cases with outer product [31].
Hence, the possible tensors with outer-product split cases can be
pruned during the search of the optimal contraction sequence.
The related calculation of these possible tensors can be removed
accordingly. When the tensor network is composed by several
sub-networks which do not share orders with each other, the
contraction can be done by first applying tensor contraction
in each sub-network and then do outer product between them
with an arbitrary contraction sequence. To judge whether a
possible tensor has outer-product split cases can also be solved
by BFS or minimum cut [33], whereas, they are not efficient.
Especially, when a tensor network has dense connections, the
benefits gained from search space reduction will be degraded.
To this end, we design a fast method to identify all possible
tensors that can be pruned, which is still based on the adjacency
matrix data structure.

At the beginning, an additional adjacency matrix is generated,
as depicted in Fig. 5(e). Compared to the original adjacency
matrix,Eτii is set to 1. For a given possible tensorT I , we aim to
find out all original single tensors τj that do not share orders with
T I . For example, we want to figure out all τj that disconnect
to T 12. According to Equation (3), T I and τj are disconnected
when SOT Iτj = 0. In the adjacency matrix, all the information
about sharing orders of T I are stored in the involved rows and
columns (i.e. #1 and #2 rows, #1 and #2 columns here in the
red boxes of Fig. 5(e)). Based on the sharing order calculation
principles, the outer product vector OT I

can be obtained by
accumulating the boxed row and column vectors, as illustrated
in Fig. 5(f). From the outer product vector OT 12

, it is easy to
observe that the first element indicates the sharing order between
T 12 and τ0, and the last element represents the sharing order
betweenT 12 and τ3. The location of zero elements in OT 12

can
reflect which original single tensors are disconnected to T 12.
Note that the single tensors whose subscript is already in I itself
should not be selected. This is the reason that we set Eτii to 1,
resulting the elements’ value greater than 0 in OT I

when i ∈ I
(i.e. OT 12

[1] and OT 12
[2] here). Then, based on the locations of

zero elements, we can infer the prunable possible tensors which
can be contracted by two disconnected tensors and one of them
is T 12.

For the example tensor network in Fig. 3, the corresponding
outer product adjacency matrix is shown in Fig. 5(g). For the
possible tensor T 12, we find that τ3 is the original disconnected
tensor, because the last element in the outer product vectorOT 12

is zero as in Fig. 5(h). Then, we can conclude that the possible
tensor T 123 can be pruned from the search space. Since it can

be produced by two split tensors which do not share orders and
one of the split tensor is T 12.

B. Contraction Sequence Search Algorithm

Adjacency Matrix based Vanilla Search: Based on the effi-
cient calculation of sharing orders and prunable possible tensors
shown in Fig. 5, we further detail the algorithm of vanilla BFS
search with the proposed adjacency matrix based data structure.
Before going through the search algorithm, we design a function
named SOC to calculate the sharing orders between two split
source tensors T I1 and T I2 . The inputs of this function are
row vectors (RT I1

and RT I2
) and tensor subscripts (I1 and

I2) of two split source tensors. The implementation is given in
Algorithm 1.

The overall search algorithm is provided in Algorithm 2.
Notice that LME stores the lowest maximum expense required
to produce all possible tensors. At the beginning, the data size
Sτi , the row vector Rτi , and the LMEτi for each single tensor
in Set1 are initialized. The initialization of LME depends on
different evaluation metrics (MS or MC).

During the search, the first outer loop goes through all sets
and the second outer loop traverses all possible tensors of the
selected set. At the beginning of the second outer loop, we will
calculate the size of the current possible tensor (i.e. ST I

) and
its row vector representation (i.e. RT I

) based on an arbitrary
split case according to Equation (4) and (9), respectively. If
the measurement metric is MS, the SE of T I will be saved
as the contraction expense (i.e. expense) of T I . The inmost
loop traverses all split cases of T I . For each split case, if the
measurement metric is MC, the CE of contracting two split
source tensors is calculated and updated into expense. Then,
the maximum expense required for producing T I under the
current split case (i.e. MEtmp) can be obtained by taking the
maximum value from expense and the LMEs of producing
two split tensors, where the latter values have been calculated
and saved in the previous iteration. If MEtmp is smaller than
the LME value saved in LMET I

, LMET I
will be updated

with MEtmp, and the optimal split case for T I will also be
updated into sq. If the measurement metric is MS, we should
note although the savedLMEs of producing two split tensors are
variable across split cases, the SE value of T I does not change.
Therefore, if the largest SE occurs in the last contraction step
(i.e. MEtmp equals expense), there is no need to search the
rest split cases since the MEtmp value cannot be smaller than
currentLMET I

anymore and no update ofLMET I
will occur.

