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Abstract—As Machine Learning (ML) becomes pervasive in
the era of artificial intelligence, ML specific tools and frameworks
are required for architectural research. This paper introduces
NeuroMeter, an integrated power, area, and timing modeling
framework for ML accelerators. NeuroMeter models the detailed
architecture of ML accelerators and generates a fast and accurate
estimation on power, area, and chip timing. Meanwhile, it
also enables the runtime analysis of system-level performance
and efficiency when the runtime activity factors are provided.
NeuroMeter’s micro-architecture model includes fundamental
components of ML accelerators, including systolic array based
tensor units (TU), reduction trees (RT), and 1D vector units (VU).
NeuroMeter has accurate modeling results, with the average
power and area estimation errors below 10% and 17% respec-
tively when validated against TPU-vl, TPU-v2, and Eyeriss.

Leveraging the NeuroMeter’s new capabilities on architecting
manycore ML accelerators, this paper presents the first in-depth
study on the design space and tradeoffs of “Brawny and Wimpy”
inference accelerators in datacenter scenarios with the insights
that are otherwise difficult to discover without NeuroMeter. Our
study shows that brawny designs with 64x64 systolic arrays
are the most performant and efficient for inference tasks in
the 28nm datacenter architectural space with a 500mm?’ die
area budget. Our study also reveals important tradeoffs between
performance and efficiency. For datacenter accelerators with low
batch inference, a small (~16%) sacrifice of system performance
(in achieved Tera OPerations per Second, aka TOPS) can lead to
more than a 2x efficiency improvement (in achieved TOPS/TCO).
To showcase NeuroMeter’s capability to model a wide range of
diverse ML accelerator architectures, we also conduct a follow-
on mini-case study on implications of sparsity on different ML
accelerators, demonstrating wimpier accelerator architectures
benefit more readily from sparsity processing despite their lower
achievable raw energy efficiency.

Index Terms—accelerator, hardware modeling, deep learning

I. INTRODUCTION

As Machine learning (ML) becomes pervasive in the era of
artificial intelligence, we have witnessed a “Cambrian explo-
sion” of ML accelerators with a plethora of different acceler-
ators being proposed and/or implemented from both academia
and industry [47]. These ML accelerators are designed for a
wide range of use cases, ranging from cloud to edge devices;
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they are designed as either standalone accelerators or near-
memory processors [37]. With significantly different scenarios,
performance and efficiency targets, the design space of ML
accelerators is very large and complex, which in turn drives
the clear need for a fast and accurate modeling of power, area,
and chip timing of ML accelerator architectures. On the other
hand, architecture level analytical modeling frameworks, such
as CACTI [43], McPAT [39], Wattch [15], and GPUWattch
[38], have been proven to be very useful for the architec-
ture community. These modeling frameworks provide fast,
accurate, and easy-to-understand modeling results of power,
area, and timing on cache, memory, CPU, and GPU. However,
with the recent boom of new ML accelerators, the community
lacks an architectural analytical modeling framework for ML
accelerators.

This paper introduces NeuroMeter, an integrated power,
area, and timing modeling framework for ML accelerators.
NeuroMeter advances the state-of-the-art from at least three
aspects. Firstly, unlike prior ML accelerator modeling frame-
works that either model power, area, or timing in isolation
or require EDA tools, NeuroMeter is the first framework to
simultaneously model power, area, and timing analytically
at the architecture level. Secondly, NeuroMeter supports de-
tailed modeling of critical architectural components of ML
accelerators, including 2D systolic arrays, reduction trees,
1D vector units, vector register files, and beyond. Thirdly,
compared to previous modeling frameworks such as McPAT,
NeuroMeter increases the architectural abstraction level. For
example, it only requires users to configure high level ar-
chitecture; meanwhile, it automatically scales and configures
dependent hardware resources. As another example, it only
requires users to configure high-level design targets, such as
TOPS; meanwhile, it automatically searches for the optimal
clock rate. To ensure accuracy, we have conducted a rigorous
validation on NeuroMeter results on both the component level
and the whole-chip level. Our validation shows that Neu-
roMeter achieves high modeling accuracy, with overall power
and area estimation errors below 10% and 17% respectively
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when validated against TPU-v1 [30], TPU-v2 [29], and Eyeriss
[17]. When combined with an external performance simulator
via its flexible and extensible interface, NeuroMeter enables
a comprehensive study of architecture, system performance
(TOPS), power efficiency (TOPS/Watt), and cost efficiency
(TOPS/TCO). With its new capabilities, NeuroMeter empow-
ers architects with a fast yet accurate modeling framework
for exploring emerging manycore ML accelerators in a large
architectural design space.

The first contribution of this paper is that NeuroMeter
significantly advances the state-of-the-art, enhancing the ar-
chitectural modeling ecosystem of ML accelerators for the
community. Recent work such as Accelergy [55] and Timeloop
[44] provide an ecosystem for architecture level ML ac-
celerator modeling. Timeloop [44] is an automatic design
exploration tool, requiring fast energy consumption evalua-
tions. Such fast energy consumption evaluations are supported
by a high-level modeling tool, Accelergy [55], which relies
on CACTI and lookup-table based energy models. However,
the community still lacks an accurate analytical architecture
modeling for the whole accelerator architecture to analytically
model all accelerator components in the way CACTI does for
memory arrays. NeuroMeter bridges this gap by providing
a consistent analytical modeling methodology for the entire
accelerator chip, building a strong foundation for Accelergy,
Timeloop, among others [31] [36] [51], to form a robust and
coherent ecosystem. Meanwhile, with its modular structure,
NeuroMeter can also be used as a standalone framework, if
the users choose to.

The second contribution of this paper is the in-depth and
comprehensive design space exploration on ML accelerators.
With the recent “Cambrian explosion” of ML accelerators, two
clear design paths have emerged. One path is a “Brawny” de-
sign that uses a few large cores such as Google’s TPU (single
core with a 256x256 systolic array in TPU-v1 [30]; dual cores,
each with one 128x128 systolic array in TPU-v2 [21]), while
the other path is a “Wimpy” design that uses a sea of small
cores such as nVidia’s Volta (640 TensorCores with 64 FMAs
per clock per TensorCore [19]) and Ampere (512 TensorCores
with 1024 FMAs per clock per TensorCore and hardware
supports for structural sparsity [3]). While both design paths
have proven to be successful and inspired many subsequent
designs, there is no in-depth quantitative understanding about
the essence and rationale of either design path. To bridge
this gap, we conduct comprehensive and consistent studies
on the design space and tradeoffs of “Brawny and Wimpy”
for datacenter inference accelerators. Our study reveals that
for datacenter chips with a 500mm? silicon area budget, a
dual-core accelerator with four 64x64 systolic arrays per core
has superior efficiency and performance on inference tasks
among 28nm design points, despite relatively lower utilization.
Moreover, our study also reveals important tradeoffs among
different design targets. For example, for datacenter accel-
erators with low batch inference, a small (~ 16%) sacrifice
of performance (achieved TOPS) can lead to more than 2x
improvement of efficiency (achieved TOPS/TCO).

