This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Exploring Adversarial Attack in Spiking Neural
Networks With Spike-Compatible Gradient

Ling Liang™, Xing Hu, Member, IEEE, Lei Deng

, Member, IEEE, Yujie Wu, Guogqi Li

, Member, IEEE,

Yufei Ding, Associate Member, IEEE, Peng Li, Fellow, IEEE, and Yuan Xie™, Fellow, IEEE

Abstract— Spiking neural network (SNN) is broadly deployed
in neuromorphic devices to emulate brain function. In this
context, SNN security becomes important while lacking in-depth
investigation. To this end, we target the adversarial attack against
SNNs and identify several challenges distinct from the artificial
neural network (ANN) attack: 1) current adversarial attack
is mainly based on gradient information that presents in a
spatiotemporal pattern in SNNs, hard to obtain with conventional
backpropagation algorithms; 2) the continuous gradient of the
input is incompatible with the binary spiking input during
gradient accumulation, hindering the generation of spike-based
adversarial examples; and 3) the input gradient can be all-zeros
(i.e., vanishing) sometimes due to the zero-dominant derivative
of the firing function. Recently, backpropagation through time
(BPTT)-inspired learning algorithms are widely introduced into
SNNs to improve the performance, which brings the possibility
to attack the models accurately given spatiotemporal gradient
maps. We propose two approaches to address the above chal-
lenges of gradient-input incompatibility and gradient vanishing.
Specifically, we design a gradient-to-spike (G2S) converter to
convert continuous gradients to ternary ones compatible with
spike inputs. Then, we design a restricted spike flipper (RSF)
to construct ternary gradients that can randomly flip the spike
inputs with a controllable turnover rate, when meeting all-
zero gradients. Putting these methods together, we build an
adversarial attack methodology for SNNs. Moreover, we analyze
the influence of the training loss function and the firing threshold
of the penultimate layer on the attack effectiveness. Extensive
experiments are conducted to validate our solution. Besides the
quantitative analysis of the influence factors, we also compare
SNNs and ANNs against adversarial attacks under different
attack methods. This work can help reveal what happens in SNN
attacks and might stimulate more research on the security of SNN
models and neuromorphic devices.

Manuscript received December 19, 2019; revised August 30, 2020, Janu-
ary 9, 2021, and June 10, 2021; accepted August 11, 2021. (Ling Liang and
Xing Hu contributed equally to this work.) (Corresponding author: Lei Deng.)

Ling Liang, Peng Li, and Yuan Xie are with the Department of
Electrical and Computer Engineering, University of California, Santa
Barbara, CA 93106 USA (e-mail: lingliang@ucsb.edu; lip@ucsb.edu;
yuanxie@ucsb.edu).

Xing Hu is with the State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing
100190, China (e-mail: huxing@ict.ac.cn).

Lei Deng, Yujie Wu, and Guoqi Li are with the Department of Preci-
sion Instrument, Center for Brain Inspired Computing Research, Tsinghua
University, Beijing 100084, China (e-mail: leideng@mail.tsinghua.edu.cn;
wu-yjl6@tsinghua.org.cn; liguoqi @mail.tsinghua.edu.cn).

Yufei Ding is with the Department of Computer Science, University
of California at Santa Barbara, Santa Barbara, CA 93106 USA (e-mail:
yufeiding@cs.ucsb.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3106961.

Digital Object Identifier 10.1109/TNNLS.2021.3106961

Index Terms— Adversarial attack, backpropagation through
time (BPTT), neuromorphic computing, spike-compatible
gradient, spiking neural networks (SNNs).

I. INTRODUCTION

PIKING neural networks (SNNs) [1] closely mimic the

behaviors of neural circuits via spatiotemporal neuronal
dynamics and event-drive activities. They have shown promis-
ing ability in processing dynamic and noisy information with
high efficiency [2], [3] and have been applied in a broad
spectrum of tasks such as optical flow estimation [4], spike
pattern recognition [5], SLAM [6], probabilistic inference [3],
heuristically solving NP-hard problem [7], quickly solving
optimization problem [8], sparse representation [9], robot-
ics [10], and so forth. Besides the algorithm research, SNNs
are widely deployed in neuromorphic devices for low-power
brain-inspired computing [8], [11]-[13].

With more attention on SNNs, the security problem
becomes quite important. Here we focus on adversarial
attack [14], one of the most popular threat models for neural
network security. In an adversarial attack, the attacker intro-
duces imperceptible malicious perturbation into the input data
to misleading the model’s classification result. Although the
adversarial attack is a very hot topic in artificial neural net-
works (ANNSs), it is still in its infant stage in the SNN domain.
Several related studies targeting this topic are based on the
gradient-free attack methods (e.g., trial-and-error input per-
turbation [15], [16]) or the spatial-gradient-based SNN/ANN
model conversion methods [17]. Former methods perturb the
input in a trial-and-error manner by simply monitoring the
output change without calculating the gradient; latter methods
inherit adversarial examples generated by the ANN counterpart
of the SNN model. The computational complexity of the trial-
and-error input perturbation methods is quite high due to the
large search space without the guidance of supervised gra-
dients. Regarding the SNN/ANN model conversion methods,
using a different model to find gradients and the missing tem-
poral components will compromise the attack effectiveness.
To address these issues, we propose spatiotemporal-gradient-
based attacks for SNNs with both high attack efficiency and
effectiveness.

We identify several challenges in attacking an SNN
model using the gradient-based methodology. First, the input
gradient in SNNs presents as a spatiotemporal pattern
that is hard to obtain with traditional learning algorithms

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8534-6494
https://orcid.org/0000-0002-5172-9411
https://orcid.org/0000-0002-8994-431X
https://orcid.org/0000-0003-2093-1788

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

like the gradient-free unsupervised learning [18], [19] and
spatial-gradient-based ANN-to-SNN-conversion learning [20].
Second, the gradients are continuous values, incompatible with
the binary spiking inputs. This data format incompatibility
impedes the generation of spike-based adversarial examples
via gradient accumulation. At last, there is severe gradient
vanishing when the gradient crosses the step firing function
with a zero-dominant derivative, which will interrupt the
update of adversarial examples.

Recently, the backpropagation through time (BPTT)
inspired supervised learning algorithms [2], [5], [21]-[25]
are widely introduced into SNNs for a performance boost,
which enables the direct acquisition of gradient information
in both spatial and temporal dimensions. This brings the
opportunity to realize an accurate SNN attack based on
spatiotemporal input gradients directly calculated in SNNs
without model conversion. Then, to address the mentioned
issues of gradient-input incompatibility and gradient van-
ishing, we propose two approaches. We design a gradient-
to-spike (G2S) converter to convert continuous gradients to
ternary ones that are compatible with spike inputs. Then we
design a restricted spike flipper (RSF) to construct ternary
gradients that can randomly flip the spike inputs when facing
all-zero gradient maps, where the turnover rate of inputs is
controllable. Under this attack methodology for both untar-
geted and targeted attacks, we analyze the impact of two
important factors on the attack effectiveness: the format of
the training loss function and the firing threshold. We find
a “trap” region for the model trained by cross-entropy (CE)
loss, which makes it harder to attack when compared to the
one trained by mean square error (MSE) loss. Fortunately,
the “trap” region can be escaped by adjusting the firing
threshold of the penultimate layer. We extensively validate our
SNN attack methodology on both neuromorphic datasets (e.g.,
N-MNIST [26] and CIFAR10-DVS [27]) and image datasets
(e.g., MNIST [28] and CIFARI10 [29]). We summarize our
contributions as follows.

1) We identify the challenges of adversarial attacks against
SNN models. Then, we realize an effective and efficient
SNN attack via a spike-compatible spatiotemporal gra-
dient. Specifically, we design a G2S converter to address
the gradient-input incompatibility problem and an RSF
to address the gradient vanishing problem.

2) We explore the influence of the training loss function and
the firing threshold of the penultimate layer and propose
threshold tuning to improve the attack effectiveness.

3) Extensive experiments are conducted on both neuromor-
phic and image datasets. ! In addition, we design exper-
iments to compare SNNs and ANNs against adversarial
attacks under different attack methods.

The rest of this article is organized as follows. Section II
provides some preliminaries of SNNs and adversarial attacks.
Section III discusses the challenges in the SNN attack and
our differences with prior work. Sections IV and V illustrate
our attack methodology and the two factors that can affect
the attack effectiveness; The experimental setup and the result

Uhttps://github.com/liangling76/snn_attack

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

AL

(- O
axon
soma dendrite synapse
(@)
LA wi()
10110101t Uph :,j]__rj[lj]__
Ll “4[—» —
w’t 0; 00100101
(b)
Fig. 1. Introduction of SNNs. (a) Neuronal components. (b) Computing
model.

analyses are shown in Section VI. Finally, Section VII con-
cludes and discusses this article.

II. PRELIMINARIES
A. SNNs

In SNNs, a neuron is the basic structural unit as shown
in Fig. 1, which is comprised of the dendrite, soma, and
axon. Many neurons connected by weighted synapses form an
SNN, in which the binary spike events carry information for
interneuron communication. Dendrite integrates the weighted
presynaptic inputs, and soma consequently updates the mem-
brane potential and determines whether to fire a spike or not.
When the membrane potential crosses a threshold, a spike will
be fired and sent to postneurons through the axon.

The leaky integrate-and-fire (LIF) model [30] is the most
widely adopted SNN model. The behavior of each LIF neuron
can be briefly expressed as

du(r)

= —u(t) + 2, w;0;(t)

o(t) + = Dirac(t — ') & u(t') = uo, if u(t') = up,

(1)

where ¢ denotes the timestep, 7 is a time constant, and # and o
represent the membrane potential and spike, respectively. w; is
the synaptic weight between the jth preneuron and the current
neuron, and o; is the output spike of the jth preneuron. uy, is
the firing threshold and u is the reset potential used after firing
a spike. Note that in the continuous time domain, in order
to change the membrane potential by integrating spikes, each
spike is modeled as a Dirac delta function whose only infinite
peak lies at the firing time.

The network structure of feedforward SNNs can be similar
to that of ANNSs, including convolutional (Conv) layer, pooling
layer, and fully connected (FC) layer. The network inputs
can be spike events captured by dynamic vision sensors [31]
(i.e., neuromorphic datasets) or converted from normal image
datasets through Bernoulli sampling [2]. The classification is
conducted based on the spikes of the output layer.

