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Abstract

Topic model evaluation, like evaluation of other unsupervised methods, can be contentious.
However, the field has coalesced around automated estimates of topic coherence, which rely
on the frequency of word co-occurrences in a reference corpus. Contemporary neural topic
models surpass classical ones according to these metrics. At the same time, topic model
evaluation suffers from a validation gap: automated coherence, developed for classical
models, has not been validated using human experimentation for neural models. In addition,
a meta-analysis of topic modeling literature reveals a substantial standardization gap in au-
tomated topic modeling benchmarks. To address the validation gap, we compare automated
coherence with the two most widely accepted human judgment tasks: topic rating and word
intrusion. To address the standardization gap, we systematically evaluate a dominant classi-
cal model and two state-of-the-art neural models on two commonly used datasets. Automated
evaluations declare a winning model when corresponding human evaluations do not, calling
into question the validity of fully automatic evaluations independent of human judgments.

1 Revisiting Topic Model Evaluation

Topic models are a machine learning technique widely used outside computer science, including
political science (Grimmer and Stewart, 2013; Isoaho et al., 2021), social and cultural studies (Mohr
and Bogdanov, 2013), digital humanities (Meeks and Weingart, 2012), and bioinformatics (Liu
et al., 2016). Typically, topic model users are domain experts trying to identify global categories
or themes present in a document collection (Boyd-Graber et al., 2017). This practice constitutes
a computer-assisted form of content analysis (Krippendorff, 2004; Chuang et al., 2014), also related
to distant reading in literary studies (Underwood, 2017). In general, topic models help humans
understand large corpora.2

Evaluation of topic models has vacillated between automated and human-centered. While real-world
users of topic models evaluate outputs based on their specific needs, topic model developers have
gravitated toward generalized, automated proxies of human judgment to help inform rapid iteration
of models (Doogan and Buntine, 2021). Initially, models were evaluated with held-out perplexity,
but it disagrees with human interpretability (Chang et al., 2009). Consequently, the field adopted
automated coherence metrics like normalized pointwise mutual information (NPMI), a measure of
word relatedness that does correlate with topic interpretability (Section 2.2; Newman et al., 2010;
Aletras and Stevenson, 2013; Lau et al., 2014). The balance shifted towards automated coherence.

Human evaluations have been abandoned by topic model developers in the years since automated
coherence metrics were adopted. In a thorough meta-analysis of contemporary topic model methods

∗Equal contribution
2Topic models are also used for other purposes, such as information retrieval or downstream document

classification. However, the discovery and application of categories for human interpretation is their dominant
use, and other computational applications have been largely eclipsed by modern neural approaches.
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Classical Neural

station album tropical tropical spore manhattan_project
line band storm landfall basidia los_alamos_laboratory
bridge music hurricane cyclone spores robert_oppenheimer
railway song cyclone utc mycologist enrico_fermi
trains released depression weakening hyphae physicist

NPMI 0.274 0.285 0.394 0.446 0.456 0.470

Table 1: The first three columns are the highest-NPMI topics for a classical topic model (LDA estimated
via Gibbs sampling using Mallet, McCallum, 2002; Griffiths and Steyvers, 2004). The next three
are counterparts from a neural model (our D-VAE reimplementation, Burkhardt and Kramer, 2019).
Models are trained on Wikitext (Merity et al., 2017) with fifty topics, and NPMI is estimated over the
top five words in each topic using a 4.6M-document reference Wikipedia corpus. The mean top-five
NPMI over all topics is 0.156 for the classical and 0.256 for the neural model.

papers, none conduct systematic human evaluations (Section 3). Instead, they rely solely on automated
metrics for model comparison.3 However, current neural topic models are a far cry from the classical
models that substantiated the original correlations—manifestly, topics produced by neural models are
often qualitatively distinct from those of classical models (e.g., Table 1).4 This validation gap raises
the question of whether automated metrics are still consistent with human judgments of topic quality.

Moreover, we should always be cautious when extrapolating outside the range of data that was used
to establish a relationship between variables. As an example, a neural model in Hoyle et al. (2020)
produces much larger NPMI values than those used to determine human correlations in the origi-
nal Lau et al. (2014) study; the implicit assumption is that greater NPMI corresponds to more human-
interpretable topics. Finally, a myopic focus on a presumed proxy for human preferences can produce
low-quality results (Stiennon et al., 2020). Does Goodharts’ law—“when a measure becomes a target,
it ceases to be a good measure” (Strathern, 1997)—apply to automated metrics of topic models?

Another challenge for automated evaluation, whether of classical or neural topic models, is widespread
inconsistency (Section 3). Researchers frequently fail to specify the information needed to calculate
automated metrics or diverge from the practices that underpin human correlations. Furthermore,
evaluation datasets, preprocessing, and hyperparameter optimization vary dramatically, even within a
given paper. This standardization gap likely limits the generalizability and reliability of topic model
developers’ findings.

We address the standardization and validation gaps in topic model evaluation:

1. We present a meta-analysis of neural topic model evaluation (Section 3);
2. we develop standardized, pre-processed versions of two widely-used English-language

evaluation datasets, along with a transparent end-to-end code pipeline for reproduction of
results (Section 4.1)5;

3. we optimize three topic models—one classical and two neural—using identical preprocess-
ing, model selection criteria, and hyperparameter tuning (Section 4.2);

4. we evaluate these models using human ratings and word intrusion tasks (Section 5); and
5. we provide new evaluations of the correlation between automated and human evaluations

(Section 6).

Our findings challenge the validity of fully-automated evaluations as currently practiced: automated
evaluation declares winners between models when the corresponding human evaluations cannot.

3Outside of the core method-development literature, human evaluations have been used to develop new
metrics and improve understanding of existing model behavior (Bhatia et al., 2017; Morstatter and Liu, 2018;
Lund et al., 2019; Alokaili et al., 2019, inter alia).

4We use “classical” to mean generative models defined by a chain of conjugate exponential family distribu-
tions optimized by Gibbs sampling or variational inference.

5github.com/ahoho/topics
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2 Operationalizing Topic Coherence

A topic model is a probabilistic generative model of text that uses latent topics to summarize a larger
collection of documents. The most influential variant, latent Dirichlet allocation (Blei et al., 2003,
LDA), assumes that K latent topics are distributions over word types, βk, and that the documents D
are admixtures over the topics, θd. Users often evaluate model outputs globally, focusing on the most
probable N words of each topic, and locally, considering the most probable topics for each document.

While techniques for topic modeling have progressed from variational inference (Blei et al., 2003) to
Gibbs sampling (Griffiths and Steyvers, 2004) to deep generative approaches (Srivastava and Sutton,
2017; Wang et al., 2020b), the core goal discussed in Section 1, obtaining human-understandable
categories, remains central. The latest wave of methods, neural topic models (NTM), use continuous
word representations and gradient optimization to fit parameters. These models claim to produce
more interpretable topics than other prior methods, including LDA.

Those claims are supported by improvements on automated measures of topic coherence.

2.1 Human Metrics of Topic Coherence

Like the concept of interpretability, that of real-world coherence is “simultaneously important and
slippery” (Lipton, 2018). We will not attempt to formalize it here—though see discussion in Section 7.
For present purposes, the term has its roots in Latin cohaerere, “to stick together,” and we will think
of coherence as an intangible sense, available to human readers, that a set of terms, when viewed
together, enable human recognition of an identifiable category.6 We review two human ratings of
topic quality: direct ratings and intrusion.

Rating Raters see a topic and then give the topic a quality score, conventionally on a three-point
ordinal scale (Newman et al., 2010; Mimno et al., 2011; Aletras and Stevenson, 2013, inter alia).

Intrusion Chang et al. (2009) devise the word intrusion task as a behavioral way to assess topic
coherence. The core idea is that when the top words in a topic identify a coherent latent category, it is
easier to identify words that do not belong to that category. Operationally, each topic is represented
as its top words plus one “intruder” word which has a low probability of belonging to that topic, but a
high probability of belonging to a different topic. Topic coherence is then judged by how well human
annotators detect the “intruder” word.

2.2 NPMI: The Standard Automated Topic Model Coherence Evaluation

Using the word intrusion task, Chang et al. (2009) showed that perplexity—the original topic model
evaluation metric—negatively correlates with human evaluations of topic quality. This finding
revealed a need for an automated measurement of topic coherence: an automated metric can measure
model quality without expensive, time-consuming, and difficult-to-reproduce human experiments.

Lau et al. (2014) find some metrics that positively correlate with human intrusion and rating scores,
particularly when aggregating scores over all topics from a given model. Because of that validation,
the prevailing evaluation for model comparison is pairwise normalized pointwise mutual information.
NPMI scores topics highly if the top N words—summed over all pairs wi and wj—have high joint
probability P (wj , wi) compared to their marginal probability:7

N∑
j=2

j−1∑
i=1

log
P (wj ,wi)

P (wi)P (wj)

−logP (wi, wj)
. (1)

The probabilities are estimated using word co-occurrence counts from a reference corpus for a specific
context window (which can range from ten words to the entire document). As a result, the choice of
reference corpus determines the strength of human correlation (Lau et al., 2014; Röder et al., 2015).

