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Abstract
Complex question answering often requires
finding a reasoning chain that consists of mul-
tiple evidence pieces. Current approaches in-
corporate the strengths of structured knowl-
edge and unstructured text, assuming text cor-
pora is semi-structured. Building on dense re-
trieval methods, we propose a new multi-step
retrieval approach (BEAMDR) that iteratively
forms an evidence chain through beam search
in dense representations. When evaluated on
multi-hop question answering, BEAMDR is
competitive to state-of-the-art systems, with-
out using any semi-structured information.
Through query composition in dense space,
BEAMDR captures the implicit relationships
between evidence in the reasoning chain. The
code is available at https://github.com/
henryzhao5852/BeamDR.

1 Introduction

Answering complex questions requires combin-
ing knowledge pieces through multiple steps
into an evidence chain (Ralph Hefferline →
Columbia University in Figure 1). When the avail-
able knowledge sources are graphs or databases,
constructing chains can use the sources’ inherent
structure. However, when the information needs
to be pulled from unstructured text (which often
has better coverage), standard information retrieval
(IR) approaches only go “one hop”: from a query
to a single passage.

Recent approaches (Dhingra et al., 2020; Zhao
et al., 2020a,b; Asai et al., 2020, inter alia) try
to achieve the best of both worlds: use the un-
structured text of Wikipedia with its structured
hyperlinks. While they show promise on bench-
marks, it’s difficult to extend them beyond aca-
demic testbeds because real-world datasets often
lack this structure. For example, medical records
lack links between reports.

Dense retrieval (Lee et al., 2019; Guu et al.,
2020; Karpukhin et al., 2020, inter alia) provides a
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Evidence Chain: Ralph Hefferline -> Columbia University
P1: Ralph Hefferline
Ralph Franklin Hefferline 
was a psychology professor at 
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Figure 1: Top: A complex question example from HOT-
POTQA that requires finding an evidence chain. Bot-
tom: BEAMDR iteratively composes the new query
and retrieves evidence in dense space without the need
for linked documents.

promising path to overcome this limitation. It en-
codes the query and evidence (passage) into dense
vectors and matches them in the embedding space.
In addition to its efficiency—thanks to maximum
inner-product search (MIPS)—Xiong et al. (2021a)
show that dense retrieval rivals BERT (Devlin
et al., 2019)-based (sparse) retrieve-then-rerank IR

pipelines on single step retrieval. Unlike traditional
term-based retrieval, fully learnable dense encod-
ings provide flexibility for different tasks.

This paper investigates a natural question: can
we build a retrieval system to find an evidence
chain on unstructured text corpora? We propose a
new multi-step dense retrieval method to model the
implicit relationships between evidence pieces. We
use beam search (Section 2) in the dense space to
find and cache the most relevant candidate chains
and iteratively compose the query by appending
the retrieval history. We improve the retrieval by
encouraging the representation to discriminate hard
negative evidence chains from the correct chains,
which are refreshed by the model.

We evaluate Beam Dense Retrieval (BEAMDR)
on HOTPOTQA (Yang et al., 2018), a multi-

https://github.com/henryzhao5852/BeamDR
https://github.com/henryzhao5852/BeamDR


hop question answering benchmark. When re-
trieving evidence chains directly from the corpus
(full retrieval), BEAMDR is competitive to the
state-of-the-art cascade reranking systems that use
Wikipedia links. Combined with standard rerank-
ing and answer span extraction modules, the gain
from full retrieval propagates to findings answers
(Section 3). By iteratively composing the query
representation, BEAMDR captures the hidden “se-
mantic” relationships in the evidence (Section 4).

2 BEAMDR: Beam Dense Retriever

This section first discusses preliminaries for dense
retrieval, then introduces our method, BEAMDR.

2.1 Preliminaries

Unlike classic retrieval techniques, dense re-
trieval methods match distributed text representa-
tions (Bengio et al., 2013) rather than sparse vec-
tors (Salton, 1968). With encoders (e.g., BERT)
to embed query q and passage p into dense vec-
tors EQ(q) and EP (p), the relevance score f is
computed by a similarity function sim(·) (e.g., dot
product) over two vector representations:

f(q, p) = sim(EQ(q), EP (p)). (1)

After encoding passage vectors offline, we can effi-
ciently retrieve passage through approximate near-
est neighbor search over the maximum inner prod-
uct with the query, i.e., MIPS (Shrivastava and Li,
2014; Johnson et al., 2017).

