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Abstract

Significant progress has been made in the field of a priori crystal structure prediction, with

a number of recent remarkable success stories. Herein, we briefly outline the methods that

have been developed for finding the global minimum structure and interesting local minima

without the need for experimental information. Focus is placed on describing the XTALOPT

evolutionary algorithm (EA) developed in our group towards this end. XTALOPT is published

under well-known open-source licenses, and the EA searches can be analyzed via the AVO-

GADRO chemical editor and visualizer. We describe new algorithmic developments that have

made it possible to predict the structures of ever-more complex crystalline lattices. Benchmark

tests, which clearly illustrate how the new developments improve the success rate and acceler-

ate the discovery of the global minimum structure, are carried out. Finally, we describe how

XTALOPT has been employed to predict novel ternary hydrides that have the propensity for

high-temperature superconductivity under pressure.
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Introduction

The last decade has witnessed tremendous advances in program packages that carry out first-

principles calculations, spectacular speed-ups in computer hardware, and significant improvements

in algorithms for a priori crystal structure prediction (CSP).1–11 These developments have made it

now possible to predict the structure of a crystal given only its composition for systems that are not

too complicated; i.e. binary or even ternary atomistic systems whose primitive unit cells contain

. 50 atoms. Moreover, nowadays one can compute, with reasonable accuracy, many properties

of a solid that can be used to predict its performance in a wide variety of applications, e.g. as a

photovoltaic, in energy storage devices, or as a superconducting or superhard material. We are now

in an exciting era where materials can be designed rationally in silico prior to their experimental

synthesis!

This paragraph lists a handfull of the steadily growing examples of CSP-guided theoretical

predictions that were later experimentally verified in the area of high-pressure research. The

I4/mmm symmetry BaGe3 phase shown in Fig. 1(a), which is composed of a unique germanium

lattice of edge-sharing triangular prisms, was predicted to be the most stable structure between

15.6-35.4 GPa.12 Computations suggested that it is metastable and superconducting at 1 atm with

a superconducting critical temperature, Tc, of 5.5 K. Within 1 year of its prediction, this phase

was synthesized at 15 GPa and 1300 K, quenched to atmospheric conditions, and experiments

showed it was superconducting below 6.5 K.13 Another superconductor whose high-temperature

high-pressure synthesis was inspired via CSP is the Pnnm symmetry FeB4 structure illustrated in

Fig. 1(b).14,15 First-principles calculations suggested that this material could be a phonon-mediated

superconductor with a Tc of 15-20 K.14 Following the successful synthesis of this material, its Tc

was measured to be 2.9 K, and it was also found to be superhard with a nanoindentation hardness

of 62 GPa.16 Perhaps one of the most remarkable examples of materials-by-design is the Fm3̄m

symmetry LaH10 phase shown in Fig. 1(c) whose hydrogenic lattice resembles a clathrate com-

posed of H32 [46612] polyhedra. CSP calculations predicted it to be stable17 or metastable18 under

pressure, and electron-phonon calculations suggested it would have a remarkably high Tc. Shortly
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after the theoretical predictions were published, a high hydride of lanthanum whose properties

were consistent with the Fm3̄m LaH10 structure was synthesized at 170 GPa.19 Moreover, subse-

quent studies measured Tc values as high as 280 K at 200 GPa,20 and 250 K at 170 GPa21 in the

lanthanum/hydrogen system under pressure. Another hydride with a nontraditional stoichiometry

that was predicted22 prior to its synthesis23,24 is the I4/mmm symmetry CaH4 phase shown in

Fig. 1(d), which contains both molecular and atomic hydrogen. The structures and propensity for

superconductivity of most binary hydrides have been theoretically studied under pressure.25–27

(a) I4/mmm BaGe
3

(c) Fm-3m LaH
10

(b) Pnnm FeB
4

(d) I4/mmm CaH
4

Figure 1: Materials that were first predicted via crystal structure prediction techniques, and

later synthesized under high pressure: (a) I4/mmm BaGe3
12,13 (barium/germanium atoms are

green/purple), (b) Pnnm FeB4
14–16 (iron/boron atoms are brown/pink), (c) Fm3̄m LaH10

17–21

(lanthanum/hydrogen atoms are blue/white), (d) I4/mmm CaH4
22,23 (calcium/hydridic-

hydrogen/molecular-hydrogen atoms are grey/yellow/blue).

CSP is extremely important in the high-pressure field28–32 because there are many difficulties

associated with the experimental determination of the atomistic structure of a synthesized phase

subject to extreme conditions. For example, it may be impossible to distinguish between two el-

ements with very similar masses via spectroscopic techniques, the positions of hydrogen atoms

cannot be determined using X-ray diffraction (XRD), and neutron diffraction capabilities at very
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high pressures are not yet available. In these situations, a synergistic feedback loop between ex-

periment and theory is often required to characterize a sample. At times CSP may be the only

tool available, for example to study matter at conditions that resemble those inside giant planets.

Because the crystal structures and chemical combinations that are stable under pressure are so

different than those found at 1 atm,33–36 CSP techniques that make use of data found in large ma-

terials databases37,38 have not been used for pinpointing the most stable stoichiometries and their

crystalline structures in these extreme conditions in the past (however, a new method that uses a

linear approximation to the enthalpy has been developed towards this end39) .

The main goal of this Feature Article is to describe the XTALOPT algorithm for CSP devel-

oped in our group,40–46 along with its subprograms,47,48 and to provide examples of some of the

fascinating high-pressure materials it has pinpointed. We start with a concise overview of the com-

putational methods that can be used to predict the most stable and important metastable crystalline

lattices for a given composition without any experimental information, describe our latest algo-

rithmic developments, and present the results of benchmark calculations that illustrate how these

developments have increased the complexity of the structures that XTALOPT can reliably predict.

Computational Details

The benchmark calculations were carried out using XTALOPT release 1245 along with parameter

sets for the pool size, duplicate matching tolerances, and behavior of the evolutionary operators that

were optimized in Refs.40,47 The geometries were relaxed using either the General Utility Lattice

Program (GULP),49 or the Vienna Ab-initio Simulation Package (VASP).50,51 The interatomic po-

tential employed for TiO2 was introduced in Ref.,52 and for SrTiO3 we used a modified version40

of the potential in Ref.53 The VASP calculations were carried out using density functional the-

ory with the gradient-corrected exchange and correlation functional of Perdew-Burke-Ernzerhof

(PBE)54 coupled with the DFT-D355 van der Waals (vdW) correction for LiBH4, and the vdW-

DF-optPBE56–59 functional for NaSi. The projector augmented wave (PAW) method60 was used
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to treat the core states, and a plane-wave basis set with a cutoff of 400 eV was employed for NaSi

and 450 eV for LiBH4. The k-point grids were generated using the Γ-centered Monkhorst–Pack

scheme, and the number of divisions along each reciprocal lattice vector was chosen such that the

product of this number with the real lattice constant was 30 Å in the structure searches. The Li

2s1, B 2s2/2p1, H 1s1, Na 3s1 and Si 3s2/3p2 electrons were treated explicitly using POTCARs

provided in the potpaw-PBE.52.tar.gz file from the VASP repository.