6This perspective aligns with Propositions 2 and 3 of Doogan and Buntine (2021): “an interpretable topic is
one that can be easily labeled,” and “has high agreement on labels.”

7Alternative metrics exist, but they typically also rely on either joint probability estimates or NPMI di-
rectly (e.g., Cv Röder et al., 2015).
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Evaluation Count

Number of human evaluations 0 (0%)
Automated Coherence

Metric
NPMI 26 (72%)
Other 22 (61%)

Explicit implementation 22 (61%)
Explicit ref. corpus 10 (28%)
Perplexity w/o coherence 3 (8%)

Experimentation Count

Preprocessing
Inconsistent over datasets 12 (30%)
Ambiguous preprocessing 9 (23%)

Model comparisons
All models tuned 5 (13%)
Unclear h.param search 16 (40%)
Unclear LDA baseline, if used 7 (24%)
Recent baseline (w/in 2 yrs) 31 (78%)
Multiple runs / sig. testing 11 (28%)

Table 2: Meta-analysis of forty neural topic modeling papers (denominator may change, as not
all conditions are applicable). No recent neural topic modeling papers use human evaluations of
coherence, and the metrics and models are difficult to replicate.

A measurement is valid to the extent that it measures what it is intended to measure in the real
world. Historically, automated coherence has been validated using human judgements from either
crowdworkers (Newman et al., 2010; Aletras and Stevenson, 2013) or experts (Mimno et al., 2011).
However, correlations based on classical models may not be applicable for NTMs. Our skepticism
is motivated by theory, as neural word representations are intimately connected to NPMI, as explicitly
used by Aletras and Stevenson (2013) and which produce similar NPMI scores as Lau et al. (2014).
Levy and Goldberg (2014) show that multiple representations create factorizations of PMI matrices.
Topic models that have access to these rich representations (e.g. Dieng et al., 2020, and others) could
thus create topics with good NPMI scores without explaining the corpus well to a user. In contrast
to classical topic models, no one has investigated the validity of NPMI evaluation for NTMs.

Given this lacuna, we conduct experiments aimed at validating that automated topic evaluations still
correlate with human judgments of neural topic model quality. We compare against two common
human evaluations of individual topic quality: direct rating and intrusion. Human evaluations, like
automated topic modeling, lack standardization, which we address in Section 5.

3 A Meta-Analysis of Neural Topic Modeling

We survey the neural topic modeling (NTM) literature to assess the state of evaluation in contemporary
topic model development. First, we take all references made by an existing, comprehensive survey
of NTMs (Zhao et al., 2021b), from which we select (a) modeling papers which (b) mention topic
interpretability and (c) compare models’ topics with an existing baseline. This yields forty models,
which all claim superior topic coherence. We examine data processing steps, hyperparameter tuning,
baseline selection, and automated coherence calculations. Table 2 summarizes our results and
Appendix A.1 enumerates the papers.

Our analysis reveals variance in all areas. Preprocessing, which can significantly affect model quality
and automated metrics, is often (30%) inconsistent across datasets within the same paper. When
preprocessing is consistent, authors omit details necessary to fully replicate the pipeline. These
issues imply that automated metrics for the same baselines and source datasets vary across papers.
Compounding the problem, researchers often train their models on different datasets from those
used to establish the relationships between human annotations and automated metrics; Doogan and
Buntine (2021) find that the same metrics may not predict interpretability in new domains. Mirroring
findings from Dodge et al. (2019), 40% of papers fail to clearly specify their model tuning procedure,
often even the metric used for model selection.

Calculation of automated coherence metrics is equally fraught. As discussed in Section 2.2, a
complete specification for NPMI involves several pieces of information, including the reference
corpus used to estimate joint word probabilities, the co-occurrence window size, and the number
of words selected from the head of the topic distribution. Three out of four papers fail to explicitly
indicate the reference corpus; even when we can assume the input corpus is used (13 cases), it remains
uncertain whether authors use, e.g., a held-out set or the training documents themselves. For the
61% that specify the implementation of their coherence metric (by pointing to a code repository or
writing out the formula), some of these factors may still be in question. For instance, six authors
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reference Lau et al. (2014) and the supporting code,8 but the implications are ambiguous: the original
paper suggests a large corpus from the same source as the training data, but the repository script
defaults to Wikipedia. In other cases, authors use bespoke implementations, which creates room for
errors, or deviate from the settings used in human experiments. For example, several papers use a
document-wide context window with NPMI, which has not been correlated with human judgments.

Last, even if automated evaluations are consistent, all claims of coherence improvement depend on
the validity results in Lau et al. (2014) generalizing to neural topic models.

4 Closing the Standardization Gap for Topic Models

Our human evaluation of topic model outputs serves multiple purposes: (a) establishing whether
NTMs show improved coherence over a classical baseline and (b) re-evaluating the efficacy and
reliability of automated coherence metrics. In addition, a key goal is (c) to provide a standardized
preprocessing pipeline to support head-to-head comparisons as new methods are developed.9

We identify two commonly-used datasets, which we in turn process using a standard pipeline.
We then estimate topic models on each dataset following a computationally fair hyperparameter
search. Our standardization efforts are similar to concurrent work by Terragni et al. (2021); the
main differences are that we (a) mandate consistent preprocessing between training and reference
corpora, (b) support multi-word expressions during vocabulary creation (see below), and (c) support
distributed hyperparameter searches.

4.1 Datasets and Preprocessing

Following Chang et al. (2009), we use English articles from Wikipedia and the New York Times
(Table 7). For Wikipedia, we use Wikitext-103 (WIKI, Merity et al., 2017), and for the Times, we
subsample roughly 15% of documents from LDC2008T19 (NYT, Sandhaus, 2008), making it an order
of magnitude larger than WIKI. To compute reference counts, we use a 4.6M document Wikipedia
dump from September 2017 and the full 1.8M document LDC2008T19 set, processed identically to
the training data.

We use SpaCy (Honnibal et al., 2020) to tokenize and identify entities in the text. We create new
tokens for detected entities of the form New_York_City, per Krasnashchok and Jouili (2018).
Schofield and Mimno (2016) find that lemmatization and word-stemming can hurt English topic
interpretability, so we do not lemmatize. To maintain a roughly equal vocabulary size over datasets,
we use a power-law relationship of corpus size (c.f. Zipf, 1949) to rule out tokens occurring in fewer
than a given number of documents.10 In addition to a standard stopword list, we define corpus-specific
stopwords as tokens appearing in more than 90% of documents. See Appendix A.2 for complete
preprocessing details.

4.2 Models

We evaluate one venerable classical model and two newer neural models:

Gibbs-LDA As a strong classical baseline, we use the widely-loved Mallet (McCallum, 2002)
implementation of Gibbs-sampling for LDA (Griffiths and Steyvers, 2004). Mallet produces topics of
(qualitatively) competitive quality to neural models (Srivastava and Sutton, 2017).

Dirichlet-VAE We reimplement Dirichlet-VAE (Burkhardt and Kramer, 2019), a state-of-the-art
NTM. For simplicitly, we use pathwise gradients for the Dirichlet (Jankowiak and Obermeyer, 2018),
rather than the rejection sampling variational inference of the authors’ primary variant.11 Dirichlet-
VAE is a wholesale improvement on one of the first successful NTMs, the popular ProdLDA (Srivastava
and Sutton, 2017), and is competitive against recent models on automated coherence. The generative

8github.com/jhlau/topic_interpretability
9Our preprocessing pipeline is agnostic to dataset and easily portable. github.com/ahoho/topics

10We target vocabularies approximating the number of words known by an adult English-speaker (Brysbaert
et al., 2016): roughly 40k for WIKI and 35k for NYT.

11We replicate their NPMI and redundancy scores on 20 newsgroups. github.com/ahoho/dvae
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Select which term is the least related to all other terms and your familiarity with the words

Terms

Answer Con�dence

painting
paintings
casualties
painter
literary
poems

I am familiar with most of these terms.
I am not familiar with most of these terms, but I can answer con�dently.
I am not familiar with most of these terms, and so I cannot answer con�dently.

Figure 1: The word intrusion task presented to crowdworkers (the ratings task is in Appendix A.4).

model is simple and retains a broad similarity to LDA. The primary difference is that it does not
constrain the estimated topic-word distributions to the simplex.

ETM Thanks to their improved flexiblity, many NTMs incorporate external word representations,
on the premise that large-scale, general language knowledge improves topic quality (Bianchi et al.,
2021; Hoyle et al., 2020). The Embedded Topic Model (Dieng et al., 2020) is a popular NTM that
relies on word embeddings in its generative model.12

We maintain a fixed computational budget per model following the exhortation of Dodge et al. (2019)
and use a random set of 164 hyperparameter settings across datasets for each model type.13 We train
models for a variable number of steps (a hyperparameter); to calculate automated coherence for the
model, we use the topics produced at the last step. For human evaluations, we select the models
that maximize NPMI, estimated using the reference corpus with a ten-word window over the top
ten topic words, per Lau et al. (2014). We follow the recommendation of Dieng et al. (2020) and
learn skip-gram embeddings on the training corpus for ETM (experiments with external pretrained
embeddings did not yield substantially different results). As in Hoyle et al. (2020), we eliminate
models with highly redundant topics, a known degeneracy of NTMs (Burkhardt and Kramer, 2019):
(a) models in which any of the top five words of one topic overlap with another and (b) models that
have a topic uniqueness score (Nan et al., 2019) above 0.7. Ranges for hyperparameters and other
details are in Appendix A.3.