842

Based on these choices of accelerator architectures, we
also conduct a follow-on mini-case study on energy effi-
ciency (TOPS/Watt) implications of sparsity on both systolic-
array and reduction-tree based ML accelerators to showcase
NeuroMeter’s capability to model diverse ML accelerator
architectures. Our results show that despite their relatively
lower energy efficiency, it is easier for wimpier accelerator
architectures to benefit from sparsity processing.

The rest of the paper is organized as follows: Sec. II
gives the overview, modeling methodology, and validation of
NeuroMeter; Sec. III leverages NeuroMeter to conduct the
case study on brawny and wimpy manycore ML accelerators in
the datacenter inference scenarios; Sec. IV conducts a sparse-
oriented mini-case study to showcase NeuroMeter’s func-
tionality to model diverse architectures and support various
workloads; Sec. V discusses the related work; and Sec. VI
concludes the paper with a summary on NeuroMeter and the
insights discovered from our two case studies.

II. NEUROMETER: OVERVIEW, MODELING
METHODOLOGY, AND VALIDATION

NeuroMeter is an integrated power, area, and timing model-
ing framework for ML accelerators. Fig. 1 gives an overview
of NeuroMeter, and highlights its input/output interface. There
are two types of inputs to NeuroMeter: 1) the accelerator
hardware configuration (mandatory) for NeuroMeter to con-
struct and optimize the target accelerator; 2) the runtime statis-
tics (optional) for NeuroMeter to conduct runtime analysis.
NeuroMeter by default outputs the power, area, and timing
of target ML accelerators based on their specified hardware
configuration. With the help of an external application-level
performance simulator, NeuroMeter enables system perfor-
mance and efficiency analysis as well.

NeuroMeter allows users to specify the parameters at the
architecture, circuit, and technology level, as well as the opti-
mization targets and constraints, as shown in Fig. 1. Besides
the essential parameters, such as the core count, clock rate,
power supply voltage, and technology node, it only requires
the user to provide the high-level configurations of critical
hardware components without worrying about the low-level
configurations. For example, when the user configures the
computing components of the accelerator, they only need to
configure critical parameters, such as the tensor unit’s array
height/width, the data type of the multiplication-accumulation
unit, and the type of inner array interconnection, the tool itself
will automatically help the user figure out the dependent hard-
ware components, including the vector register file, the scalar
unit, and the interconnection overheads between different
components. When the user configures the on-chip memory,
they only need to configure the parameters of capacity, block
size, target latency, and the target throughput. The tool will
automatically set the low-level parameters (such as the number
of banks, the number of the read/write ports) via its internal
optimizer.

By default, NeuroMeter requires the input of system-level
performance (i.e., peak TOPS) as the optimization target (or
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a minimal value of it as a design constraint). TOPS/Watt and
TOPS/TCO are also allowed to feed in as alternative optimiza-
tion targets or design constraints. Given the system-level per-
formance constraints, NeuroMeter conducts the component-
level timing analysis using an Elmore delay model [23]. Once
a design is found to meet the optimization targets and design
constraints, NeuroMeter finalizes an internal chip representa-
tion to get the chip-level thermal design power (TDP), sili-
con area, and their component-level breakdowns. NeuroMeter
also outputs the timing information of the electrical signal
propagation delay (e.g., Elmore Delay) and the cycle time per
component to help the user find out the hardware critical path.

When given the runtime statistics of the target ML model
running on the accelerator, NeuroMeter also combines the
inputs of runtime statistics on hardware utilization and activity
factors for micro-architecture components with the chip-level
TDP and silicon area to generate the end-to-end runtime
estimation of performance', power, and efficiency of the
target accelerators running specified ML models. NeuroMeter
decouples the performance simulation from the architecture
modeling, so that it can be flexibly paired with any external
performance simulation framework for comprehensive ML
accelerator research.

A. Architecture-Level Modeling

NeuroMeter follows a top-down modeling methodology. As
shown in Fig. 2(a), high-level blocks are divided into lower-
level sub-blocks and finally mapped onto the circuit-level mod-
els of compute logic units, memory arrays, and hierarchical
wires, with backend technology device and wiring parameters.
At the chip architecture level, NeuroMeter models a multi-
core ML accelerator. Fig. 2(b) gives an example of a multi-
core accelerator with a 2D-mesh Network-on-Chip (NoC),
while other types of NoCs are also supported, including bus,

IThe word “Performance” here represents the program execution time (i.e.,
end-to-end latency) and/or throughput.
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Fig. 2. NeuroMeter’s Top-Down Modeling Methodology

ring, and H-tree. Other peripheral blocks, including Memory
Controllers (MCs) and DMA controllers, are also modeled.
At the core architectural level, NeuroMeter breaks down
a single core into an Instruction Fetch Unit (IFU), a Load-
and-Store Unit (LSU), an EXecution Unit (EXU), and a
Scalar Unit (SU) for control. An IFU in ML accelerators is
usually lightweight, unlike the complicated front-end circuit in
high performance general-purpose processors. An LSU in ML
accelerator includes on-chip memory (Mem) and data/control
paths to off-chip memory. The most critical component is
EXU, which is further broken down into multiple functional
units, i.e., 2D systolic array based Tensor Unit (TU), Reduction
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Tree (RT), 1D Vector Unit (VU), Vector Register file (VReg),
and Central Data Bus (CDB). Each unit is discussed below.