Automated Methods for a priori Crystal Structure Prediction

A crystalline compound with N atoms in its unit cell can be described by three unit cell vectors and

three angles, along with 3N−3 parameters for the atomic coordinates. Finding the global minimum

on the potential energy surface (PES), an example of which is shown in Fig. 2, corresponds to

locating the values of the 3N +3 variables that minimize the (free) energy for a given pressure and

temperature. Because it is not computationally feasible to carry out first-principles calculations of

the phonon modes for all of the hundreds or thousands of structures optimized in a first-principles

CSP search, typically either the internal energy at 0 K, or the enthalpy at a given pressure is

minimized, ignoring the zero point energy, and finite temperature contributions.

Since the shape of the PES is unknown, in principle one would need to calculate the energies

of all of the minima to determine the one that has the lowest energy/enthalpy. However, because

the number of local minima increases exponentially with N ,61 this is only possible for the simplest

systems. It has been shown that finding the global minimum of homogeneous,62 and heteroge-

neous63 clusters is a nondeterministic polynomial-time hard (NP-hard problem), meaning that an

algorithm scaling as a polynomial in the number of degrees of freedom cannot be found to solve

it. In addition, the “no free lunch” theorem proposes that no single CSP algorithm works well

for every system.64 The exponential increase in the number of minima, combinatorial problem

for multicomponent systems, and the impossibility of constructing a general-purpose algorithm

appears discouraging for CSP.
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Figure 2: A schematic illustration of a 1 dimensional (1D) PES. It is composed of many local

minima that are separated by barriers, and a single global minimum. A basin contains all of the

configurations that optimize to a given local minimum. Two funnels comprise this PES, and the

transition state between them is shown.

Nonetheless, a number of properties of PES’ can be leveraged to construct clever CSP tech-

niques that are able to find good approximations for the global minimum. First of all, a large

portion of the multidimensional PES will be very high in energy and possess few local minima.

These regions correspond to structures that are not chemically sensible, e.g. they have unrealis-

tic interatomic distances, or assume configurations where atoms of the same type are “clustered”

within regions of the unit cell. Therefore, it is desirable that unrealistic structures are removed from

a CSP search prior to local optimization. If such a structure is mistakenly kept it will eventually

relax into a region of the PES that contains local minima (provided the electronic self-consistent-

field steps can converge). Secondly, it has been suggested that basins containing low energy local

minima take up the most “space” in the PES.65 This means that a randomly generated structure is

more likely to fall in a low energy basin as compared to one with higher energy. Finally, according

to the Bell-Evans-Polanyi principle66,67 low energy basins are likely to lie close to each other, and

the barriers between them are small. As a result small perturbations of a structure will lead to

exploration of the basins within a given funnel, and this will ultimately result in the discovery of

the lowest energy point. These properties suggest that if a given PES contains only one funnel,

finding the global energy minimum should be relatively straightforward. If many funnels located
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far away from each other are present the search will be much more difficult. However, a featureless

PES that does not contain any regions of attraction is the most difficult to search.

Typically many local minima are discovered during the course of a single CSP search. This can

be beneficial, as some CSP searches do not aim to find the global minimum, but rather metastable

species with a particular property such as superhard,68 or magnetic materials.69,70 If the ener-

gies/enthalpies of the metastable structures are not too high, it may be possible to synthesize them

by appropriately choosing the pressure, temperature, and starting material, or by employing syn-

thesis techniques for phases far away from equilibrium.71

The algorithms that have been adapted towards CSP are well-known metaheuristics designed to

find good solutions to diverse optimization problems spanning from circuit design to protein fold-

ing. None of them can guarantee that the global minimum has been found for all but the simplest

systems. In the sections below we briefly outline automated methods for predicting the structures

of 3D-periodic crystals where each atom can be treated individually. Many of these algorithms

have been adapted to predict the structures of finite clusters,72,73 2D-materials,74–76 surfaces77,78

and clusters adsorbed to them,79 as well as interfaces,80 and microporous crystal frameworks.81

Searching for the likely polymorphs of molecular crystals has its own considerations, for further

information we refer the reader to Refs.82–90 We also do not describe CSP methods that make use

of information stored in large materials databases either explicitly,37–39,91,92 or by building machine

learning models,93–96 nor those that require experimental information.37,97,98

Random Searching

In the simplest CSP method all 3N+3 degrees of freedom of a user-defined number of crystals are

generated randomly, and the structures are optimized to the nearest local minimum, as illustrated

in Fig. 3(a).9,31,32,99 To ensure that the structures generated are chemically sensible the cell volume,

as well as the minimum interatomic distances are constrained. It is typically useful to generate

random symmetric structures,100 and constrain their Bravais lattices or spacegroups, especially if

experimental data is available. In some cases it might be appropriate to use clusters or molecules
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Simulated Annealing

The simulating annealing algorithm, see Fig. 3(b), mimics the metallurgical process of heating a

substance until it melts, followed by controlled cooling, and subsequent crystallization.103 This

process removes defects and dislocations from a material, thereby increasing its ductility. Sim-

ulated annealing for CSP begins by generating a (typically random) structure whose energy is

evaluated. Next, the structure is perturbed by randomly displacing atoms, changing unit cell pa-

rameters or permuting atoms of different types, and the energy of the new structure is evaluated.

Molecular dynamics can also be employed to move atoms. In the Monte Carlo method of Metropo-

lis the probability of acceptance of the new structure, P = exp(−∆E/kBT ), is calculated using the

energy difference between the two structures, ∆E, the Boltzmann constant, kB, and the so-called

simulation temperature, T .104 A random number 0 < ǫ < 1 is chosen; if ǫ < P the structure is

accepted, otherwise new structures are generated until one of them is accepted. As a result, T is not

a physical temperature, but rather a variable used to control the rejection rate. A run begins with a

large T , guaranteeing that most moves are accepted. During the run T is slowly decreased, thereby

mimicking the physical annealing process. Finally, a quench run is carried out with T = 0 K, so

that only downhill steps are accepted, and a local relaxation is performed.

To avoid getting stuck in local minima during the cooling procedure more complicated anneal-

ing schemes, which involve periodically raising the temperature, can be employed. Often, full

exploration of the PES can only be achieved if numerous runs starting from different initial con-

figurations are performed. Care must also be used in determining the size of the random mutation:

if it is too small, the run will not be able to tunnel through barriers between nearby minima, and

if it is too big the search essentially becomes random. Doll, Schön and Jansen have pioneered the

use of this method, and applied it towards a plethora of crystalline inorganic systems105 including

metal pernitrides,106 boron nitride,107 and GeF2.
108

10



Minima Hopping

In Gödecker’s minima hopping method109,110 molecular dynamics is used to explore the PES, and

each structure is optimized to the nearest local minimum. A structure’s energy is compared with

that of its predecessor, and the energy difference corresponding to an allowed move, Ediff, is ad-

justed so that half of the new structures are accepted, as shown in Fig. 3(c). This method keeps

track of previously visited minima, and if the algorithm revisits them the kinetic energy employed

for the molecular dynamics is increased so as to promote exploration of unchartered regions of

the PES. It has been shown that aligning the initial molecular dynamics velocities along the di-

rections of soft phonon modes helps accelerate the search.111,112 The minima hopping method has

been used extensively to predict the structures of materials under pressure such as superconducting