5 Human Evaluations of Topic Quality

We use the ratings and word intrusion tasks from Section 2.2 as human evaluations of topic quality.
We recruit crowdworkers using Prolific.co, an online panel provider and collect data with the Qualtrics
survey platform. We pay workers 2.5 USD per ratings survey and 3 USD per word intrusion survey,
equivalent to 15 USD/hour.

In order to draw meaningful conclusions from human annotations, we require an adequate number
of participants to ensure acceptable statistical power. However, Card et al. (2020) show that many
NLP experiments, including those relying on human evaluation, are insufficiently powered to detect
model differences at reported levels. Adopting a straightforward generative model of annotations
(Appendix A.5), we select enough crowdworkers per task to ensure sufficient statistical power (at
least 1−β = 0.9) to obtain significance at α = 0.05, resulting in a minimum of fifteen crowdworkers
per topic for both tasks. On this criterion, both Chang et al. (2009) and thus Lau et al. (2014), with
eight annotators, are underpowered.

For each of our two datasets, we generate fifty topics each from the three models in Section 4.2. In
the word intrusion task, we sample five of the top ten topic words plus one intruder; for the ratings
task, we present the top ten words in order (Figure 4). We separate the datasets for each task and

12github.com/adjidieng/ETM
13While runtimes can vary drastically by model, this study is not concerned with implementation efficiency (al-

though efficiency matters, see Ethayarajh and Jurafsky, 2020).
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Figure 2: While automated evaluations (here, NPMI) suggest a clear winner between models, human
evaluation is more nuanced. Human judgments exhibit greater variability over a smaller range of
values. Colored circles correspond to pairwise one-tailed significance tests between model scores
at α = 0.05; for example, the rightmost orange circle at bottom right shows that human intrusion
ratings for D-VAE are significantly higher than ETM for topics derived from Wikipedia.

randomly sample 40 of the 150 topics. In the ratings task, we include an additional sixteen synthetic
poor-quality topics to help calibrate scores and filter out low-quality respondents.14

Phrasing of questions closely follows the wording used by Chang et al. (2009), and crowdworkers
received detailed instructions with examples (Appendix A.4) before responding to items.15 As topics
can be esoteric (e.g., last columns of Table 1), we ask crowdworkers about their familiarity with
the words in each question. We speculate that this question can help protect against spurious low
scores for otherwise coherent topics, as real-world users of topic models are usually familiar with
domain-specific terminology (see further discussion in Section 7).

6 Human Judgment Differs From Automated Metrics

We compare human judgments to automated methods on topics estimated using our three models.

6.1 Human Assessment

To establish model differences using human ratings, we use pairwise significance tests: a proportion
test for the intrusion scores, a U test (Mann and Whitney, 1947) for the ratings, and a t-test for
automated metrics (Figure 2), using one-tailed tests for each pair in both directions. Although D-VAE
fares better on the intrusion task, evaluation using ratings favors G-LDA.16

Our human evaluation results are consistent with past iterations of the ratings and word intrusion
tasks for topic models. Mimno et al. (2011) report an average of 2.36 on the ratings task on a dataset
of medical paper abstracts.17 Our ratings means are 2.5 to 2.8 across all variations (Figure 2). Our
word intrusion means range from 0.7 to 0.8, which is comparable to the roughly 0.8 accuracy on the
LDA model evaluated in Chang et al. (2009). Median time taken on the tasks was 8–9 minutes.

14For generating synthetic poor-quality topics, we use random high-probability words appearing in topics
from other hyperparameter settings, but that have low probability among selected topics. Eight topics each are
generated from the vocabularies of NYT and WIKI.

15Code to convert topic model output into deployable questionnaires is at github.com/ahoho/topics.
16These discrepancies among human tasks support the argument that standard coherence metrics alone may

be insufficient for automated model selection (Doogan and Buntine, 2021).
17Newman et al. (2010) and Lau et al. (2014) do not report an average.
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NPMI (10-token window) Cv (110-token window)
Ref. Corpus → NYT WIKI Train Val NYT WIKI Train Val
Train Corpus ↓

Intrusion NYT 0.27 0.43 0.27 0.24 0.34 0.45 0.35 0.34
WIKI 0.34 0.36 0.39 0.17 0.32 0.34 0.34 0.20
Concatenated 0.29 0.40 0.32 0.17 0.32 0.40 0.35 0.24

Rating NYT 0.37 0.48 0.37 0.39 0.41 0.46 0.44 0.45
WIKI 0.34 0.41 0.44 0.28 0.32 0.40 0.40 0.34
Concatenated 0.37 0.44 0.41 0.35 0.38 0.42 0.42 0.42

Table 3: Spearman correlation coefficients between mean human scores and automated metrics.
Underlined values have overlapping bootstrapped 95% confidence intervals with that of the largest
value in each row. “Concatenated” refers to correlations computed on a concatenation of values for
the NYT and WIKI items. “Val” is a small held-out set of 15% of the training corpus. Using the more
data-appropriate logistic and ordered probit regressions for word intrusion and ratings data leads to
different conclusions about relative metric strength (Appendix Table 10). CIs are estimated using
1,000 samples.

Following Aletras and Stevenson (2013), we calculate inter-annotator agreement with the mean
Spearman correlation between each respondent’s score per topic and the average of other respondent
scores, obtaining a value of 0.75 (compare to their value of 0.7 on the NYT corpus). Additionally,
we include synthetic poor-quality topics (footnote 14)—correctly identified by annotators—and we
monitor the duration taken for the survey to hedge against insincere submissions.

6.2 Automated Metrics

NPMI declares D-VAE the unequivocal victor among the three models (with G-LDA a clear second), a
very different story from the human judgments. To understand the relationship between automated
metrics and human ratings, we estimate the Spearman correlation between the two sets of values
for each task and dataset for metric variants (Table 3). Although previous studies have used mean
human ratings over topics, this decision obscures the inherent variance of the human ratings and
leads to overconfident estimates. We therefore construct 95% confidence intervals by resampling
ratings, with replacement, equal to the number of annotators per task (Table 3). We estimate NPMI
with the standard 10-word window and Cv (Röder et al., 2015) with the recommended 110-word
window.18 The Wikipedia corpus appears to be best correlated with human judgments, even for the
models trained on the NYT corpus—this contradicts Lau et al. (2014), where within-domain data have
the highest correlations.

While all correlation coefficients are statistically significant, the strength of the correlation alone does
not justify their use in model selection, as is standard in the NTM literature (Section 3). In particular,
the inherent uncertainty of human judgments means that it is difficult to determine when an increase
in a model’s mean automated coherence implies a significant improvement in the corresponding
human scores.19

As noted above (Figure 2), automated metrics exaggerate model differences compared to human
judgments. To help clarify the utility of automated metrics for model selection, we ask how often an
automated metric incorrectly asserts that one model is superior to another. To do so, we generate a
bootstrapped estimate of the false discovery rate of each model. First, for each dataset, we randomly
sample two independent sets of K = 50 topics (without replacement) from the original pool of 150,
along with their corresponding automated and human scores (resampled with replacement, as in
Table 3). Treating the two sampled sets as outputs from two different models, we compute pairwise
significance tests between each set for both the K automated metrics and K × M human scores
(using a proportions z-test for the intrusion scores and t-tests for all other values). After repeating this
process for N = 1000 iterations, we report the proportion of significant differences detected using

18We use gensim (Řehůřek and Sojka, 2010) to calculate coherence. We process the reference corpora
identically to the training data, retaining only terms that exist in the training vocabulary. Other metrics, like
CUCI (Newman et al., 2010) and CUMASS (Mimno et al., 2011), show low correlations.

19Better models of human scores could help quantify this relationship (e.g., GLMs, see Appendix A. 10).
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NPMI (10-token window) Cv (110-token window)
Ref. Corpus → NYT WIKI Train NYT WIKI Train
Train Corpus ↓

Intrusion NYT 46 / 53 34 / 48 48 / 50 35 / 38 30 / 29 34 / 35
WIKI 44 / 76 33 / 78 33 / 75 45 / 48 38 / 49 37 / 45
Concatenated 42 / 67 40 / 66 41 / 64 36 / 46 31 / 44 30 / 45

Rating NYT 45 / 50 45 / 51 41 / 47 27 / 29 26 / 26 21 / 26
WIKI 40 / 73 31 / 73 33 / 71 38 / 40 31 / 40 28 / 34
Concatenated 39 / 66 36 / 66 37 / 62 31 / 38 28 / 38 19 / 36

Table 4: False discovery rate (1−precision, lower is better) and false omission rate of significant
model differences when using automated metrics; automated metrics often overstate meaningful
model differences. Bolded values are those with the lowest geometric mean of FDR and FOR. We
sample two independent sets of 50 topics along with their human scores and automated metrics;
these sets act as the outputs of two “models”. We then compute significance tests between sets (per
Figure 2) on both the automated scores and human scores. A false positive occurs when one set
has significantly larger automated scores despite no meaningful difference in actual human scores.
Estimates are over 1,000 samples.
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Figure 3: Mean human evaluation on the ratings and word intrusion tasks, after filtering out respon-
dents who reported a lack of familiarity with the topic words. When filtering, D-VAE scores improve,
highlighting its tendency to produce esoteric topics.

the predicted scores despite equivalent human scores (after correcting for the probability of type
I errors, α = 0.05).20 Even the best-performing automated metrics predict significant differences
absent a meaningful human effect roughly one-fifth of the time (Table 4).