Tensor Unit (TU) is a generic systolic array made up of
three parts, (1) an array of systolic cells (SCs), each one
of which consists of a multiplication-accumulation (MAC)
unit and a D-Flip-Flop (DFF) or SRAM based local buffer;
(2) wires connecting nearby systolic cells; (3) DFF/SRAM
based I/0O FIFOs. Our tool supports TUs with various types
of interconnections between systolic cells and I/O FIFOs.
Fig. 2(c) exemplifies two types of inner-TU interconnections,
including unicast as in Google’s TPU-v1, and multicast (or
X/Y bus) as in Eyeriss. For systolic arrays (or unicast TUs)
we support modeling of both weight-stationary and output-
stationary dataflow with a flexible systolic cell configuration.
At the circuit level, MAC units inside the systolic cells are pre-
simulated through EDA tools, while the DFF/SRAM based lo-
cal buffers, I/O FIFO, and the cell-to-cell interconnections are
modeled analytically. Fig. 2(d) illustrates the multicast inner-
TU interconnection as an example, i.e., the interconnection is
decomposed into several segments of wires that are abstracted
into the 7-RC model; the output resistance of the I/O FIFO
and the input resistance of the systolic cells are extracted as
the drive and the load of the RC path respectively.

Reduction Tree (RT) is made up of three parts, (1) a N-
input 1D MAC array (which is similar as in VU); cascaded
by (2) a log(N)-layered adder tree; (3) the (optional) DFFs
between the two nearby layers to satisfy the timing constraints
if needed. In the default configuration, we assume that each
layer uses an array of 2-by-1 adders in the adder tree. The
users can customize the type of the adder and the level of the
adder tree according to their design requirements. The RT is
broadly used in sparsity-aware accelerator designs [36] [48]
[57] since it has more flexible workload mapping compared
with the 2D array based TU.

Vector Unit (VU) processes 1D vector operations, such as
pooling, activation, and different variants of normalization. It
also merges the partial sums when one TU is not large enough
to hold the whole Conv2D or MatMul operator without tiling.
Moreover, in some ML accelerators [26] without 2D TUs, VUs
are the main processing elements. Such accelerators can be
well supported by NeuroMeter. The vector register file (VReg)
is the center for data exchange inside VU as well as between
VU and TU. In the default architectural configuration, the
number of the VU lanes and the vector width of VReg match
the TU array length; and each TU/VU has private read/write
VReg ports. For the core with single VU and single TU, VReg
is configured as 4 read ports and 2 write ports to support dual
issue width. Meanwhile, multiple TUs can be configured to
share one group of read/write VReg ports. In that case, the
external performance tool has to exclude the mapping based
on independent data to different TUs, or include the extra cost
when data broadcast is not applicable.

Scalar Unit (SU) is mainly used for auxiliary operations in
the control flow, e.g., address calculation. Leveraging McPAT’s
configuration, SU is by default configured as a simplified
“ARM Cortex-A9 core” which only has the instruction fetch
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unit (w/o branch prediction logic), integer register file, ALU,
and LSU, with the rest of the core removed. It can also be
easily reconfigured to other architectures.

On-chip Memory (Mem) models the storage units, which
hold the weights and feature maps on the chip. It can be
configured as a software-managed scratchpad memory, which
is commonly used in many ML ASICs, or a cache hierarchy.
The cell type of Mem can be selected from DFF, SRAM, and
eDRAM. According to the throughput requirements, Mem is
always configured as multi-banked. Based on the architectural
configurations, Mem can be modeled as a unified structure
where weights and activations are stored together as in TPU-
vl, or as a dedicated structure where each bank has its own
functionality as in Eyeriss.

Central Data Bus (CDB) models the interconnection be-
tween different components within the core, especially the
wires connecting VReg and other functional components, in-
cluding TU, VU, and Mem. Wires are assumed to route around
the functional components, and their length is estimated by
the square root of the functional component area. When the
length is large, wires are pipelined to meet the throughput
requirement.

B. Circuit and Technology-Level Modeling

NeuroMeter models the power, area, and timing of the
hardware components analytically and simultaneously. Similar
to McPAT, NeuroMeter maps the architectural components to
basic logic gates and regular circuit blocks, including comput-
ing arrays (e.g., TU, VU), memory arrays (e.g., DFF, SRAM,
and eDRAM), interconnects (e.g., router, link, and bus), and
regular logic (e.g., decoder and dependency-checking unit).
These circuit blocks are then mapped to fundamental analytical
RC ladder/trees and layout models to compute timing, area,
and energy at different technology nodes.

However, an analytical approach does not work well for
complex structures that have custom layouts, such as the
MAC logic in the TU, VU, and SU. For these components,
NeuroMeter currently takes an empirical modeling approach,
which utilizes curve fitting to build a parameterizable numeri-
cal model for the area and power of complex components. The
empirical model is based on synthesis results from Design
Compiler using the RTL models from Berkeley Hardware
Floating Point Unit Library [2] with the technology backend
of FreePDK [13] [42] libraries.

C. Validation

The primary focus of NeuroMeter is fast yet accurate power
and area modeling at the architectural level when given the
target system performance (i.e., peak TOPS). To ensure the
accuracy of NeuroMeter, we conduct rigorous validations at
both the component level and the whole chip level. At the
component level, we validate NeuroMeter’s power, area, and
timing results against the synthesis results from Chisel [11]
with the FreePDK45 library. The validation against EDA
tools shows that NeuroMeter’s prediction is within a 15%
area error margin, which provides strong confidence for our
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component level modeling accuracy. As power highly depends
on the block activity factors, we rigorously validate it at the
chip level assuming average power traces. At chip level, we
validate against TPU-v1 [30], TPU-v2 [29], and Eyeriss [17].
NeuroMeter demonstrates satisfying modeling accuracy, with
about 10% and 17% error margins on overall power and
area respectively against the three real ML accelerators. It is
important to note that chip-to-chip power variation in modern
microprocessors [14] is comparable to the magnitude of the
power validation errors of NeuroMeter.

Fig. 3 shows TPU-v1’s validation results of power and area,
at a 28nm technology node with a 700MHz target clock rate.
At the chip level, the modeling results of overall power (i.e.,
TDP) and area have <5% and <10% error respectively, com-
pared with the published TDP (75W) and area (<331mm?).
At the component level, TPU-v1 contains four major parts: (1)
a MAC-based Systolic Array for matrix multiplication; (2) a
Unified Buffer & Weight FIFO for activation and weights; (3)
an Accumulator Buffer for partial sums; and (4) an Activation
Pipeline for other operations. NeuroMeter models the systolic
array by the TU with a unicast interconnection; models the
unified buffer, accumulator buffer, and the weight FIFO by
the Mem; and models the activation pipeline with the VU.
As shown in Fig. 3(a), NeuroMeter produces accurate area
modeling results (within 2% relative error) for the systolic
array and the accumulator buffer; but over-estimates the rela-
tive area of the unified buffer by ~10%, which may be due
to the lack of knowledge of optimized placement-and-routing
for the interconnect between systolic array and unified buffer
in TPU-v1. We also model the peripheral interfaces including
DRAM port (6.0% v.s. 2.8%) and PCle interface (3.0% v.s.
1.8%). We currently do not model host interface, controller,
and misc I/O, with 5% in total. The unknown components
in TPU-vl occupy ~21% of the chip area, and we use the
same percentage as white space in our area overall estimation.
Although no published data exists to compare against, the
NeuroMeter power breakdown is shown in Fig. 3(b), where
the systolic array is the biggest power consumer with 56% of
the total chip power.

