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Abstract

Significant progress has been made in the field of a priori crystal structure prediction, with
a number of recent remarkable success stories. Herein, we briefly outline the methods that
have been developed for finding the global minimum structure and interesting local minima
without the need for experimental information. Focus is placed on describing the XTALOPT
evolutionary algorithm (EA) developed in our group towards this end. XTALOPT is published
under well-known open-source licenses, and the EA searches can be analyzed via the Avo-
GADRO chemical editor and visualizer. We describe new algorithmic developments that have
made it possible to predict the structures of ever-more complex crystalline lattices. Benchmark
tests, which clearly illustrate how the new developments improve the success rate and acceler-
ate the discovery of the global minimum structure, are carried out. Finally, we describe how
XTALOPT has been employed to predict novel ternary hydrides that have the propensity for

high-temperature superconductivity under pressure.



Introduction

The last decade has witnessed tremendous advances in program packages that carry out first-
principles calculations, spectacular speed-ups in computer hardware, and significant improvements
in algorithms for a priori crystal structure prediction (CSP).!"!! These developments have made it
now possible to predict the structure of a crystal given only its composition for systems that are not
too complicated; i.e. binary or even ternary atomistic systems whose primitive unit cells contain
< 50 atoms. Moreover, nowadays one can compute, with reasonable accuracy, many properties
of a solid that can be used to predict its performance in a wide variety of applications, e.g. as a
photovoltaic, in energy storage devices, or as a superconducting or superhard material. We are now
in an exciting era where materials can be designed rationally in silico prior to their experimental
synthesis!

This paragraph lists a handfull of the steadily growing examples of CSP-guided theoretical
predictions that were later experimentally verified in the area of high-pressure research. The
I4/mmm symmetry BaGe; phase shown in Fig. 1(a), which is composed of a unique germanium
lattice of edge-sharing triangular prisms, was predicted to be the most stable structure between
15.6-35.4 GPa.'? Computations suggested that it is metastable and superconducting at 1 atm with
a superconducting critical temperature, 7., of 5.5 K. Within 1 year of its prediction, this phase
was synthesized at 15 GPa and 1300 K, quenched to atmospheric conditions, and experiments
showed it was superconducting below 6.5 K.!3 Another superconductor whose high-temperature
high-pressure synthesis was inspired via CSP is the Pnnm symmetry FeB, structure illustrated in
Fig. 1(b). *!5 First-principles calculations suggested that this material could be a phonon-mediated
superconductor with a T, of 15-20 K.'* Following the successful synthesis of this material, its 7},
was measured to be 2.9 K, and it was also found to be superhard with a nanoindentation hardness
of 62 GPa.!® Perhaps one of the most remarkable examples of materials-by-design is the F'm3m
symmetry LaH;, phase shown in Fig. 1(c) whose hydrogenic lattice resembles a clathrate com-
posed of Hs, [456'2] polyhedra. CSP calculations predicted it to be stable!” or metastable '8 under

pressure, and electron-phonon calculations suggested it would have a remarkably high 7. Shortly



after the theoretical predictions were published, a high hydride of lanthanum whose properties
were consistent with the F'm3m LaH;, structure was synthesized at 170 GPa.'® Moreover, subse-
quent studies measured 7, values as high as 280 K at 200 GPa,?® and 250 K at 170 GPa?! in the

lanthanum/hydrogen system under pressure. Another hydride with a nontraditional stoichiometry

23,24

that was predicted?? prior to its synthesis is the 14/mmm symmetry CaH, phase shown in

Fig. 1(d), which contains both molecular and atomic hydrogen. The structures and propensity for

superconductivity of most binary hydrides have been theoretically studied under pressure.?2’

(a) 14/mmm BaGe, (b) Pnnm FeB,
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Figure 1: Materials that were first predicted via crystal structure prediction techniques, and
later synthesized under high pressure: (a) I4/mmm BaGez'*!® (barium/germanium atoms are
green/purple), (b) Pnnm FeB4'#'¢ (iron/boron atoms are brown/pink), (c) Fm3m LaH;,!"%!
(lanthanum/hydrogen atoms are blue/white), (d) I4/mmm CaH;?*?* (calcium/hydridic-
hydrogen/molecular-hydrogen atoms are grey/yellow/blue).