Improved Search with Outer Product Pruning: In the
previous subsection, we have illustrated how to get disconnected
tensors and prunable tensors based on the outer product vector
OT I

of a possible tensor T I . Here, we further detail how we

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 



580 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 3, APRIL 2021

apply the outer product pruning to the search algorithm. We
explain it using a chain structure tensor network with five tensors
as depicted in Fig. 6(a). The search space pruning based on
outer product is shown in Fig. 6(b). For the possible tensors
in Set1, we list all disconnected tensors and prunable possible
tensors for each original single tensor. InSet2, we need to get the
LME and perform the outer product search for the first possible
tensor T 01, because it is not excluded from the search space in
Set1. For the prunable possible tensor T 02, we do not search its
optimal contraction sequence, and also we skip its outer product
search. Later we will demonstrate that our search strategy is able
to find all prunable possible tensors.

When we apply the outer product pruning, we find that the
prunable possible tensors might be recognized multiple times.
For the prunable possible tensors identified by the possible
tensors from the same set, we call them intra-redundant prunable
tensors (e.g. T 024 marked by orange stars). For those prunable
possible tensors identified by the possible tensors from different
sets, we call them inter-redundant prunable tensors (e.g. T 013

and T 014 marked by purple stars). In this work, we propose
a method to reduce the recognition times for inter-redundant
prunable tensors, which is presented in Algorithm 3.

Fig. 6. Outer product pruning during the search process: (a) An example tensor
network with a chain structure; (b) The outer product pruning for all original
tensors in Set1 and two possible tensors in Set2.

We use PT I
to indicate whether a possible tensor will be

pruned from the search space (0 pruned, 1 preserved). The input
of the functionOPP (outer product pruning) is the outer product
vector OT I

and the number of elements in the subscript I which
is denoted as vI (vI represents how many original single tensors
are involved in producingT I ). In the functionOPP , we find all
prunable possible tensors based on the possible tensor T I . The
possible tensors T J ′∪I can be pruned from the search space,
where T J ′ represents the possible tensors disconnected to T I .
Note that during our pruning, we only consider the disconnected
tensors T J ′ which satisfy vJ ′ � vI . The reason is that during
the previous search of T J ′′ , when vJ ′′ < vI , the possible tensor
T J ′′∪I has already been pruned. With our method, parts of inter-
redundant pruning can be reduced. For example, in Fig. 6(b),
when we apply OPP to T 01, the disconnected tensors do not
include τ3 and τ4 because T 013 and T 014 have already been
pruned. In this way, we prevent the redundant recognition of the
pruned possible tensors T 013 and T 014.

We first give a sketch proof that our pruning method is
sufficient to find all prunable possible tensors. For an arbitrary
prunable possible tensor T I which can be contracted by a set of
possible tensors T = {T Ii | i = 0, 1, . . .,m}, where Ij ∩ Ik =
φ andSOT Ij

T Ik
= 0 if j 	= k (note that allT Ii are not prunable

possible tensors). Suppose vIj � vIi , for i = 0, 1, . . .,m. Obvi-
ously, vIj � vI/2 � vI\Ij . Therefore, each prunable possible
tensor T I must be pruned during the pruning stage of T Ij . Our
outer product pruning algorithm will go through all possible
tensors which can be contracted without outer product and begin

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 



LIANG et al.: FAST SEARCH OF THE OPTIMAL CONTRACTION SEQUENCE IN TENSOR NETWORKS 581

to search and remove the prunable possible tensors from Set1.
Therefore, it is sufficient to find all prunable possible tensors.
Next, we analyze the complexity of finding a prunable possible
tensor (i.e. the recognition times for a prunable possible tensor).
Based on our pruning process, for an arbitrary prunable possible
tensor described previously, it will be found from the subset T ′

of T , where T ′ = {T Ij | vIj � vIk , j, k = 0, 1, . . .,m}. Ap-
parently, the number of elements in T ′ is smaller than or equals
the number of elements in the subscript I . Thus, the complexity
is vI .

The overall algorithm is shown in Algorithm 4. At the initial-
ization stage for each original tensor in Set1, besides the data
size Sτv , the row vector Rτv , and the lowest maximum expense
LMEτv , the outer product vector Oτv is also calculated and the
first round of the outer product pruning is then executed. During

Fig. 7. Illustration of the multithread optimization.

the search, for each iteration in the second outer loop, only those
possible tensors whose PT I

value equals one will be selected
to run the further contraction expense counting. Also, for each
split case of T I , if one of the split source tensor (i.e. T I1 or
T I2 ) has been marked to be pruned, the current split case is
bypassed since it will not appear in the final optimal contraction
sequence. In contrast to the vanilla search algorithm, we need
to update the outer product vector OT I

for each possible tensor
when we apply the outer product pruning during search.