2.2 Finding Evidence Chains with BEAMDR

We focus on finding an evidence chain from an
unstructured text corpus for a given question, often
the hardest part of complex question answering.
We formulate it as multi-step retrieval problem.
Formally, given a question q and a corpus C, the
task is to form an ordered evidence chain p1...pn
from C, with each evidence a passage. We focus on
the supervised setting, where the labeled evidence
set is given during training (but not during testing).

Finding an evidence chain from the corpus is
challenging because: 1) passages that do not share
enough words are hard to retrieve (e.g., in Figure 1,
the evidence Columbia University); 2) if you miss
one evidence, you may err on all that come after.

We first introduce scoring a single evidence
chain, then finding the top k chains with beam
search, and finally training BEAMDR.

Evidence Chain Scoring The score Sn of evi-
dence chain p1, . . . , pn is the product of the (nor-
malized) relevance scores of individual evidence
pieces. At each retrieval step t, to incorporate the
information from both the question and retrieval
history, we compose a new query qt by append-
ing the tokens of retrieved chains p1, . . . , pt−1 to
query q (qt = [q; p1; . . . ; pt−1]), we use MIPS to
find relevant evidence piece pt from the corpus and
update the evidence chain score St by multiplying
the current step t’s relevance score f(qt, pt) ∗St−1.

Beam Search in Dense Space Since enumerat-
ing all evidence chains is computationally impossi-
ble, we instead maintain an evidence cache. In the
structured search literature this is called a beam:
the k-best scoring candidate chains we have found
thus far. We select evidence chains with beam
search in dense space. At step t, we enumerate
each candidate chain j in the beam pj,1...pj,t−1,
score the top k chains and update the beam. After
n steps, the k highest-scored evidence chains with
length n are finally retrieved.

Training BEAMDR The goal of training is to
learn embedding functions that differentiate posi-
tive (relevant) and negative evidence chains. Since
the evidence pieces are unordered, we sample pos-
itive permuted evidence chains from the gold ev-
idence set. A negative chain has at least one ev-
idence piece that is not in the gold evidence set.
For each step t, the input is the query q, a sampled
positive chain P+

t = p+1 , . . . , p
+
t and m sampled

negative chains P−
j,t = p−1 , . . . , p

−
t . We update the

negative log likelihood (NLL) loss:
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Rather than using local in-batch or term matching
negative samples, like Guu et al. (2020) we select
negatives from the whole corpus, which can be
more effective for single-step retrieval (Xiong et al.,
2021a). In multi-step retrieval, we select negative
evidence chains from the corpus. Beam search
on the training data finds the top k highest scored
negative chains for each retrieval step. Since the
model parameters are dynamically updated, we
asynchronously refresh the negative chains with
the up-to-date model checkpoint (Guu et al., 2020;
Xiong et al., 2021a).



Models AR PR P EM EM

Full Retrieval
TF-IDF 39.7 66.9 10.0 18.2
MDR ∗ 75.4 - 65.9 -
BEAMDR (IR Neg) 76.8 86.4 64.1 40.4
BEAMDR (Greedy) 83.6 90.7 72.7 34.1
BEAMDR (Ours) 87.0 92.9 79.2 60.7
Reranking from Retrieval Outputs
SR 77.9 93.2 63.9 46.5
GRR 87.8 93.3 77.9 61.1
MDR ∗ 88.2 - 81.2 -
BEAMDR (Ours) 90.7 94.7 83.7 70.7

Table 1: Compare BEAMDR with other retrieval sys-
tems. Top: Retrieval from the whole corpus, bottom:
Reranking from top 100 full retrieval outputs. ∗ indi-
cates parallel work.

3 Experiments: Retrieval and Answering

Our experiments are on HOTPOTQA fullwiki set-
ting (Yang et al., 2018), the multi-hop question
answering benchmark. We mainly evaluate on
retrieval that extracts evidence chains (passages)
from the corpus; we further add a downstream eval-
uation on whether it finds the right answer.