These results suggest that automated metrics alone may be inadequate for model comparison.

6.3 Explaining the discrepancy

One reason for the discrepancy between human judgments and automated metrics is that metrics favor
more esoteric topics. Specifically, there is a significant negative correlation between a topic’s NPMI or
Cv and the share of respondents reporting familiarity with topic words (Pearson’s ρ = −0.29). And
while D-VAE achieves the highest automated metric scores of the three models, it produces topics
with the fewest familiar words: respondents report familiarity with terms over 90% of the time on
both tasks for G-LDA and ETM, but they do so only 70% of the time for D-VAE. This difference
suggests that the topics selected by D-VAE are narrower in scope than those of the other models. As
shown in Figure 3, removing item annotations where respondents indicate unfamiliarity causes both
accuracy in the word intrusion task and the ratio of “Very related” terms in the ratings task for D-VAE
to increase substantially.

Qualitatively, this result is apparent when examining topics with a high NPMI but low humans ratings.
In Table 5, the top rows consists of financial terms that frequently appear together in NYT articles,

20Details on testing equivalence are in Section A.5.1.
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Data Model Topic NPMI Rat. Int.

NYT D-VAE inc 6mo earns otc rev qtr 9mo nyse outst dec 0.56 1.60 0.77
WIKI D-VAE waterline conning turrets boilers amidships aft knots armament guns mounts 0.33 1.93 0.65
NYT G-LDA bedroom room bath taxes year market listed kitchen broker weeks 0.30 2.00 0.23
NYT D-VAE condolences mourns mourn board_of_directors heartfelt deepest esteemed 0.38 2.60 0.23

NYT D-VAE shareholders earnings federated mci shares takeover new_york_stock_exchange 0.18 3.00 0.81
WIKI D-VAE continental_army expedition militia frigate musket frigates muskets skirmish 0.11 3.00 0.69
NYT D-VAE medicaid medicare hospitals welfare uninsured patients 0.13 2.80 0.96
NYT G-LDA city mayor state new_york new_york_city officials county yesterday governor 0.09 2.53 1.00

Table 5: Topics with the largest human–NPMI discrepancies; top half are topics where NPMI is high
and human preferences are low, bottom half is the reverse. NPMI favors esoteric and corpus-specific
topics. NPMI is calculated with a 10-token sliding window over the in-domain reference corpus, Rat.
is the average 3-point rating for a topic, and Int. refers to the percentage of annotators who identify
the intruder word.

and the second row contains rare terms about boating—arguably both are reasonable topics for their
respective corpora. We can also see instances where words are qualitatively very related (bottom half
of table), but that NPMI fails to score high—perhaps because these words, while related, may not
frequently appear together within a ten-word sliding window (Equation 1).

Even for familiar words, some topics may be sensible in the context of the specific corpus, despite
their component words lacking an immediately obvious semantic relationship. For example, the topic
words in the third and fourth rows appear somewhat unrelated (e.g., “taxes” and “bedroom” in the
third row), but they are in fact characteristic of common document types in the New York Times: real
estate listings and obituaries. Topics like these render the word intrusion task more difficult: only
23% of crowdworkers identified the intruder for both topics.

Furthermore, using term familiarity as a proxy for domain expertise does not address the key problems
with topic model evaluation: even after filtering out respondents who are not familiar with topic
terms, automated metrics still overstate model differences (Appendix A.7). The problems with topic
model evaluation may therefore extend to our choice of human evaluations as well.

7 So. . . is Automated Topic Modeling Evaluation Broken?

To the extent that our experimentation accurately represents current practice, our results do suggest
that topic model evaluation—both automated and human—is overdue for a careful reconsideration.
In this, we agree with Doogan and Buntine (2021), who write that “coherence measures designed
for older models [. . . ] may be incompatible with newer models” and instead argue for evaluation
paradigms centered on corpus exploration and labeling. The right starting point for this reassessment
is the recognition that both automated and human evaluations are abstractions of a real-world problem.
The familiar use of precision-at-10 in information retrieval, for example, corresponds to a user who
is only willing to consider the top ten retrieved documents. In future work, we intend to explore
automated metrics that better approximate the preferences of real-world topic model users.

One primary use of topic models is in computer-assisted content analysis. In that context, rather
than taking a methods-driven approach to evaluation, it would make sense to take a needs-driven
approach.21 Generic evaluation of topic models using domain-general corpora like NYT needs to be
revisited, since there is no such thing as a “generic” corpus for content analysis, nor a generic analyst.
Content analysis can be formulated in a broad way, as Krippendorff (2004) has shown, but its actual
application is always in a domain, by people familiar with that domain. This fact stands in tension
with the desirable practicalities of general corpora and crowdworker annotation, and the field will
need to address this tension. We have identified “coherence” as calling out a latent concept in the
mind of a reader. It follows that we must think about who the relevant human readers are and the
conceptual spaces that matter to them.

21These needs also have a computational component: neural models usually have longer runtimes even when
accelerated with GPUs, whereas many practitioners work in local, CPU-only, environments. See Appendix A.3
for additional details on runtimes.

10



Acknowledgements

This material is based upon work supported by the National Science Foundation under Grants
2031736, 2008761, 1822494, ARLIS, and by an Amazon Research Award. We thank Sweta Agrawal
for her suggestion to conduct a meta-analysis. We owe much appreciation to Dallas Card for his keen
advice on power analyses. Thanks to Frank Fineis for help on several statistical questions, as well
as Shuo Chen for his suggestions regarding the false discovery rate calculations. Finally, we thank
Caitie Doogan for her helpful comments on the clarity of argumentation, as well as our anonymous
reviewers.

References
Nikolaos Aletras and Mark Stevenson. 2013. Evaluating topic coherence using distributional se-

mantics. In International Conference on Computational Semantics (IWCS). Association for
Computational Linguistics.

Daniel Allington, Sarah Brouillette, and David Golumbia. 2016. Neoliberal tools (and archives): A
political history of digital humanities. In LA Review of Books.

Areej Alokaili, Nikolaos Aletras, and Mark Stevenson. 2019. Re-ranking words to improve in-
terpretability of automatically generated topics. In International Conference on Computational
Semantics. Association for Computational Linguistics.

Shraey Bhatia, Jey Han Lau, and Timothy Baldwin. 2017. An automatic approach for document-level
topic model evaluation. In Conference on Computational Natural Language Learning, Vancouver,
Canada. Association for Computational Linguistics.

Federico Bianchi, Silvia Terragni, and Dirk Hovy. 2021. Pre-training is a hot topic: Contextu-
alized document embeddings improve topic coherence. In Proceedings of the Association for
Computational Linguistics, Online. Association for Computational Linguistics.

David M. Blei, Andrew Ng, and Michael I. Jordan. 2003. Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3:993–1022.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio.
2016. Generating sentences from a continuous space. In Conference on Computational Natural
Language Learning. Association for Computational Linguistics.

Jordan Boyd-Graber, Yuening Hu, and David Mimno. 2017. Applications of Topic Models. NOW
Publishers.

Marc Brysbaert, Michaël Stevens, Paweł Mandera, and Emmanuel Keuleers. 2016. How many words
do we know? Practical estimates of vocabulary size dependent on word definition, the degree of
language input and the participant’s age. In Frontiers in Psychology.

Sophie Burkhardt and Stefan Kramer. 2019. Decoupling Sparsity and Smoothness in the Dirichlet
Variational Autoencoder Topic Model. In Journal of Machine Learning Research.

Dallas Card, Peter Henderson, Urvashi Khandelwal, Robin Jia, Kyle Mahowald, and Dan Jurafsky.
2020. With little power comes great responsibility. In Proceedings of Empirical Methods in
Natural Language Processing. Association for Computational Linguistics.

Dallas Card, Chenhao Tan, and Noah A. Smith. 2018. Neural models for documents with metadata.
In Proceedings of the Association for Computational Linguistics. Association for Computational
Linguistics.

Jonathan Chang, Jordan L. Boyd-Graber, Sean Gerrish, Chong Wang, and David M. Blei. 2009.
Reading tea leaves: How humans interpret topic models. In Proceedings of Advances in Neural
Information Processing Systems. Curran Associates, Inc.