SxSe(1−x)H3 phases,113 binary intermetallics that are immiscible at 1 atm,39 and structural candi-

dates for cold compressed graphite.114 Minima hopping should not be confused with the similarly

named basin hopping method, which has been applied extensively to finite clusters,115 water-ice,116

and is under active development for more complex systems.117–119

Metadynamics

Metadynamics, developed by Parrinello and co-workers, is an enhanced sampling molecular dy-

namics technique.120–122 The sampling is accelerated by using a history-dependent bias potential

that lifts previously visited areas of the PES. As shown in Fig. 3(d), metadynamics helps overcome

barriers and enables the discovery of new minima by depositing a sum of Gaussians along the sys-

tem’s trajectory. This so-called ‘basin-flooding’ is usually carried out in a space defined by a few

selected degrees of freedom, often referred to as the collective variables, such as the interatomic

distances, angles, coordination numbers, and unit cell parameters. One drawback of metadynamics

is that it may be necessary to understand the physics and chemistry of the process being studied

to define the correct collective variables. Another disadvantage is that transition barriers between

two or more basins could become flooded during the simulation, thereby preventing the global

minimum from being found. Therefore, it may be necessary to carry out more than one simulation
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starting from different configurations. Metadynamics has been used to study structural transfor-

mations of carbon under pressure,123 as well as high pressure modifications of carbon-dioxide,124

and germanium.125 It has also been employed to simulate a wide range of rare events including

structural phase transitions,126 and chemical reaction mechanisms.127

Particle Swarm Optimization

The particle swarm method was inspired by the behavior of large groups of animals such as schools

of fish, or flocks of birds.128 Boldyrev’s group was the first to apply this method to clusters,129 and

Ma’s to solids using the CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization)

software package.130 In the last decade CALYPSO has become one of the most popular tools

for predicting the structures of a wide range of chemical systems including clusters, 2D layered

materials, solids, interfaces, electrides, and superhard compounds.30,131–133

In CALYPSO, the trajectory a single individual takes to traverse the multidimensional PES

depends on its position, x(t), and velocity, v(t), as well as the position and velocity of the other

structures in the swarm, as illustrated in Fig. 3(e). The position of a structure at a later time, t+ 1,

is given by

x(t+ 1) = x(t) + v(t+ 1) (1)

where

v(t+ 1) = ωv(t) + c1r1(pbest(t)− x(t)) + c2r2(gbest(t)− x(t)). (2)

In Eq. 2 pbest(t) is the position of the individual after local optimization, and gbest(t) of the global

minimum of the swarm at time t. The inertia weight, ω, which ranges from 0.4 to 0.9, is modified

during the search. Large values of ω promote global exploration of the PES, and small ones local

exploration. The random numbers r1 and r2 range between 0 to 1. The coefficients c1 and c2 weight

the contribution of the individual’s position versus that of the global minimum.

A PSO search begins by generating random structures that are locally optimized. Just as in

the AIRSS method, the performance of the algorithm can be improved by using sensible choices
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for the interatomic distances, and cell volumes, as well as employing symmetry in the random

structure generation. Most of the subsequent structures in the search are generated via Eqs. 1 and

2, but random structures are also continuously added to the search to ensure that it does not get

stuck in a particular region of the PES. The PSO algorithm is able to broadly sample the PES,

while at the same time more thoroughly exploring the most promising areas, and it is able to learn

from its history.

Evolutionary/Genetic Algorithms

Evolutionary algorithms (EAs), or genetic algorithms (GAs) adapt concepts from the theory of

evolution, such as natural selection, mutation, and reproduction, so they may be employed within

CSP. An EA begins by generating chemically sensible random geometries (seeding with specific

structures is also possible), followed by optimization to the nearest local minimum by an external

program. The computed energy or enthalpy of each structure is employed to determine its fitness,

or probability to be chosen as a parent for procreation. This procedure allows the fittest structures

to pass on their genetic information (in this case the structural motifs) to future generations. As

shown in Fig. 3(f), children can be created by mutations of a single parent, or via combinations of

two parents. Mutations, such as distorting the unit cell shape, permuting atoms of different types,

or displacement of atoms either via a random-walk or periodic motion (such as a wave), typically

perturb a structure only slightly, thereby allowing the algorithm to perform a more thorough local

search. The real space cut-and-splice operation, which was introduced by Deaven and Ho for

clusters,134 and later adapted towards crystals by Glass, Oganov and Hansen,135 is employed for

breeding. This two parent operation can significantly perturb a structure, thereby enabling a broad

exploration of the PES. Similar to the PSO technique, EAs are able to thoroughly sample the PES,

while simultaneously zooming in on the most promising areas, and they can be biased if structural

information is known.

In the last fifteen years many groups have released EAs that can be used to predict the structures

of atomistic crystals given only their composition. These include USPEX (Universal Structure Pre-
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dictor: Evolutionary Xtallography),8,135–138 GASP,139,140 MAISE,14 EVO,141 as well as algorithms

by Trimarchi and Zunger,142–145 Abraham and Probert,146 Fadda and Fadda,147 Woodley and Cat-

low52 , Wentcovitch et al.,148 and Hammer et al.149 In what follows we describe the specifics of

the XTALOPT EA developed in our group.40–46

The XTALOPT Evolutionary Algorithm

The XTALOPT EA, written in C++, was first developed as an extension to the AVOGADRO 150,151

molecular editor, builder and visualizer, and made use of the OPENBABEL 152 chemical toolkit,

which has many useful features including conversion between various file formats used to represent

chemical data. XTALOPT was initially released as an open-source program under the GNU Public

License (GPL),153 making it freely available for use and collaboration by members of the scientific

community. In the latest versions of XTALOPT,44,45 which have been released under the more

flexible 3-clause Berkeley Software Distribution (BSD) license,154 OPENBABEL is used as an

external executable, and AVOGADRO2 155 can optionally be employed to visualize crystals.

XTALOPT generates children via the two-parent cut-and-splice breeding operation,135 as well

as a number of single parent mutations. The latter consist of the hybrid operators “stripple”

(strain+ripple), where the shape of the unit cell is modified while simultaneously displacing the

atoms in a periodic wave, and permustrain (permutation+strain), in which atoms of two different

types are exchanged and the cell’s shape is changed. A number of variables in these operators

are user-defined, and have been previously described in Ref.40 and Ref.2 XTALOPT employs a

population-based pool, rather than a generation-based pool, since the former makes better use

of a high performance computing environment.2,40 Searches can be “seeded” with user-defined

structures, and geometric constraints can be enforced. The Spglib156 package is employed for

spacegroup identification. Herein, recent developments to the XTALOPT 40,41,157 EA will be de-

scribed. These modifications have made it possible to discover the global minimum of crystals

whose unit cells are larger and more complex than those that could previously be uncovered reli-

ably, enabled searches containing discrete molecular units, and made it possible to predict novel
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crystalline materials with a high Vickers hardness.

Our latest developments have improved the graphical user interface (GUI) within XTALOPT

to allow greater on-the-fly analysis of the progress of the evolutionary search, and also provided

a command line interface for users who do not wish to use a GUI. The initial generation of struc-

tures can now be created using custom interatomic distance constraints for atom pairs, and simple

molecular units can be employed if desired. These options give the user greater ability to fine-tune

the area of the PES to be explored during the course of the EA search. The mitosis method, which

enhances local order in large unit cells, and RANDSPG algorithm, which generates random sym-

metric structures, are two further techniques that can be used in the initial creation of structures,

and they can both dramatically speed up the search for more complex systems. Duplicate struc-

tures that are removed from the breeding pool are now identified using the XTALCOMP algorithm,

which directly compares two structures instead of relying on an indirect fingerprinting scheme.

