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Abstract

Question answering (QA) primarily descends
from two branches of research: (1) Alan Tur-
ing’s investigation of machine intelligence at
Manchester University and (2) Cyril Clever-
don’s comparison of library card catalog in-
dices at Cranfield University. This position pa-
per names and distinguishes these paradigms.
Despite substantial overlap, subtle but signifi-
cant distinctions exert an outsize influence on
research. While one evaluation paradigm val-
ues creating more intelligent QA systems, the
other paradigm values building QA systems
that appeal to users. By better understand-
ing the epistemic heritage of QA, researchers,
academia, and industry can more effectively
accelerate QA research.

1 Introduction

This position paper seeks to answer the question
why do we do question answering and understand
the consequences of different answers to this ques-
tion. Our primary contribution is to outline two dis-
tinct and common reasons that motivate researchers
to pursue question answering (QA)—the Cran-
field and Manchester paradigms. The Cranfield
paradigm is not new (Section 2): it has a long and
storied history in information retrieval (Voorhees,
2019). Here, we describe why a large share of QA is
implicitly motivated by serving the needs of users,
which is exactly the Cranfield paradigm (although
most do not say so explicitly).

Section 3 christens another paradigm—the
Manchester paradigm—at home in the more eclec-
tic corners of QA: to test and inculcate intelligence.

These paradigms have much in common (Sec-
tion 4), which helps explains why this distinction
is not immediately apparent. However, the differ-
ences (Section 5) are ignored at your own peril.
Section 6 articulates how the community can better
heed the distinction and how the paradigms can
inform each other.

Jordan Boyd-Graber
CS, LSC, iSchool, UMIACS
University of Maryland®

jbg@umiacs.umd.edu

2 Serving Users: The Cranfield
Paradigm

Let’s start with the Cranfield paradigm, named after
Cranfield University in Bedfordshire. The Cran-
field “experimental tradition founded by a librar-
ian, working with card indexes, a half-century ago”
spurred a revolution in information retrieval evalu-
ation (Robertson, 2008).

In information retrieval, a “system locates infor-
mation that is relevant to a user’s query” (Sander-
son and Croft, 2012). The most natural IR evalua-
tion is to ask users whether documents satisfy their
information need. However, much like annotation
in NLP, this is expensive and time-consuming, so
Cleverdon (1967) proposes an alternative. Rather
than have users interact with every potential sys-
tem, build re-usable test collections and evaluate
all systems by re-using the same collection. Al-
though “obvious” to twenty-first century readers,
the use of offline test collections for evaluation was
controversial (Taube, 1965), and the approach is
still debated (Saracevic, 2007).

Rather than putting users in front of every IR
system,

in the Cranfield paradigm, researchers perform ex-
periments on test collections to compare the rela-
tive effectiveness of different retrieval approaches
(Voorhees, 2002b)

Cranfield paradigm datasets approximate users’
searches, and the better your algorithm satisfies
those queries, the better (Spirck Jones, 2001) the
algorithm.

As IR systems conquered retrieving documents
for short queries, researchers turned to finding short
answers instead of whole documents (Voorhees,
2000b; Sanderson and Croft, 2012), which nat-
urally lends itself to answering questions and
“move[s] retrieval systems closer to information re-
trieval as opposed to document retrieval” (Voorhees
and Tice, 2000). Under the Cranfield paradigm, a
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good QA system should answer the questions users
ask. What more could you want?

It is then unsurprising that Google and Mi-
crosoft adopted this setting for Natural Ques-
tions (Kwiatkowski et al., 2019) and MS
MARCO (Nguyen et al., 2016). They found ques-
tions people asked online and answered them.
A good QA system should automate that pro-
cess (Chen and Yih, 2020).

3 Probing and Pushing Answerers: The
Manchester Paradigm

In the Manchester paradigm, we create tasks and
datasets whose questions push answerers to better
understand the world and create evaluations that
probe for human-like capabilities. Since we iden-
tify and name the paradigm, we give three justifica-
tions that highlight three distinct reasons people ask
questions beyond information seeking: to teach, to
compare, and to probe.