B. Gradient-Based Adversarial Attack

We take the gradient-based adversarial attack in ANNs as
an illustrative example. The neural network is actually a map
from inputs to outputs, i.e., y = f(x), where x and y denote
inputs and outputs, respectively, and f : R”™ — R" is the map

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: EXPLORING ADVERSARIAL ATTACK IN SNNs WITH SPIKE-COMPATIBLE GRADIENT 3

function. Usually, the inputs are static images in convolutional
neural networks. In an adversarial attack, the attacker attempts
to manipulate the victim model to produce incorrect outputs
by adding imperceptible perturbations J in the input images.
We define x’ = x 4+ 0 as an adversarial example. The
perturbation is constrained by 0], = [|x'—x||, < €, where
Il , denotes the p-norm and e reflects the maximum tolerable
perturbation.

Generally, the adversarial attack can be categorized into
untargeted attack and targeted attack according to the different
attack goals. Untargeted attack fools the model to classify the
adversarial example into any other classes except for the orig-
inal correct one, which can be illustrated as f(x 4+) # f(x).
In contrast, for targeted attack, the adversarial example must
be classified in to a specified class, i.e., f(x +) = Yurget-
With these preliminary knowledge, the adversarial attack can
be formulated as an optimization problem as below to search
the smallest perturbation

arg min||é]l,, s.t. f(x +0J) # f(x), if untargeted
s

2
arg min||d]l,, S.t. f(x +J) = Yuarger, if targeted. @
P)

There are several widely adopted adversarial attack algo-
rithms to find an approximated solution. Here we introduce
two of them: the fast gradient sign method (FGSM) [32] and
the basic iterative method (BIM) [33].

1) FGSM: The main idea of FGSM is to generate the
adversarial examples based on the gradient information of
the input. Specifically, it calculates the gradient map of an
input image, and then adds or subtracts the sign of this input
gradient map in the original image with multiplying a small
scaling factor. The generation of adversarial examples can be
formulated as

[xr =x 4 n-sign(V,L(0, X, Yorgina))» if untargeted 3)

x''=x—n-sign(ViL(0, X, yarge)), if targeted

where L and 6 denote the loss function and parameters of
the victim model. # is used to control the magnitude of the
perturbation. In untargeted attack, the adversarial example will
drive the output away from the original correct class, which
results from the gradient ascent-based input modification;
while in targeted attack, the output under the adversarial
example goes toward the targeted class, owing to the gradient
descent-based input modification.

2) BIM: BIM algorithm is actually the iterative version of
the above FGSM, which updates the adversarial examples in
an iterative manner until the attack succeeds. The generation
of adversarial examples in BIM is governed by

Xy = X+ 1 - sign(Vyy L(0, X[, Yorginat)), if untargeted
xl/chl = xl/c - n- Sign(vxLL(e, x]’(’ ylarget)), if targeted
“)

where k is the iteration index. Specifically, x; equals the
original input when k = 0.

In ANNSs, several advanced attack methods can be poten-
tially extended beyond BIM-based algorithm by optimizing
the perturbation bound [34]-[37] or avoiding the gradient

calculation [38]—[41]. In this work, we aim at the preliminary
exploration of an effective gradient-based SNN attack, thus
adopting the most classic BIM algorithm in our design.
We leave the SNN attack with different approaches in future
work.

III. CHALLENGES IN SNN ATTACK

Even though the attack methodology can be indepen-
dent of how the model is trained (e.g., gradient-free unsu-
pervised learning [42] or spatial-gradient-based supervised
learning [17]) and it is not necessary to compute gradients
when finding adversarial examples (e.g., using trial-and-error
methods [15], [16]), we take SNN models trained by BPTT
with high recognition accuracy for example and focus on
the spatiotemporal-gradient-based attack due to the potential
for high attack success rate. Therefore, all our following
discussions about the challenges are restricted in this context.
Fig. 2(a) briefly illustrates the workflow of adversarial attacks
based on gradients. There are three stages: forward pass to
obtain the model prediction, backward pass to calculate the
input gradient, and input update to generate the adversar-
ial example. This flow is straightforward to implement in
ANNSs, as shown in Fig. 2(b). However, the case becomes
complicated in the SNN scenario, where the processing is
based on binary spikes with temporal dynamics rather than
continuous activations with immediate response. According to
Fig. 2(c), we attempt to identify the challenges in SNN attack
to distinguish from the ANN attack and compare our solution
with prior studies in Sections III-A and III-B.

A. Challenges and Solutions

1) Acquiring Spatiotemporal Gradients: For SNNs, it is
difficult to acquire the spatiotemporal gradients using conven-
tional SNN learning algorithms for the generation of adversar-
ial examples with both spatial and temporal components. For
example, the unsupervised learning rules such as spike timing
dependent plasticity (STDP) [18] update synapses according
to the activities of local neurons, which cannot help calculate
the input gradients. The ANN-to-SNN-conversion learning
methods [20] simply convert an SNN learning problem into
an ANN one with only spatial information, leading to the
incapability in capturing temporal input gradients. Recently,
the BPTT based learning algorithm [2], [5], [21]-[24] is
broadly studied. This emerging supervised learning promises
accurate SNN attack via the direct acquisition of input gradi-
ents in both spatial and temporal dimensions, which is adopted
by us.

2) Incompatible Format Between Gradients and Inputs:
The input gradients are in continuous values, while the SNN
inputs are in binary spikes (see the left of Fig. 2(c), each
point represents a spike event, i.e., “1”; otherwise it is “07).
This data format incompatibility impedes the generation of
spike-based adversarial examples if we consider the conven-
tional gradient accumulation. In this work, we propose a G2S
converter to convert continuous gradients to spike-compatible
ternary gradients. This design exploits probabilistic sampling,
sign extraction, and overflow-aware transformation, which can

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
I +
Forward Loss Backward Input
(a) Input —» .| — N e -
Propagatio Output & Label Propagatio Gradient
xi - @ o.015 0 -
@) o0.233 0
(b) :
@ 0.714 1
Sample
Y
XS @ 0 Challenges
@ L 0 e Gradient Acquiring
(c) : .
@ L 1 e Gradient Format
: o Gradient Vanishing
Fig. 2. Tllustration of gradient-based adversarial attack. (a) Overall flow including forward pass, backward pass, and input update. (b) Adversarial attack in

ANNS. (c) Adversarial attack in SNNs and its challenges. xi and xs represent an input in image and spike formats, respectively.

simultaneously maintain the spike format and control the
perturbation magnitude.

3) Gradient Vanishing Problem: The firing function in the
LIF model in (1) is actually a step function that is nondiffer-
entiable. To address this issue, an approximation function is
introduced to simulate the derivative of the firing activity [21].
However, this approximation brings abundant zero gradients
outside the gradient window (to be shown later), leading to
severe gradient vanishing during backpropagation. We find
that the input gradient map can be all-zero sometimes, which
interrupts the gradient-based update of adversarial examples.
To this end, we propose an RSF to construct ternary gradients
that can randomly flip the binary inputs in the case of all-
zero gradients. We use a baseline sampling factor to bound
the overall turnover rate, making the perturbation magnitude
controllable.

B. Comparison With Prior Work on SNN Attack

The study on SNN attack is still in its infant stage. We only
find several related works talking about this topic. In this
subsection, we summarize their approaches and clarify our
differences compared with them.

1) Trial-and-Error Input Perturbation: Such attack algo-
rithms perturb inputs in a trial-and-error manner by monitoring
the variation of outputs. For example, Marchisio et al. [15]
modify the original image inputs before spike sampling. They
first select a block of pixels in the images and then add a pos-
itive or negative unit perturbation onto each pixel. During this
process, they always monitor the output change to determine
the perturbation until the attack succeeds or the perturbation
exceeds a threshold. However, this image-based perturbation
is not suitable for the data sources with only spike events [26],
[27]. In contrast, Bagheri et al. [16] directly perturb the spike
inputs rather than the original image inputs. The main idea is
to flip the input spikes and also monitor the outputs.

2) SNNJANN Model Conversion: Sharmin et al. [17] con-
vert the SNN attack problem into an ANN one. They first
build an ANN substitute model that has the same network
structure and parameters copied from the trained SNN model.
The gradient-based adversarial attack is then conducted on the
built ANN counterpart to generate the adversarial examples.

These existing works suffer from several drawbacks that
would eventually degrade the attack effectiveness. For the
trial-and-error input perturbation methods, the computational
complexity is quite high due to the large search space with-
out the guidance of supervised gradients. Specifically, each
selected element of the inputs needs to run the forward pass
once (for spike perturbation) or twice (for image perturbation)
to monitor the outputs. The total computational complexity
is Iter x N x Cgp, where Iter is the number of attack itera-
tions, N represents the size of search space, and Cgp is the
computational cost of each forward pass. This complexity is
much higher than the normal one, i.e., Iter x (Cgp + Cgp),
due to the large N. Because it is difficult to find the optimal
perturbation in such a huge space, the attack effectiveness
cannot be satisfactory given a limited search time in reality.
Regarding the SNN/ANN model conversion method, an extra
model transformation is needed and the temporal gradient
information is lost during the ANN pretraining. Using a
different model to find gradients and the missing of temporal
components will compromise the attack effectiveness in the
end. Moreover, this method is not applicable to the spiking
data sources without the help of extra signal conversion.

Compared with the above works we calculate the gradients
in both spatial and temporal dimensions without extra model
conversion, which matches the natural SNN behaviors. Then,
the proposed G2S and RSF enable the generation of spiking
adversarial examples based on the continuous gradients even if
when meeting the gradient vanishing. This direct generation of
spiking adversarial examples makes our methodology suitable
for the spiking data sources. For the SNN models using
image-based data sources, our solution is also applicable with
a simple temporal aggregation of spatiotemporal gradients.
In summary, Table I shows the differences between our work
and prior work. We use effectiveness to assess an attack
method. Usually, an effective attack method can achieve a high
attack success rate with relatively low complexity and better
compatibility of input data formats.