Fig. 4 shows the area validation of TPU-v2 at an assumed
16nm technology node> with a 700MHz target clock. At the
chip level, the modeling results of area (513mm?2) have at most
17% error compared with the published area (< 611mm?);
and the modeling results of TDP (255W) have ~9.1% error
compared with the published TDP (280W). Similar to TPU-
v1, NeuroMeter models the MXU, Vector Unit, and Vmem
by systolic array based TU, VU, and Mem respectively. We
would like to highlight that our simulation results show that
TPU-v2 requires two read ports and one write ports per bank,
and this is automatically searched by NeuroMeter with the
given throughput requirement. Furthermore, we also modeled
the Inter-Chip Interconnection (ICI) link and switch (12% vs
5%) by the components of Network Interface Unit (NIU)

2 According to the published information [29], TPU-v2’s technology node
is greater than 12nm.
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(a) Area Breakdown of TPU1 Whole Chip
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Fig. 3. Area and Power Break Down of TPU-v1 Published Data [30] v.s.
NeuroMeter Simulation Results. TPU-vl @ 700MHz with 0.86V power
supply is fabricated at 28nm. Architecture parameters used in the model are:
Systolic Array Size: 256x256; Accumulator: 256 int32 adders; Unified Buffer:
24MB, dual banks, one read port and one write port; Accumulator Buffer:
4MB, 4k blocks per bank, dual ports; PCle Gen3x16: 14GB/s. Notice: The
ring only shows the relative percentage of different hardware components; the
ring diameter has nothing to do with the absolute power/area.
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Fig. 4. Area Break Down of TPU-v2 Published Data [29] v.s. NeuroMeter
Simulation Results. TPU-v2 @ 700MHz with 0.75V power supply assumes to
be fabricated at 16nm. Architecture parameters used in the model are: MXU:
two 128x128 systolic arrays with BF16 multiplier and FP32 adder; VMem:
8MB, quad-banks, with two read ports and one write port. Notice: The ring
only shows the relative percentage of different hardware components; the ring
diameter has nothing to do with the absolute power/area.

and NoC given the bisectional bandwidth at 496Gb/s per
direction. Other peripheral components, including HBM ports
(9% v.s 5%) and PCle Controllers (2% vs 2%) are also
modeled. We currently do not model transpose unit, RPU, and
misc datapath, with 11% in total. The unknown components
(which probably includes the inter-component interconnection)
in TPU-v2 occupy ~21% of the chip area, and we use the same
percentage as white space in our overall area estimation.

Fig. 5 shows Eyeriss’s validation results of power and area,
at a 65nm technology node with a 200MHz target clock
rate. As shown in Fig. 5(a) and (b), the area modeling of
the single PE and the overall results have <5% and <15%
error respectively. At the single PE level, Eyeriss’s PE is
modeled by NeuroMeter’s systolic cells in the TU. At the chip
level, Eyeriss’s three major components, i.e., PE Array, Global
Buffer, and MultiCast NoC, are modeled by the TU, Mem, and
inner-TU connection respectively as introduced in Sec. II-A.
Other chip-level components, including Run-Length Code &
ReLU, Config Scan Chain, and Top-Level Ctrl, are also
modeled. As shown in Fig. 5(b), the relative area breakdown of
PE array is overestimated by ~7%, which may result from the
limited knowledge of the exact MAC logic model in use. The
relative area breakdown of the global buffer is under-estimated
by ~7%, which may be due to the insufficient knowledge of
the outside-bank overhead. Compared with TPU-v1, the area
breakdown of the PE array in Eyeriss is much larger than that
of the systolic array in TPU-v1. Both of them are modeled by
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(a) Area Breakdown of Eyeriss Whole Chip (b) Area Breakdown of Eyeriss Single PE
Outer Ring: NeuroMeter (10.87mm? in total), Outer Ring: NeuroMeter (0.054mm? in total),
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the TU in NeuroMeter, but Eyeriss introduces a heavier local
buffer design, i.e., every PE has the local scratchpad memory
and register files to support the row-stationary dataflow.

We also validate the runtime power’ against the report
from Eyeriss when running publicly available ML models.
As shown in Fig. 5(c) and (d), the overall power has 11%
over-estimation and 13% under-estimation respectively when
running AlexNet-Convl and AlexNet-Conv5 layers. The dif-
ferences of the runtime power in these two layers may result
from the insufficient knowledge of the zero-skipping and
clock-gating operation in Eyeriss. To be consistent with the
published data, the power consumption breaks down into the
following six components, including (1) MAC logic, (2) local
buffer (Spad Mem), (3) PE I/O FIFO, (4) PE controller,
(5) multicast NoC, and (6) global buffer; and the first five
components are the internal structures of the PE array. The
unmodeled components include chip I/O pads and top-level
control and are not shown in Fig. 5. Since NeuroMeter does
not model the clock network as a separate component, we
amortize the power breakdown of the clock network into
other components. Similar to the TDP in TPU-vl, the PE
array in Eyeriss takes the major proportion of the runtime
power consumption. Unlike TPU-v1’s TDP, the global buffer
in Eyeriss takes a much smaller proportion. This shows the
difference between TDP and the runtime power consumption.