C. Parallelism Optimization

One advantage of our proposed algorithms is that all of them
are easy to execute in parallel. When we calculate the contraction
expense of possible tensors in aSetv , the processing of each one
is independent from others. Therefore, there are opportunities for
parallelism optimization. Fig. 7 shows an example of two-thread
parallel optimization when calculating the contraction expense
of possible tensors in Set3, in the case of a network with four
tensors.

In our vanilla search (without outer product pruning), for each
possible tensor we calculate the storage expense, row vectors,
and update the LME by traversing all split cases. Apparently,
these operations do not have memory access conflicts between
the possible tensors in the same set. When we apply the outer
product pruning in the search process, one additional operation
is to update the outer product vector. Fortunately, each possible
tensor only updates its own outer product vector. Another op-
eration during search space reduction is to determine whether
a possible tensor will be excluded out from final optimal con-
traction sequence or not. Although different possible tensors
may write the same PT I

simultaneously, the values of them are
identical without incurring incorrect results.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

Most of our experiments were conducted on an Intel Core i7
processor (2.8 GHz) with 16 GB DDR3 DRAM (1600 MHz),
similar with [27] for fair comparison. Moreover, to validate the
parallelism optimization in Section IV-D, we further tested on
an Intel Xeon processor (2.5 GHz) with 384 GB DDR4 RAM
(2133 MHz) for the support of more threads. We evaluate on
tensor networks with three basic topologies: chain, binary tree,
and radial network, as presented in Fig. 9. Since the basic

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 



582 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 3, APRIL 2021

Fig. 8. Search time under different measurement metrics without search space
reduction.

TABLE II
SEARCH TIME (s) UNDER DIFFERENT NETWORK SCALE (I.E. THE NUMBER OF

TENSORS) AND MEASUREMENT METRICS

topology is not sophisticated enough, we further injected random
edges. In short, our network construction includes two stages: (1)
initializing a connective network withV − 1 edges based on one
of the basic topologies; (2) adding edges with random locations
into the network. All the FO and SO values are positive. In our
experiments, we set all SO with the same value which is five
times larger than all FO values.

B. Vanilla Search Without Space Reduction

In this subsection, the tensor networks we evaluate are dense
networks, i.e. fully connected networks. In the vanilla BFS
search without space reduction, we apply exhaustive search,
which means that the LME of all possible tensors will be
searched. Fig. 8 shows the result of search time under different
measurement metrics as the number of tensors in the network
increases. Table II provides detailed time data in the cases of
more than 15 tensors.

The first observation is that finding the lowest MS is cheaper
than finding the lowestMC. One reason is that in the calculation
of CE, we need the sharing order between split source tensors
in all split cases; however, in the calculation of SE we only
need the sharing order once from an arbitrary split case. Another
reason is due to the proposed early stop mechanism in searching
the lowest MS (see line 32-34 in Algorithm 2). The second
observation is that when the number of tensors in the network
increases by one, the search time grows about three times. This
increment relies on the number of split cases during the entire
search, which is

Splittotal =

V∑
v=1

Cv
V · Splitv =

V∑
v=1

Cv
V ·O(2v) = O(3V )

(10)
where we assume the network contains V tensors. It can be seen
that the search space is O(3V ).

TABLE III
SEARCH TIME (s) WITH AND WITHOUT OUTER PRODUCT PRUNING UNDER

DIFFERENT EVALUATION METRICS AND BASIC TOPOLOGIES. HERE EACH

TENSOR NETWORK CONTAIN 19 TENSORS

C. Improved Search With Space Reduction

In this subsection, we evaluate the performance benefited
from the search space reduction via outer product pruning. As
aforementioned in Section IV-A, we test on three kinds of tensor
networks with different portion of extra edges. In order to guar-
antee the reproducibility and fairness across different network
topologies, we adopt the same random seed in all experiments.

We first investigate the performance gain from applying the
outer product pruning for tensor networks with different ba-
sic topologies. Here each tensor network contains 19 tensors
and does not include extra edges. The comparison is shown
in Table III. Apparently, our pruning strategy can reduce the
search time for all networks under both evaluations metrics when
compare to the vanilla search. Another observation is that for the
vanilla search, when the evaluation metric is MS, the search
time significantly varies across different network topologies.
The reason is caused by the variance of the early stop mechanism
that has variable effects on different network topologies.

Also, with our pruning strategy, the search time similarly
varies across different network structures under both metrics.
The detailed analysis is presented in Fig. 9, which provides
the search time with the outer product pruning on networks
under different basic topologies and tensor numbers. From the
results, we can get several observations. First, with the same
reduction strategy, finding the lowest MS is still faster than
finding the lowest MC, which is similar with the observation in
the vanilla search. Second, with our reduction optimization, the
search on the chain topology goes the fastest while on the radial
topology is the slowest. On the chain topology, it has the most
prunable possible tensors, leading to a high reduction ratio of
the search space; in contrast, the number of prunable possible
tensors greatly decreases on the radial topology, which still has
a large search space after applying the outer product pruning.