3.1 Why the Name Manchester?

For symmetry with the Cranfield paradigm, our
proposed name is also an English city: Manch-
ester. Because there are multiple aspects to the
Manchester paradigm, we provide three connec-
tions between the city and question answering: in
the nineteenth century, the city’s regiment used the
mythical Sphinx as a symbol, it is the home to
University Challenge, and it is where Alan Turing
outlined the Turing Test. We discuss each of these
reasons for the name Manchester paradigm (saving
the best for last).

To Teach: The Sphinx, Manchester’s Standard
Manchester’s Regiment used the Sphinx as its
symbol (Farmer, 1901). In Greek myth, the
Sphinx asked everyone who entered the city a rid-
dle (Renger, 2013). A Grammy-winning interpre-
tation of the riddle states it as:

‘What starts out on four legs then goes round on

two Then finishes on three before it’s through
(Schickele, 1990)

And the answer is a human (crawling baby, walking,
and then walking with a cane).

We have neither the space nor the desire to
spoil (Edipus’s journey, but by answering the ques-
tion, the hero revealed not just his intelligence to
his questioner but learned a tool to uncover his
shrouded history. In a Whitman commencement, a
classicist contrasted Google’s NQ with professors’
Sphinx-like riddles (emphasis added):

Nobody told (Edipus who he was; he figured that
out for himself. .. You can do a Google search to
find out the capital of Arkansas (Little Rock?) but
you can’t...find out who you are, what you're
good at, what makes you happy, what matters
for your life. .. [The Sphinx’s riddle has a] hybrid
nature: the curse of being forced to solve a rid-
dle is also the gift of the ability to solve riddles.
(Burgess, 2013)

This aspect of question answering also brings us
to another Greek connection to asking questions:
teaching through the Socratic method (Trepanier,
2017). Through asking the right questions, a
teacher guides the answerer to understanding.
While Cranfield questioners are seeking informa-
tion from a more knowledgeable answerer, Manch-
ester questioners often test less knowledgeable an-
swerers. Similarly, perhaps by asking the right
questions, the QA community can coax comput-
ers to understand more than they do now (Dunietz
et al., 2020; Perez et al., 2020).

To Compare: Granada Studios Another inspi-
ration for this question answering approach is
Manchester’s Granada Studios, creator of Univer-
sity Challenge (Taylor et al., 2012; Baber, 2015).
This television programme juxtaposes two univer-
sities to see who is smarter.

Just like the Sphinx, the dapper host of this game
show, Bamber Gasgoine, knows the answer. Thus it
is not an information-seeking task a /a the Cranfield
paradigm. It, like the riddle of the Sphinx, is a test
of those answering the questions.

It’s also a tried and true test of question an-
swering researchers’ mettle, as when IBM Watson
bested Ken Jennings on Jeopardy! (Ferrucci et al.,
2010). While Cranfield focuses on users’ satisfac-
tion, Manchester is at its heart an evaluation of the
underlying capabilities of question answerers (ei-
ther systems or humans): which is smarter, which
is worthy? And as we discuss in Section 5, the
Manchester paradigm is better suited to discrimi-
nating between answerers.

To Probe: The Turing Test The final reason is
a paper written by Alan Turing while at the Univer-
sity of Manchester. Rather than create a test for in-
telligence and be forced to face the substantial chal-
lenge of defining intelligence, Turing proposes an
indistinguishability test (Turing, 1950).' Building

"Likewise, we follow in Turing’s footsteps and sidestep the
definition of intelligence. Like Brooks (1991), we would argue
that the best way to test and refine any definition of intelligence

would be to have an increasingly difficult sequence of QA
challenges in the Manchester paradigm.



off what he imagined would be a fun Victorian-era
party game called “the Imitation Game” (Bishop,
2010), a skilled interrogator would ask questions to
either a machine or a computer. An intelligent com-
puter should—at minimum—be able to make itself
indistinguishable from a human. This competition,
the Turing Test, has been called Al-complete (Yam-
polskiy, 2013) and when taken literally is the im-
plicit basis for claims of “super-human A1” (Cuth-
bertson, 2018). Its ubiquity extends beyond com-
puter science to popular culture. A variant in Blade
Runner tests empathy—rather than intelligence—
with probing questions (Joerden, 2012).