3.1 Experimental Setup
Metrics Following Asai et al. (2020), we report
four metrics on retrieval: answer recall (AR), if
answer span is in the retrieved passages; passage
recall (PR), if at least one gold passage is in the
retrieved passages; Passage Exact Match (P EM),
if both gold passages are included in the retrieved
passages; and Exact Match (EM), whether both
gold passages are included in the top two retrieved
passages (top one chain). We report exact match
(EM) and F1 on answer spans.

Implementation We use a BERT-base encoder
for retrieval and report both BERT base and large
for span extraction. We warm up BEAMDR with
TF-IDF negative chains. The retrieval is evaluated
on ten passage chains (each chain has two pas-
sages). To compare with existing retrieve-then-
rerank cascade systems, we train a standard BERT

passage reranker (Nogueira and Cho, 2019), and
evaluate on ten chains reranked from the top 100
retrieval outputs. We train BEAMDR on six 2080Ti
GPUs, three for training, three for refreshing neg-
ative chains. We do not search hyper-parameters
and use suggested ones from Xiong et al. (2021a).

3.2 Passage Chain Retrieval Evaluation
Baselines We compare BEAMDR with TF-IDF,
Semantic Retrieval (Nie et al., 2019, SR), which
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Figure 2: Passage retrieval accuracy on different beam
size. Our system is robust to the increase of beam size.

uses a cascade BERT pipeline, and the Graph re-
current retriever (Asai et al., 2020, GRR), our main
baseline, which iteratively retrieves passages fol-
lowing the Wikipedia hyperlink structure, and is
state-of-the-art on the leaderboard. We also com-
pare against a contemporaneous model, multi-hop
dense retrieval (Xiong et al., 2021b, MDR).

Results: Robust Evidence Retrieval without
Document Links Table 1 presents retrieval re-
sults. On full retrieval, BEAMDR is competitive
to GRR, state-of-the-art reranker using Wikipedia
hyperlinks. BEAMDR also has better retrieval than
the contemporaneous MDR. Although both ap-
proaches build on dense retrieval, MDR is close
to BEAMDR with TF-IDF negatives. We instead
refresh negative chains with intermediate represen-
tations, which help the model better discover evi-
dence chains. Our ablation study (Greedy search)
indicates the importance of maintaining the beam
during inference. With the help of cross-attention
between the question and the passage, using BERT

to rerank BEAMDR outperforms all baselines.

Varying the Beam size Figure 2 plots the Pas-
sage EM with different beam sizes. While initially
increassing the beam size improves Passage Exact
Match, the marginal improvement decreases after
a beam size of forty.

3.3 Answer Extraction Evaluation

Baselines We compare BEAMDR with
TXH (Zhao et al., 2020b), GRR (Asai et al., 2020)
and the contemporaneous MDR (Xiong et al.,
2021b). We use released code from GRR (Asai
et al., 2020) following its settings on BERT base
and large. We use four 2080Ti GPUs.

Results Using the same implementation but on
our reranked chains, BEAMDR outperforms GRR



Retriever Reader
Dev Test

EM F1 EM F1
BERT base Reader
TXH TXH 54.0 66.2 51.6 64.1
GRR GRR 52.7 65.8 - -
BEAMDR GRR 54.9 68.0 - -
BERT large wwm Reader
GRR GRR 60.5 73.3 60.0 73.0
BEAMDR GRR 61.3 74.1 60.4 73.2
MDR∗ MDR∗ 61.5 74.7 - -
ELECTRA large Reader
MDR∗ MDR∗ 63.4 76.2 62.3 75.3

Table 2: HOTPOTQA dev and test set answer exact
match (EM) and F1 results. ∗ indicates parallel work.

Figure 3: T-SNE visualization of query (Q) and pas-
sage (P) embeddings over different retrieval steps.
BEAMDR conducts multi-step reasoning by hopping
in the learned representation space.

(Table 2), suggesting gains from retrieval could
propagate to answer span extraction. BEAMDR
is competitive with MDR but slightly lower; we
speculate different reader implementations might
be the cause.

4 Exploring How we Hop

In this section, we explore how BEAMDR con-
structs evidence chains.

4.1 Qualitative Analysis

Figure 3 shows query and passage representations
with T-SNE (Maaten and Hinton, 2008). Unsurpris-
ingly, in the dense space, the first hop query (ques-
tion) is close to its retrieved passages but far from
second hop passages (with some negative passages
in between). After composing the question and first
hop passages, the second hop queries indeed land
closer to the second hop passages. Our quantitative
analysis (Table 3) further shows BEAMDR has lit-
tle overlap between retrieved passages in two hops.
BEAMDR mimics multi-step reasoning by hopping
in the learned representation space.