Finally, a method for predicting hard and stable materials using macroscopic hardness models that

employs, as input, machine learned values of the shear modulus has been implemented. In the

following sections we describe each of the aforementioned developments, and present the results

of benchmark calculations that show how well they work. Finally, we give a few examples of some

high pressure crystalline lattices that have been predicted using XTALOPT .

New Developments

Graphical vs. Text Based Interface

To make it easy for experts and non-experts alike to set up and carry out CSP searches, inspect

generated and optimized individuals on-the-fly, visualize and analyze the results, and modify pa-

rameters during the run in real time, XTALOPT was initially paired with an easy-to-use GUI. A

number of tabs that are associated with a given function comprise the GUI; some of these are illus-

trated in Fig. 4. In the ‘Structure Limits’ tab, Fig. 4(a), information regarding the composition and

structural parameters, such as the unit cell size and permitted interatomic distances, can be defined.
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Constraints that can be used in the generation of the first random set of individuals, which greatly

accelerate the prediction of certain classes of structures, can also be input in this tab. These include

the mitosis function, RANDSPG option, and the molecular unit builder, which are described fully

in the sections below. In the ‘Optimization Settings’ panel, the geometry optimization scheme that

is to be used during an XTALOPT run can be configured. Supported codes include GULP, which

employs interatomic potentials, as well as the first-principles VASP, PWscf, CASTEP, and SIESTA

codes, and a generic optimizer option is available since version r12.45

The ‘Search Settings’ panel, Fig. 4(b), specifies options that are employed in the XTALOPT

run. This includes the number of random structures that are produced in the first generation, the

total number of structures to be created in the search, parameters that determine the behavior of

the evolutionary operators, selection of seed structures, and tolerances for symmetry and dupli-

cate structure detection. If multiple formula units are to be investigated, parameters governing

crossover, and shared gene pools can be set here. Vickers hardness can also be calculated and used

to determine fitness.

The ‘Progress’ and ‘Plot’ tabs (Figs. 4(c,d)) can be used to monitor an XTALOPT run in real-

time, or to analyze a finished search. In the ‘Progress’ tab, a continuously updated table of each

generated structure including its optimization status, enthalpy, space group, and ancestry (parent

structures and operators used to generate it) is found. Clicking on a structure and formula unit will

allow the user to replace, kill, or modify it as desired. In addition, a structure’s XRD pattern can

be generated (Fig. 4(e)). XTALOPT automatically checks to see if AVOGADRO2 is running on the

user’s computer; if it is the coordinates of the crystal are automatically sent to AVOGADRO2 when

the user clicks on the rows in the table, or on the points in the plot (Fig. 4(f)). In the ‘Plot’ tab, a

number of variables, including enthalpy, structure number, and cell volume can be chosen, and the

information can be plotted on either axis. Structures can be labeled by their Hermann-Mauguin

space group symbol, enthalpy, Vickers hardness, and more. A user may thus track the progress of

an XTALOPT run over time, and identify useful trends. For example, if low-enthalpy structures are

clustered around the lower bound of permitted volumes, the user might decrease this bound in the
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r11.44 An input file, detailing options found in the GUI, is required along with template files for

queue interfaces, and optimization schemes. These options are printed to the terminal window,

along with job submissions, progress, and errors. A text file that can be edited at any time to

update the desired settings is maintained in the working directory. CLI runs can be imported

into the GUI for post-analysis. In both the GUI and CLI versions, results are stored in another

continuously updated text file (results.txt), which includes most data found in the ‘Progress’ tab

of the GUI. Typically EA runs carried out with the CLI version are faster than those performed

with the GUI. The reason for this is that the regular updating and reloading of the GUI results table

requires more processing power as the search space grows. Additionally, the CLI mode removes

the need for GUI dependencies, and can be run fully on a remote cluster, thereby reducing network

communication processes and further increasing the speed.

Interatomic Distance

To avoid generating non-physical structures with unrealistically small distances between atoms,

and hasten exploration of the chemically relevant regions of the PES, minimum interatomic dis-

tances (IAD) were initially derived within XTALOPT from sums of covalent radii of two elements

extracted from a database. Although the IAD constraints could be changed according to a user-

defined scaling factor, this scaling factor was applied equally to all covalent radii in the system,

precluding distinct cutoffs for specific pairs of elements. With the inclusion of a new custom IAD

option in XTALOPT version r11,44 each element pair may be assigned an individual IAD restric-

tion through an editable table, as illustrated in Fig. 4(a). In the first random generation, unit cells

are created according to the user specified constraints, and subsequently filled with atoms. A check

is performed to ensure compliance with the IAD restrictions. If the check fails, the program at-

tempts a different placement, iterating until all atoms are placed within acceptable IAD limits or

the structure is discarded following 1000 failed attempts. Minimum IAD values can also optionally

be checked following the local optimization steps. If this option is chosen, structures that do not

meet the IAD criteria will be marked as failed, and will be excluded from the breeding pool.
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Molecular Unit Builder

Many of the well-known molecular CSP algorithms have been tailored towards organic crystals,

such as the targets in the Cambridge Crystallographic Data Centre (CCDC) blind tests.82–87 Dis-

crete units are also ubiquitous in important classes of inorganic materials including complex hy-

drides,158,159 expanded metal compounds,160 hybrid organic-inorganic perovskites,161,162 and poly-

hedral clusters such as those present in Zintl compounds,163 cluster-containing intermetallics,164

white phosphorus,165 and various phases of boron.166 A molecular unit building option, which was

implemented in XTALOPT version r10,43 was designed to facilitate the prediction of inorganic

compounds that contain such basic discrete units. This algorithm creates molecules that assume

any of the Valence Shell Electron Pair Repulsion (VSEPR) geometries up to octahedral in the first

random generation. The stoichiometry, coordination, and geometry assumed by the molecular unit,

the identities of the central atom and the atoms at the vertices, as well as the distances between

them, need to be defined, as shown in Fig. 4(a). A “no-center” molecular unit may also be specified

by choosing “None” for the central unit. This option can be useful for searches on clusters that do

not have a central atom, such as polyanion-containing Zintl phases. In some situations, the evolu-

tionary operators can break the discrete units apart. However, because the energies of the resulting

structures will typically be high, they will not be added to the breeding pool. This means that the

EA search will preferentially explore regions of the PES corresponding to intact molecules. The

molecular unit option is compatible with the mitosis operator used to construct large unit cells, but

cannot be used in concert with RANDSPG .

Consider, for example a SiH6 composition with four formula units for which it is desirable

to bias the search towards compounds containing 4SiH4 tetrahedra and 4H2 molecules. All four

Si atoms would be chosen as the central atom, each coordinated with four neighboring hydrogen

atoms at a user specified distance, required to fall within the IAD criterion. The particular geomet-

ric arrangement of the hydrogens surrounding the Si can then be defined – in this case tetrahedral,

see-saw, or square planar are all possibilities. Random structures are generated by first placing the

central atoms and surrounding neighbors, followed by the remaining atoms (in this case, the eight
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Na3H14 can be defined as two units of NaH7 with an extra Na atom. In this case, the mitosis method

will produce a two-cell supercell based on an NaH7 subcell, and a single Na atom will be added

randomly to the supercell, subject to the IAD constraints.