The results after applying our pruning strategy on the net-
works with different portions of extra edges are shown in Fig. 10.
We first analyze the performance when the measurement metric
is MC. We find that the search time is similar among the tensor
networks with different basic topologies after we introduce extra
edges. The reason is that when we add extra edges, the basic
topology impacts less on the number of prunable possible ten-
sors. Moreover, the vanilla algorithm goes through all possible
tensors and all split cases no matter if the possible tensors can be
pruned from the search space. Thus, the search time keeps un-
changed even if with different portions of extra edges in the net-
work. The last observation is that when the portion of extra edges
is smaller than 50%, the search can take benefit from applying
our search space reduction; however, as the portion of extra

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 



LIANG et al.: FAST SEARCH OF THE OPTIMAL CONTRACTION SEQUENCE IN TENSOR NETWORKS 583

Fig. 9. Search time comparison on different network topologies without extra edges after applying the outer product pruning: (a) Chain topology; (b) Tree
topology; (c) Radial topology. In order to keep the same time range across all cases, we do not show the search time larger than 150 seconds.

Fig. 10. Search time comparison on different network topologies with different portions of extra edges: (a) Chain topology; (b) Tree topology; (c) Radial Topology.
Here each network contains 19 tensors.

edges becomes larger, the search time with space reduction even
exceeds the vanilla algorithm without space reduction. This is
because the reduction overhead fails to cover its benefit when the
network is sufficiently dense with a very limited reduction ratio.

Also in Fig. 10, we analyze the performance when the mea-
surement metric is MS. Different from the results of the ob-
servation in searching the lowest MC, the search time of the
vanilla search varies as extra edges increase. This is because
the vanilla search of the lowest MS does not go through all
split cases due to the early stop mechanism, and the increased
edges can impact the early stop time. Second, there is no benefit
from applying the outer product pruning after we introduce extra
edges into the network. This is because the calculation under the
MS metric is cheaper, which makes the overhead introduced by
the outer product pruning relatively more heavy than that under
the MC metric. At last, when the basic topology is radial, the
search time is reduced when we introduce <20% extra edges.
This phenomena is again caused by the early stop mechanism.
For the radial topology with a small number of extra edges, the
center tensor in the original network often consumes the largest
SE. Thus, there is no early stop for the possible tensors which
involve the center tensor during search (i.e. the conditions of
line 32-34 in Algorithm 2 or line 41-43 in Algorithm 2 will not
happen). This situation can be alleviated by introducing more
extra edges.

Except the above network topologies, we also evaluate our
search methods on grid topology which is an important case in
both physics and machine learning communities. We estimate
the performance on three different grid sizes in Fig. 11(a). Based
on the search time result, the search complexity of the grid topol-
ogy lies between the tree topology and radius topology which is
determined by the number of prunable possible tensors. Then we

Fig. 11. Search time for the network with grid topology after applying outer
product pruning: (a) Search time without extra edges under different grid sizes;
(b) Search time with different portions of extra edges under grid size of 3× 8.

introduce different portions of extra edges in the network under
the grid size of 3× 8. The result is depicted in Fig. 11(b), which
presents similar characters as on aforementioned topologies.

Fig. 12 presents the search time breakdown on a tree network
with 19 tensors under different portions of extra edges. The
calculation part includes the sharing order calculation and the
contraction expense calculation, and the overhead includes other
operations like traversing all possible tensors and split cases,
finding prunable possible tensors, data loads, etc. When the
measurement metric is MS, the sharing order calculation and
the contraction expense calculation only happen once for each
possible tensor. So we only evaluate the time breakdown when
the measurement metric is MC. The total overhead time can be
acquired by removing line 32-35 in Algorithm III-B. From the
results, the portion of calculation time increases from 3.9% to
53.8% as more extra edges are added into the tensor network.
More extra edges can reduce the number of prunable possible
tensors and increase the search space. Hence, more search time

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 



584 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 3, APRIL 2021

Fig. 12. Search time breakdown on a tree network with 19 tensors under
different portions of extra edges. Here the measurement metric is MC and we
include the outer product pruning during search.

Fig. 13. Speedup over the single-thread implementation through parallelism
optimization on a binary tree with 19 tensors and 25% extra edges.

will be spent on calculation. Also, we find that the ratio of
calculation time is close when we add 65% and 85% extra edges.
The reason is that the number of prunable possible tensors in later
Sets are similar in these two cases, and the possible tensors in
later Sets occupy majority of the search time since they have a
larger number of split cases compared with the possible tensors
in earlier Sets.