CSP is extremely important in the high-pressure field?*=3? because there are many difficulties
associated with the experimental determination of the atomistic structure of a synthesized phase
subject to extreme conditions. For example, it may be impossible to distinguish between two el-
ements with very similar masses via spectroscopic techniques, the positions of hydrogen atoms

cannot be determined using X-ray diffraction (XRD), and neutron diffraction capabilities at very
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high pressures are not yet available. In these situations, a synergistic feedback loop between ex-
periment and theory is often required to characterize a sample. At times CSP may be the only
tool available, for example to study matter at conditions that resemble those inside giant planets.
Because the crystal structures and chemical combinations that are stable under pressure are so
different than those found at 1 atm,*-3 CSP techniques that make use of data found in large ma-
terials databases*”*® have not been used for pinpointing the most stable stoichiometries and their
crystalline structures in these extreme conditions in the past (however, a new method that uses a
linear approximation to the enthalpy has been developed towards this end*) .

The main goal of this Feature Article is to describe the XTALOPT algorithm for CSP devel-
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oped in our group, along with its subprograms, and to provide examples of some of the
fascinating high-pressure materials it has pinpointed. We start with a concise overview of the com-
putational methods that can be used to predict the most stable and important metastable crystalline
lattices for a given composition without any experimental information, describe our latest algo-
rithmic developments, and present the results of benchmark calculations that illustrate how these

developments have increased the complexity of the structures that XTALOPT can reliably predict.

Computational Details

The benchmark calculations were carried out using XTALOPT release 12#° along with parameter
sets for the pool size, duplicate matching tolerances, and behavior of the evolutionary operators that
were optimized in Refs.*%*’ The geometries were relaxed using either the General Utility Lattice
Program (GULP),* or the Vienna Ab-initio Simulation Package (VASP).3*>! The interatomic po-
tential employed for TiO, was introduced in Ref.,%? and for SrTiO; we used a modified version®’
of the potential in Ref.>* The VASP calculations were carried out using density functional the-
ory with the gradient-corrected exchange and correlation functional of Perdew-Burke-Ernzerhof

(PBE)** coupled with the DFT-D3% van der Waals (vdW) correction for LiBH,, and the vdW-

DF-optPBE’>*> functional for NaSi. The projector augmented wave (PAW) method® was used



to treat the core states, and a plane-wave basis set with a cutoff of 400 eV was employed for NaSi
and 450 eV for LiBH4. The k-point grids were generated using the I'-centered Monkhorst—Pack
scheme, and the number of divisions along each reciprocal lattice vector was chosen such that the
product of this number with the real lattice constant was 30 A in the structure searches. The Li
25!, B 252/2pt, H 1s!, Na 3s! and Si 35%/3p? electrons were treated explicitly using POTCARs

provided in the potpaw-PBE.52.tar.gz file from the VASP repository.

Automated Methods for a priori Crystal Structure Prediction

A crystalline compound with /N atoms in its unit cell can be described by three unit cell vectors and
three angles, along with 3N —3 parameters for the atomic coordinates. Finding the global minimum
on the potential energy surface (PES), an example of which is shown in Fig. 2, corresponds to
locating the values of the 3V + 3 variables that minimize the (free) energy for a given pressure and
temperature. Because it is not computationally feasible to carry out first-principles calculations of
the phonon modes for all of the hundreds or thousands of structures optimized in a first-principles
CSP search, typically either the internal energy at 0 K, or the enthalpy at a given pressure is
minimized, ignoring the zero point energy, and finite temperature contributions.

Since the shape of the PES is unknown, in principle one would need to calculate the energies
of all of the minima to determine the one that has the lowest energy/enthalpy. However, because
the number of local minima increases exponentially with IV, this is only possible for the simplest
systems. It has been shown that finding the global minimum of homogeneous,®® and heteroge-
neous®® clusters is a nondeterministic polynomial-time hard (NP-hard problem), meaning that an
algorithm scaling as a polynomial in the number of degrees of freedom cannot be found to solve
it. In addition, the “no free lunch” theorem proposes that no single CSP algorithm works well
for every system.%* The exponential increase in the number of minima, combinatorial problem
for multicomponent systems, and the impossibility of constructing a general-purpose algorithm

appears discouraging for CSP.
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Figure 2: A schematic illustration of a 1 dimensional (1D) PES. It is composed of many local
minima that are separated by barriers, and a single global minimum. A basin contains all of the
configurations that optimize to a given local minimum. Two funnels comprise this PES, and the
transition state between them is shown.