RANDSPG Implementation

Inorganic crystals tend to adopt symmetric structures, and enforcing symmetry in CSP algorithms

can speed up finding the global minimum. For instance, a search among the entries in the Inorganic

Crystal Structure Database (ICSD) in 2006 revealed that over a quarter of inorganic crystals assume

one of the Pnma, P21/c, Fm3̄m, and Fd3̄m space groups, while only 1% crystallize in the P1

space group.168 Many CSP codes that employ symmetry in the initial generation place atoms on

sets of Wyckoff positions that belong to space groups consistent with the desired stoichiometry.

In USPEX atoms are placed on general Wyckoff positions, and the symmetry operations of the

space group are applied to determine the equivalent positions.167 Atoms that wind up too close to

one another are merged into a single site with averaged coordinates. The initialization procedure

of CALYPSO169 works similarly, and atoms are placed on combinations of Wyckoff positions

compatible with the system stoichiometry, although with the interesting caveat that repeated space

groups are disfavored by 80% to enforce coverage of a wide swath of search space.

RANDSPG , an algorithm that can be used as a stand-alone structure generation protocol or

in tandem with XTALOPT ,48 first determines all possible combinations of Wyckoff positions for

the given composition, and groups those with the same multiplicities and uniquenesses to speed

this search. Atoms are placed in lattices that are commensurate with the space group symmetry

according to one of the combinations of Wyckoff positions, subject to the IAD criteria. Because

some space groups share Wyckoff positions with smaller multiplicities, the most general Wyckoff

position must be used at least once in RANDSPG to ensure the correct space group is generated.

However, the option to use the most general Wyckoff position at least once was turned off in

XTALOPT to allow smaller formula unit crystals to be used for space groups that have a large

multiplicity for the most general Wyckoff position. To compensate for this, SPGLIB is employed
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In the standalone version of RANDSPG the user may choose not to enforce occupation of the

most general Wyckoff position, or to specify that a particular element occupies a user defined

Wyckoff position. Although these options are not included in the RANDSPG version interfaced

with XTALOPT, they can be used to create structures that can serve as “seeds” in a standard EA

search.

Niching with XTALCOMP

Maintaining diversity in the gene pool used for CSP is of utmost importance since the search can

become biased towards regions of the PES that were initially sampled, leading to convergence on

a structure that is not the global minimum. However, enforcing too much diversity is a double-

edged sword, as the failure of the most stable structures to proliferate can slow exploration of low

lying regions of the PES. Together, this indicates the need for accurate, reliable, and well-tested

duplicate identification procedures.

In the initial release of XTALOPT , structural fingerprints based on unit cell volumes, space

groups and enthalpies were compared, resulting in many false positives. More accurate finger-

printing methods include those based on pair distribution functions and diffraction patterns as in

USPEX,167 or bond characterization matrices derived from bond angles and lengths as in CA-

LYPSO.169 Other packages introduce a penalty term for similar structures,146 or maintain lists of

coordinates and lattice parameters against which new structures are continually checked.139

Since XTALOPT version r8 the XTALCOMP library47,170 has been used to identify duplicates

via direct mapping of structures onto one another. Two crystals with standardized orientations and

Niggli-reduced cells are compared within XTALCOMP . Candidate transforms that map a set of

reference vectors from one unit cell onto the lattice vectors of the reference cell are determined.

If one of these results in every atom from the transformed cell being mapped onto one in the

reference cell, the two are flagged as duplicates. If no such transformation is found, the two are

deemed to be unique. The tolerance for the mapping criterion can be edited in the ‘Search Settings’

tab of XTALOPT shown in Fig. 4(b). Tests have revealed that an EA search using the XTALCOMP
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algorithm outperforms one that employs the original approximate duplicate matching scheme.47

Moreover, it has been shown that XTALCOMP can differentiate between phases differing by the

position of a single atom, with only one of the phases being dynamically stable at atmospheric

conditions, highlighting the importance of an “exact” duplicate matching scheme.12

Searches with Multiple Formula Units

One of the difficulties in CSP is that the number of formula units (FUs) in the global minimum

for a given chemical composition is often unknown. To address this problem a number of CSP

algorithms including CALYPSO,169 USPEX167 and GASP139 have developed techniques enabling

simultaneous searches on multiple FUs. The details of these implementations vary, and herein

we describe the method first available in version r10 of XTALOPT.43 A related problem is that

the stoichiometries that are stable and metastable also need to be determined. Towards this end

Trimarchi and Zunger introduced a technique to scan the composition space.144 Subsequently,

derivative methods have been introduced in many CSP codes. Because such searches would be

extremely computationally demanding this method was not implemented within XTALOPT , and

we suggest that a separate run is carried out for each stoichiometry instead.

In the ‘Structure Limits’ tab, shown in Fig. 4(a), the number of FUs to be considered in the

XTALOPT search must be specified. By default, each set of FUs maintains a separate gene pool,

although stable structures can seed the gene pools of other FUs if they can be accessed via primitive

reduction or supercell generation. Crossovers between structures with different FUs, as shown in

Fig. 7, can also be performed if this option is chosen in the ‘Search Settings’ tab (Fig. 4(b)). In

such a situation, the sum of the contributions of the two parent crystals is not required to be 100%,

as the FU of the offspring must only be a valid choice, and not necessarily the same as that of the

parents. The option to allow FU crossover can be turned on partway into a run, for example at a

user-defined generation, to allow individual FUs to first find locally stable structures before being

influenced by other FUs.

All FUs can also share a single gene pool, comparing structures based on their enthalpy per
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Vickers hardnesses are estimated using microscopic models that require as input quantities that

can be obtained from the crystal structure, or rapidly computed.173,174 Instead of solely using a

thermodynamic quantity to determine a structure’s fitness, the hardness values are also considered.

However, the microhardness models used to estimate hardness are known to fail, as in the case of

T-carbon, a porous structure that was erroneously predicted to be superhard by such a model.175 A

macroscopic model, on the other hand, gave values that agreed with physical reasoning.176

Macroscopic hardness models, which are based on elastic properties such as shear and bulk

moduli, are far more robust than microscopic ones. Unfortunately, first principles calculations of

the elastic moduli177,178 are extremely time consuming, because up to 24 geometry optimizations

may be necessary for a single structure. To remedy this problem version r12 of XTALOPT 45

has been interfaced179 with a machine learning (ML) model,180 trained on materials within the

AFLOW (Automatic FLOW) database, to predict a crystal’s Voigt-Reuss-Hill average values of

the shear, GVRH, and bulk, BVRH, moduli.181,182 Tests on structures whose hardness values are

known, as well as crystals generated during the course of an evolutionary search illustrated that

the Teter model183,184 provides the most robust estimate of the Vickers hardness, via the equation

Hv = 0.151GVRH, when ML values of the moduli were employed.185

It is desirable to predict superhard materials that could be made in experiments, meaning that

they are local minima whose energies are not too high. Therefore, the new fitness function imple-

mented within XTALOPT considers both the energy/enthalpy of an individual, Ei, as well as its

ML Vickers hardness, Hv,i. The probability, pi, that a structure is chosen for procreation is then

calculated as:

pi = N

[

1− w

(

Hv,max −Hv,i

Hv,max −Hv,min

)