D. Parallelism Analysis

We evaluate the speedup after using the multithread opti-
mization in Fig. 13. The testing network is a binary tree with
19 tensors and 25% extra edges, and the outer product pruning
is used during search. As aforementioned, different from other
subsections, here we adopt an Intel Xeon processor to support
more threads. We find that multithread optimization gains a
higher speedup when the measurement metric is MC since
the portion of overhead in MC is smaller. Furthermore, as the
number of threads increases, the speedup grows but eventually
saturated. This is because other overhead caused by the mul-
tithread implementation begins to matter when the number of
threads reaches a threshold.

E. Comparison With Prior Work

Some prior work try to find an approximate optimal con-
traction sequence of a tensor network [29], [32] or target on
a specific network topology [31]. Our algorithms can find the
exactly optimal solution for arbitrary network. For the prior
work that consider the compute cost of the contraction sequence
also have some constraints on the tensor network. For example,

Fig. 14. Search time comparison between our method and the OP & µCap

[27] on a binary tree (a) without and (b) with 25% extra edges.

the search on networks without free orders is targeted in [30];
although a polynomial solution is provided in [31], the networks
are restricted in the tree topology.

One of the closest prior work is OP & μCap [27], which
considers the compute cost of a given contraction sequence. In-
stead of finding a sequence with the leastMC, the measurement
metric in [27] is the total CE of a contraction sequence. Note
that maximum CE is usually close to total CE as the maximum
CE is often much larger than the CE in other steps. Since the
measurement metrics of this work and the prior work in [27]
are actually different, we just present a coarse comparison for
interesting insights in this subsection rather than intending to
beat it.

We compare our pruning method with OP & μCap on a
binary tree without extra edges. The comparison is shown in
Fig. 14. Here we define the order set asOS = {O1, O2, . . ., On}.
Each free or share order is randomly chosen from OS. We use
|OS| to denote the size of order set, and we have |OS| = n
here. We find that the size of OS affects the search time of
OP & μCap a lot. Although when |OS| is very small, e.g.,
|OS| = 1,OP&μCap is faster than our method, the performance
degrades dramatically and becomes much worse than ours as
|OS| increases. Compared with [27], our method will not be
affected by the value of |OS|. This is because, when we consider
MS, the search time is affected by the number of prunable
possible tensors rather than |OS|. When we include 25% extra
edges, all the performance results degrade due to the larger
search space. Notice that in this case, our method behaves faster
at all |OS| settings. This indicates that when the tensor network
structure does not follow a regular pattern, our search algorithm
can be a better choice.

V. CONCLUSION

In this work we focus on the acceleration of searching an
optimal contraction sequence with the lowest MS or MC. A
data format based on logk representation and data structure
based on adjacency matrix with additional intermediate vectors
are designed for efficient computation. We further incorporate
the outer product pruning into the BFS search to reduce the
search space. At last, in the execution level, we implement the
multithread optimization to improve the parallelism.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 



LIANG et al.: FAST SEARCH OF THE OPTIMAL CONTRACTION SEQUENCE IN TENSOR NETWORKS 585

From the performance analyses under different basic topol-
ogy, network scale, and portion of extra edges, we provide
several insights as follows. (1) The evaluation metric impacts
the search algorithm and the search time. For example, the
search time would become smaller when the evaluation metric
of the contraction sequence is the maximum storage expense,
due to the less computation and the early stop mechanism.
(2) The data structure and hardware-level support indeed help.
The adjacency matrix based design gains acceleration and the
parallel execution further improves the performance. Moreover,
the data access in our design is discontinuous, which may
decrease the cache hit rate when the network scales up. The
hardware-level architectural design might help in the future. (3)
The tensor network topology also matters. In sparse networks,
when the measurement metric isMC, the outer product pruning
method can gain more benefits, and the chain/tree topology with
fewer connections gives more benefits than the radial topol-
ogy. However, in dense networks with increased connections,
we recommend not to use any space reduction technique that
usually pays unaffordable extra overhead, and the performance
gap between basic topologies will be narrowed. In reality, it is
possible to design specific algorithms according to the practical
topologies.

REFERENCES

[1] Y.-Y. Shi, L.-M. Duan, and G. Vidal, “Classical simulation of quantum
many-body systems with a tree tensor network,” Phys. Rev., vol. 74, no. 2,
p. 022320, 2006.

[2] A. Feiguin et al., “Interacting anyons in topological quantum liquids: The
golden chain,” Phys. Rev. Lett., vol. 98, no. 16, p. 160409, 2007.

[3] G. Vidal, “Class of quantum many-body states that can be efficiently
simulated,” Phys. Rev. Lett., vol. 101, no. 11, p. 110501, 2008.