Please note that we focus on the white-box attack in
this article. Specifically, in the white-box attack scenario,
the adversary knows the network structure and model parame-
ters (e.g., weights, uy,, etc.) of the victim model. The reason
for this scenario selection lies in that the white-box attack

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG ef al.: EXPLORING ADVERSARIAL ATTACK IN SNNs WITH SPIKE-COMPATIBLE GRADIENT 5
TABLE I
COMPARISON WITH PRIOR WORK ON SNN ATTACK
Attack Method Data Source | Spatiotemporal Gradient | Computational Complexity | Attack Effectiveness

Trial-and-Error [15] Image X Iter x N x 2Cpp Low

Trial-and-Error [16] Spike X Iter x N x Cpp Low

Model Conversion [17] Image X Iter x (Cpp + Cpp) Low

This Work Spike/Image v Iter x (Cpp + Cpp) High
Image Input Spiking Input Aggregr‘;sﬁf"iking this by searching for new candidate elements in different attack
iterations. Next, we describe the specific flow for spiking

Original inputs and image inputs individually.

Input 1) Spiking Inputs: The blue arrows in Fig. 4 illustrate this
case. The generation of spiking adversarial examples relies on
three steps as follows. In step @, the continuous gradients are

Adversarial 5 i calculated in the FP and BP stages by
Input
. os, =V stL(e» XSk, yoriginal), if untargeted

Classified as ‘3’ Classified as ‘8’

Fig. 3. Data format of original inputs and adversarial examples. The
red and blue colors denote two spike channels induced by dynamic vision
sensors [26], [31].

is the fundamental step to understand the adversarial attacks.
Furthermore, the methodology built for the white-box attack
can be easily transferred to the black-box attack in the future.

IV. ADVERSARIAL ATTACKS AGAINST SNNS

In this section, we first introduce the input data format
briefly and then explain the flow, approach, and algorithm of
our attack methodology in detail.

Input Data Format: It is natural for an SNN model to handle
spike signals. Therefore, considering the datasets containing
spike events, such as N-MNIST [26] and CIFAR10-DVS [27],
is the first choice. In this case, the input is originally in a
spatiotemporal pattern with a binary value for each element
(0-nothing; 1-spike). The attacker can flip the state of selected
elements, while the binary format must be maintained. The
image datasets are also widely used in the SNN field by
converting them into spiking version. There are different ways
to perform the data conversion, such as rate coding [2], [5],
[43] and latency coding [44]-[46]. In this work, we adopt
the former scheme based on Bernoulli sampling that converts
the pixel intensity to a spike train, where the spike rate is
proportional to the intensity value. In this case, the attacker
can modify the intensity value of selected pixels by adding
the continuous perturbation. Fig. 3 illustrates the adversarial
examples in these two cases.

A. Attack Flow Overview

The overview of the proposed adversarial attack against
SNNss is illustrated in Fig. 4. The basic flow adopts the BIM
method given in (4). The perturbation for spikes can only flip
the binary states of selected input elements rather than add
continuous values. Therefore, to generate spiking adversarial
examples, the search of candidate elements is more important
than the perturbation magnitude. FGSM cannot do this since it
only explores the perturbation magnitude, while BIM realizes

5)

05;, = — Vs L(0, XSk, Yaarger), 1if targeted
where Js; represents the input gradient at the kth iteration.
Since all elements in (55,/(are continuous values, they cannot
be directly accumulated onto the spiking inputs xs;. Therefore,
in step @, we propose G2S to convert the continuous gradient
to a ternary one compatible with the spike input, which can
simultaneously maintain the input data format and control the
perturbation magnitude. When the input gradient vanishes (i.e.,
all elements in Js;, are zero), we propose RSF to construct a
ternary gradient that can randomly flip the input spikes with
a controllable turnover rate. At last, step @ accumulates the
ternary gradients onto the spiking input.

2) Image Inputs: Sometimes, the benchmarking models
convert image datasets to spike inputs via Bernoulli sampling.
In this case, one more step is needed to generate image-style
adversarial examples, which is shown by the red arrows
in Fig. 4. After the above step @, the ternary gradient map
should be aggregated in the temporal dimension according to
oiy = (1/T) ZZT:1 0s;. In each update iteration, the intensity
value of xi; will be clipped within [0, 1].

B. Acquisition of Spatiotemporal Gradients

We introduce the state-of-the-art supervised learning algo-
rithms for SNNs [5], [21], [23], which are inspired by the
BPTT to acquire the gradients in both spatial and temporal
dimensions. Usually, the original LIF neuron model in (1)
is converted to its equivalent iterative version. Specifically,
we have

t+ln+1 4t ptl t,n+1 t+1,n
w; T = (1_05’)‘*‘ij;ljoj , 6)
L+l 141
ol it :ﬁre(u? e —uth)
where ¢ and n represent the timestep and layer, respectively.
dt is the timestep length, and e~ (@"/?) reflects the leakage effect
of the membrane potential. fire(-) is a step function, which
satisfies fire(x) = 1 when x > 0, otherwise fire(x) = O.
Note that a spike can be simply modeled as a binary event
(1 or 0) in the above discrete-time domain, which differs from
that in the continuous time domain in (1).

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XSk

®

:

Spiking Input

Loss @ !
o (e] o

4 ®

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

lYi’ Gradient-to-Spike
Converter 1

6Sk

Image Input

<

Sample -
_’ |

xi;, < +

5i,

. 2108283y

Fig. 4. Overview of the adversarial attack flow for SNNs with spiking or image inputs. The flow consists of: @ calculating continuous spatiotemporal input
gradients via BPTT; @ generating spike-compatible input gradients; and @ updating adversarial examples. For image-based inputs, an additional aggregation

of the input gradients along the temporal dimension is needed.

In the output layer, we adopt the commonly-used spike
rate coding scheme for the recognition, i.e., the neuron firing
the most spikes becomes the winner that indicates the class
prediction. The spatiotemporal spike pattern of the output layer
is converted into a spike rate vector, described as

1 T
=7 29" @
t=1

where N is the output layer index. This spike rate vector can
be regarded as the normal output vector in ANNs. With this
output conversion, the typical loss functions L for ANNs, such
as MSE and CE, can also be applied in the loss function for
SNNG.

Based on the LIF neuron model, the gradient propagation
can be governed by

oL 5 oL oul"™ar gyttt

= I I, :
a0l I Gu’j"’L Gof o 8u§+ " 90" ®
oL oL o™ oL oult™"

T A I At o
ou; oo™ ouy" oult oug

However, the firing function 1is nondifferentiable,
i.e., (0o/0u) does not exist. As mentioned earlier, a Dirac-like
function is introduced to approximate its derivative [21].
Specifically, (60/0u) can be estimated by

00 ! | | < a

L u—ug < =
—~{a ®=2)
ou 0, otherwise

where a is a hyperparameter to control the gradient width.
This approximation indicates that only the neurons whose
membrane potential is close to the firing threshold have the
chance to let gradients pass through, as shown in Fig. 5.
It can be seen that abundant zero gradients are produced,
which might lead to the gradient vanishing problem (all input
gradients become zero).

C. G2S Converter

There are two goals in the design of G2S converter in each
iteration: 1) the final gradients should be compatible with the
spiking inputs, i.e., keeping the spike format unchanged after
the gradient accumulation and 2) the perturbation magnitude
should be imperceptible, i.e., limiting the number of nonzero
gradients. To this end, we design three steps: probabilistic
sampling, sign extraction, and overflow-aware transformation,
which are illustrated in Fig. 6.

©— Class0
104 4 & Classl
Class2
Class3
Class4
Class5
Class6
Class7
Class8
Class9

102 A

#Elements

—Ol.l 0?0 0.1
Value

Fig. 5. Distribution of input gradients overall 500 samples from N-MNIST.

The model is trained with MSE loss. Most of gradients are zero which might

lead to the gradient vanishing problem.

XS, X norm(|é‘sk D

10 0.4 01

oo

m ask

0o o0 - 20]08 02| Norm

o

0 | 14 -1

651(Slgn(ésk @ 5mask)

o 1 Transform 101 Sign
B - ﬂﬂ 3

Fig. 6. Illustration of G2S converter with probabilistic sampling reducing the
number of modified points, sign extraction ternarizing the continuous gradients
for spike compatibility, and overflow-aware transformation clipping the data
range in adversarial examples.

s|dwes

1) Probabilistic Sampling: The absolute value of the input
gradient [ds;| obtained by (5) is first normalized to lie in
the range of [0, 1]. Then, the normalized gradient map
norm(|ds;|) is sampled to produce a binary mask, in which
the 1s indicate the locations where gradients can pass through.
The probabilistic sampling for each gradient element obeys

P(Omask = 1) = norm(|5s,/(|)

10
P (Omask = 0) = 1 — norm(|Js;). (10)

By multiplying the resulting mask with the original gra-
dient map, the number of nonzero elements can be reduced
significantly. To evidence this conclusion, we run the attack
against the SNN model with a network structure to be provided
in Table V over 500 spiking inputs from N-MNIST, and the
results are presented in Fig. 7. Given MSE loss and untarget
attack scenario, the number of nonzero elements in 5s,§ could
reach 2'0. After using the probabilistic sampling, the number
of nonzero elements in Js; © dmask can be greatly decreased,
masking out > 96%.

2) Sign Extraction: Now, we explain how to generate a
ternary gradient map where each element is in {—1, 0, 1}

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: EXPLORING ADVERSARIAL ATTACK IN SNNs WITH SPIKE-COMPATIBLE GRADIENT 7

[- Pre Sampling [Post Sampling]

N N
= =
o N

#Elements
N
o]

0o 1 2 3 4 5 6 7 8 9
Class
Fig. 7. Number of elements with nonzero input gradients before and after
the probabilistic sampling. After the probabilistic sampling step, the number
of selected nonzero input elements for modification is reduced a lot for each
class.

TABLE II
OVERFLOW-AWARE GRADIENT TRANSFORMATION

Before Transformation | After Transformation
xsy, | Os) xSy, + 0], Oy xsy, + Osy,
0/1 0 0/1 0 0/1

0 1 1 1
1 1 2 0 1
0 -1 -1 0
1 -1 0 -1 0

to match the spike inputs. This step is simply based on a sign
extraction

Y

where we define sign(x) = 1 if x > 0, sign(x) =0 if x =0,
and sign(x) = —1 otherwise.