11

https://www.aclweb.org/anthology/W13-0102
https://www.aclweb.org/anthology/W13-0102
https://lareviewofbooks.org/article/neoliberal-tools- archives-political-history-digital-humanities/
https://lareviewofbooks.org/article/neoliberal-tools- archives-political-history-digital-humanities/
https://aclanthology.org/W19-0404
https://aclanthology.org/W19-0404
https://aclanthology.org/K17-1022
https://aclanthology.org/K17-1022
https://aclanthology.org/2021.acl-short.96
https://aclanthology.org/2021.acl-short.96
https://www.aclweb.org/anthology/K16-1002
https://www.frontiersin.org/article/10.3389/ fpsyg.2016.01116
https://www.frontiersin.org/article/10.3389/ fpsyg.2016.01116
https://www.frontiersin.org/article/10.3389/ fpsyg.2016.01116
https://jmlr.org/papers/v20/18-569.html
https://jmlr.org/papers/v20/18-569.html
https://www.aclweb.org/anthology/2020.emnlp-main.745
https://www.aclweb.org/anthology/P18-1189
https://proceedings.neurips.cc/paper/2009/hash/f92586a25bb3145facd64ab20fd554ff-Abstract.html


Jason Chuang, John D. Wilkerson, Rebecca Weiss, Dustin Tingley, Brandon M. Stewart, Margaret E.
Roberts, Forough Poursabzi-Sangdeh, Justin Grimmer, Leah Findlater, Jordan Boyd-Graber,
and Jeff Heer. 2014. Computer-assisted content analysis : Topic models for exploring multiple
subjective interpretations. In Advances in Neural Information Processing Systems Workshop on
Human-Propelled Machine Learning.

Matthew J Denny and Arthur Spirling. 2018. Text preprocessing for unsupervised learning: Why it
matters, when it misleads, and what to do about it. In Political Analysis. Cambridge University
Press.

Adji B. Dieng, Francisco J. R. Ruiz, and David M. Blei. 2020. Topic modeling in embedding spaces.
Transactions of the Association for Computational Linguistics.

Ran Ding, Ramesh Nallapati, and Bing Xiang. 2018. Coherence-aware neural topic modeling. In
Proceedings of Empirical Methods in Natural Language Processing. Association for Computational
Linguistics.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A. Smith. 2019. Show
your work: Improved reporting of experimental results. In Proceedings of Empirical Methods in
Natural Language Processing. Association for Computational Linguistics.

Caitlin Doogan and Wray Buntine. 2021. Topic model or topic twaddle? Re-evaluating semantic
interpretability measures. In Conference of the North American Chapter of the Association for
Computational Linguistics. Association for Computational Linguistics.

Jacob Eisenstein, Amr Ahmed, and Eric P. Xing. 2011. Sparse additive generative models of text. In
Proceedings of the International Conference of Machine Learning. Omnipress.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is in the eye of the user: A critique of NLP
leaderboard design. In Proceedings of Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Alan H. Feiveson. 2002. Power by simulation. In The Stata Journal.

Jiachun Feng, Zusheng Zhang, Cheng Ding, Yanghui Rao, and Haoran Xie. 2020. Context reinforced
neural topic modeling over short texts. In ArXiv.

Thomas L Griffiths and Mark Steyvers. 2004. Finding scientific topics. In Proceedings of the National
Academy of Sciences. National Academy of Sciences.

Justin Grimmer and Brandon M Stewart. 2013. Text as data: The promise and pitfalls of automatic
content analysis methods for political texts. In Political Analysis. Cambridge University Press.

Lin Gui, Jia Leng, Gabriele Pergola, Yu Zhou, Ruifeng Xu, and Yulan He. 2019. Neural topic
model with reinforcement learning. In Proceedings of Empirical Methods in Natural Language
Processing. Association for Computational Linguistics.

Pankaj Gupta, Yatin Chaudhary, F. Buettner, and Hinrich Schütze. 2019a. textTOvec: Deep con-
textualized neural autoregressive models of language with distributed compositional prior. In
Proceedings of the International Conference on Learning Representations.

Pankaj Gupta, Yatin Chaudhary, Florian Buettner, and Hinrich Schütze. 2019b. Document informed
neural autoregressive topic models with distributional prior. In Association for the Advancement
of Artificial Intelligence. AAAI Press.

Ruifang He, Xuefei Zhang, Di Jin, Longbiao Wang, Jianwu Dang, and Xiangang Li. 2018. Interaction-
aware topic model for microblog conversations through network embedding and user attention. In
International Conference on Computational Linguistics. Association for Computational Linguis-
tics.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

12

https://www.aclweb.org/anthology/2020.tacl-1.29
https://www.aclweb.org/anthology/D18-1096
https://www.aclweb.org/anthology/D19-1224
https://www.aclweb.org/anthology/D19-1224
https://www.aclweb.org/anthology/2021.naacl-main.300
https://www.aclweb.org/anthology/2021.naacl-main.300
https://icml.cc/2011/papers/534_icmlpaper.pdf
https://doi.org/10.1177/1536867X0200200201
https://www.aclweb.org/anthology/D19-1350
https://www.aclweb.org/anthology/D19-1350
https://openreview.net/forum?id=rkgoyn09KQ
https://openreview.net/forum?id=rkgoyn09KQ
https://doi.org/10.1609/aaai.v33i01.33016505
https://doi.org/10.1609/aaai.v33i01.33016505
https://www.aclweb.org/anthology/C18-1118
https://www.aclweb.org/anthology/C18-1118
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303


Alexander Miserlis Hoyle, Pranav Goel, and Philip Resnik. 2020. Improving Neural Topic Mod-
els using Knowledge Distillation. In Proceedings of Empirical Methods in Natural Language
Processing. Association for Computational Linguistics.

Xuemeng Hu, Rui Wang, Deyu Zhou, and Yuxuan Xiong. 2020. Neural topic modeling with
cycle-consistent adversarial training. In Proceedings of Empirical Methods in Natural Language
Processing. Association for Computational Linguistics.

Karoliina Isoaho, Daria Gritsenko, and Eetu Mäkelä. 2021. Topic modeling and text analysis for
qualitative policy research. In Policy Studies Journal.

Masaru Isonuma, Junichiro Mori, Danushka Bollegala, and Ichiro Sakata. 2020. Tree-Structured
Neural Topic Model. In Proceedings of the Association for Computational Linguistics. Association
for Computational Linguistics.

Martin Jankowiak and Fritz Obermeyer. 2018. Pathwise derivatives beyond the reparameterization
trick. In Proceedings of the International Conference of Machine Learning. PMLR.

Weonyoung Joo, Wonsung Lee, Sungrae Park, and Il-Chul Moon. 2020. Dirichlet variational
autoencoder. Pattern Recognition, 107:107514.

Namkyu Jung and Hyeong In Choi. 2017. Continuous semantic topic embedding model using
variational autoencoder. In ArXiv.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In
Proceedings of the International Conference on Learning Representations.

Katsiaryna Krasnashchok and Salim Jouili. 2018. Improving topic quality by promoting named
entities in topic modeling. In Proceedings of the Association for Computational Linguistics.
Association for Computational Linguistics.

Klaus Krippendorff. 2004. Content Analysis: an Introduction to its Methodology. SAGE.

Jey Han Lau, David Newman, and Timothy Baldwin. 2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality. In Conference of the North American Chapter
of the Association for Computational Linguistics. Association for Computational Linguistics.

Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix factorization. In
Proceedings of Advances in Neural Information Processing Systems. Curran Associates, Inc.

Lihui Lin, Hongyu Jiang, and Yanghui Rao. 2020. Copula guided neural topic modelling for short
texts. In Proceedings of the ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM.

Tianyi Lin, Zhiyue Hu, and Xin Guo. 2019. Sparsemax and relaxed wasserstein for topic sparsity. In
International Conference on Web Search and Data Mining (WSDM). ACM.

Zachary C Lipton. 2018. The mythos of model interpretability: In machine learning, the concept of
interpretability is both important and slippery. In Queue. ACM.

Lin Liu, Lin Tang, Wen Dong, Shaowen Yao, and Wei Zhou. 2016. An overview of topic modeling
and its current applications in bioinformatics. In SpringerPlus.

Luyang Liu, Heyan Huang, Yang Gao, Yongfeng Zhang, and Xiaochi Wei. 2019. Neural variational
correlated topic modeling. In Proceedings of the World Wide Web Conference. ACM.

Jeffrey Lund, Piper Armstrong, Wilson Fearn, Stephen Cowley, Emily Hales, and Kevin Seppi.
2019. Cross-referencing using fine-grained topic modeling. In Proceedings of the Association for
Computational Linguistics, Minneapolis, Minnesota. Association for Computational Linguistics.

Henry Berthold Mann and Donald Ransom Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. In The Annals of Mathematical Statistics. Institute
of Mathematical Statistics.

13

https://www.aclweb.org/anthology/2020.emnlp-main.137
https://www.aclweb.org/anthology/2020.emnlp-main.137
https://www.aclweb.org/anthology/2020.emnlp-main.725
https://www.aclweb.org/anthology/2020.emnlp-main.725
https://doi.org/https://doi.org/10.1111/psj.12343
https://doi.org/https://doi.org/10.1111/psj.12343
https://www.aclweb.org/anthology/2020.acl-main.73
https://www.aclweb.org/anthology/2020.acl-main.73
http://proceedings.mlr.press/v80/jankowiak18a.html
http://proceedings.mlr.press/v80/jankowiak18a.html
https://doi.org/https://doi.org/10.1016/j.patcog.2020.107514
https://doi.org/https://doi.org/10.1016/j.patcog.2020.107514
https://arxiv.org/abs/1711.08870
https://arxiv.org/abs/1711.08870
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/P18-2040
https://www.aclweb.org/anthology/P18-2040
https://www.aclweb.org/anthology/E14-1056
https://www.aclweb.org/anthology/E14-1056
https://proceedings.neurips.cc/paper/2014/hash/feab05aa91085b7a8012516bc3533958-Abstract.html
https://doi.org/10.1145/3397271.3401245
https://doi.org/10.1145/3397271.3401245
https://doi.org/10.1145/3289600.3290957
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3308558.3313561
https://doi.org/10.1145/3308558.3313561
https://aclanthology.org/N19-1399
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491


Stephen Marche. 2012. Literature is not data: Against digital humanities. In LA Review of Books.