III. CASE STUDY ON BRAWNY AND WIMPY MANYCORE
MACHINE LEARNING ACCELERATORS

Of the many types of ML accelerators that have emerged,
one type can be classified as having relatively “Brawny” core
designs that use a few large systolic arrays such as Google’s

3In order to decouple the error of hardware modeling from the error of
performance analysis, we calculate the activity factor based on the published
data of the processing time, the number of active PEs, the percentage of zero
input feature maps, and the number of global buffer accesses.
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TPU (a single core with a 256x256 systolic array [30] in TPU-
vl or dual cores with one 128x128 systolic array per core
in TPU-v2 [21]). Another class are designs based on relative
“Wimpy” cores that use a sea of small computing arrays or
vector processing units such as nVidia’s Volta architecture (640
TensorCores with 64 FMAs per clock per TensorCore [19])
and Ampere architecture (512 TensorCores with 1024 FMAs
per clock per TensorCore and hardware supports for structural
sparsity [3]). Intuitively, the brawny design is believed to have
an advantage of high performance, especially when the tensor
size is large enough; while the wimpy design is believed
to have an advantage of high utilization without sacrificing
performance by using sophisticated compiler and runtime
software. However, there is no in-depth and comprehensive
study to quantify these hypotheses, partly because of the lack
of tools.

To bridge this gap and to showcase the capability of Neu-
roMeter, we conduct detailed analyses to compare brawny and
wimpy manycore ML accelerator designs. Interestingly, the
brawny v.s. wimpy design tradeoffs have been a critical topic
in CPU design and date back to decades ago as summarized
in previous work [12]. We hope our work can foster a
comprehensive and systematic study of brawny and wimpy
design tradeoffs on the ML accelerator frontier.

In the study described in this section, the brawny accelerator
architecture uses fewer cores with large systolic array based
TU(s) per core, while the wimpy accelerator architecture uses
more cores with small systolic array based TU(s) per core. The
rest of the on-chip resources are scaled proportionally as the
systolic array size changes. While NeuroMeter models both
training and inference accelerators, we focus on the inference
accelerators in this paper and leave the study of training
accelerators to future work.

A. Experiment Methodology and Setup

In our study, we follow the general architecture of manycore
ML accelerators shown in Fig. 6. All cores are connected by
a 2D mesh NoC. Each core has a systolic array based tensor
unit (TU) for matrix operations; meanwhile, each core also
has a vector unit (VU) for vector operations. Each core may
also have a scalar unit (SU) for control path because of the
high throughput of TUs in the core. Each core has a portion
of the distributed on-chip memory (Mem). A vector register
file (VReg) is the data exchange hub among TU, VU, and
Mem. The central data bus (CDB) connects VReg and other
components inside the core.

1) Architecture Design Space and Chip Modeling: Since
brawny and wimpy is a continuous spectrum in the design
space, we denote each architectural design point by a four-
element tuple (X, N, T,,T,), where X is the TU length that
defines how brawny or wimpy the architecture is; /N is the
number of TU in each core; T, and T, are the 2D mesh
NoC topology to connect all the cores. Given each tuple of
such a design point, NeuroMeter automatically scales and sets
the dependent hardware parameters such as the number of VU
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TABLE I
ARCHITECTURE CONFIGURATION OF DATACENTER DESIGN SPACE
Constraint
Tech Node = 28nm, Freq = 700MHz;
Area/Power Budget = 500mm?/300W.
Optimization Target
TOPS Upper Bound = 92TOPS.
Design Space (X, N, Ty, Ty)
TU array length X = {4, 8, 16, 32, 64, 128, 256};
#TU per tile N = {1, 2, 4}; TU data type = Int8.
Mem capacity = 32MB.
NoC bisectional bandwidth = 256GB/s;
Ring when #Tile on chip 7% * T}y < 4, 2D-Mesh when T, * Ty > 8;
Oft-chip bandwidth = 700GB/s (HBM).

lanes, the VReg issue width, and VReg port count accordingly
as shown in Fig. 6.

To some extent, chip architecting can be considered as an
optimization problem, where we try to maximize performance
under a given budget on chip area and power. Thus, we
pick reasonable optimization targets and design constraints to
make the design space exploration manageable. Particularly,
as shown in Table I, for datacenter inference accelerators, we
constrain the die area to 500mm? and TDP to 300W based
on recent data center ML accelerators [21] [30]. The memory
subsystem is configured with 32MB of software managed on-
chip memory distributed to all cores and 700GB/s off-chip
HBM bandwidth, similar to Google’s TPU-v2/v3 [46]. Note
that TPU-v2/v3 are designed for both training and inference
[21]. We then use NeuroMeter to sweep the design space to
optimize the TOPS for each design point of (X, N,T,,T,)
with dependent hardware parameters automatically scaled pro-
portionally to the design point parameters as shown in Fig. 6
and Table I.

Before setting the ranges of the implicit hardware param-
eters in Fig. 6, we explore a larger design space of systolic
array centric architectures, including a larger number of TUs
per core, multiple TUs sharing VReg read/write ports, and

TABLE II
CHARACTERISTICS OF ML WORKLOADS USED IN CASE STUDY
Workload | ResNet | Inception | NasNet
#MAC Op 7.8G 5.7G 23.8G
#Data 5.72M 2.93M 5.35M
#Param 23.7M 22.0M 84.9M
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other types of inner-TU interconnection. We prune the design
points that exceed the area/power budgets or have extremely
low performance. We only take the design points that meet
the perf/power/area requirements into the second round for
further workload-aware analysis. To make the design space
manageable, we finally set the range of TU length (X) from 4
to 256. NeuroMeter automatically sets one VU per core with
its lane number the same as the TU array length. NeuroMeter
reserves two read ports and one write port in the VReg for
each functional unit. The number of TUs in each core (V)
determines how many total ports are required for each VReg,
where a large IV leads to an overhead explosion of VReg. For
example, with eight 4x4 TUs per core, the VReg area and
power overhead is 12.7% and 24.9% of the core. To avoid
such an overhead explosion of VReg, IV is capped at 4. The
distributed on-chip memory is automatically multi-banked by
NeuroMeter to satisfy the timing constraints determined by
the target TOPS and clock frequency. The total core count
(the product of T}, and T))) is maximized to achieve the peak
TOPS target while under the area and power constraint. For the
convenience of evenly partitioning the neural network model,
we assume T}, and T}, to be the power-of-2 numbers. To make
the overall layout close to square, we assume that 77, is equal
to or half of Ty,.

2) Machine Learning Models: Our datacenter case study
uses three widely adopted CNN models, including ResNet-
50 (abbrev. ResNet) [27], Inception-v3 (abbrev. Inception)
[54], and NasNet-A-Large (abbrev. NasNet) [58]. Table II
summarizes the characteristics of these ML models, including
the compute (#MAC Op/frame), the peak transient memory
footprint per frame (#Data), and the model size (#Param,
quantized into Integer8).