3) Overflow-Aware Transformation: Although the above
os; is able to be ternary, it cannot ensure that the final
adversarial example generated by input gradient accumulation
is still limited in {0, 1}. For example, an original “0” element
in xs; with a “—1” gradient or an original “1” element with
a “1” gradient will yield a “—1” or “2” input that is out of
{0, 1}. This overflow breaks the data format of binary spikes.
To address this issue, we propose an overflow-aware gradient
transformation to constrain the range of the final adversarial
example, which is illustrated in Table II.

After introducing the above three steps, now the function
of G2S converter can be briefly summarized as follows:

o = sign(&s,/c 0) 5mask)

ds. = transform|sign(ds; © dmask), x5y] (12)

where transform(-) denotes the overflow-aware transformation.
The G2S converter is able to simultaneously keep the spike
compatibility and control the perturbation magnitude.

D. RSF

Table III identifies the gradient vanishing issue in SNNs,
which is quite severe. Based on the previous study [21],
the hyperparameter a in (9) has an influential impact on the
gradient approximation of the fire function. Generally, a too
small ¢ would prevent gradients from passing through the
neurons in the backward pass, i.e., aggravating the gradient
vanishing problem. However, a too large a cannot precisely
approximate the gradient of the firing function that should
be a delta function rather than a wide pulse. Therefore,
the gradient vanishing problem cannot be fully resolved by

TABLE III

NUMBER OF INPUTS WITH ALL-ZERO GRADIENTS AT THE FIRST
ATTACK ITERATION. WE TEST THE UNTARGETED ATTACK WITH OVER
500 INPUTS FOR EACH DATASET

Dataset N-MNIST | CIFAR10-DVS | MNIST | CIFAR10
#grad.-vanish. inputs (MSE) 130 41 436 103
#grad.-vanish. inputs (CE) 256 32 471 105

XSy

0 Y| Y VY

1 Y| \v\|vY
w
©

6Sk 8"

0 Construct

—
0

Fig. 8. Mlustration of RSF with element selection picking candidate
elements through probabilistic sampling and gradient construction creating
spike-compatible gradients through spike flipping.

TABLE IV
GRADIENT CONSTRUCTION TO FLIP SPIKING INPUTS
After Construction
xSy, Omask | 0Sk @S) + sk
0/1 0 0 0/1
0 1 1 1
1 1 -1 0

simply increasing a. Therefore, we empirically select proper
a values (see Table VI) and propose RSF to address the
gradient vanishing problem. Specifically, we design two steps
for RSF: element selection and gradient construction, which
are illustrated in Fig. 8.

1) Element Selection: This step is to select the elements to
flip the spike event. We provide a gradient initialization that
sets all elements to y as the example provided in Fig. 8. y is a
factor within the range of [0, 1], which controls the number of
nonzero gradients after RSF. Now the probabilistic sampling
in (10) is still applicable to generate the mask Jp,gk.

2) Gradient Construction: To maintain the spike format of
adversarial examples, we just flip the state of spiking inputs
in the selected region. Table IV illustrates the construction of
ternary gradients that are able to flip the spiking inputs.

With the above two steps, the spiking inputs can be flipped
randomly with a good control of the turnover rate. The overall
function of RSF can be expressed as

oSy = construct(&mask, xs,/(). (13)

E. Overall Attack Algorithm

Based on the explanations of the G2S converter and RSF,
Algorithm 1 provides the overall attack algorithm correspond-
ing to the attack flow illustrated in Fig. 4. There are several
hyperparameters in our algorithm, such as the maximum
attack iteration number (Iter), the norm format (p) to quantify
the perturbation magnitude, the perturbation magnitude upper
bound (¢), the gradient scaling rate (7), and the sampling

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

factor (y) in RSF. Notice that we use the average per-
turbation per point as the metric to evaluate the perturba-
tion magnitude for adversarial example with N pixel points,

e, (1/N)lxi . — xollp-

Algorithm 1 Overall SNN Attack Algorithm
Input: x, Iter, p, €, n, 7;
if image input then xiy = x; end
else xs; = x; end

for k =1 to Iter do

if image input then

| xs; < Bernoulli sampling on xiy;
end

Get Js; through Equation (5);

if gradient vanishing occurs in Js;, then
/I RSF

Omask <— Probabilistic sampling on y ;
Osx = construct (Opask, XS;);

end

else
// G2S converter

Omask <— Probabilistic sampling on norm(|ds;|);
osx = transform[sign(0s; © Omask), X8;1;
end

if image input then

Oy < % Zthl osy; // Temporal aggregation
Xiy = Xxiy + 0ig;

if +lxi;,, —xigll, > € then

break; // Attack failed
end

if attack succeeds then

| return xi,/{ 0 /1 Attack successful
end

end

else

XSp = X8, + 08i;

it +llxs;,; — xs)ll, > € then

break; // Attack failed
end

if attack succeeds then

| return xs; s Attack successful
end

end

end

V. L0oSss FUNCTION AND FIRING THRESHOLD

In this work, we consider two design knobs that affect the
SNN attack effectiveness: the loss function during training and
the firing threshold of the penultimate layer during the attack.

A. MSE and CE Loss Functions

We compare two widely used loss functions, MSE loss
and CE loss. We observe that gradient vanishing occurs more

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

CE

2500
2000

5000
4000

“ [
£ 1500 | £ 3000
=3 =%
& 1000 |- @ 2000 oo
500 1000 fo-m o
0 L L L . L 0
0 5 10 15 20 25 0 5 10 15 20 25

Attack Iteration (k) Attack Iteration (k)

(b)
Fig. 9. Loss function analysis. (a) Decision boundary comparison. (b) Num-
ber of output spikes in the penultimate layer at different attack iterations.
The shaded area in (a) represents a “trap” area that receives zero gradient; the
larger number of spikes in the penultimate layer under CE probably introduces
the “trap” effect.

5000
4000

5000
4000

» o«
£ 3000 1 £ 3000
& 2000 | { & 2000 |
** =
1000 |- 1000 |
0 . . 0
0o 5 10 15 20 25 16 11 16 21 26

Attack Iteration (k) Attack Iteration (k)

Fig. 10. Number of output spikes in the penultimate layer with different firing
threshold in that layer. The increase of the firing threshold in the penultimate
layer is able to reduce the number of spikes.

often when the model is trained by CE loss. It seems that
there is a “trap” region in this case. Specifically, the output
neurons cannot change the response anymore no matter how
RSF modifies the input. As shown in Fig. 9(a), when we
use CE loss during training, the gradient is usually vanished
between the decision boundaries (i.e., the shaded area); while
this phenomenon seldom happens if MSE loss is used.

For a deeper understanding, we examine the output pattern
of the penultimate layer (during untargeted attack) since it
directly interacts with the output layer, as depicted in Fig. 9(b).
Here the network structure will be provided in Table V and
the 500 test inputs are randomly selected from the N-MNIST
dataset. When the training loss is MSE, the number of output
spikes in the penultimate layer gradually decreases as the
attack process evolves. On the contrary, the spike number
first increases and then stays unchanged for the CE trained
model. Based on this observation, one possible hypothesis is
that more output spikes in the penultimate layer might increase
the distance between decision boundaries, thus introducing the
mentioned “trap” region with gradient vanishing.

B. Firing Threshold of the Penultimate Layer

As introduced in Section V-A, the models trained by CE
loss are prone to output more spikes in the penultimate layer,
leading to the “trap” region that makes the attack difficult.
To address this issue, we increase the firing threshold of the
penultimate layer during the attack to reduce the number of
spikes there. Notice that we only modify the firing threshold
in the FP stage during the generation of adversarial examples.
With the threshold tuning, we present the number of spikes

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: EXPLORING ADVERSARIAL ATTACK IN SNNs WITH SPIKE-COMPATIBLE GRADIENT 9

TABLE V
NETWORK STRUCTURE ON DIFFERENT DATASETS. “C,” “AP,” AND “FC”

[Grad. Vanish. [0 [success [E Failure € Perturbation (LZ)]

DENOTE CONVOLUTIONAL LAYER, AVERAGE POOLING LAYER, AND N-MNIST MNIST
0y 0y
FC LAYER, RESPECTIVELY Rate (%) Rate (%)
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Dataset Network Structure uT w/oS = uT w/oS i EEexm
Spike Input-128C3-128C3-AP2-384C3-384C3-AP2-1024FC-512FC-10FC ws wSs
Image Input-128C3-256C3-AP2-512C3-AP2-1024C3-512C3-1024FC-512FC-10FC - LGS —— . | T w/oS ®
Gesture-DVS Input-64C3-128C3-AP2-128C3-AP2-256FC-11FC il S — ws]]]
0 0.125 0.25 0.375 0.5 0 0.125 0.25 0375 0.5
Averaged Perturbation (L2) Averaged Perturbation (L2)
TABLE VI
CIFAR10-DVS CIFAR10
HYPERPARAMETER SETTINGS AND MODEL ACCURACY Rate (%) Rate (%)
DURING TRAINING 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
S
Datasets | Gesture-DVS | N-MNIST | CIFARI0-DVS | MNIST | CIFARIO ot e = uT W/°S =
wS w.
Input Size | 32x32x2 | 34x34x2 | 42x42x2 | 28x28x1 [32x32x3
w/oS ® w/os [] ®
un 0.3 0.3 0.3 0.3 0.3 LI e S — LI |
s 0.3 0.3 0.3 0.25 0.25
" 0.5 05 05 . ! 0 0125 025 0375 05 0 0025 005 0075 0.1
) ’ ’ Averaged Perturbation (L2) Averaged Perturbation (L2)
T 60 15 10 15 15
Time Bin Ims 5ms Sms - Fig. 11. Comparison of attack success rate and average perturbation over
Acc (MSE) 91.32% 99.49% 64.60% 99.27% 76.37% different datasets with and without probabilistic sampling in G2S converter.
Acc (CE) _ 99.42% 64.50% 99.52% 77.97% “T) “UT) “w/oS,” and “wS” refer to targeted attack, untargeted attack,

again in Fig. 10, where the CE loss is used and other settings
are the same with those in Fig. 9(b). Compared to the original
threshold setting (uy, = 0.3) in the previous experiments,
the number of output spikes in the penultimate layer can
be decreased significantly on average. Later experiments in
Section VI-D will evidence that this tuning of firing threshold
is able to improve the adversarial attack effectiveness.