[4] P. Corboz, M. Lajkó, A. M. Läuchli, K. Penc, and F. Mila, “Spin-orbital
quantum liquid on the honeycomb lattice,” Phys. Rev. X, vol. 2, no. 4, p.
041013, 2012.

[5] J. Eisert, M. Friesdorf, and C. Gogolin, “Quantum many-body systems out
of equilibrium,” Nat. Phys., vol. 11, no. 2, p. 124, 2015.

[6] F. Verstraete, V. Murg, and J. I. Cirac, “Matrix product states, projected
entangled pair states, and variational renormalization group methods for
quantum spin systems,” Adv. Phys., vol. 57, no. 2, pp. 143–224, 2008.

[7] G. Evenbly and G. Vidal, “Entanglement renormalization in two spatial
dimensions,” Phys. Rev. Lett., vol. 102, no. 18, p. 180406, 2009.

[8] R. N. Pfeifer, G. Evenbly, and G. Vidal, “Entanglement renormalization,
scale invariance, and quantum criticality,” Phys. Rev., vol. 79, no. 4, p.
040301, 2009.

[9] P. Corboz, S. R. White, G. Vidal, and M. Troyer, “Stripes in the two-
dimensional t-j model with infinite projected entangled-pair states,” Phys.
Rev. B, vol. 84, no. 4, p. 041108, 2011.

[10] R. Orús, “A practical introduction to tensor networks: Matrix product states
and projected entangled pair states,” Ann. Phys., vol. 349, pp. 117–158,
2014.

[11] S. Szalay et al., “Tensor product methods and entanglement optimization
for ab initio quantum chemistry,” Int. J. Quantum Chem., vol. 115, no. 19,
pp. 1342–1391, 2015.

[12] L. Cincio, J. Dziarmaga, and M. M. Rams, “Multiscale entanglement
renormalization ansatz in two dimensions: Quantum ising model,” Phys.
Rev. Lett., vol. 100, no. 24, p. 240603, 2008.

[13] P. Corboz and G. Vidal, “Fermionic multiscale entanglement renormaliza-
tion ansatz,” Phys. Rev. B, vol. 80, no. 16, p. 165129, 2009.

[14] S. Boixo et al., “Simulation of low-depth quantum circuits as complex
undirected graphical models,” 2017, arXiv:1712.05384.

[15] J. Chen et al., “Classical simulation of intermediate-size quantum circuits,”
2018, arXiv:1805.01450.

[16] Z. Zhang, T.-W. Weng, and L. Daniel, “Big-data tensor recovery for high-
dimensional uncertainty quantification of process variations,” IEEE Trans.
Compon. Packag. Manuf. Technol., vol. 7, no. 5, pp. 687–697, 2017.

[17] Z. Zhang, K. Batselier, H. Liu, L. Daniel, and N. Wong, “Tensor com-
putation: A new framework for high-dimensional problems in eda,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 4,
pp. 521–536, 2017.

[18] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing
neural networks,” in Adv. Neural Inf. Process. Syst., pp. 442–450, 2015.

[19] T. Garipov et al., “Ultimate tensorization: Compressing convolutional and
fc layers alike,” 2016, arXiv:1611.03214.

[20] Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neural net-
works for video classification,” in Proc. 34th Int. Conf. Mach. Learn.
Vol. 70, pp. 3891–3900, 2017.

[21] A. Cichocki et al., “Tensor decompositions for signal processing appli-
cations: From two-way to multiway component analysis,” IEEE Signal
Process. Mag., vol. 32, no. 2, pp. 145–163, 2015.

[22] C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos, and M. Akçakaya, “Tensor
completion from regular sub-nyquist samples,” IEEE Trans. Signal Pro-
cess., vol. 68, pp. 1–16, 2019.

[23] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, vol. 42.
Berlin, Germany: Springer Science & Business Media, 2012.

[24] L. Chi-Chung, P. Sadayappan, and R. Wenger, “On optimizing a class of
multi-dimensional loops with reduction for parallel execution,” Parallel
Process. Lett., vol. 7, no. 02, pp. 157–168, 1997.

[25] I. L. Markov and Y. Shi, “Simulating quantum computation by contracting
tensor networks,” SIAM J. Comput., vol. 38, no. 3, pp. 963–981, 2008.

[26] S. Hirata, “Tensor contraction engine: Abstraction and automated par-
allel implementation of configuration-interaction, coupled-cluster, and
many-body perturbation theories,” The J. Phys. Chem., vol. 107, no. 46,
pp. 9887–9897, 2003.

[27] R. N. Pfeifer, J. Haegeman, and F. Verstraete, “Faster identification of
optimal contraction sequences for tensor networks,” Phys. Rev. E, vol. 90,
no. 3, p. 0 33315, 2014.