3) Performance Simulation and Efficiency Modeling: We
use TF-Sim [9] to simulate the performance of the ML models
running on the target accelerators. TF-Sim first takes the
computational graph (e.g., tfGraph [7]) of a given ML model
and the same architecture configurations previously used as
the inputs to NeuroMeter. Then, the simulator generates the
performance of the ML model running on the target acceler-
ators and the statistics for architecture components. The com-
ponent level statistics are fed to NeuroMeter for computing
runtime power and energy. The end-to-end performance (e.g.,
throughput and latency of inference) is used together with
NeuroMeter’s output on chip area and (runtime) power to com-
pute energy efficiency and cost efficiency. The cost efficiency
(i.e., TOPS/TCO) is approximated as TOPS/mm*/Watt, where
power (Watt) is an approximation of operational expenditures
(OpEx) and area squared (mm?) is an approximation of capital
expenditures (CapEx) because silicon die cost grows roughly
as the square of the die area [28].

TF-Sim supports advanced runtime graph scheduling and
optimization, following the best practices in modern ML com-
piler/runtime such as XLA [1]. Especially for wimpy architec-
tures, TF-Sim considers how to reduce the extra overhead of
partial sum merging and weight/activation broadcast when a
single TU is not large enough to map the whole operation
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without tiling. Moreover, TF-Sim also supports optimizations
to improve parallelism, such as Space-to-Batch [5], Space-
to-Depth [6], and double memory buffering. Fig. 7 shows the
significant improvement of the simulated performance with the
supported software optimizations, especially on small batch
sizes. For wimpy designs, the operation is always too large
to map on single TU without tiling. The mapping strategy
considers how to reduce the extra overhead of partial sum
merging and weight/activation broadcast.

B. Results: Datacenter Inference Accelerator

In this subsection, we first explore the design space using the
chip area and TDP, then analyze the runtime performance and
efficiency by using NeuroMeter in conjunction with TF-Sim
[9], our performance simulator. Our study reveals important
insights for ML inference accelerator designs, which other-
wise cannot be discovered in a fast-yet-accurate way without
NeuroMeter.

1) Chip Thermal Design Power and Area: Fig. 8 shows
the die area and chip thermal design power (TDP) for the
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Fig. 9. Performance on Different Batch Size. Throughput is measured as
frame per sec (fps) that essentially is TOPS as operation per frame is constant.

representative design points in the design space as defined in
Table I. As shown in Fig. 8(a), the on-chip memory consumes
the largest portion of the die area among all architecture
components. While die areas of all the design points are within
the area budget of 500mm?2, the wimpier the accelerator is,
the larger die area it needs to optimize for the target peak
performance of 92TOPS. This is because wimpy designs need
more cores as each core having smaller TUs, which in turn
needs more interconnect such as NoC and CDB and more
control logic such as scalar cores. However, even with an
extra area budget, the wimpy design still cannot achieve the
same peak performance as the brawny cores. For example, the
wimpy accelerators with 4x4 TUs have comparable or larger
die areas than brawny designs with TUs sized of 64x64 to
256x256, but only less than 1/12 of peak TOPS of that of the
brawny accelerators.

TDP analysis shown in Fig. 8(b) demonstrates a similar
trend, where on-chip memory burns a big portion of the total
power. Wimpy designs consume more power on interconnects
and control flow logic than brawny designs. Fig. 8(b) also
shows that the design point of (128, 4, 1, 1), i.e., the single-
core accelerator with four 128x128 TUs in the core has the
best peak TOPS/Watt and TOPS/TCO. In summary, brawny
datacenter accelerator designs have the better area, TDP,
and efficiency w.r.t peak performance. Next, we will discuss
more insights on the sweet spots of inference accelerator
architectures w.r.t to runtime performance and efficiency.

2) Runtime Performance, Efficiency, and Trade-Offs: Dat-
acenter inference accelerators are designed to maximize
throughput, i.e., frames per second (fps) that essentially is
TOPS as operation per frame is constant, when satisfying the
latency requirements. Batch size is an important factor for
runtime throughput and latency. For example, Fig. 9 shows the
relationship between performance, including both throughput
and latency, and batch size for the design point of (64, 2,
2, 4), i.e., an inference accelerator with 2x4 cores with each
core having two 64x64 TUs. For all ML models, we can
observe significant throughput improvements when the batch
size switches from 1 to 64. This is because even with advanced
graph optimizations, the accelerator still suffers from low
utilization at a small batch size.
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bs=256. The relative cost/power efficiency in right y-axes in three subfigures are normalized against the largest absolute values in Subfigure (c). The colored

boxes in the x-axes are optimal points for different design targets.

Fig. 9 also gives us the boundary on batch size for real-time
tasks. Concretely, we assume real-time online inference has a
latency constraint of 10ms based on production requirements
from Google [30] and Facebook [25]. Therefore, the upper-
bound batch sizes to meet the 10ms latency requirement are
16, 4, 32 respectively for ResNet, NasNet, and Inception
with the given design point. Thus, in the subsequent study,
we use the same approach to determine the maximum batch
sizes that maximize the throughput while meeting the latency
requirements. We call such batch size as latency limited batch
size (or medium batch size). Our study also includes batch
size of 1 (aka small batch size) for the optimal latency but
low throughput scenarios (e.g., extremely low latency service)
and batch size of 256 (aka large batch size) with very high
throughput but also high latency for offline inference service
that does not impose latency Service Level Objectives (SLOs).

Fig. 10 shows the average performance and efficiency of
the three datacenter workloads. Fig. 10(a)-(c) represents the
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small, medium, and large batch, respectively. Each subfigure
analyzes four metrics, including throughput (achieved TOPS),
TU utilization (achieved TOPS/Peak TOPS), normalized cost
efficiency (achieved TOPS/TCO, aka TOPS/mm*/Watt), and
normalized energy efficiency (achieved TOPS/Watt). Arith-
metic mean is used for averaging the throughput and geometric
mean is used for averaging other metrics as they are all ratios.
Two important insights can be observed as follows:

Firstly, an important insight observed from Fig. 10 is that
the optimal design varies w.r.t. optimization targets, which is
difficult to discover without tools like NeuroMeter. For all the
three batch size categories, the wimpy design with 32 cores
and four 8x8 TUs per core, ie., (X,N,T,,T,) = (8,4,4,8),
always has the highest TU utilization. However, it is the
brawny design with 8 cores and two 64x64 TUs per core
that has the highest throughput because of its much higher
peak TOPS than the wimpy design and thus compensates for
the low TU utilization. The cost-efficiency optimized design
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is similar to the throughput-optimized design as they both
prefer 64x64 TUs, except the former prefers fewer yet larger
cores to reduce the NoC area overhead. The energy-efficiency
optimized architecture also prefers brawny design with a slight
drop in TU size from 64x64 to 32x32 with both medium and
large batch size. This is because the energy consumption of
systolic arrays scales quadratically with the length of the TU.
These discoveries also carry an important conclusion: while
wimpy designs have higher utilization, it is the brawny designs
(with 64x64 and/or 32x32 TU size) that have the highest
performance and efficiency.