VI. EXPERIMENT RESULTS
A. Experiment Setup

We design our experiments on both spiking and image
datasets. The spiking datasets include N-MNIST [26] and
CIFARI10-DVS [27] which are captured by dynamic vision
sensors [31]; while the image datasets include MNIST [28]
and CIFARI10 [29]. For these two kinds of dataset, we use
different network structure, as listed in Table V. For each
dataset, the detailed hyperparameter setting during training and
the trained accuracy are shown in Table VI. For each model,
we train it for 50 epochs, and the learning rate decays by 0.1 at
epoch 35. The default loss function is MSE. Since we focus
on the attack methodology in this work, we do not use the
optimization techniques such as input encoding layer, neuron
normalization, and voting-based classification [5].

We set the maximum iteration number of adversarial attack,
i.e., Iter in Algorithm 1, to 25. We randomly select 50 inputs
in each of the ten classes for untargeted attack and ten inputs
in each class for a targeted attack. In a targeted attack, we set
the target to all classes except the ground-truth one. We use
attack success rate and average perturbation per point (i.e.,
6] ,) as two metrics to evaluate the attack effectiveness.
Specifically, the attack success rate is calculated in the same
way as the prior work do [32], [47]: for an untargeted attack,
it is the percentage of the cases that adversarial examples fool
the model to output a different label from the ground-truth
one; for a targeted attack, it is the percentage of the cases
that adversarial examples manipulate the model to output the
target label. Noted, during the calculation of attack success

G2S without probabilistic sampling, and G2S with probabilistic sampling,
respectively.

rate, we only consider the original images that can be correctly
classified to eliminate the impact of intrinsic model prediction
errors. The reason that we use the same perturbation metric of
point-to-point distance for both image-based and spike-based
data sources is to simplify the comparison. In the perturbation
calculation, we adopt L2 norm, i.e., p = 2. For image-based
datasets, we normalize each input value into [0, 1].

B. Influence of G2S Converter

We first validate the effectiveness of the G2S converter.
Among the three steps in the G2S converter (i.e., probabilistic
sampling, sign extraction, and overflow-aware transformation)
as introduced in Section IV-C, the last two are needed in
addressing the spike compatibility while the first one is used
to control the perturbation amplitude. Therefore, we examine
how does probabilistic sampling affect attack effectiveness.
Note that we do not use RSF to solve the gradient vanishing
here.

Fig. 11 presents the comparison of attack results over four
datasets with or without the probabilistic sampling. In this
section, we estimate only the attack success/failure rate for
the input samples that do not encounter the gradient vanishing
problem during the attack. Thus, three parts add up to 100%,
i.e., the success rate, the failure rate, and the percentage of the
input samples that encounter the gradient vanishing problem.
We provide the following observations. First, the required
perturbation amplitude of a targeted attack is higher than that
of an untargeted attack, and the success rate of a targeted
attack is usually lower than that of an untargeted attack. These
results reflect the difficulty of a targeted attack that needs
to move the output to an expected class accurately. Second,
probabilistic sampling can significantly reduce the perturba-
tion amplitude in all cases because it removes many small
gradients. Third, the probabilistic sampling can maintain the
attack success rate in most cases under targeted attack. Specif-
ically, on N-MNIST and CIFARI10 datasets, the probabilistic

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10
[l UT Success [T Success =M= UT Perturbation —&-T Perturbation]
N-MNIST
v 100% 015 &
S < 8% = 02 _ =
3 eou 5 0o® 5
< 5 4% 006 £
2= 0% 003 275
£ < 3
< 0% 0 £
0.2 015 0.1 0.05 0.01 0.001 02 015 01 0.05 0.01 0.001 o
CIFAR10-DVS 14 Y
a 100% 01 B~
g5 % == o oos 2
2E 0% - 006 & 5
¥ 5 4% oM &%
2= 0% 002 35
< % 0 t
02 015 01 005 001 0.001 02 015 01 005 0.01 0.001 e
14 14
MNIST
v 100% 01 g
&< 8% o 008 _ =
$E gy TA- g 006 & §
L) =1
e 40% S| 004 &%
bl 20% |‘| 002 25
< 0% 0 £
02 015 01 005 001 0.001 02 015 01 005 0.01 0.001 e
14 14
CIFAR10
w 100% 002 T
8= 8% -l 0016 _ =
2Z eo% .= “M | 002 g 5
¥ B 0% 0008 © 7§
£ 0% 0004 25
< % 0 £
02 015 0.1 005 001 0.001 02 015 01 005 0.01 0.001 &
14 14
Fig. 12. Attack success rate and average perturbation with different

y settings. “T” and “UT” refer to targeted attack and untargeted attack,
respectively.

sampling can improve the targeted attack success rate a
lot (e.g., >80% on CIFAR10). Although the targeted attack
success rate is slightly lowered after applying the probabilistic
sampling on CIFAR10-DVS, it is not mainstream and might
be caused by the restriction on the number of attack iterations.
With the probabilistic sampling, the attack failure rate could
be reduced to almost zero if the gradient does not vanish.

C. Influence of RSF

Then, we validate the effectiveness of RSF. In RSEF,
the hyper-parameter y controls the number of selected ele-
ments, thus affecting the perturbation amplitude. Keep in mind
that a larger y indicates a larger perturbation via flipping the
state of more elements in the spiking input.

We first analyze the impact of y on the attack success rate
and perturbation amplitude, as shown in Fig. 12. A similar
conclusion as observed in Section VI-B also holds, that the
target attack is more difficult than the untargeted attack.
As y decreases, the number of elements with the flipped
state is reduced, leading to smaller perturbation. Whereas,
the impact of y on the attack success rate depends heavily on
the attack scenario and the dataset. For the easier untargeted
attack, it seems that a slightly large y is already helpful. The
attack success rate will be saturated close to 100% even if
at y =0.01. For the targeted attack with higher difficulty,
it seems that there exists an obvious peak success rate on
these datasets where the y value equals 0.05. The results are
reasonable since the impact of y is twofold: i) a too large y
will result in a large perturbation amplitude and might cause
a non-convergent attack; ii) a too small y cannot move the
model out of the region with gradient vanishing.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

N-MNIST MNIST
g o g 9 f
£ £
'.Q:D 7+ fa 7 F —A
g 5 L .g 5 b /A‘
o o (4
z 3 E 3r
oo o0
z 1 —I—I+I—A; 1
02 015 01 005 001 0001 02 015 01 0.5 0.01 0.001
CIFAR10-DVS Y CIFAR10 4

©
T

Avg Flipping Times
oW on N
L
Avg Flipping Times
oW on N
—T
&

02 015 01 005 001 0001 02 015 01

14 14

005 001 0001

Fig. 13. Flipping times with different y settings in RSF. “T”" and “UT” refer
to targeted attack and untargeted attack, respectively. A smaller y increases
the flipping times since the perturbation is not strong enough to push the
model out of the gradient vanishing region.

TABLE VII

IMPACT OF THE LOSS FUNCTION ON THE ATTACK SUCCESS RATE (WITH-
OUT FIRING THRESHOLD OPTIMIZATION). “T” AND “UT” REFER TO
TARGETED ATTACK AND UNTARGETED ATTACK, RESPECTIVELY

MSE Loss CE Loss
Dataset uT T uT T
N-MNIST 97.38% 99.44% | 90.12% 16.78%
CIFAR10-DVS 100% 86.35% 100% 82.95%
MNIST 91.31% 55.33% | 93.16% 47.81%
CIFARI10 98.68% 99.72% | 98.48% 40.51%

We also record the number of flipping times under different
y setting, as shown in Fig. 13. Here the “flipping times”
means the number of iterations during the attack process
where the gradient vanishing occurs and the spike flipping
is needed. When y is large, the number of flipping times can
be only one since the perturbation is large enough to push
the model out of the gradient vanishing region. As y becomes
smaller, the required number of flipping times becomes larger.
In order to balance the attack success rate (see Fig. 12) and the
flipping time (see Fig. 13), we finally recommend the setting
of y = 0.05 in RSF on the datasets we tested.

D. Influence of Loss Function and Firing Threshold

Additionally, we evaluate the influence of different training
loss functions on the attack success rate. The comparison is
summarized in Table VII. Here, the G2S converter and RSF
are switched on. The model trained by CE loss leads to a lower
attack success rate compared to the one trained by MSE loss,
and the gap is especially large in the targeted attack scenario.
As explained in Section V, this reflects the “trap” region of
the models trained by CE loss due to the increasing spike
activities in the penultimate layer during the attack.

To improve the attack effectiveness, we increase the firing
threshold of the penultimate layer during the attack to reduce
the spiking activities. Note that we only modify the penulti-
mate layer’s firing threshold in the forward pass during the
generation of adversarial examples. The experimental results
are provided in Fig. 14. For untargeted attacks, the increase
of the firing threshold can improve the attack success rate to
almost 100% on all datasets. For targeted attacks, the cases
present different behaviors. Specifically, on image datasets

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG ef al.: EXPLORING ADVERSARIAL ATTACK IN SNNs WITH SPIKE-COMPATIBLE GRADIENT 1
(—B—UTmMSE — A— TMSE —@—UTCE — & — TCf)
(@) N-MNIST CIFAR10-DVS MNIST CIFAR10
a
. 100% = — L, 10% e . 100% n—-—-—.—-—. . 10% -—i——i—i——8
g _ 8% FE-Ee S _ sm [F \\.\ g _ 8% /; S _ 8w Ped
é% 60% ,’ E;f; 60% e s =) E%} 60% " §§ 6% | o
T2 4o ¢ TE am TEoam S5 4o
I % |le-eo 2 om 2 om 3 am
0% 0% 0% 0%
03 1 2 3 4 5 6 03 1 2 3 4 5 & 03 1 2 3 4 5 6 03 1 2 3 4 5 6
Penultimate Thresh Penultimate Thresh Penultimate Thresh Penultimate Thresh
(b) 02
- ¥ 008
3 015 o ke)) ¥ ra oA g o Iy)
v N - T 006 foAN o - T 00 & - T 00
£ o1 [A ¢ axeg| B N P | 5 L f el PLom | @
A N =T E10 fae- g M T s il [P P O Ly S
2005 <3 0w <2om f <2om ~"o-o-0-0-0
e $ $ g e~ = —w—a—aa
0 & 0 < 0 ¢ 0
03 1 2 3 4 5 6 03 1 2 3 4 5 6 03 1 2 3 4 5 6 03 1 2 3 4 5 6
Penultimate Thresh Penultimate Thresh Penultimate Thresh Penultimate Thresh
(c)
. 100% . to0% [, 0% [=== | , 0% [F—a——s—a—a—a
S _ 8% S _ sw [/ A 3 _ 8o ,." S _ s | o~
3E oo ER eu%»:c NS == $E oo ’ 5 oo [o7
2 A 3 x = d| 3 4 2 [4
e oam ’ A A = A=A SE g | s s [& €5 am |
2 o[K g =e-e I x| 0 am 0 am |
0% 0% 0% 0%
03 1 2 3 4 5 & 03 1 2 3 4 5 6 03 1 2 3 4 5 6 03 1 2 3 4 5 6

Penultimate Thresh Penultimate Thresh

Penultimate Thresh Penultimate Thresh

Fig. 14. Attack effectiveness with different firing threshold. (a) Attack success rate without strict € bound. (b) Average perturbation without strict € bound.
(c) Attack success rate under strict perturbation bound (¢ = 0.08). “T” and “UT” refer to targeted attack and untargeted attack, respectively. In most cases,
we can achieve a high attack success rate and acceptable perturbation with a slightly larger firing threshold at the penultimate layer, even if with strict

perturbation bound (e = 0.08).