[28] S. Kourtis, C. Chamon, and E. R. Mucciolo, “Fast counting with tensor
networks,” 2019, arXiv:1805.00475.

[29] A. S. Jermyn, “Automatic contraction of unstructured tensor networks,”
Proc. SciPost Physics, vol. 8, no. 1, 2020.

[30] G. Evenbly and R. N. Pfeifer, “Improving the efficiency of variational
tensor network algorithms,” Phys. Rev. B, vol. 89, no. 24, p. 245118,
2014.

[31] J. Xu, L. Liang, L. Deng, C. Wen, Y. Xie, and G. Li, “Towards a polynomial
algorithm for optimal contraction sequence of tensor networks from trees,”
Phys. Rev. E, vol. 100, no. 4, p. 0 43309, 2019.

[32] A. Hartono et al., “Identifying cost-effective common subexpressions to
reduce operation count in tensor contraction evaluations,” in Int. Conf.
Comput. Sci., pp. 267–275, Springer, 2006.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT press, 2009.

Ling Liang received the B.E. degree from the Bei-
jing University of Posts and Telecommunications,
Beijing, China, in 2015 and the M.S. degree from
the University of Southern California, Los Angeles,
CA, USA, in 2017. He is currently working toward
the Ph.D. degree with the Department of Electrical
and Computer Engineering, University of California,
Santa Barbara, Santa Barbara, CA. His current re-
search interests include machine learning security,
tensor computing, and computer architecture.

Jianyu Xu received the B.E. degree from Tsinghua
University, Beijing, China, in 2019. He is currently
working toward the Ph.D. degree with the Depart-
ment of Computer Science, University of California,
Santa Barbara (UCSB), Santa Barbara, CA, USA.
His research interests include tensor computation and
tensor networks.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 



586 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 3, APRIL 2021

Lei Deng (Member, IEEE) received the B.E. degree
from the University of Science and Technology of
China, Hefei, China, in 2012 and the Ph.D. degree
from Tsinghua University, Beijing, China, in 2017.
He is currently a Postdoctoral Fellow with the De-
partment of Electrical and Computer Engineering,
University of California, Santa Barbara, Santa Bar-
bara, CA, USA. His research interests include brain-
inspired computing, machine learning, neuromorphic
chip, computer architecture, tensor analysis, and com-
plex networks. He has authored or coauthored more

than 50 refereed publications. He was a PC Member for ISNN 2019. He is
currently a Guest Associate Editor for Frontiers in Neuroscience and Frontiers
in Computational Neuroscience, and a Reviewer for a number of journals and
conferences. He was the recipient of the MIT Technology Review Innovators
Under 35 China 2019.

Mingyu Yan received the B.S. degree from the
Guangdong University of Technology, Guangzhou,
China, in 2014. He is currently working toward
the Ph.D. degree with the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
China. His research interests include graph analytics
and computer architecture.

Xing Hu received the B.S. degree from the Huazhong
University of Science and Technology, Wuhan,
China, in 2009 and the Ph.D. degree from the Univer-
sity of Chinese Academy of Sciences, Beijing, China,
in 2014. She is currently a Postdoctoral Fellow with
the Department of Electrical and Computer Engineer-
ing, University of California, Santa Barbara, Santa
Barbara, CA, USA. Her current research interests in-
clude emerging memory system and domain-specific
hardware computing.

Zheng Zhang (Member, IEEE) received the B.Eng.
degree from the Huazhong University of Science and
Technology, Wuhan, China, in 2008, the M.Phil. de-
gree from the University of Hong Kong, Hong Kong,
in 2010, and the Ph.D. degree in electrical engineering
and computer science from the Massachusetts Insti-
tute of Technology (MIT), Cambridge, MA, USA,
in 2015. Since 2017, he has been an Assistant Pro-
fessor of electrical and computer engineering with
the University of California, Santa Barbara, Santa
Barbara, CA, USA. His industrial experiences include

Coventor Inc., Cambridge, MA, USA, and Maxim-IC, Colorado Springs, CO,
USA, academic visiting experiences include the University of California at San
Diego, San Diego, CA, USA, Brown University, Providence, RI, USA, and
Politechnico di Milano, Milan, Italy, and government laboratory experience
includes the Argonne National Laboratory, Lemont, IL, USA. His research
interests include uncertainty quantification and tensor computation with mul-
tidomain applications, including CAD of nanoscale IC/MEMS/photonics, data
analytics, machine learning, and autonomous systems. He was the recipient of the
Best Paper Award for the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN

OF INTEGRATED CIRCUITS AND SYSTEMS in 2014, the Best Paper Award for
the IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING

TECHNOLOGY in 2018, two Best Paper Awards (IEEE EPEPS 2018 and IEEE
SPI 2016), and three additional Best Paper Nominations (CICC 2014, ICCAD
2011, and ASP-DAC 2011) at international conferences. His Ph.D. dissertation
was recognized by the ACM SIGDA Outstanding Ph.D. Dissertation Award in
Electronic Design Automation in 2016, and by the Doctoral Dissertation Seminar
Award, or Best Thesis Award, from the Microsystems Technology Laboratory,
MIT, in 2015. He was the recipient of the Li Ka-Shing Prize from the University
of Hong Kong in 2011.