Secondly, an important tradeoff exists among the brawny
designs, where a large improvement of efficiency can be
gained with a small sacrifice on throughput. As shown in Fig.
10(a), when choosing the efficiency-optimized design, i.e., (64,
4, 1, 2), over the throughput-optimized design, i.e., (64, 2, 2,
4), the target accelerator gains 2.1x cost-efficiency improve-
ments and 1.3x power-efficiency improvement, with less than
16% sacrifice on sustainable achieved TOPS. This is because,
compared to the efficiency-optimized design, the throughput-
optimized design has more cores to distribute and balance
computation but requires longer and more power-hungry inter-
core NoC. Similar tradeoffs also exist in the medium and large
batch size configurations as shown in Fig. 10(b) and (c). These
tradeoffs provide important design guidance for architecting
ML inference accelerators with different design priorities.

3) Summary of the Key Observations and Insights: We
summarize the key observations and insights of our study on
brawny and wimpy manycore ML accelerators as follows.

First, for datacenter inference chips, on-chip memory takes
the largest die area among all architectural components. On-
chip memory is also a major power consumer. However, on-
chip interconnect starts to dominate the power consumption as
the accelerators have more and more relatively wimpier cores.

Second, wimpy designs have higher utilization because
smaller TUs are easier to schedule and parallelize with sophis-
ticated software; meanwhile, brawny designs achieve better
performance and efficiency for datacenter inference chips
because they have less overhead from control logic and long
distance on-chip interconnect.

Third, the optimal design varies w.r.t. the optimization
target. There are also important tradeoffs among the selection
of design targets for an architect. For example, for relatively
brawny designs, we can achieve substantial benefits in effi-
ciency with only a small sacrifice in throughput.

IV. MINI-CASE STUDY ON SPARSITY IMPLICATIONS ON
DIFFERENT ML ACCELERATOR ARCHITECTURES

To showcase NeuroMeter’s capability in modeling a wide
range of diverse ML accelerator architectures, we conduct a
small case study on implications of sparsity on both tensor-
unit (TU) based and reduction-tree (RT) based ML accelera-
tors. Leveraging the previous results of the latency-bounded
design space exploration in Fig. 10(b), we pick the power
efficient optima with 32x32 TUs (abbrev. TU32), and the
utilization optima with 8x8 TUs (abbrev. TU8) to further
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explore their performance and efficiency when dealing with
sparse workloads. Thanks to NeuroMeter’s flexible capability
in supporting different architectures, we use the reduction tree
based architecture with the same OPS per compute unit as the
corresponding systolic arrays, including 1024-to-1 RT (abbrev.
RT1024) and 64-to-1 RT (abbrev. RT64).

A synthetic SpMV microbenchmark with different element-
wise sparsities is generated manually for a weight matrix
of M x N and the batched vectors of N x K, where
M,N > 1024, and the batch size K > 32, to ensure
sufficient parallelism for TU/RT utilization. The sparse weight
matrices use the Compressed Sparse Row (CSR) format
[24], including the non-zero elements and the row/column
indices. The batched vectors are assumed dense in this case
study; and SpMSpV [10] (i.e., Sparse-Matrix-Sparse-Vector-
Multiplication) is beyond the scope of this case study.

Since TF-Sim, the performance simulator paired with Neu-
roMeter in Sec. III, does not support sparse operations, we
develop a simple roofline model similar to that in [45] for
runtime performance estimation, which is then combined with
NeuroMeter to generate power and energy efficiency results.
The modified simple roofline model is shown in the equations
below:

C Sy +Sw.
L,
a-y-C Sy+p0-x-Sw
F B
(TOPS/W ait)s
(TOPS/Watt)y
(C/ts)/ Powers
(C/tq)/ Powery
__ Powerq - 14

tq = max(td_compa td_bw) = max(

);

ts = max(ts_compa ts_bw) = maX(

EnergyEfficiencyGain =

Powery - tg

where t4 the runtime for dense MV; and t4_comp and ty_pw
are the compute time and the memory time for the dense
MYV, respectively. According to the roofline model, the overall
runtime ¢4 is the maximum of these two terms. Similarly, ¢ is
the SpMV runtime; and #s_comp and ts_p, are the SpMV runtime
bound by compute and memory bandwidth, respectively. The
symbol C' (in OPs) is the computational operations required
in the dense MV; Sy and Sy (both in bytes) are the size
of the batched input/output vectors and the weight matrix
respectively without considering sparsity; F' (in OPs/sec) and
B (in bytes/sec) are the compute capability and memory
bandwidth of the accelerator, respectively.

The symbol = represents the non-zero ratio of the weight
matrix, i.e., the lower the x, the higher the sparsity of the
weight matrix. The symbol y is the reduction factor of the
total compute operation, and it is determined by the non-zero
ratio = and the distribution of zero elements. Particularly, the
systolic array based TU conducts block-wise zero-skipping to
reduce computation, i.e., if the zero elements form a block of
the size of TU’s systolic array and align on the systolic array
loading boundary, then this all-zero block can be skipped for
computation. For the whole sparse matrix, it is assumed to
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Fig. 11. The Energy Efficiency Gain of Sparse over Dense computation

at Different Sparsity Levels on (a) Tensor Unit and (b) Reduction Tree
based Architectures. For each architecture, its energy efficiency at different
sparsities are normalized against that of the baseline dense processing on the
same architecture. Thus, the energy efficiency gain larger than one indicates
improvements.

be partitioned into TU-sized blocks and evenly mapped to all
the on-chip systolic arrays with the block-wise zero skipping.
Similarly, RT conducts vector-size zero-skipping. The symbols
«a and [ denote the compute and storage overheads of sparse
representations, respectively. « is optimistically set to be one,
assuming the overhead of loading and decompressing CSR
weight matrix can be overlapped with the computing time
of systolic arrays and reduction trees. Depending on sparsity,
data type, and the size of the weight matrix, 5 is a value
between 2.0 and 2.5 in this case study. It is determined by CSR
encoding overhead. First, the whole weight matrix is tiled into
256x256-sized submatrices. Then, each Int8 non-zero element
requires an extra byte for column indexing; each tiled row
requires an extra byte for inner-submatrix row indexing; and
each submatrix requires two bytes for tile indexing.