(i.e., MNIST and CIFAR10), the attack success rate can be
quickly improved and remained at about 100%; while on spik-
ing datasets (i.e., N-MNIST and CIFAR10-DVS), the attack
success rate initially goes higher and then decreases, in other
words, there exists the best threshold setting. This might be
due to the sparse-event nature of the neuromorphic datasets,
on which the number of spikes injected into the last layer will
be decreased severely if the firing threshold becomes large
enough, leading to a fixed loss value and thus a degraded attack
success rate. Moreover, from the perturbation distribution,
it can be seen that the increase of the firing threshold does
not introduce much extra perturbation in most cases. All the
above results indicate that appropriately increasing the firing
threshold of the penultimate layer is able to improve the attack
effectiveness significantly without enlarging the perturbation.

In Fig. 14(a), we do not strictly bound ¢, in order to avoid
disturbing the analysis of the firing threshold. The average
perturbation magnitude values are shown in Fig. 14(b), which
are relatively small (within 0.08 in most cases). We fur-
ther analyze the attack success rate under the limitation of
strict perturbation bounds. Specifically, during attack itera-
tions, if the average perturbation per point is greater than a
predefined value €, the attack is considered a failure. As shown
in Fig. 14(c), our attack method can still achieve a considerable
attack success rate with € = 0.08 when compared to the results
in Fig. 14(a) for most cases. While there is a degradation
for targeted attack over the N-MNIST dataset, which may be
caused by the high sparsity of the spike inputs in that dataset.

E. Effectiveness Comparison With Existing SNN Attack

As discussed in Section III-B, our attack is quite differ-
ent from previous work using trial-and-error input perturba-
tion [15], [16] or SNN/ANN model conversion [17]. Beyond
the methodology difference, here we coarsely discuss the

TABLE VIII

COMPARISON OF THE ACCURACY LOSS BETWEEN OUR WORK AND PRIOR
WORK [17] UNDER DIFFERENT PERTURBATION BOUNDS

€ 8/255 16/255 | 32/255 | 64/255
Untargeted [17] | 37.50% | 62.50% | 75.00% | 77.00%
Untargeted (ours) | 50.47% | 72.46% | 76.67% | 76.86%
Targeted [17] 20.00% | 37.50% | 52.50% | 63.00%
Targeted (ours) 19.16% | 42.36% | 65.58% | 71.48%

attack effectiveness. Due to the high complexity of the trial-
and-error manner, the testing dataset is quite small (e.g., USPS
dataset [15]) or even with only one single example [16].
In contrast, we demonstrate the effective adversarial attack
on much larger datasets. For the SNN/ANN model conversion
method [17], the authors show results on the CIFAR10 dataset.
In that work, the authors used the accuracy loss of the model,
which is caused by substituting the original inputs with the
adversarial examples, for the evaluation of the attack effec-
tiveness. We compare our attack results with theirs (inferred
from the figure data in [17]) on CIFAR10 under different €
configurations, as shown in Table VIII. It can be seen that our
attack method can incur more model accuracy loss in most
cases, which indicates our better attack effectiveness.

F. SNNs Versus ANNs Against Adversarial Attack

In this section, we further compare SNNs and ANNSs against
adversarial attacks. In essence, we make the comparison from
two perspectives: the perturbation distance demanded for a
successful attack; the transferability between the adversarial
examples of ANNs and SNNs. Here, the transferability of
model A’s adversarial examples on model B represents the
attack success rate of attacking model B with the adversarial
examples generated by model A. In our evaluation, a larger

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12
(@ UTsuccess @ Tsuccess @ Perturbation (L2))
Independent Attack SNN Independent Attack ANN
< 3 s)
= 100% 0.0 T Zioo% 0.0 T
2 s0% 00228 £ so% 0.032 S
T 60% 0024 3 % 60% 0.024 3
4 5 9 5
g 40% 0.016 £ g 40% 0.016 £
3 0% 0.008 & 3 2% 0.008 &
X % o g ¥ 0% 0 T
g ur T Ut T & = ur T Ut T &
Z s % @
MNIST | CIFARLO z MNIST | CIFARLO z
4 4
(@)
Cross Attack SNN Cross Attack ANN
R 100% R 100%
L 80% L 80%
© ©
& 60% & 60%
« «
g % § aox
é 20% § 20%
< 0% T o
] ur T | ut T E] ur T fut T
b=} b=
< MNIST CIFARLO < MNIST CIFARLO
(c) (d)
Fig. 15. Attack success rate comparison between ANNs and SNNs under

gradient-based attack. “T” and “UT” refer to targeted attack and untargeted
attack, respectively. (a) and (b) Independent attack. (c) and (d) Cross attack.
In this scenario, attacking SNNs requires larger perturbation than attacking
ANNSs and the adversarial examples generated by attacking the ANN models
fail to attack the SNN models.

perturbation distance indicates more challenges to attack a
model; a lower transferability implies that the adversarial
examples generated by one model are lower possible to attack
other models successfully.

In this section, we select image-based datasets, MNIST
and CIFAR10s. For ANN models, we use the same network
structure as SNN models given in Table V. The training loss
function is CE here. We test two attack scenarios: independent
attack and cross attack. For the independent attack, the ANN
models are attacked using the BIM method in (4); while the
SNN models are attacked using the proposed gradient-based
method and also a gradient-free method. Note that the firing
threshold of the penultimate layer of SNN models during the
attack is set to 2 in this section as suggested in Fig. 14. For
the cross attack, we use the adversarial examples generated
by attacking the SNN models to mislead the ANN models or
vice versa.

From Fig. 15(a) and (b), we can easily observe that all attack
success rates are quite high in the independent attack scenario.
While attacking the SNN models requires larger perturbation
than attacking the ANN models in the above experiment. From
the results of the cross attack in Fig. 15(c) and (d), we find
that using the adversarial examples generated by attacking
ANN models to fool the SNN models is very difficult, with
only <12% success rate, indicating the lower transferability
of the ANN adversarial examples. The observation in this
scenario reflects that SNN adversarial examples are easier to
transfer to an ANN model with the same network structure.

Besides the gradient-based attack method, we also exam
the gradient-free boundary attack method [37]. Since the
computational complexity of boundary attack is much higher
than the gradient-based attack, we only evaluate the untargeted
attack. The results are depicted in Fig. 16. We find that the
required perturbation to attack SNNs is still higher. However,
under cross attack, the ANN adversarial examples present
better transferability than the SNN adversarial examples,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

(= UT Success ¢ Perturbation (L2)]

Independent Attack Cross Attack
= SNN ANN) = SNN ANN
X = X
"o 100% 0.04 § o 100%

T 809 =1 T s0%

S so% 0032 § S so%

2 60% 0.024 5 2 60%

§ 40% 0.016 g § 40%

A 20% 0.008 & A 20%

~ o) ~ "

] 0% 0 %;] 0%

£ &0 &0 e £ &S L&D

z S 3 S > [} z SIS SRS
& &S z T &

(@) (b)
Fig. 16. Attack success rate comparison between ANNs and SNNs under

untargeted boundary attack. (a) Independent attack. (b) Cross attack. In this
scenario, attacking SNNs still requires larger perturbation than attacking
ANNSs; however, the ANN adversarial examples on MNIST present better
transferability than the SNN adversarial examples.

] [Success @ Perturbation (L2)!
C=0.5

100% 0.04

75% 0.03
50% 0.02

25% 0.01

MNIST
Attack Success Rate (%)

0%

Averaged Perturbation (L2)

100% 0.04

75% 0.03
50% 0.02

25% 0.01

CIFAR10
Attack Success Rate (%)

0%

Averaged Perturbation (L2)

Fig. 17. Attack effectiveness with CWL2 under different settings of c.
A larger ¢ indicates a smaller perturbation but may compromise the attack
success rate.

which indicates the SNN model in this scenario is easier to
attack.

G. Other Gradient-Based Attack Methods and Datasets

In this subsection, we validate the effectiveness of the
proposed attack methodology using more experiments with
advanced attack methods (e.g., CWL2 [36]) and dynamic
datasets (e.g., Gesture-DVS [48]).

CWL2 is an advanced adversarial attack method that is
widely applied in ANN attack, which integrates a regular-
ization item to restrict the magnitude of the perturbation.
We tailor Algorithm 1 to perform CWL2 attack against SNN
models over image-based inputs. The adversarial example
generation follows:

Xigyy = Xif + Sig—c x Vo |xif — xig| (14)

where xi, and xi; represent the original input and the adver-
sarial example generated at the kth attack iteration. ¢ is a
parameter that determines the impact of regularization item.
A larger ¢ indicates smaller perturbation at the cost of possibly
lower attack success rate. The CWL2 attack would degrade to
the classic BIM attack when ¢ = 0.