Likewise, for tests of intelligence in the Manch-
ester paradigm, the Turing Test “represents what
it is that AT must endeavo[u]r eventually to ac-
complish scientifically” (Harnad, 1992). Method-
ologically, the Manchester paradigm iteratively
imagines tasks where machines should rival hu-
mans (Levesque, 2014), develops systems, and then
determines if systems pass the test.

3.2 Examples

Questions derived from education (Clark, 2015),
puzzles (Littman et al., 2002), and trivia compe-
titions (Joshi et al., 2017) are in the Manchester
camp (full categorisation in Appendix A). How-
ever, prominent Manchester paradigm questions
were first composed for computers: the Wino-
grad schema challenge (Levesque et al., 2011) and
its successor the Winogrand challenge (Sakaguchi
et al., 2020). In this task, changing one word be-
tween two nearly identical binary questions also
changes the answer.? Should a machine fail such
questions, it does not evince intelligence—at least
not like humans.

While we set these paradigms in opposition to
each other, we next discuss the swath of research
that advances the goals of both.

4 What Cranfield and Manchester Share

Although these paradigms have different core goals,
research advancing the goals of one often advances
the goals of the other.

While there are differences between QA datasets
across paradigms (Cambazoglu et al., 2020; Zeng
et al.,, 2020; Dzendzik et al., 2021), these dif-
ferences are overshadowed within a paradigm

In “the trophy would not fit in the brown case because
it was too big. What was too big?” with possible answers
“trophy” and “suitcase.” Changing the underlined word to
small would change the answer from “trophy” to “suitcase.”

by dataset-specific quirks. Thus, a paradigm-
agnostic blueprint for QA (Chen and Yih, 2020)
is to combine sparse (Chen et al., 2017) or dense
retrieval (Guu et al., 2020; Karpukhin et al., 2020)
followed by span selection (Seo et al., 2017) or
generation (Lewis et al., 2020). As a consequence,
researchers indifferent to which questions are an-
swered can improve representations and algorithms
for both paradigms (although as interactions be-
come richer, this may not be the case, as we discuss
at the end of Section 6). The paradigms’ evalua-
tions also overlap; they benefit from expert annota-
tors (Gardner et al., 2020; Feng and Boyd-Graber,
2019), crowd annotators, and alternative evalua-
tions like behavioural testing (Ribeiro et al., 2020).
Similarly, both paradigms value robust-
ness (Dalvi et al., 2004; Jia, 2020). Additionally,
answering infrequently asked questions is im-
portant for search engines (Baeza-Yates et al.,
2007), and building models that learn more from
less qualifies as intelligent behaviour (Linzen,
2020). Creating systems robust to spelling mis-
takes (Wang and Pedersen, 2011) is a worthy goal.
From the Cranfield perspective, systems hobbled
by spelling mistakes lead to a poor user experience.
On the other side, humans are impressively robust
to poor spelling (Rayner et al., 2006), so from the
Manchester perspective this form of robustness is
also valuable. But this has its limits; in the next
section, we argue why adversarial examples are
more consistent with the Manchester paradigm.

5 Ignore the Distinction at your Peril

How Adversarial is too Much? Common
ground has its limits. That there is not a di-
chotomy between these two approaches can some-
times mask the importance of distinguishing moti-
vations. Other proposals for robustness postulate
that models should be robust to input modifications
users would not make (Feng et al., 2018), challeng-
ing yet unnatural adversarial questions that users
are unlikely to ask (Jia and Liang, 2017; Wallace
et al., 2019; Bartolo et al., 2020; Kiela et al., 2021),
and testing a concept in multiple ways (Gardner
et al., 2020; Kaushik et al., 2020). While solving
these challenges may eventually improve Cranfield-
motivated systems, in the short term solving these
challenges does not directly contribute to improv-
ing the user experience: researchers who build
overly artificial datasets are likely going to be ig-
nored by the Cranfield-focused community.



Users are the Customers Many future busi-
ness dissertations will survey IBM Watson’s cir-
cuitous route from TREC system (Chu-Carroll
et al., 2002) to Jeopardy! spectacle to embat-
tled spin-off (Deutscher, 2021) despite “IBM [hav-
ing] bragged to the media that Watson’s question-
answering skills are good for more than annoying
Alex Trebek.” (Jennings, 2011). One challenge
may have been transitioning between paradigms.
One aspect that made the transition more difficult
was that the tour de force victory on Jeopardy!
was firmly on the side of the Manchester paradigm,
but to be a successful commercial application, it
needed to make the shift to the Cranfield paradigm.