− (1− w)

(

Ei − Emin

Emax − Emin

)

]

, (3)

where Hv,max/Hv,min, and Emax/Emin are the highest and lowest Vickers hardnesses, and energies

or enthalpies in the breeding pool. The user defined weighting factor, w, can be chosen to favor

either stable or hard structures in the search, and the normalization constant, N , is determined so
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P-1-12

75.6 GPa

Figure 8: (left) The Vickers hardness, Hv, vs. the energy of structures generated during the CSP

searches carried out on the carbon system in Ref.185 The horizontal dashed line corresponds to

Hv = 40 GPa, and the vertical line to E = −8.80 eV/atom. The phases in the yellow quadrant are

low in energy and superhard. Some experimentally known or previously predicted structures are

pointed out: lonsdaleite (lon), diamond (dia), Z-carbon (sie), W-carbon (cnw), M-carbon (cbn),

bct-C4 (crb), Y-carbon (cag), and bc8 (gsi). (right) Two of the newly predicted superhard phases

along with their machine-learned Hv. The cages colored in blue are related to diamond, and those

in yellow and green are related to lonsdaleite.

that
∑

pi = 1. Choosing the option ‘Calculate the hardness with AFLOW ML?’ in the ‘Search

Settings’ tab will prompt XTALOPT to obtain the ML-derived shear moduli of optimized crystals

via a RESTful API179 so their hardness values may be estimated.

This implementation was tested on the carbon system, and searches were carried out on cells

containing 8, 12, 16, and 20 FUs.185 The enthalpies and Vickers hardness values of all of the

optimized crystals are plotted in Fig. 8. Thirty-six previously known structures, and forty-three

new, low energy, metastable, superhard phases were identified. Many of the novel phases, two of

which are shown in Fig. 8, were composed of bits of diamond, lonsdaleite (hexagonal diamond),

or other known superhard materials.

Benchmark Calculations

Quantifying the performance of CSP methods is difficult because of their stochastic nature. Con-

sider an EA search where there is always a finite, albeit potentially small, probability that the
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global minimum structure appears in the first random set of individuals, or not at all. Moreover,

because various parameters in the evolutionary operators are chosen randomly, as are the parents,

each search may explore different areas of the PES. As a result, an EAs performance can only

be quantified if many searches using the same parameter set are carried out and the results are

analyzed statistically. Unfortunately, these types of benchmarks on large and complex unit cells

are too expensive for first-principles methods. Therefore, we have chosen systems where reli-

able interatomic potentials are available,52 in particular a 16 FU supercell of TiO2 (48 atoms), for

which the rutile structure is the global minimum, and a 10 FU supercell of the ternary SrTiO3 (50

atoms), which crystallizes in a perovskite structure. These systems have previously been used in

benchmarks carried out with various CSP codes.40,47,48,167,169

A number of metrics can be employed to quantify how well a particular CSP algorithm per-

forms, with the most obvious being the success rate. Others include the best and average number

of structures required to find the global minimum, as well as the standard deviation. It can also be

illuminating to determine what percentage of structures correspond to the global minimum when

they are generated quasi-randomly, i.e. using the same constraints as those in the CSP search.

Comparison with the trajectory of the EA illustrates the advantage of the evolutionary approach,

and how the parameters and options employed shape its trajectory.

Towards this end, we randomly generated 9000 structures with the Ti16O32 stoichiometry, and

carried out 100 XTALOPT searches with 600 total structures per run using the aforementioned de-

velopments and interatomic potentials parameters. Table 1 provides the metrics for the six different

sets of searches performed. In the “normal” run the shortest interatomic distances were determined

using a scaling factor of 0.4 multiplied by the sum of the covalent radii. These results can be com-

pared to searches using custom minimum IAD constraints, and those that employed RANDSPG for

the first generation. The mitosis method was tested using three different sized subcells. Previous

benchmarks on this system showed that a larger number of structures in the initial generation ac-

celerated the search if it was performed using RANDSPG , but a smaller number of structures was

beneficial otherwise.48 The reason for this is that RANDSPG samples the PES more thoroughly,
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whereas large unit cells that are created purely randomly tend to have a high degree of similarity.

Therefore, for the “normal”, minimum IAD, and mitosis runs 20 random structures were used in

the initial generation, whereas for RANDSPG this number was increased to 50. Because rutile

does not contain any discrete molecular units, it is unlikely that the molecular unit builder would

improve the search, so this development was not tested.

Table 1: Benchmark tests carried out on TiO2 with 16 formula units in the unit cell.

Random a Structure Search b

Method % Min. % Success Best Finish Average Finish σ
normal c 0.28% 100% 6 97 59

min. IAD d 1.39% 100% 1 62 64

RANDSPG 3.40% 100% 1 47 55

mitosis – 2× 1× 1 0.99% 100% 2 99 76

mitosis – 2× 2× 1 10.36% 100% 1 16 24

mitosis – 2× 2× 2 28.82% 100% 1 4 3

USPEX – normal e,f — 100% — 80 69

USPEX – symmetry e,f — 100% — 77 76

USPEX – cell splitting e,g — 100% — 41 40

CALYPSO – normal h,i 0.00% 100% — 500 —

CALYPSO – symmetry h,i 6.25% 100% — 220 —
a 9000 structures were randomly generated and locally optimized to the nearest stationary point.
b 100 separate evolutionary searches were carried out, each with 600 locally optimized structures.

The searches that used RANDSPG generated 50 random individuals; all other searches employed

20 random individuals. The volume was fixed to 30.3125 Å3 per FU.
c A scaling factor of 0.4 multiplied by the sum of the covalent radii yielded the following mini-

mum distances: Ti-Ti 1.28 Å, O-O 0.52 Å, Ti-O: 0.90 Å.
d IAD employed: Ti-Ti 3.00 Å, O-O 2.00 Å, Ti-O: 1.00 Å.
e Reference 167.
f 100 searches were conducted with up to 400 structures per run.
g 73 searches were conducted with “split-factors” of 2 and 4; soft-mutation was employed.
h Reference 169.
i 3250 structures were locally optimized to benchmark the generation of random structures. The

PSO algorithm was benchmarked by carrying out 10 searches until the global minimum was

found.

Before discussing the results of the evolutionary runs, let us take a quick look at how well

these parameters performed in a quasi-random search. In the “normal” run 25 out of 9000 Ti16O32

structures, or 0.28%, corresponded to rutile, suggesting that ∼360 individuals would need to be

generated to have some assurance the global minimum would be found at least once. Rutile was
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generated 125 times (1.39%) using the custom IAD option, clearly illustrating that simple chem-

ically motivated constraints are extremely beneficial within CSP. With RANDSPG the probability

of finding rutile increased to 3.40%. It should be noted that this number is highly dependent upon

the exact structural constraints applied. In the manuscript introducing the RANDSPG technique a

success rate of 1.78% was obtained, but it was also shown that this number can be as high as 23.8%

when the exact cell parameters and interatomic distances found in rutile are used.48 Because the

mitosis method generates subcells consisting of 8, 4, and 2 FU and uses them to create 2× 1× 1,

2× 2× 1 and 2× 2× 2 supercells, respectively, it is easy to understand why mitosis dramatically

improved the chances of finding rutile randomly as compared to the “normal” run: the problem is

effectively reduced to randomly creating the 2 FU primitive cell of rutile within the subcell.