The energy efficiency gain is the ratio of energy efficiency
(i.e., OPS/Watt [4]) between the SpMV and its dense counter-
part. Since the SpMV and its dense counterpart are considered
to achieve the same effective operations, i.e., MxNxK, the
energy efficiency gain is simplified to SpMV’s runtime energy
reduction compared to its dense counterpart. Considering the
goal is to showcase NeuroMeter’s capability to model power,
area, and timing of a wide range of different ML accelerator
architecture, more sophisticated techniques to maximize the
performance benefits of sparsity are beyond the scope of this
case study. This simple roofline analytical performance model
is then paired with NeuroMeter to study final energy efficiency
implications.

Fig. 11 shows the energy efficiency gain of sparse over
dense under different sparsity levels for different architectures
and configurations. For all designs, the energy efficiency
increases as the sparsity grows. However, compared to the
dense counterpart, the energy efficiency only benefits from
sparsity when the sparsity level is larger than 0.5. This is
because the power saving from the block/vector-wise zero
skipping is limited and is unable to amortize the extra data
transfer of CSR encoding when sparsity is low. Moreover, as
shown in Fig. 11, a clear transition point can be observed
when sparsity is 0.9 in TU8 and RT64; while the efficiency
grows slowly in a low slope in TU32 and RT1024. This implies
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that the brawny design gets efficiency benefits mostly from
the reduced CSR encoding as sparsity grows rather than the
block/vector-wise zero skipping.

Clearly, despite its relatively lower absolute energy effi-
ciency as shown in Fig. 10, a wimpier architecture with
fine-grained computing units can benefit from element-wise
sparsity more than a brawnier coarse-grained architecture.

V. RELATED WORK

CACTI [43] is the first analytical modeling framework
for cache and memory arrays. McPAT [39] uses the same
analytical modeling methodology and builds up the modeling
framework for manycore general-purpose processors. Neu-
roMeter leverages the same methodology and techniques used
in CACTI and McPAT.

Eyeriss [17], Eyeriss-v2 [18], and MAESTRO [35] provide
dataflow analysis and modeling framework for ML accelera-
tors. NNest [31] provides a generalized spatial architecture
framework for exploring the design space of ASIC-based
ML inference accelerators. Scale-Sim [51] provides a cycle-
accurate performance simulator for systolic CNN accelerators
through on-chip and off-chip memory access traces. Inter-
stellar [56] uses Halide’s algorithm and scheduling primitives
[49] to express different ML accelerator architectures. Aladdin
[52], Minerva [50], and PolySA [20] provide different frame-
works with (semi) HLS-level capabilities. Timeloop [44] and
Accelergy [55] together provide an ecosystem to model ML
accelerators. Besides providing modeling tools, previous work
like NVDLA [8] open-source the RTL codes of typical ML
accelerator designs; and this kind of work boosts the modeling
ecosystem from another perspective. With simultaneously and
analytically modeling power, area, and timing of key ML ac-
celerator micro-architectures, NeuroMeter advances the state-
of-the-art and provides foundational support for the modeling
ecosystem.

In the era of artificial intelligence, a plethora of ML acceler-
ator architectures are proposed. It has been an open question of
how one can make the design choices among the architectures
based on systolic arrays [17] [21] [30], reduction trees [48]
[57], or SIMD vectors [19] for various scenarios and different
workloads (e.g., training v.s. inference, dense v.s. sparse,
datacenter v.s. edge, and beyond). NeuroMeter is able to model
these popular emerging ML accelerator micro-architectures,
which can help foster an even more comprehensive study on
the ML accelerator frontier.

Brawny v.s. wimpy study [12] has been conducted exten-
sively, with aspects including latency [22], throughput [40],
energy efficiency [41], interconnect [33], heterogeneity [32]
[53], and workload characteristics [16] in the CPU design
space. With the growing ML workloads and the increasing
deployment of ML inference accelerators in the datacenter, a
similar brawny v.s. wimpy question has been raised in domain
specific hardware. Kung et. al [34] have studied the latency of
accelerators with different systolic array sizes.
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VI. CONCLUSION

NeuroMeter is an architectural analytical framework for
simultaneously modeling power, area, and timing for emerg-
ing ML accelerators. It models all major architectural com-
ponents of emerging ML accelerators, including TU, VU,
on-chip Mem, NoC, MemCitrl, host interface, and beyond.
Moreover, its analytical model of TU and VU captures the
key difference between emerging ML accelerators and the
mainstream CPUs. Its analytical modeling methodology gen-
erates fast and accurate modeling results without relying on
EDA tools. Validations show a reasonable agreement between
NeuroMeter and published data for both datacenter-oriented
(TPU-v1/v2) and mobile/edge-oriented (Eyeriss) state-of-the-
art ML accelerators. NeuroMeter empowers architects with a
fast yet accurate exploration of the large and diverse design
space of modern manycore ML accelerators. When combined
with performance simulations via its flexible and extensible
interface, NeuroMeter enables broader architecture study with
comprehensive metrics such as TOPS/Watt, TOPS/TCO.

By combining the power, area, and timing results of Neu-
roMeter with performance simulation, we explore the many-
core ML accelerator design, including wimpy and brawny
cores. Our study shows that brawny designs with 64x64
systolic arrays are the most performant and efficient for
inference tasks in the 28nm datacenter architectural space with
a 500mm? die area budget. Our study also reveals important
tradeoffs between performance and efficiency. For datacenter
accelerators with low batch inference, a small (~16%) sac-
rifice of performance can lead to more than a 2x efficiency
improvement (in achieved TOPS/TCO). To showcase Neu-
roMeter’s capability to model a wide range of accelerator
architectures, we also conduct a mini-case study on energy
efficiency (TOPS/Watt) implications of sparsity on different
ML accelerators. Our results show that despite its relatively
low energy efficiency, it is easier for wimpier accelerator
architectures to benefit from sparsity processing.
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