Similarly, SQuAD was written by people (Me-
chanical Turkers) who knew the answers. . . just like
most of the questions in the Manchester paradigm.
However, it did not follow the same principles of
the Manchester paradigm, which led to the “short-
cuts” that other investigators have discovered in
the years since (Weissenborn et al., 2017). For
example, priming made exploitable clues more fre-
quent and Mechanical Turkers write each question
as quickly as possible. Levesque (2014) antici-
pates this behaviour, specifically avoiding “cheap
tricks” in their Manchester-paradigm Winograd
challenge. In other Manchester paradigm questions,
trivia question writers frequently take pride in well-
crafted questions (Boyd-Graber and Borschinger,
2020).

Comparisons One of the primary inspirations
for the Manchester paradigm is competitions (e.g.,
University Challenge). Because these competitions
are meant to determine who the smartest answerer
is, they are remarkably efficient. The world ac-
cepted the judgement that Watson was smarter than
Ken Jennings and Brad Rutter after 122 answers.
Why not? These competitions are designed to dis-
criminate between player abilities. In contrast, the
dev and test sets of Cranfield-inspired datasets have
thousands of questions, and even that may not be
enough (Card et al., 2020; Rodriguez et al., 2021).

6 Call to Action

Our central plea is that researchers in QA and NLP
more broadly should have a clear answer to the
question: “Why are you working on this?”. This
is of particular importance as QA datasets prolif-
erate (Rogers et al., 2021), and NLP practitioners
“lost in dozens of recent datasets” want to know
what datasets measure (Rogers and Rumshisky,

2020). While Gardner et al. (2019) offer a tren-
chant enumeration of QA uses,> we think the onus
of definition should fall on dataset creators, not
on post-hoc analyses. Other than more explicitly
naming two of the uses of QA after English Uni-
versity towns, our goal is to encourage researchers
to recognize the tensions between these two uses
and the opportunities created from recognizing the
distinction.

Make what you Value Explicit Each of these
paradigms value different skills and embed these
values in datasets and tasks. To make ma-
chine learning useful to society and adopt value-
sensitive design (Dotan and Milli, 2020), devel-
opers of datasets should make their goals clear
from the outset (Bender and Friedman, 2018; Ge-
bru et al., 2018). In the Cranfield paradigm, align-
ing these evaluations with user satisfaction is es-
sential (Sparck Jones, 2001). Industry is natu-
rally financially motivated towards this goal, and
they have the user data (Zhang et al., 2019)—only
a fraction of which is published to protect pri-
vacy (Barbaro and Zeller, 2006). Still, strategic and
thoughtful partnerships like the Cranfield-inspired
TREC workshops are valuable; without TREC, it
is estimated that “US Internet users would have
spent up to 3.15 billion additional hours using web
search engines between 1999 and 2009 (Tassey
et al., 2010). One of the goals of the Manchester
paradigm should be to identify the linguistic phe-
nomena or ethnic and linguistic groups (Peskov
et al., 2021) that are not well-served by Cranfield-
focused data.

Thus, before you begin your question answering
research, make it clear what your goal is: are you
trying to build AGI* or to serve users? That answer
will then inform your evaluation methology.

Academia’s Special Role It is no coincidence
that our paradigms are named after the homes of
universities, and universities are where the Manch-
ester paradigm will thrive. Thus, there is a strate-
gic opportunity for academia and funding agencies
to support Manchester-aligned work abjured by

3These are: (1) fill human information needs, (2) probe a
system’s understanding of some context (Weston et al., 2016),
and (3) to transfer learned parameters. While the first are
analogous to Cranfield and Manchester paradigms, we do
not discuss the third use—transferring parameters—as that is
model/architecture specific.