We tested the tailored SNN-oriented CWL2 attack on
MNIST and CIFARI10 datasets with different configurations
of c¢. As illustrated in Fig. 17, a slight increase of ¢ (¢ = 0.1)
helps reduce the perturbation magnitude without sacrificing

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: EXPLORING ADVERSARIAL ATTACK IN SNNs WITH SPIKE-COMPATIBLE GRADIENT 13

—@— UTMSE _— A — TMSE

0.15
Fl0% rm—f Wy 5 5 a| T
£ < 2
5 g 80 4 N Ts o1f
5E 6o [& A 22 -k kA -k A
23 am Aokchk=Al gl L
g zs
S 2% £
C 0% & 0
03 1 2 3 4 5 6 03 1 2 3 4 5 6
Penultimate Thresh Penultimate Thresh
Fig. 18. Attack effectiveness on the Gesture-DVS dataset.

the attack success rate, compared to the results at (¢ = 0).
However, when ¢ is too large (¢ = 0.5), the attack success
rate decreases. For example, the targeted attack success rate
on MNIST dataset is reduced by up to 32.45% when ¢ = 0.5.

In addition, we also applied our attack method on Gesture-
DVS. The model configurations have been shown in Table VI.
We only test the cases with the MSE training loss function
for simplicity, and the attack results are shown in Fig. 18.
Our methodology can still achieve a high attack success rate
with acceptable perturbation even on this dynamic dataset.
The trend of attack success rate variation under different
penultimate layer threshold setting is similar to that on other
spike-based datasets we have tested earlier.

VII. CONCLUSION AND DISCUSSION

SNNs have attracted broad attention and have been widely
deployed in neuromorphic devices due to the importance of
brain-inspired computing. Naturally, the security problem of
SNNs should be considered. In this work, we first identify the
challenges in attacking an SNN model with spatiotemporal-
gradient-based methods, including the incompatibility between
the spiking inputs and the continuous gradients, and the gradi-
ent vanishing problem. Second, we design a G2S converter and
an RSF to address the mentioned two challenges, respectively.
Our methodology can control the perturbation amplitude well
and is applicable to both spiking and image data formats. Inter-
estingly, we find that there is a “trap” region in SNN models
trained by CE loss, which can be overcome by adjusting the
firing threshold of the penultimate layer. We conduct extensive
experiments on various datasets and show a 99%-+ attack
success rate in most cases, which is the best result on SNN
attack. Furthermore, we compare the attack of SNNs and
ANNs. From our empirical results, the adversarial examples
for SNNs require a larger perturbation distance, but it still
remains open whether SNNs can be more robust than ANNs
against adversarial attacks.

For future work, we recommend several interesting topics.
Although we only study the white-box adversarial attack
to avoid shifting the focus of presenting our methodology,
the black-box adversarial attack should be investigated because
it is more practical. Fortunately, the proposed methods in this
work can be transferred into the black-box attack scenario.
Second, we only analyze the influence of loss function and
firing threshold due to the page limit. It still remains an open
question that whether other factors can affect the attack effec-
tiveness, such as the gradient approximation form of the firing
activities, the time window length for rate coding or the coding
scheme itself, the network structure, and other solutions that
can substitute G2S and RSF. Third, more appropriate evalua-
tion metrics should be designed to evaluate the perturbation for

spike data. Fourth, a more comprehensive research to compare
the robustness between ANNs and SNNs against adversarial
attack is an interesting topic. Fifth, the attack against physical
neuromorphic devices rather than just theoretical models is
more attractive. At last, compared to the attack methods,
the defense techniques are highly expected for the construction
of large-scale neuromorphic systems.

REFERENCES

[11 W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Netw., vol. 10, no. 9, pp. 1659-1671, 1997.

[2] L. Deng et al., “Rethinking the performance comparison between SNNS
and ANNS,” Neural Netw., vol. 121, pp. 294-307, Jan. 2020.

[3] W. Maass, “Noise as a resource for computation and learning in
networks of spiking neurons,” Proc. IEEE, vol. 102, no. 5, pp. 860-880,
May 2014.

[4] G. Haessig, A. Cassidy, R. Alvarez, R. Benosman, and G. Orchard,
“Spiking optical flow for event-based sensors using IBM’s TrueNorth
neurosynaptic system,” [EEE Trans. Biomed. Circuits Syst., vol. 12,
no. 4, pp. 860-870, Aug. 2018.

[51 Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training
for spiking neural networks: Faster, larger, better,” in Proc. AAAI Conf.
Artif. Intell., vol. 33, 2019, pp. 1311-1318.

[6] A.R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ultimate
SLAM? Combining events, images, and IMU for robust visual SLAM
in HDR and high-speed scenarios,” IEEE Robot. Autom. Lett., vol. 3,
no. 2, pp. 994-1001, Apr. 2018.

[7]1 Z. Jonke, S. Habenschuss, and W. Maass, “Solving constraint satisfac-
tion problems with networks of spiking neurons,” Frontiers Neurosci.,
vol. 10, p. 118, Mar. 2016.

[8] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82-99, Jan. 2018.

[91 G. Shi, Z. Liu, X. Wang, C. T. Li, and X. Gu, “Object-dependent

sparse representation for extracellular spike detection,” Neurocomputing,

vol. 266, pp. 674-686, Nov. 2017.

T. Hwu, J. Isbell, N. Oros, and J. Krichmar, “A self-driving robot using

deep convolutional neural networks on neuromorphic hardware,” in Proc.

Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 635-641.

P. A. Merolla et al., “A million spiking-neuron integrated circuit with

a scalable communication network and interface,” Science, vol. 345,

no. 6197, pp. 668-673, Aug. 2014.

S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker

project,” Proc. IEEE, vol. 102, no. 5, pp. 652-665, May 2014.

J. Pei et al., “Towards artificial general intelligence with hybrid tianjic

chip architecture,” Nature, vol. 572, no. 7767, pp. 106-111, Aug. 2019.

C. Szegedy et al., “Intriguing properties of neural networks,” 2013,

arXiv:1312.6199. [Online]. Available: http://arxiv.org/abs/1312.6199

A. Marchisio, G. Nanfa, F. Khalid, M. Abdullah Hanif, M. Martina,

and M. Shafique, “Is spiking secure? A comparative study on the

security vulnerabilities of spiking and deep neural networks,” 2019,

arXiv:1902.01147. [Online]. Available: http://arxiv.org/abs/1902.01147

A. Bagheri, O. Simeone, and B. Rajendran, “Adversarial training for

probabilistic spiking neural networks,” in Proc. IEEE 19th Int. Workshop

Signal Process. Adv. Wireless Commun. (SPAWC), Jun. 2018, pp. 1-5.

S. Sharmin, P. Panda, S. Shakib Sarwar, C. Lee, W. Ponghiran, and

K. Roy, “A comprehensive analysis on adversarial robustness of spik-

ing neural networks,” 2019, arXiv:1905.02704. [Online]. Available:

http://arxiv.org/abs/1905.02704

P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition

using spike-timing-dependent plasticity,” Frontiers Comput. Neurosci.,

vol. 9, p. 99, Aug. 2015.

S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,

“STDP-based spiking deep convolutional neural networks for object

recognition,” Neural Netw., vol. 99, pp. 56-67, Mar. 2017.

P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,

“Fast-classifying, high-accuracy spiking deep networks through weight

and threshold balancing,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),

Jul. 2015, pp. 1-8.

Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal back

propagation for training high-performance spiking neural networks,”

Frontiers Neurosci., vol. 12, p. 331, May 2018.

Y. Jin, W. Zhang, and P. Li, “Hybrid macro/micro level back propagation

for training deep spiking neural networks,” in Proc. Adv. Neural Inf.

Process. Syst., 2018, pp. 7005-7015.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass,
“Long short-term memory and learning-to-learn in networks of spiking
neurons,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 787-797.

P. Gu, R. Xiao, G. Pan, and H. Tang, “STCA: Spatio-temporal credit
assignment with delayed feedback in deep spiking neural networks,” in
Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 1366-1372.

E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks,” IEEE Signal Process. Mag.,
vol. 36, no. 6, pp. 51-63, Nov. 2019.

G. Orchard, A. Jayawant, G. Cohen, and N. Thakor, “Converting
static image datasets to spiking neuromorphic datasets using saccades,”
Frontiers Neurosci., vol. 9, p. 437, Nov. 2015.

H. Li, H. Liu, X. Ji, G. Li, and L. Shi, “CIFAR10-DVS: An event-
stream dataset for object classification,” Frontiers Neurosci., vol. 11,
p. 309, May 2017.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009, Rep. No. 7.

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynam-
ics: From Single Neurons to Networking Models Cognition. Cambridge,
U.K.: Cambridge Univ. Press, 2014.

P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120 dB 15 us
latency asynchronous temporal contrast vision sensor,” /EEE J. Solid-
State Circuits, vol. 43, no. 2, pp. 566-576, Jan. 2008.

1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” 2014, arXiv:1412.6572. [Online]. Available:
http://arxiv.org/abs/1412.6572

A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” 2016, arXiv:1607.02533. [Online]. Available:
http://arxiv.org/abs/1607.02533

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool:
A simple and accurate method to fool deep neural networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 2574-2582.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016,
pp. 372-387.

N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 39-57.

W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning mod-
els,” 2017, arXiv:1712.04248. [Online]. Available: http://arxiv.org/
abs/1712.04248

T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
patch,” 2017, arXiv:1712.09665. [Online]. Available: http://arxiv.org/
abs/1712.09665

K. Eykholt er al., “Robust physical-world attacks on deep learn-
ing models,” 2017, arXiv:1707.08945. [Online]. Available: http://arxiv.
org/abs/1707.08945

Y. Liu et al., “Trojaning attack on neural networks,” in Proc. Netw.
Distrib. Syst. Secur. Symp., San Diego, CA, USA, Feb. 2018, pp. 1-17.
K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated whitebox
testing of deep learning systems,” in Proc. 26th Symp. Oper. Syst. Princ.,
Oct. 2017, pp. 1-18.

Y. Xiang Marcus Tan, Y. Elovici, and A. Binder, “Exploring the back
alleys: Analysing the robustness of alternative neural network archi-
tectures against adversarial attacks,” 2019, arXiv:1912.03609. [Online].
Available: http://arxiv.org/abs/1912.03609

A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper
in spiking neural networks: VGG and residual architectures,” Frontiers
Neurosci., vol. 13, p. 95, 2019.