Andrew Kachites McCallum. 2002. MALLET: A machine learning for language toolkit.

Elijah Meeks and Scott B Weingart. 2012. The digital humanities contribution to topic modeling. In
Journal of Digital Humanities.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2017. Pointer sentinel mixture
models. In Proceedings of the International Conference on Learning Representations.

Yishu Miao, Edward Grefenstette, and Phil Blunsom. 2017. Discovering discrete latent topics with
neural variational inference. In Proceedings of the International Conference of Machine Learning.
PMLR.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural variational inference for text processing. In
Proceedings of the International Conference of Machine Learning. PMLR.

David Mimno, Hanna Wallach, Edmund Talley, Miriam Leenders, and Andrew McCallum. 2011.
Optimizing semantic coherence in topic models. In Proceedings of Empirical Methods in Natural
Language Processing. Association for Computational Linguistics.

John W. Mohr and Petko Bogdanov. 2013. Introduction—topic models: What they are and why they
matter. In Poetics.

Fred Morstatter and Huan Liu. 2018. In search of coherence and consensus: Measuring the inter-
pretability of statistical topics. Journal of Machine Learning Research.

Feng Nan, Ran Ding, Ramesh Nallapati, and Bing Xiang. 2019. Topic modeling with Wasserstein
autoencoders. In Proceedings of the Association for Computational Linguistics. Association for
Computational Linguistics.

David Newman, Jey Han Lau, Karl Grieser, and Timothy Baldwin. 2010. Automatic evaluation of
topic coherence. In Conference of the North American Chapter of the Association for Computa-
tional Linguistics. Association for Computational Linguistics.

Dat Quoc Nguyen, Richard Billingsley, Lan Du, and Mark Johnson. 2015. Improving topic models
with latent feature word representations. Transactions of the Association for Computational
Linguistics.

Xuefei Ning, Y. Zheng, Zhuxi Jiang, Y. Wang, H. Yang, and J. Huang. 2020. Nonparametric topic
modeling with neural inference. In Neurocomputing.

Madhur Panwar, Shashank Shailabh, Milan Aggarwal, and Balaji Krishnamurthy. 2020. TAN-
NTM: Topic attention networks for neural topic modeling. In Proceedings of the Association for
Computational Linguistics.

Min Peng, Qianqian Xie, Yanchun Zhang, Hua Wang, Xiuzhen Zhang, Jimin Huang, and Gang
Tian. 2018. Neural sparse topical coding. In Proceedings of the Association for Computational
Linguistics. Association for Computational Linguistics.
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A Appendix

A.1 List of Neural Topic Modeling Works used in our Meta-Analysis

In Table 6, we report the forty publications used in our meta-analysis (Section 3), which are sourced
from a survey of neural topic models (Zhao et al., 2021b).

A.2 Preprocessing Details

Our steps are delineated in our implementation,22 but we list our choices here for easy reference.
Corpus statistics are in Table 7. We use the default en-core-web-sm spaCy model (Honnibal
et al., 2020), version 3.0.5, throughout.

Document processing
– We do not process documents with fewer than 25 whitespace-separated tokens.
– Following processing (e.g., stopword removal), we remove documents with fewer than

five tokens.
– We truncate documents to 5,000 whitespace-separated tokens for NYT and to 19,000

for WIKI (in both cases affecting less than 0.15% of documents).
Vocabulary creation

– We tokenize using spaCy.
– We lowercase terms.
– We do not lemmatize.
– We detect noun entities with spaCy, keeping only the ORG, PERSON, FACILITY,
GPE, and LOC types, joining constituent tokens with an underscore (e.g,
“New York City” → new_york_city).

Vocabulary filtering
– The vocabulary is created from the training data. The reference texts used in coherence

calculations are processed identically and use the same vocabulary.
– We filter out stopwords using the default spaCy English stopword list.23 Stop-

words are retained if they are contained within detected noun entities (e.g.,
“The United States of America” → united_states_of_america).

– We filter out tokens with two or fewer characters.
– We retain only tokens that are matched by the regular expression
ˆ[\w-]*[a-zA-Z][\w-]*$

– We remove tokens that appear in more than 90% of documents.
– We remove tokens that appear in fewer than 2(0.02|D|)1/ log 10 documents, where |D|

is the corpus size.24

A.3 Training Details

Expanding Section 4.2, we detail the hyperparameter tuning for each of our three topic models, along
with other pertinent details about runtimes and compute resources. Scripts used to run the models
with all the various hyperparameter configurations are released as part of our code; this section is
also included for reference.

Our general strategy, especially with the neural models, is to select different values around the
reported optimal settings in original papers. For all three models, we try two different values for the
number of training iterations (G-LDA) or epochs (D-VAE, ETM).

22github.com/ahoho/topics
23github.com/explosion/spaCy/blob/v3.0.5/spacy/lang/en/stop_words.py
24Standard rules-of-thumb for vocabulary pruning, like removing terms that appear in fewer than 0.5% of

documents (Denny and Spirling, 2018), ignore the power-law distribution of word frequency Zipf (1949), and
hence do not scale to large corpora. To keep vocabulary sizes roughly consistent across datasets, we set the
minimum document-frequency for terms as a (power) function of the total corpus size. This has the intuitive
appeal of increasing proportional to the order of magnitude of the number of total documents, starting at a
minimum document-frequency of 2 for a 50-document corpus and reaching about 110 for a corpus of 500,000.
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Table 6: Papers used in meta-analysis, Section 3
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WIKI NYT

Domain Encyclopedia News
Number of Docs.

Training 28.5k 273.1k
Reference 4.62M 1.82M

Mean Tokens / Doc. 1291 281
Vocab. Size 39.7k 34.6k

Table 7: Corpus statistics. Datasets vary in domain, average document length, and total number of
documents. WIKI is from Merity et al. (2017) and NYT is from Sandhaus (2008).

G-LDA We use gensim (Řehůřek and Sojka, 2010) as a Python wrapper for running Mallet. In
Table 8a, we tune hyperparameters α (topic density parameter) and β (word density parameter) which
can be thought of as “smoothing parameters” that reserve some probability for the topics (words)
unassigned to a document (topic) thus far. Mallet internally optimizes hyperparameters, and the
Optimization Interval controls the frequency of hyperparameter updates, measured in training steps.

D-VAE Our reimplementation of Dirichlet-VAE (Burkhardt and Kramer, 2019) largely uses the
same hyperparameters as reported in that work. As shown in Table 8b, we vary the prior for the
Dirichlet distribution (α), the learning rate (η), the L1-regularization constant for the topic-word
distribution (βreg., not in the original model but inspired by Eisenstein et al., 2011), the number
of epochs to anneal the use of batch normalization in the decoder (γBN , comes from Card et al.,
2018), and the number of epochs to anneal the KL-divergence term in the loss (γKL) (it needs to be
introduced slowly in the loss function due to the component collapse problem in VAEs (Bowman
et al., 2016)).

ETM Following Dieng et al. (2020), we learn skip-gram embeddings on the training corpus using
the provided script, which relies on gensim. As shown in Table 8c, we vary the learning rate (η), the
L2 regularization constant for the Adam (Kingma and Ba, 2015) optimizer (Wdecay), and a boolean
indicator of whether to anneal the learning rate (γη). If annealing is allowed, the learning rate gets
divided by 4.0 if the loss on the validation set does not improve for more than 10 epochs, per the
default settings of the model (preliminary experiments showed that annealing did not attain higher
NPMI).

The runtimes for each of the models on each dataset are in Table 9. We used AWS ParallelCluster
to provide a cloud-computing computing cluster. Neural models ran on NVIDIA T4 GPUs using
g4dn.xlarge instances with 16 GiB memory and 4 CPUs.25 G-LDA (Mallet) ran on CPU only,
with m5d.2xlarge instances (with 32 GiB memory, 8 CPUs).26

A.4 Instructions for Crowdworkers

Recruiting participants on Prolific.co for a Qualtrics survey produced results with higher inter-worker
agreement than Mechanical Turk, based on a pilot test. Using the Prolific.co platform, we recruited
respondents that met the criteria of living in the United States and listing fluency in English. Each
respondent was paid through Prolific upon completion of the survey, at a rate corresponding to $15 an
hour. The total amount spent on conducting all the surveys, including our pilot test, was $2084.91. We
used automated scripts to generate separate Qualtrics surveys for each task that contained the topics
for evaluation, available in our released code. Each respondent was shown 25% of the questions in
each survey; the question selection and answer display order was chosen randomly via the survey
configuration on Qualtrics. Figures 1 and 4 depict our word intrusion and ratings tasks, respectively.
Crowdworkers receive instructions explaining the task (Figure 5) and the dataset (Figure 6).