*Or more generally, are you trying to build systems with
better language understanding and intelligence, even if it is
not necessarily AGI1?



deep-pocketed industry. Lovingly crafted ques-
tions by trivia experts (Rodriguez et al., 2019;
Boyd-Graber and Borschinger, 2020) and adver-
sarial questions (Wallace et al., 2019; Bartolo et al.,
2020; Kiela et al., 2021) are unlikely to change the
way a smart assistant answers a question, but they
might expose blind spots of QA systems or improve
evaluation. Moreover, asking questions in public
is not just entertaining; it can generate data (von
Ahn and Dabbish, 2008) and help the public bet-
ter understand the possibilities and limitations of
AI (hsiung Hsu et al., 1995; Silver et al., 2016).
Thus, those in the Manchester paradigm can game
show-ify evaluations to make question answering
more fun and illuminating.

Build for the Future We do not advocate for fire-
walling these interests: they are ideally synergistic.
Cranfield-inspired tasks can identify the most help-
ful capabilities that Manchester-inspired tasks can
work towards. However, evaluating systems on
users’ current information needs may leave much
on the table. Users’ habits and low expectations
encourage users to avoid difficult questions (Ng,
2015; Moorhead, 2015): e.g., avoiding complex
syntax or hard to recognize named entities (Peskov
et al., 2019) with voice recognition.

Begin a Dialog with Users Regardless of which
paradigm you favor, QA is at its heart an interac-
tion with users. In the Cranfield paradigm, the user
knows less than the system. In the Manchester
paradigm, the user knows more and takes the role
of a teacher or an evaluator. In both cases, Shnei-
derman (2021) argues that responsible AT should
enable an interactive, responsive conversation be-
tween the system and the user.

In the Cranfield paradigm, this is an opportu-
nity to correct false presuppositions: “when did
Raphael paint the Mona Lisa” could flag that Da
Vinci painted it in 1503 and to explain multiple
interpretations of a question (Min et al., 2020). In
the Manchester paradigm, this can use dialog to
train systems (Choi et al., 2018), guide the sys-
tem to semantically equivalent answers (Si et al.,
2021), or to learn from how humans answer the
same questions (He et al., 2016). For example, if
a computer answers Bush to the question “Who
appointed Scalia to the supreme court”, a Manch-
ester inquisitor would rightly follow up with “can
you be more specific”, to which the system would
hopefully respond George W. Bush.

7 Conclusion

We identify two core motivations for QA research
over the past twenty years. We link one to the user-
centered goals of the Cranfield paradigm and pro-
pose the Manchester paradigm to describe research
working towards building human-like, intelligent
QA systems. In at least the short-term, this distinc-
tion is important as it illuminates the goals of in-
dustry and academic stakeholders; ultimately, this
makes it easier to ensure that both research agen-
das are valued. In the long term, we suspect that
the best QA agents will benefit from the insights
of user-oriented tasks and the longer-range efforts
towards natural language understanding (Bender
and Koller, 2020; Linzen, 2020).
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A Categorizing QA Datasets by
Paradigm

To make our QA evaluation paradigms idea more
concrete, we categorize fifty-six QA datasets as ei-
ther primarily motivated by the Cranfield paradigm
or the Manchester paradigm (Table 1). As is ex-
pected, the TREC QA tasks fall under the Cranfield
paradigm while trivia-based datasets like Jeopardy!
(SearchQA), Quizbowl, and TriviaQA fall under
the Manchester paradigm. Many of the datasets
that fall under the Manchester paradigm attempt to
probe for “understanding” of some context; SQuAD
for example probes for “understanding” of a con-
text paragraph. Other datasets like ELI-5 are also
clearly Cranfield since they are sourced specifi-
cally from questions that real users have asked.
Although Table 1 likely does not enumerate all QA
datasets, it nonetheless represents a extensive sur-
vey of the most prominent QA datasets. For more
extensive QA surveys, see Cambazoglu et al. (2020)
and Rogers et al. (2021) or a tutorial by Chen and
Yih (2020).
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Dataset Paradigm Domain Citation

Deep Read Manchester  Stories (<] Hirschman et al. (1999)
TREC-8 QA Cranfield News (<] Voorhees (2000b)
TREC-9 QA Cranfield Search <] Voorhees (2000a)
TREC QA 2001 Cranfield Search (<] Voorhees (2001)

TREC QA 2002 Cranfield Search (<] Voorhees (2002a)
TREC QA 2003 Cranfield Search (2] Voorhees (2003)