I. M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo,
and J. Alakuijala, “Temporal coding in spiking neural networks with
alpha synaptic function,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2020, pp. 8529-8533.

H. Mostafa, “Supervised learning based on temporal coding in spiking
neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7,
pp. 3227-3235, Jul. 2018.

S. Reza Kheradpisheh and T. Masquelier, “S4NN: Temporal backprop-
agation for spiking neural networks with one spike per neuron,” 2019,
arXiv:1910.09495. [Online]. Available: http://arxiv.org/abs/1910.09495

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[47] D. Su, H. Zhang, H. Chen, J. Yi, P.-Y. Chen, and Y. Gao, “Is robustness
the cost of accuracy?—A comprehensive study on the robustness of
18 deep image classification models,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 631-648.

[48] A. Amir et al., “A low power, fully event-based gesture recognition
system,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 7243-7252.

Ling Liang received the B.E. degree from
Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2015, and the M.S. degree
from the University of Southern California, Los
Angeles, CA, USA, in 2017. He is currently pur-
suing the Ph.D. degree with the Department of
Electrical and Computer Engineering, University of
California at Santa Barbara, Santa Barbara, CA,
USA.

His current research interests include machine
learning security, tensor computing, spiking neural
networks, and computer architecture.

Xing Hu (Member, IEEE) received the B.S. degree
from the Huazhong University of Science and Tech-
nology, Wuhan, China, in 2009, and the Ph.D.
degree from the University of Chinese Academy
of Sciences, Beijing, China, in 2009 and 2014,
respectively.

She is currently an Associate Professor with the
State Key Laboratory of Computer Architecture,
Institute of Computing Technology (ICT), Chinese
Academy of Sciences (CAS), Beijing. She has
authored or coauthored over 40 refereed publica-
tions. Her current research interest includes deep learning system security
and efficiency.

Dr. Hu was a PC Member of the IEEE/ACM International Symposium
on Microarchitecture (MICRO) 2021 and the Design Automation Conference
(DAC), and served as a Guest Editor for Frontiers in Neuroscience.

Lei Deng (Member, IEEE) received the B.E. degree
from the University of Science and Technology
of China, Hefei, China, in 2012, and the Ph.D.
degree from Tsinghua University, Beijing, China,
in 2017.

He was a Post-Doctoral Fellow at the Department
of Electrical and Computer Engineering, Univer-
sity of California, Santa Barbara, CA, USA, from
2017 to 2021. He is currently an Assistant Professor
at the Center for Brain Inspired Computing Research
(CBICR), Tsinghua University. He has authored or
coauthored over 70 refereed publications. His research interests span the
areas of brain-inspired computing, machine learning, neuromorphic chip, and
computer architecture.

Dr. Deng was a recipient of MIT Technology Review Innovators Under
35 China 2019. He was a PC Member of the International Joint Conference on
Neural Networks (IJCNN) 2021 and the International Symposium on Neural
Networks (ISNN) 2019, and served as a Guest Associate Editor for Frontiers
in Neuroscience and Frontiers in Computational Neuroscience.

Yujie Wu received the B.E. degree from Lanzhou
University, Lanzhou, China, in 2016, and the Ph.D.
degree from Tsinghua University, Beijing, China,
in 2021.

He is currently a Post-Doctoral Fellow at the Insti-
tute of Theoretical Computer Science, Graz Univer-
sity of Technology, Graz, Austria. He has authored
or coauthored over 20 refereed publications. His
research interests include spiking neural networks,
neuromorphic device, and brain-inspired computing.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIANG et al.: EXPLORING ADVERSARIAL ATTACK IN SNNs WITH SPIKE-COMPATIBLE GRADIENT 15

Guoqi Li (Member, IEEE) received the B.E. degree
from Xi’an University of Technology, Xi’an, China,
in 2004, the M.E. degree from Xi’an Jiaotong
University, Xi’an, in 2007, and the Ph.D. degree
from Nanyang Technological University, Singapore,
in 2011.

He was a Scientist with the Data Storage Institute
and the Institute of High Performance Comput-
ing, Agency for Science, Technology and Research
(ASTAR), Singapore, from 2011 to 2014. He is
currently an Associate Professor with the Center for
Brain Inspired Computing Research (CBICR), Tsinghua University, Beijing,
China. His current research interests include machine learning, brain-inspired
computing, neuromorphic chip, complex systems, and system identification.

Dr. Li is an Editorial-Board Member of Control and Decision and a Guest
Associate Editor of Frontiers in Neuroscience and Neuromorphic Engineering.
He was a recipient of the 2018 First Class Prize in Science and Technology
of the Chinese Institute of Command and Control, Best Paper Awards (EAIS
2012 and NVMTS 2015), and the 2018 Excellent Young Talent Award of the
Beijing Natural Science Foundation.

Yufei Ding (Associate Member, IEEE) received
the B.S. degree in physics from the University of
Science and Technology of China, Hefei, China,
in 2009, the M.S. degree from the College of
William and Mary, Williamsburg, VA, USA, in 2011,
and the Ph.D. degree in computer science from
North Carolina State University, Raleigh, NC, USA,
in 2017.

Since 2017, she has been with the Department
of Computer Science, University of California at
Santa Barbara, Santa Barbara, CA, USA, as an
Assistant Professor. Her research interest resides at the intersection of compiler
technology and (big) data analytics, with a focus on enabling high-level
program optimizations for data analytics and other data-intensive applications.

Dr. Ding was a receipt of the NCSU Computer Science Outstanding
Research Award in 2016 and the Computer Science Outstanding Dissertation
Award in 2018.

Peng Li (Fellow, IEEE) received the Ph.D. degree in
electrical and computer engineering from Carnegie
Mellon University, Pittsburgh, PA, USA, in 2003.

He was a Professor with the Department of Electri-
cal and Computer Engineering, Texas A&M Univer-
sity, College Station, TX, USA, from 2004 to 2019.
He is presently a Professor with the Department
of Electrical and Computer Engineering, Univer-
sity of California at Santa Barbara, Santa Barbara,
CA, USA. His research interests include integrated
circuits and systems, computer-aided design, brain-
inspired computing, and computational brain modeling.

Dr. Li’s work has been recognized by various distinctions, including the
International Conference on Computer Aided Design (ICCAD) Ten Year
Retrospective Most Influential Paper Award, four IEEE/ACM Design Automa-
tion Conference Best Paper Awards, the IEEE/ACM William J. McCalla
ICCAD Best Paper Award, the ISCAS Honorary Mention Best Paper Award
from the Neural Systems and Applications Technical Committee of the
IEEE Circuits and Systems Society, the U.S. National Science Foundation
CAREER Award, two Inventor Recognition Awards from Microelectronics
Advanced Research Corporation, two Semiconductor Research Corporation
Inventor Recognition Awards, the William and Montine P. Head Fellow
Award, and the TEES Fellow Award from the College of Engineering, Texas
A&M University. He was an Associate Editor of the IEEE TRANSACTIONS
ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
from 2008 to 2013 and the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS II: EXPRESS BRIEFS from 2008 to 2016, and he is currently a Guest
Associate Editor of Frontiers in Neuroscience. He was the Vice President for

the Technical Activities of the IEEE Council on Electronic Design Automation
from 2016 to 2017.

Yuan Xie (Fellow, IEEE) received the B.S. degree
in electronic engineering from Tsinghua University,
Beijing, China, in 1997, and the M.S. and Ph.D.
degrees in electrical engineering from Princeton
University, Princeton, NJ, USA, in 1999 and 2002,
respectively.

He was an Advisory Engineer with the IBM
Microelectronic Division, Burlington, NJ, USA from
2002 to 2003. He was a Full Professor with
Pennsylvania State University, Pennsylvania, PA,
USA, from 2003 to 2014. He was a Visiting
Researcher with the Interuniversity Microelectronics Centre (IMEC), Leuven,
Belgium, from 2005 to 2007 and in 2010. He was a Senior Manager and
Principal Researcher with the AMD Research China Lab, Beijing, from
2012 to 2013. He is currently a Professor with the Department of Electrical
and Computer Engineering, University of California at Santa Barbara, Santa
Barbara, CA, USA. His interests include VLSI design, electronics’ design
automation (EDA), computer architecture, and embedded systems.

Dr. Xie is an expert in computer architecture who has been inducted to
the International Symposium on Computer Architecture (ISCA)/International
Symposium on Microarchitecture (MICRO)/High-Performance Computer
Architecture (HPCA) Hall of Fame and the AAAS/ACM Fellow. He was
a recipient of best paper awards (HPCA 2015, the International Conference
on Computer Aided Design (ICCAD) 2014, the Great Lakes Symposium on
VLSI (GLSVLSI) 2014, the IEEE Computer Society Annual Symposium on
VLSI (ISVLSI) 2012, the International Symposium on Low Power Electronics
and Design (ISLPED) 2011, Asia and South Pacific Design Automation
Conference (ASPDAC) 2008, and the Association of Surgeons of India
(ASICON) 2001) and best paper nominations (ASPDAC 2014, MICRO
2013, the Design, Automation and Test in Europe Conference (DATE) 2013,
ASPDAC 2009-2010, and ICCAD 2006), the 2016 IEEE Micro Top Picks
Award, the 2008 IBM Faculty Award, and the 2006 NSF CAREER Award.
He served as the TPC Chair for ICCAD 2019, HPCA 2018, ASPDAC
2013, ISLPED 2013, and the International Forum on Embedded MPSOC
and Multicore (MPSOC) 2011, a Committee Member in the IEEE Design
Automation Technical Committee (DATC), the Editor-in-Chief for the ACM
Journal on Emerging Technologies in Computing Systems, and an Associate
Editor for the ACM Transactions on Design Automations for Electronics Sys-
tems, the IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS
ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,
the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS, the IEEE DESIGN AND TEST OF COMPUTERS, and the [ET
Computers and Design Techniques. Through extensive collaboration with
industry partners (e.g., AMD, HP, Honda, IBM, Intel, Google, Samsung,
IMEC, Qualcomm, Alibaba, Seagate, and Toyota), he has helped the transition
of research ideas to industry.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 14,2021 at 22:30:44 UTC from IEEE Xplore. Restrictions apply.