Models Passage Recall OverlapFirst hop Second hop

GRR 85.1 85.3 64.3
BEAMDR 86.4 78.9 26.7
BEAMDR† 88.0 87.1 14.7

Table 3: Passage Recall and overlap comparison be-
tween BEAMDR and GRR with different hop passages.
Systems with † filter second hop passages with links.

Errors Type %

Question entities 62
GRR Connect with reverse links 16

Text matching 14
Others 8

Text matching 46
BEAMDR No links between passages 39

Question entities 15

Table 4: We manually analyze 100 bridge questions
and categorize model errors.

4.2 Hop Analysis

To study model behaviors under different hops, we
use heuristics1 to infer the order of evidence pas-
sages. In Table 3, BEAMDR slightly wins on first
hop passages, with the help of hyperlinks, GRR

outperforms BEAMDR on second hop retrieval.
Only 21.9% of the top-10 BEAMDR chains are
connected by links. BEAMDR wins after using
links to filter candidates.

4.3 Human Evaluation on Model Errors and
Case Study

To understand the strengths and weaknesses of
BEAMDR compared with GRR, we manually an-
alyze 100 bridge questions from the HOTPOTQA
development set. BEAMDR predicts fifty of them
correctly and GRR predicts the other fifty correctly
(Tables 4 and 5).

Strengths of BEAMDR. Compared to GRR, the
largest gain of BEAMDR is to identify question
entity passages. As there is often little context over-
lap besides the entity surface form, a term-based
approach (TF-IDF used by GRR) falters. Some of
the GRR errors also come from using reverse links
to find second hop passages (i.e., the second hop
passage links to the first hop passage).

1We label the passage that contains the answer as the sec-
ond hop passage, while the other one as the first hop passage.
If both passages include the answer, passage title mentioned
in the question is the first hop passage.



Q: Chris Williams last played for which football club from
the National League North?
Passage 1: Christopher Jonathan ”Chris” Williams is an
English semi-professional footballer who last played for
Salford City as a forward.
Passage 2: Salford City Football Club is a professional
football club in the Kersal area of Salford, Greater Manch-
ester, England.
BEAMDR: Chris Williams (English Footballer) → Salford
City F.C. X
GRR: Chris Williams (Wide Receiver) → Miami Dolphins
7

Table 5: Case study of BEAMDR and GRR retrieval.
Term-based retrieval approaches (TF-IDF used by
GRR) is unable to distinguish two players with same
name. BEAMDR correctly identifies the question en-
tity.

Weaknesses of BEAMDR. Like Karpukhin et al.
(2020), many of BEAMDR’s errors could be
avoided by simple term matching. For example,
matching “What screenwriter with credits for Evo-
lution co-wrote a film starring Nicolas Cage and
Téa Leoni?” to the context “The Family Man is
a 2000 American film written by David Diamond
and David Weissman, and starring Nicolas Cage
and Téa Leoni.”.

5 Related Work

Extracting multiple pieces of evidence automati-
cally has applications from solving crossword puz-
zles (Littman et al., 2002), graph database construc-
tion (De Melo and Weikum, 2009), and understand-
ing relationships (Chang et al., 2009; Iyyer et al.,
2016) to question answering (Ferrucci et al., 2010),
which is the focus of this work.

Given a complex question, researchers have in-
vestigated multi-step retrieval techniques to find
an evidence chain. Knowledge graph question
answering approaches (Talmor and Berant, 2018;
Zhang et al., 2018, inter alia) directly search the
evidence chain from the knowledge graph, but
falter when KG coverage is sparse. With the re-
lease of large-scale datasets (Yang et al., 2018),
recent systems (Nie et al., 2019; Zhao et al., 2020b;
Asai et al., 2020; Dhingra et al., 2020, inter alia)
use Wikipedia abstracts (the first paragraph of a
Wikipedia page) as the corpus to retrieve the evi-
dence chain. Dhingra et al. (2020) treat Wikipedia
as a knowledge graph, where each entity is identi-
fied by its textual span mentions, while other ap-
proaches (Nie et al., 2019; Zhao et al., 2020b) di-
rectly retrieve passages. They first adopt a single-

step retrieval to select the first hop passages (or en-
tity mentions), then find the next hop candidates di-
rectly from Wikipedia links and rerank them. Like
BEAMDR, Asai et al. (2020) use beam search to
find the chains but still rely on a graph neural net-
work over Wikipedia links. BEAMDR retrieves ev-
idence chains through dense representations with-
out relying on the corpus semi-structure. Qi et al.
(2019, 2020) iteratively generate the query from the
question and retrieved history, and use traditional
sparse IR systems to select the passage, which com-
plements BEAMDR’s approach.