TREC QA 2004 Cranfield Search (<] Voorhees (2004)

TREC QA 2005 Cranfield Search (o] Voorhees and Dang (2005)
TREC QA 2006 Cranfield Search (<] Dang et al. (2006)
TREC QA 2007 Cranfield Search (o] Dang et al. (2007)
QA4MRE 2011-2013  Manchester ~ Multiple (<] Peiias et al. (2013)
MCTest Manchester  Stories (o] Richardson et al. (2013)
WebQuestions Cranfield Search O+e Berant et al. (2013)
CNN/Daily mail Manchester News (o] Hermann et al. (2015)
Simple Questions Manchester  Freebase @—®  Bordes et al. (2015)
Children’s Book Test Manchester  Stories (=] Hill et al. (2016)

bAbI Manchester  Stories @ Weston et al. (2016)
SQuAD 1.0 Manchester ~ Wikipedia [ ] Rajpurkar et al. (2016)
WikiReading Manchester ~ Wikipedia (=} Hewlett et al. (2016)
MS-MARCO Cranfield Search (o] Nguyen et al. (2016)
MovieQA Manchester Movies @ Tapaswi et al. (2016)
RACE Manchester Exams (o] Lai et al. (2017)
TriviaQA Manchester  Trivia (<] Joshi et al. (2017)
SearchQA Manchester  Trivia (o] Dunn et al. (2017)
Quasar-T Manchester  Trivia o] Dhingra et al. (2017)
SciQ Manchester  Science ®@  Welblet al. (2017)
NewsQA Cranfield News (3 Trischler et al. (2017)
CWQ Manchester ~ Wikipedia @—®  Talmor and Berant (2018)
NarrativeQA Manchester ~ Stories o] Kocisky et al. (2018)
DuoRC Manchester Movies o Saha et al. (2018)
MultiRC Manchester ~ Multiple () Khashabi et al. (2018)
HotpotQA Manchester ~ Wikipedia (o] Yang et al. (2018)
SQuAD 2.0 Manchester ~ Wikipedia [} Rajpurkar et al. (2018)
QBLink Manchester  Trivia (o] Elgohary et al. (2018)
WikiHop? Manchester ~ Wikipedia @ Welbl et al. (2018)
OpenBookQA Manchester  Science 2@  Mihaylov et al. (2018)
QASC Manchester  Science o#—@&  Khotet al. (2020)
DROP Manchester ~ Wikipedia 8@  Duaetal. (2019)
QUOREF Manchester ~ Wikipedia o2-@  Dasigietal. (2019)
QUAC Cranfield Wikipedia o Choi et al. (2018)
BoolQ Cranfield Search 2] Clark et al. (2019)
ELI-5 Cranfield Reddit (o] Fan et al. (2019)

ARC Manchester  Science o] Clark et al. (2018)
Record Manchester News @—®  Zhang et al. (2018)
ROPES Manchester ~ Wikipedia/Science 2 Lin et al. (2019)

COQA Cranfield Multiple [ ] Reddy et al. (2019)
CosmosQA Manchester  Stories (<] Huang et al. (2019)
Natural Questions Cranfield Search/Wikipedia (o] Kwiatkowski et al. (2019)
Quizbowl Manchester  Trivia o] Rodriguez et al. (2019)
Trickme Manchester  Trivia O«é  Wallace et al. (2019)
MCScript Manchester Commonsense (] Ostermann et al. (2018)
QuaRel Manchester  Stories #4+@  Tafjord et al. (2019)
CommonSenseQA Manchester Commonsense 2@  Talmor et al. (2019)
AmbigQA Cranfield Search o Min et al. (2020)
Curiosity Cranfield Geopolitical #<@  Rodriguez et al. (2020)
QuAlIL Manchester ~ Multiple [ ] Rogers et al. (2020)

Table 1: We categorizeQA datasets by paradigm, domain area, and who authored them. For authorship, we show
whether they are authored by non-crowdsourced humans (@), crowdsourcing (), or are automatically generated
(é). When humans and machines collaborate on questions, we indicate this and the directionality (e.g., Simple-
Questions generates knowledge base triples that crowdsource workers phrase as questions).