Guoqi Li (Member, IEEE) received the B.E. degree
from the Xi’an University of Technology, Xi’an,
China, in 2004, the M.E. degree from Xi’an Jiaotong
University, Xi’an, in 2007, and the Ph.D. degree
from Nanyang Technological University, Singapore,
in 2011. From 2011 to 2014, he was a Scientist with
Data Storage Institute and the Institute of High Perfor-
mance Computing, Agency for Science, Technology
and Research (ASTAR), Singapore. He is currently
an Associate Professor with Center for Brain Inspired
Computing Research (CBICR), Tsinghua University,

Beijing, China. He has authored or coauthored more 80 journal and conference
papers. His current research interests include machine learning, brain-inspired
computing, neuromorphic chip, complex systems, and system identification. He
has been actively involved in professional services, such as the International
Technical Program Committee Member, the PC Member, the Publication Chair,
the Tutorial or Workshop Chair, and the Track Chair for international confer-
ences. He is currently an Editorial-Board Member for the Journal of Control and
Decision and the Frontiers in Neuroscience, Neuromorphic Engineering, and an
Associate Editor for the Frontiers in Neuroscience, Neuromorphic Engineering.
He is a Reviewer for the Mathematical Reviews published by the American
Mathematical Society and for a number of other prestigious journals and
conferences. He was the recipient of the 2018 First Class Prize in Science and
Technology of the Chinese Institute of Command and Control, the Best Paper
Awards, EAIS 2012 and NVMTS 2015, and the 2018 Excellent Young Talent
Award of Beijing Natural Science Foundation.

Yuan Xie (Fellow, IEEE) received the B.S. degree
in electronic engineering from Tsinghua University,
Beijing, China, in 1997, and the M.S. and Ph.D.
degrees in electrical engineering from Princeton Uni-
versity, Princeton, NJ, USA, in 1999 and 2002, re-
spectively. From 2002 to 2003, he was an Advisory
Engineer with IBM Microelectronic Division, VT,
USA. He was a Full Professor with Pennsylvania
State University, PA, USA. He was a Visiting Re-
searcher with Interuniversity Microelectronics Centre
(IMEC), Leuven, Belgium, from 2005 to 2007 and in

2010. From 2012 to 2013, he was the Senior Manager and Principal Researcher
with AMD Research China Lab, Beijing. He is currently a Professor with the
Department of Electrical and Computer Engineering, University of California,
Santa Barbara, Santa Barbara, CA, USA. His research interests include VLSI
design, electronics design automation, computer architecture, and embedded
systems. He is an Expert in computer architecture who has been inducted to
ISCA/MICRO/HPCA Hall of Fame and IEEE/AAAS/ACM Fellow. He was
the recipient of the Best Paper Awards (HPCA 2015, ICCAD 2014, GLSVLSI
2014, ISVLSI 2012, ISLPED 2011, ASPDAC 2008, ASICON 2001) and the
Best Paper Nominations (ASPDAC 2014, MICRO 2013, DATE 2013, ASPDAC
2010-2009, ICCAD 2006), the 2016 IEEE Micro Top Picks Award, the 2008
IBM Faculty Award, and the 2006 NSF CAREER Award. He was the TPC
Chair for the ICCAD 2019, the HPCA 2018, the ASPDAC 2013, the ISLPED
2013, and the MPSOC 2011, a Committee Member in IEEE Design Automation
Technical Committee (DATC), the Editor-in-Chief of the ACM Journal on
Emerging Technologies in Computing Systems, and an Associate Editor for the
ACM Transactions on Design Automations for Electronics Systems, the IEEE
TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, IEEE TRANSACTIONS ON

TRANSACTIONS ON VERY LARGE SCALE INTEGRATION, IEEE DESIGN AND TEST

OF COMPUTERS, and IET Computers and Design Techniques. Through extensive
collaboration with industry partners, which are AMD, HP, Honda, IBM, Intel,
Google, Samsung, IMEC, Qualcomm, Alibaba, Seagate, Toyota, etc., he helped
the transition of research ideas to industry.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:26:57 UTC from IEEE Xplore.  Restrictions apply. 