25https://aws.amazon.com/hpc/parallelcluster/
26See https://aws.amazon.com/ec2/instance-types/ for further details.
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Model: G-LDA
α β Optim. Interval #Steps

{0.01, 0.05, 0.1, 0.25†, 1.0∗, 5.0} {0.01, 0.05∗, 0.1†} {0, 10†, 100, 500∗} {1000†, 2000∗}

(a) Hyperparameter ranges for G-LDA. α is the topic density parameter. β is the word density parameter. Optim.
Interval sets the number of iterations between Mallet’s own internal hyperparameter updates. #Steps are training
iterations.

Model: D-VAE
α η βreg. γBN γKL #Steps

{0.001, 0.01∗†, 0.1} {0.001, 0.01∗†} {0.0∗, 0.01, 0.1†, 1.0} {0, 1∗, 100, 200†} {100∗, 200†} {200, 500∗†}

(b) Hyperparameter ranges for D-VAE. α is the Dirichlet prior. η is the learning rate. βreg. is the L1-regularization
of the topic-word distribution. γBN and γKL are the number of epochs to anneal the batch normalization constant
and KL divergence term in the loss, respectively. #Steps are training epochs.

Model: ETM
η Wdecay γη #Steps

{0.001∗, 0.002, 0.01, 0.02∗†} {1.2e−5∗, 1.2e−6†, 1.2e−7} {0∗†, 1} {500, 1000∗†}

(c) Hyperparameter ranges for ETM. η is the learning rate. Wdecay is the L2 regularization constant. γη is an
indicator of whether learning rate is annealed. #Steps are training epochs.

Table 8: Hyperparameter settings for G-LDA, D-VAE, and ETM. ∗: Best setting for WIKI, †: best
setting for NYT; based on NPMI estimated with a 10-token sliding window over the reference corpus.

WIKI NYT

G-LDA ∼ 2 minutes ∼ 9 minutes
D-VAE ∼ 45 minutes ∼ 330 minutes
ETM ∼ 260 minutes ∼ 1300 minutes

Table 9: Runtimes for the three topic models on each of the two datasets. G-LDA requires CPUs only
while the neural models use a single GPU. Compute resources detailed at the end of Section A.3.

Please rate how related the following terms are to each other and how familiar you are with the terms

Rating

Answer Con�dence

Very related
Somewhat related
Not very related

I am familiar with most of these terms.
I am not familiar with most of these terms, but I can answer con�dently.
I am not familiar with most of these terms, and so I cannot answer con�dently.

concerto, balanchine, mozart, orchestra, brahms, beethoven, recital, choreographers, schubert, composers

Figure 4: Ratings task presented to crowdworkers.

A.5 Power Analysis for Human Evaluation Tasks

To select the number of crowdworkers, we conduct a power analysis with simulated data (Feiveson,
2002) by formulating a generative model of annotations (implementation included in released code).
Card et al. (2020) find that many NLP experiments, including those relying on human evaluation, are
insufficiently powered to detect model differences at reported levels.

Word Intrusion. Topic k has a true latent binary label zk ∼ Bern(0.5) (“coherent” or “incoherent”)
which indexes a parameter pzk ∈ [0, 1]. Annotator i samples an answer to the intruder task xik ∼
Bern(pzk). We therefore run a simulation of annotator data for two different models: MODEL A,
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This survey asks you to look at lists of words produced by an automatic  computer 
program. For each list, you’ll be answering the question: “Which word doesn’t 
belong?”

 

Here are some examples:

"baby", "crib", "diaper", "beer", "paci�er", "cry"

In this example the word 'beer' is the least related. All of the other words are 
closely related to each other, and related to infants.

Here is another, harder, example:

"Hard Drive", "motherboard", "video card", "processor", "RAM", "USB key"

While all of these terms are related to a computer, all but one of them are 
components inside of a computer. The best choice is therefore 'USB key'.

You may not always know all the words and that's okay.

This study should take approximately 10-15 minutes to complete.  Your response 
will be completely anonymous.

You will be shown ten sets of six words.
For each set, click the word whose meaning or usage is most unlike that  
of the other words.
If you feel that multiple words do not belong, choose the one that you 
feel is most out of place.
Do not base your decisions on how the word is pronounced or written or 
its grammatical function. For example, if you saw {apple, apricot, anvils, 
peach}, you would not choose "peach" because it doesn’t start with "a", 
you would not choose "apricot" because it isn’t �ve letters long, and you 
would not choose “apple” because it ends with a vowel. Ideally, you 
would choose "anvils" because it is not a fruit.

•
•

•

•

(a)

This survey asks you to evaluate lists of words produced by an automatic  method.

The computer model we are testing seeks to identify groups of words that are 
highly related to each other. You will be asked to select how related groups of 
words are on a 3-point scale.

The rating options are: Not Very Related, Somewhat Related, Very Related.

A helpful question to ask yourself is: “what is this group of words about?” If you 
can answer easily, then the words are probably related. Here is some guidance on 
how to apply these ratings and some examples.

Very Related - Most of the words are clearly related to each other, and it would be 
easy to describe how they are related.

Example: "dog", "cat", "hamster", "rabbit", "snake" (An obvious way to describe the 
relationship here would be 'Pets')

Example: "brushwork", "canvases", "expressionism", "cubism", "modernism", 
"curators", "abstract_expressionism", "national_gallery_of_art", “museum”, “fossils” 
(An obvious way to describe this would be "art", even though one or two of the 
words are not as clearly related to that.)

Somewhat Related - The words are loosely related to each other, but there may be 
a few ambiguous, generic, or unrelated words

Example: "computer", "video", "new", "plug", "screen", "model" (In this example, 
some of the words are generic, and seem more closely related than others)

Example: "dog", "ball", "pet", "receipt", "pen" (In this example, some of the words 
seem closely related, but not all of them)

Not Very Related - The words do not share any obvious relationship to each other. 
It would be di�cult to describe how the words are related to each other.

Example: "dog", "apple", "pencil", "earth", "computer"

This study should take approximately 10-15 minutes to complete.  Your response 
will be completely anonymous.

 (b)

Figure 5: Instructions for (a) word intrusion and (b) ratings

In this survey, the word lists are based on a computer analysis of The New York 
Times.

The New York Times is an American newspaper featuring articles from 1987 to 
2007. Sections from a typical paper include International, National, New York 
Regional, Business, Technology, and Sports news; features on topics such as 
Dining, Movies, Travel, and Fashion; there are also obituaries and opinion pieces.

(a)

In this survey, the word lists are based on a computer analysis of Wikipedia.

Wikipedia is an online encyclopedia covering a huge range of topics. Articles can 
include biographies ("George Washington"), scienti�c phenomena ("Solar 
Eclipse"), art pieces ("La Danse"), music ("Amazing Grace"), transportation ("U.S. 
Route 131"), sports ("1952 winter olympics"), historical events or periods ("Tang 
Dynasty"), media and pop culture ("The Simpsons Movie"), places ("Yosemite 
National Park"), plants and animals ("koala"), and warfare ("USS Nevada (BB-36)"), 
among others.  

(b)

Figure 6: Descriptions for (a) NYTimes and (b) Wikipedia.

which has a sample of K = 50 binary topic labels, z(A); and MODEL B, with r fewer “coherent”
topics than A,

∑
k z

(B)
k =

∑
k z

(A)
k − r. After collecting pseudo-scores x(A) and x(B) for M

annotators, we run a one-tailed proportion test on the respective sums. The power is the proportion
of significant tests over the total number of simulations N (i.e., tests there where A is correctly
determined to have higher scores than B). We set p0 = 1/6 (chance of guessing), p1 = 0.85 (roughly
estimated with data from Chang et al., 2009).

Ratings. Rating scores on a 3-point scale are generated analogously, in a generalization of the
above binary case. Assume that topics have true labels zk ∼ Cat(1/3, 1/3, 1/3). Annotator scores
are noisy, so true labels are corrupted according to probabilities pzk ∈ ∆2. Here, MODEL A has a
sample of K = 50 ratings on a 3-point scale. MODEL B has r fewer 3-ratings (“very related”) and r
greater 1-ratings (“not related”) than A (the 2-ratings stay constant). After simulating scores for M
annotators for both “models,” we run a one-tailed U-test (Mann and Whitney, 1947). Again, the power
is the share of significant tests over all simulations N . Probabilities are p1 = [3/4, 1/4, 0]; p2 =
[1/4, 2/4, 1/4]; p3 = [0, 1/4, 3/4], designed to roughly approximate empirical data—if we sample
scores according to them and compute inter-“annotator” agreement, the one-versus-rest Spearman
correlation is ρ ≈ 0.7, or the same as the most-correlated dataset (NYT) in Aletras and Stevenson
(2013) (our final data has ρ = 0.75).