All of the CSP searches identified rutile as the global minimum. For each benchmark the best

finish was less than 20, meaning that rutile was found at least once in the randomly generated set

of structures. The average finish for mitosis with 8 FU was similar to that of the “normal” run.

As compared to the “normal” search, custom IAD constraints decreased the average number of

structures needed to find rutile by 36%, and RANDSPG decreased this number by a little over 50%.

For mitosis with 4 and 2 FU supercells the average finish was smaller than 20 suggesting that a

purely random search is likely sufficient to locate the global minimum using these approaches.

Comparing XTALOPT to another popular evolutionary algorithm, USPEX,167 shows that cus-

tom IAD constraints yielded similar average finishes to a normal USPEX run (which employs

these constraints by default). RANDSPG gave significantly lower average finishes (47) than the

technique used to generate random symmetric structures in USPEX (77). Finally, “split-factors”

of 2 and 4, corresponding to subcells containing 8 and 4 FUs, found the global minimum by 41

structures on average in USPEX , which is not too different than the average taken for the mi-

tosis method using subcells of the same size (58). Comparing to the CALYPSO 169 algorithm,

XTALOPT was able to locate the global minimum much more quickly both in a “normal” run and

when symmetry constraints were employed (97 vs. 500, and 47 vs. 220 structures, respectively).

As shown in Table 2, for the more complex ternary SrTiO3 with 10 FU and 50 atoms in the
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unit cell the global minimum structure could not be found even once when 9000 individuals were

generated quasi-randomly using both the “normal” settings, and via RANDSPG . When chemically

motivated minimum IAD constraints were employed, the perovskite structure was generated once,

and this number increased to six when a 5 FU subcell was used to create a 2 × 1 × 1 supercell.

Comparing with the results obtained for the 48 atom TiO2 supercell clearly shows that the ternary

is much more difficult to predict than the binary. Not surprisingly, when a 2 FU subcell was

replicated 5× 1× 1 times the success rate improved to 19.20% (1741 structures).

Table 2: Benchmark tests carried out on SrTiO3 with 10 formula units in the unit cell.

Randoma Structure Search b,c

Method % Min. % Success Best Finish Average Finish σ
normal d 0% 69% 208 892 351

min. IAD e 0.01% 53% 59 739 392

RANDSPG 0% 78% 44 805 339

mitosis – 2× 1× 1 0.07% 81% 10 643 410

mitosis – 5× 1× 1 19.20% 100% 1 6 5

USPEX – cell splitting f,g — 94% — 524 297
a 9000 structures were randomly generated and locally optimized to the nearest stationary point.
b 100 separate evolutionary searches were carried out, each with 1500 locally optimized struc-

tures. All of the searches generated 50 random individuals. The unit cell volumes were con-

strained to 59-60 Å3 per FU.
c The average finish is based upon the completed runs, and did not include the runs that did not

find the global minimum.
d A scaling factor of 0.4 multiplied by the sum of the covalent radii yielded the following min-

imum distances: Sr-Ti: 1.42 Å, Sr-O: 1.04 Å, Sr-Sr: 1.56 Å, Ti-O: 0.90 Å, Ti-Ti: 1.28 Å, O-O:

0.52 Å
e IAD employed: Sr-Ti: 2.50 Å, Sr-O: 1.50 Å, Sr-Sr: 3.00 Å, Ti-O: 1.20 Å, Ti-Ti: 3.00 Å, O-O:

1.50 Å
f Reference 167.
g 35 searches were conducted with about 1000 structures per run, and using “split-factors” of 2

and 4.

Turning to the performance of the EA search, the original implementation of XTALOPT found

perovskite SrTiO3 in only 7-12% of runs that optimized 1000 structures each.40 Table 2 shows

the results obtained here for searches that generated 50 random structures and optimized a total of

1500 individuals. Clearly, the developments described above dramatically increased the success

rate, even though not all of the searches found the global minimum. Therefore, the average finish
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and standard deviation columns should be taken with a grain of salt, as the numbers were obtained

using only the data from the successful runs. The “normal” search had a slightly higher success

rate than when custom IAD restraints were employed (69% vs. 53%), but it had a significantly

larger “best finish” (208 vs. 59 individuals). The IAD success rate could be improved by using a

different set of minimum IAD parameters, however care must be taken to avoid values that are too

restrictive and lead to a large number of individuals being discarded prior to local optimization.

Using RANDSPG in the first generation increased the success rate to 78% and decreased the “best

finish” to 44, highlighting again the power of random symmetric initialization in a CSP search.

The mitosis method was used to create subcells consisting of 5 and 2 FU (containing 25 and 10

atoms, respectively) and replicate them accordingly. The former had a success rate similar to that

of RANDSPG , and unsurprisingly the latter was the only method that consistently located the

global minimum with a success rate of 100%.

SrTiO3 was also employed to benchmark USPEX , with runs that used “split-factors” of 2

and 4 (subcells containing 25 and ∼12 atoms).167 These parameters closely resemble our mitosis

2× 1× 1 and 5× 1× 1 settings. USPEX attained a success rate of 94% after 1000 structures were

optimized, and this value increased to 100% when when the runs generated 1750 individuals. This

suggests that the performance of cell-splitting in USPEX is similar to mitosis within XTALOPT .

Because we were not able to find reliable potential parameters for inorganic materials that con-

tain the types of discrete molecular entities for which the molecular unit builder in XTALOPT was

designed, it was necessary to carry out benchmarks using Density Functional Theory (DFT) cal-

culations. Unfortunately, it would be prohibitively expensive to carry out hundreds of DFT-based

EA searches, making it impossible to obtain statistical data about the performance of the molec-

ular unit builder. Nonetheless, a comparison of the results of a single EA run carried out using

the molecular unit builder, to one without is still able to clearly illustrate how this development

accelerates the search.

Our tests showed that the molecular unit builder coupled with DFT optimizations successfully

predicted the crystal lattices illustrated in Fig. 9: Pnma LiBH4 (Z = 4),186 and C2/c NaSi
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optimizes molecules using first-principles calculations the most complex systems our group has

carried out searches on were ternaries with up to ∼125 atoms in the unit cell. If experimental

lattice parameters are known, the mitosis method can be employed, or if simple molecular units

are present, systems that are more complex can potentially be considered. However, for predict-

ing molecular crystals,87,89 when data from large materials databases can be used to accelerate the

search,37–39 or when searching for emerging ordered structures in a disordered system, for exam-

ple, during crystal nucleation188,189 other algorithms may be preferred. Interfacing CSP methods

with machine-learning interatomic potentials is sure to increase the complexity of the structures

that can be predicted in the near future.190,191

With this in mind, currently the XTALOPT EA has successfully been employed to predict

the structures of a number of atomistic inorganic crystals, a few recent examples can be found in

Refs.192–203 Our group has mostly applied XTALOPT to study hydrides under conditions of extreme

pressures,157,204–220 because they have the potential to behave as conventional (Bardeen-Cooper-

Schrieffer) high-temperature superconductors.26,27 This line of reasoning can be traced back to

Ashcroft who pointed out that hydrogen,221 and hydrogen-dominant alloys222 could have all of the

properties required for conventional high-temperature superconductivity (large electron-phonon

coupling, high density of states at the Fermi level, wide bands and high vibrational frequencies).