6 Conclusion

We introduce a simple yet effective multi-step
dense retrieval method, BEAMDR. By conduct-
ing beam search and globally refreshing negative
chains during training, BEAMDR finds reasoning
chains in dense space. BEAMDR is competitive
to more complex SOTA systems albeit not using
semi-structured information.

While BEAMDR can uncover relationship em-
bedded within a single question, future work should
investigate how to use these connections to resolve
ambiguity in the question (Elgohary et al., 2019;
Min et al., 2020), resolve entity mentions (Guha
et al., 2015), connect concepts across modali-
ties (Lei et al., 2018), or to connect related ques-
tions to each other (Elgohary et al., 2018).

Acknowledgments

We thank the anonymous reviewers and meta-
reviewer for their suggestions and comments. Zhao
is supported by the Office of the Director of Na-
tional Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA), via the BET-
TER Program contract 2019-19051600005. Boyd-
Graber is supported by NSF Grant IIS-1822494.
Any opinions, findings, conclusions, or recommen-
dations expressed here are those of the authors and
do not necessarily reflect the view of the sponsors.



References
Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,

Richard Socher, and Caiming Xiong. 2020. Learn-
ing to retrieve reasoning paths over wikipedia graph
for question answering. In Proceedings of the Inter-
national Conference on Learning Representations.

Y. Bengio, A. Courville, and P. Vincent. 2013. Rep-
resentation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Jonathan Chang, Jordan Boyd-Graber, and David M.
Blei. 2009. Connections between the lines: Aug-
menting social networks with text. In Knowledge
Discovery and Data Mining.

Gerard De Melo and Gerhard Weikum. 2009. Towards
a universal WordNet by learning from combined ev-
idence. In Proceedings of the ACM International
Conference on Information and Knowledge Manage-
ment.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Conference of the North American
Chapter of the Association for Computational Lin-
guistics.

Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachan-
dran, Graham Neubig, Ruslan Salakhutdinov, and
William W. Cohen. 2020. Differentiable reasoning
over a virtual knowledge base. In International Con-
ference on Learning Representations.

Ahmed Elgohary, Denis Peskov, and Jordan Boyd-
Graber. 2019. Can you unpack that? learning to
rewrite questions-in-context. In Proceedings of Em-
pirical Methods in Natural Language Processing.

Ahmed Elgohary, Chen Zhao, and Jordan Boyd-Graber.
2018. Dataset and baselines for sequential open-
domain question answering. In Proceedings of Em-
pirical Methods in Natural Language Processing.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya A Kalyanpur,
Adam Lally, J William Murdock, Eric Nyberg, John
Prager, et al. 2010. Building watson: An overview
of the deepqa project. AI magazine.

Anupam Guha, Mohit Iyyer, Danny Bouman, and Jor-
dan Boyd-Graber. 2015. Removing the training
wheels: A coreference dataset that entertains hu-
mans and challenges computers. In Conference of
the North American Chapter of the Association for
Computational Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pa-
supat, and Ming-Wei Chang. 2020. REALM:
Retrieval-augmented language model pre-training.
In Proceedings of the International Conference of
Machine Learning.

Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jor-
dan Boyd-Graber, and Hal Daumé III. 2016. Feud-
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Billion-scale similarity search with GPUs. arXiv
preprint arXiv:1702.08734.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings
of Empirical Methods in Natural Language Process-
ing.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
Association for Computational Linguistics.

Jie Lei, Licheng Yu, Mohit Bansal, and Tamara Berg.
2018. TVQA: Localized, compositional video ques-
tion answering. In Proceedings of Empirical Meth-
ods in Natural Language Processing.