For both settings, we set r = 4, the critical value α = 0.05, and the desired power 1− β = 0.9. This
analysis suggests fifteen annotators per topic for the ratings task and twenty-five for intrusion.
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NPMI (10-token window) Cv (110-token window)
Ref. Corpus → NYT WIKI Train Val NYT WIKI Train Val
Train Corpus ↓

Intrusion NYT 2.42 4.16 2.11 1.97 2.50 3.27 2.55 2.40
WIKI 4.11 5.08 5.45 0.87 2.23 2.79 2.74 0.70
Concatenated 2.82 4.56 3.18 0.78 2.30 3.05 2.64 0.87

Rating NYT 1.92 2.08 1.77 1.85 2.55 2.51 2.68 2.59
WIKI 2.97 4.10 4.29 1.45 2.01 2.82 2.86 0.80
Concatenated 2.20 2.75 2.52 1.17 2.27 2.60 2.74 1.07

Table 10: Logistic (intrusion) and ordinal probit (ratings) regression coefficients of automated metrics
on human annotations. Underlined values have overlapping 95% confidence intervals with that of the
largest value in each row.

A.5.1 Power analysis for equivalence

To estimate the false discovery (omission) rates in Table 4, we need to determine when differences be-
tween human (automated) scores are not meaningful. Since human effects in the opposite direction of
automated metrics also imply a false discovery, we conduct a test of non-inferiority; this is the same as
using a large negative lower bound in the two-one-sided tests procedure for equivalence (Schuirmann,
1987; Wellek, 2010).

To determine the non-inferiority threshold—the bound ϵ below which we consider two sets of scores
to be equivalent—we also conduct a power analysis, per the previous section. In this case, the
simulation assumes no difference between the “true” labels of the model outputs, z(A) = z(B). We
estimate one-sided tests for each sample of human scores, with the null H0 : µ

(B)
1 − µ(A) > ϵ for

some bound ϵ. We minimize ϵ while maintaining β > 0.9. This process produces ϵ = 0.05 for
the word intrusion task and ϵ = 0.11 for the ratings task (roughly equivalent to a difference of 2.5
“incoherent” topics for both tasks, respectively).

For the automated scores, we generate two sets of scores xk ∼ N (0, σ2); σ2 ∼ Gamma(α, β) for
k = 1 . . .K at each iteration, then conduct a t-test between each set. α and β are selected such
that the Gamma distribution approximately matches the empirical distribution of automated score
variances. This leads to ϵ = 0.05 for NPMI scores and ϵ = 0.06 for the Cv scores.

A.6 Regression Results

Prior work (e.g., Röder et al., 2015) relates averaged human ratings to automated metrics using either
Pearson or Spearman correlations. As an alternative that takes into account both the variation in
human judgments as well as their numerical type, we estimate logistic and ordered probit regressions
on the ratings and intrusion annotations, respectively. In Table 10, we report the estimated coefficients
for each metric, finding that—on the whole—using the WIKI reference performs best, although the
large estimated confidence intervals mitigate the strength of this conclusion.

A.7 Filtering on Term Familiarity

Several topics, particularly those produced by D-VAE, contain terms that are not well-known to
annotators (6.1). When a respondent is unfamiliar with a topic’s words, their ratings for that topic
may not accurately reflect its true coherence. For example, a mycologist may find the words in the
fifth column of Table 1 highly related, whereas someone unfamiliar with fungi-related jargon may
rate it poorly—indeed, the mean rating for this topic is 2.1 for those unfamiliar with terms and 2.6 for
those who are familiar.

Since automated metrics do not take into account a term’s familiarity to humans, we posit that
automated metrics should be more predictive of human judgments among respondents who are
familiar with topic terms. To test this hypothesis, we re-evaluate the relationships between automated
metrics and human judgments after removing respondents who state they are not familiar with a
topic’s terms (Table 11). On the whole, results are much clearer than above; NPMI estimated using
WIKI reference counts is strongly correlated across tasks and datasets. The false discovery rate is
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NPMI (10-token window) Cv (110-token window)
Ref. Corpus → NYT WIKI Train Val NYT WIKI Train Val
Train Corpus ↓

Intrusion NYT 0.34 0.51 0.32 0.25 0.44 0.55 0.42 0.38
WIKI 0.39 0.39 0.40 0.14 0.38 0.40 0.39 0.13
Concatenated 0.36 0.45 0.36 0.18 0.41 0.48 0.41 0.26

Rating NYT 0.45 0.59 0.44 0.43 0.51 0.58 0.53 0.52
WIKI 0.45 0.51 0.51 0.21 0.44 0.51 0.51 0.23
Concatenated 0.47 0.54 0.47 0.35 0.49 0.53 0.51 0.42

(a) Spearman correlation coefficients between mean human scores and automated metrics, compare to Table 3.

NPMI (10-token window) Cv (110-token window)
Ref. Corpus → NYT WIKI Train NYT WIKI Train
Train Corpus ↓

Intrusion NYT 53 / 55 46 / 50 56 / 52 41 / 34 28 / 27 42 / 33
WIKI 38 / 76 36 / 77 32 / 76 29 / 37 31 / 43 33 / 39
Concatenated 54 / 70 41 / 73 51 / 70 41 / 44 29 / 42 41 / 44

Rating NYT 45 / 49 39 / 53 45 / 47 18 / 27 16 / 24 17 / 25
WIKI 37 / 73 25 / 74 30 / 70 28 / 31 19 / 33 18 / 27
Concatenated 45 / 64 38 / 68 42 / 64 26 / 36 21 / 36 27 / 33

(b) False discovery rate (1−precision, lower is better) and false omission rate of significant model differences
when using automated metrics, compare to Table 4.

NPMI (10-token window) Cv (110-token window)
Ref. Corpus → NYT WIKI Train Val NYT WIKI Train Val
Train Corpus ↓

Intrusion NYT 3.71 7.14 3.04 2.54 3.34 4.54 3.23 2.94
WIKI 5.87 6.46 6.19 0.85 3.23 3.59 3.39 0.42
Concatenated 4.24 6.81 4.17 0.94 3.18 4.06 3.30 0.91

Rating NYT 4.40 5.87 3.85 3.93 3.97 4.44 4.03 3.89
WIKI 4.84 5.95 5.65 1.33 2.96 3.73 3.69 0.62
Concatenated 4.49 5.80 4.56 1.78 3.45 3.91 3.81 1.32

(c) Logistic (intrusion) and ordinal probit (ratings) regression coefficients of automated metrics on human
annotations, compare to Table 10.

Table 11: Tables 3, 4, and 10 after removing respondents who report a lack of familiarity with topic
words.

lower overall, although automated metrics still misdiagnose significant results at a rate of one in six
in even the best case.

These findings provide further evidence—per our discussion in Section 7—that future human evalua-
tions of topic models ought to take into account domain expertise and information need.

A.8 Five-point Ratings Scale

Although most prior work uses three-point scales for the ratingstask (Fig. 4), for comparison we
also ask annotators to label the topic topic words with a five-point scale ranging from 1 (“not at
all related”) to 5 (“very related”, no labels are given for points 2-4). Broadly, we find that values
for correlations are reduced relative to the three-point scale (Table 12). We believe examining this
discrepancy is an interesting direction for future work that re-visits human evaluation of topic models.

A.9 Potential Negative Impact

Our work focuses its investigation on data from the English language alone. In this way, it further
entrenches English-language primacy in NLP, and more crucially, findings may not translate directly
to other languages. We caution the reader against applying claims made in this work to topic modeling
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NPMI (10-token window) Cv (110-token window)
Ref. Corpus → NYT WIKI Train Val NYT WIKI Train Val
Train Corpus ↓

Rating (5-pt.) NYT 0.27 0.37 0.28 0.33 0.29 0.35 0.33 0.35
WIKI 0.15 0.21 0.29 0.43 0.10 0.16 0.17 0.50
Concatenated 0.21 0.30 0.28 0.32 0.20 0.26 0.26 0.39

Table 12: Spearman correlation coefficients between mean human scores for a five-point ratings
scale (rather than three), compare to Table 3. Underlined values have overlapping 95% confidence
intervals with that of the largest value in each row.

on corpora of other languages. It is even possible that one of the tasks designed to elicit human
judgment (e.g., word intrusion) may not be amenable for use with other languages.

Concerning topic models more broadly, we note that others question the scholarly value of “distant
reading” and the digital humanities in general (Marche, 2012; Allington et al., 2016). Do topic
models encourage a passive, disengaged relationship to texts—fomenting conclusions about broad,
generic trends rather than idiosyncratic specifics, leading us to miss the trees for the forest? As noted
by Schmidt (2012), “topics neither can nor should be studied independently of a deep engagement in
the actual word counts that build them.” In this light, topic models can be viewed as an extension of
the insidious neoliberal trend toward mass data harvesting that blurs differences between individuals
and cultures. Researchers should take care to avoid such elisions when drawing conclusions from
model outputs.

A.10 NeurIPS Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Section 7 and relevant places
throughout the paper.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Ap-
pendix A.9

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Appendices (Sections A.3 and A.2) and explanation in main
paper (Section 4).

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Section A.3 and results in main paper.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Section A.3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [Yes] Full instructions given to crowdworkers are included in
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supplemental (Section A.4), and they are told what they are evaluating. Annotators are
told that their ratings will be used to judge automatic methods.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] No such information or content was present in
our work.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] Screenshots of examples of what the task looks like are included, as
are full set of instructions (Section A.4).

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] Estimated hourly wage in Section 5. Total
amount spent is included in Section A.4.
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