Whereas the metallization of hydrogen has been fraught with difficulties, tremendous advances

have been made in the search for superconductivity in compressed hydrides. CSP techniques cou-

pled with DFT calculations have predicted the most stable and interesting metastable binary hy-

drides and studied their propensity for superconductivity.26 Two regions of the periodic table turn

out to be particularly promising. The first are alkaline earth or rare earth polyhydrides, where ex-

ceedingly large Tcs have been predicted for compounds that are composed of hydrogenic clathrate

lattices; one of these, Fm3̄m LaH10, is illustrated in Fig. 1(c). The other region is found in the p-

block elements, with a hydride of sulfur being the binary with the highest Tc (203 K near 150 GPa).

This Im3̄m H3S phase was synthesized223 at about the same time it was theoretically predicted.224

As shown in Fig. 10(a) it is formed from two interpenetrating perovskite lattices where each S

34





point energy was included, and remained metastable down to 128 GPa, at which point it achieved

its highest calculated Tc of 100 K. We suggested that replacing S by Se or Te, and/or Ca by Mg,

Sr or Ba would yield other superconducting materials that might be stable over a wider pressure

range.

Conclusions

Spectacular advances in algorithms for a priori crystal structure prediction, coupled with devel-

opments in computer hardware and software have facilitated inverse-materials design. Recent

materials-by-design success stories show a glimpse of what the future may hold. In this Feature

Article we have described some of the main computational techniques that can be used for au-

tomated crystal structure prediction without using any experimental information. This includes

the generation of random lattices, simulated annealing, minima hopping, metadynamics, particle

swarm optimization and evolutionary algorithms (EAs). Among the advantages of EAs is that they

can both broadly sample the potential energy landscape, as well finely explore the most promis-

ing regions. Moreover, they can be biased with crystal prototypes or constrained by experimental

observables.

Our focus is on the XTALOPT EA developed in our group, which is available to the scientific

community under well-recognized open source licenses (GPL releases 10 or earlier, BSD releases

11 and 12). XTALOPT is cross-platform, can be used on various queuing systems, and has been

interfaced with a number of programs designed for periodic lattices (e.g. GULP for interatomic

potentials, and VASP, PWscf, CASTEP, SIESTA for first-principles calculations). The XTALOPT

EA can be executed either using an intuitive and flexible graphical user interface (GUI) or a com-

mand line interface (CLI). The results of each type of run can be analyzed and post-processed via

the GUI that is based on the AVOGADRO molecular editor, builder and visualizer.

We describe the GUI features available including functionality to visualize and manipulate

crystals, and visualize their calculated XRD patterns within AVOGADRO. Moreover, we outline
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new developments, including generating the initial set of structures using custom interatomic dis-

tance constraints, random symmetric structures, or discrete molecular units that assume any of the

Valence Shell Electron Pair Repulsion geometries up to octahedral. We further show that repli-

cating small subcells to create larger supercells in the first generation can accelerate locating the

global minimum of large, complicated unit cells, and discuss how searches can consider multiple

formula units simultaneously. The XTALCOMP duplicate matching scheme is described. Finally,

we present a novel algorithm that employs a machine-learned estimate of a material’s Vickers

hardness, in conjunction with the computed energy or enthalpy to search for superhard materials.

Benchmark calculations on binary and ternary compounds with lattices containing ∼50 atoms

in the unit cell are carried out to test our new developments. The tests clearly show improvements

in the success rate, and decrease in the average number of structures that need to be optimized

to locate the global minimum. We demonstrate that using molecular units in the first random

generation accelerates the discovery of the most stable structures of LiBH4 (Z = 4) and the Zintl

phase NaSi (Z = 16). Finally, we briefly outline our applications of XTALOPT to hydride materials

under pressure, and discuss two new families of superconducting ternary compounds that it has

discovered.
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Hydrogen Storage. Chem. Rev. 2007, 107, 4111–4132.

(160) Zurek, E.; Wen, X.-D.; Hoffmann, R. (Barely) Solid Li(NH3)4: The Electronics of an Ex-

panded Metal. J. Am. Chem. Soc. 2011, 133, 3535–3547.

53



(161) Zhang, R.; Cai, W.; Bi, T.; Zarifi, N.; Terpstra, T.; Zhang, C.; Valy Verdeny, Z.; Zurek, E.;

Deemyad, S. Effects of Non-Hydrostatic Stress on Structural and Optoelectronic Properties

of Methylammonium Lead Bromide Perovskite. J. Phys. Chem. Lett. 2017, 8, 3457–3465.

(162) Manser, J. S.; Christians, J. A.; Kamat, P. V. Intriguing Optoelectronic Properties of Metal

Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008.

(163) Kauzlarich, S. M., Ed. Chemistry, Structure and Bonding of Zintl Phases and Ions; VCH-

Publishers: New York, 1996.

(164) Simon, A. Metal Clusters Inside Out. Philos. Trans. R. Soc., A 2010, 368, 1285–1299.

(165) Simon, A.; Borrmann, H.; Craubner, H. Crystal Structure of Ordered White Phosphorus

(β-P). Phosphorus Sulfur Relat. Elem. 1987, 30, 507–510.

(166) Oganov, A. R.; Chen, J.; Gatti, C.; Ma, Y.; Ma, Y.; Glass, C. W.; Liu, Z.; Yu, T.; Ku-

rakevych, O. O.; Solozhenko, V. L. Ionic High-pressure Form of Elemental Boron. Nature

2009, 457, 863–867.

(167) Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New Developments in Evolutionary

Structure Prediction Algorithm USPEX. Comput. Phys. Commun. 2013, 184, 1172–1182.

(168) Urusov, V. S.; Nadezhina, T. N. Frequency Distribution and Selection of Space Groups in

Inorganic Crystal Chemistry. J. Struct. Chem. 2009, 50, 22–37.

(169) Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A Method for Crystal Structure Prediction.

Comput. Phys. Commun. 2012, 183, 2063 – 2070.

(170) XtalComp: Compare Crystal Structures. http://xtalopt.openmolecules.net/

xtalcomp/xtalcomp.html (Accessed Nov 09, 2020).

(171) Lyakhov, A. O.; Oganov, A. R. Evolutionary Search for Superhard Materials: Methodology

and Applications to Forms of Carbon and TiO2. Phys. Rev. B 2011, 84, 092103.

54



(172) Zhang, X.; Wang, Y.; Lv, J.; Zhu, C.; Li, Q.; Zhang, M.; Li, Q.; Ma, Y. First-Principles

Structural Design of Superhard Materials. J. Chem. Phys. 2013, 138, 114101.

(173) Gao, F.; He, J.; Wu, E.; Liu, S.; Yu, D.; Li, D.; Zhang, S.; Tian, Y. Hardness of Covalent

Crystals. Phys. Rev. Lett. 2003, 91, 015502.
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(194) Kohulák, O.; Martoňák, R.; Tosatti, E. High-pressure Structure, Decomposition, and Super-

conductivity of MoS2. Phys. Rev. B 2015, 91, 144113.

(195) Hermann, A.; Guthrie, M.; Nelmes, R. J.; Loveday, J. S. Pressure-induced Localisation of

the Hydrogen-bond Network in KOH-VI. J. Chem. Phys. 2015, 143, 244706.
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