Michael L Littman, Greg A Keim, and Noam Shazeer.
2002. A probabilistic approach to solving crossword
puzzles. Artificial Intelligence, 134(1).

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of machine
learning research, 9(11).

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2020. AmbigQA: Answering am-
biguous open-domain questions. In Proceedings of
Empirical Methods in Natural Language Process-
ing.

Yixin Nie, Songhe Wang, and Mohit Bansal. 2019. Re-
vealing the importance of semantic retrieval for ma-
chine reading at scale. In Proceedings of Empirical
Methods in Natural Language Processing.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with BERT. arXiv preprint
arXiv:1901.04085.

Peng Qi, Haejun Lee, Oghenetegiri ”TG” Sido, and
Christopher D. Manning. 2020. Retrieve, rerank,
read, then iterate: Answering open-domain ques-
tions of arbitrary complexity from text. arXiv
preprint arXiv:2010.12527.

Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and
Christopher D. Manning. 2019. Answering complex
open-domain questions through iterative query gen-
eration. In Proceedings of Empirical Methods in
Natural Language Processing.

Gerard. Salton. 1968. Automatic Information Organi-
zation and Retrieval. McGraw Hill Text.

https://openreview.net/forum?id=SJgVHkrYDH
https://openreview.net/forum?id=SJgVHkrYDH
https://openreview.net/forum?id=SJgVHkrYDH
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://dl.acm.org/doi/10.1145/1557019.1557044
https://dl.acm.org/doi/10.1145/1557019.1557044
https://dl.acm.org/doi/10.1145/1645953.1646020
https://dl.acm.org/doi/10.1145/1645953.1646020
https://dl.acm.org/doi/10.1145/1645953.1646020
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=SJxstlHFPH
https://openreview.net/forum?id=SJxstlHFPH
https://www.aclweb.org/anthology/D19-1605/
https://www.aclweb.org/anthology/D19-1605/
https://www.aclweb.org/anthology/D18-1134/
https://www.aclweb.org/anthology/D18-1134/
https://ojs.aaai.org//index.php/aimagazine/article/view/2303
https://ojs.aaai.org//index.php/aimagazine/article/view/2303
https://www.aclweb.org/anthology/N15-1117
https://www.aclweb.org/anthology/N15-1117
https://www.aclweb.org/anthology/N15-1117
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://www.aclweb.org/anthology/N16-1180/
https://www.aclweb.org/anthology/N16-1180/
https://www.aclweb.org/anthology/N16-1180/
https://arxiv.org/abs/1702.08734
https://www.aclweb.org/anthology/2020.emnlp-main.550
https://www.aclweb.org/anthology/2020.emnlp-main.550
https://www.aclweb.org/anthology/P19-1612
https://www.aclweb.org/anthology/P19-1612
https://www.aclweb.org/anthology/D18-1167/
https://www.aclweb.org/anthology/D18-1167/
https://dl.acm.org/doi/10.1016/S0004-3702%2801%2900114-X
https://dl.acm.org/doi/10.1016/S0004-3702%2801%2900114-X
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://www.aclweb.org/anthology/2020.emnlp-main.466/
https://www.aclweb.org/anthology/2020.emnlp-main.466/
https://www.aclweb.org/anthology/D19-1258/
https://www.aclweb.org/anthology/D19-1258/
https://www.aclweb.org/anthology/D19-1258/
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
arXiv preprint arXiv:2010.12527
arXiv preprint arXiv:2010.12527
arXiv preprint arXiv:2010.12527
https://nlp.stanford.edu/pubs/qi2019answering.pdf
https://nlp.stanford.edu/pubs/qi2019answering.pdf
https://nlp.stanford.edu/pubs/qi2019answering.pdf


Anshumali Shrivastava and Ping Li. 2014. Asymmet-
ric lsh (ALSH) for sublinear time maximum inner
product search (MIPS). In Proceedings of Advances
in Neural Information Processing Systems.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Conference of the North American Chapter of the
Association for Computational Linguistics.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2021a. Approximate nearest neighbor
negative contrastive learning for dense text retrieval.
In Proceedings of the International Conference on
Learning Representations.

Wenhan Xiong, Xiang Lorraine Li, Srini Iyer, Jingfei
Du, Patrick Lewis, William Yang Wang, Yashar
Mehdad, Wen tau Yih, Sebastian Riedel, Douwe
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