Nonetheless, a number of properties of PES’ can be leveraged to construct clever CSP tech-
niques that are able to find good approximations for the global minimum. First of all, a large
portion of the multidimensional PES will be very high in energy and possess few local minima.
These regions correspond to structures that are not chemically sensible, e.g. they have unrealis-
tic interatomic distances, or assume configurations where atoms of the same type are “clustered”
within regions of the unit cell. Therefore, it is desirable that unrealistic structures are removed from
a CSP search prior to local optimization. If such a structure is mistakenly kept it will eventually
relax into a region of the PES that contains local minima (provided the electronic self-consistent-
field steps can converge). Secondly, it has been suggested that basins containing low energy local
minima take up the most “space” in the PES.% This means that a randomly generated structure is
more likely to fall in a low energy basin as compared to one with higher energy. Finally, according
to the Bell-Evans-Polanyi principle®*7 low energy basins are likely to lie close to each other, and
the barriers between them are small. As a result small perturbations of a structure will lead to
exploration of the basins within a given funnel, and this will ultimately result in the discovery of
the lowest energy point. These properties suggest that if a given PES contains only one funnel,

finding the global energy minimum should be relatively straightforward. If many funnels located



far away from each other are present the search will be much more difficult. However, a featureless
PES that does not contain any regions of attraction is the most difficult to search.

Typically many local minima are discovered during the course of a single CSP search. This can
be beneficial, as some CSP searches do not aim to find the global minimum, but rather metastable

69.70 1If the ener-

species with a particular property such as superhard,®® or magnetic materials.
gies/enthalpies of the metastable structures are not too high, it may be possible to synthesize them
by appropriately choosing the pressure, temperature, and starting material, or by employing syn-
thesis techniques for phases far away from equilibrium.”!

The algorithms that have been adapted towards CSP are well-known metaheuristics designed to
find good solutions to diverse optimization problems spanning from circuit design to protein fold-
ing. None of them can guarantee that the global minimum has been found for all but the simplest
systems. In the sections below we briefly outline automated methods for predicting the structures
of 3D-periodic crystals where each atom can be treated individually. Many of these algorithms
have been adapted to predict the structures of finite clusters,’>’? 2D-materials,”* ¢ surfaces””’8
and clusters adsorbed to them,” as well as interfaces,® and microporous crystal frameworks. 8!
Searching for the likely polymorphs of molecular crystals has its own considerations, for further
information we refer the reader to Refs.?° We also do not describe CSP methods that make use

37-39,91,92

of information stored in large materials databases either explicitly, or by building machine
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learning models, nor those that require experimental information.

Random Searching

In the simplest CSP method all 3NV 4- 3 degrees of freedom of a user-defined number of crystals are
generated randomly, and the structures are optimized to the nearest local minimum, as illustrated
in Fig. 3(a).*3!32% To ensure that the structures generated are chemically sensible the cell volume,
as well as the minimum interatomic distances are constrained. It is typically useful to generate
random symmetric structures,'® and constrain their Bravais lattices or spacegroups, especially if

experimental data is available. In some cases it might be appropriate to use clusters or molecules



as the building blocks, and place them randomly within a cell. Pickard and Needs, who have
pioneered this method, refer to it as “generating random sensible structures”. !

In a purely random search every crystal is independent of another, and the algorithm does not
learn from its history. To remedy this Pickard and Needs introduced an option to subject particu-
larly stable structures to random mutations, such as atomic displacements or unit cell deformations
in their ab initio random structure searching (AIRSS) method. This procedure, known as “shak-
ing”, makes it possible to explore all of the local minima within a given funnel, and incorporates

learning into the search. The AIRSS method has been applied to a wide variety of systems includ-

ing matter under high pressure,* battery materials, '*! and organic molecular solids. '%?
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Figure 3: Schematic illustrations of various crystal structure prediction methods in a 2D PES.
The dots represent structures, and the dashed arrows local optimizations: (a) random search, (b)
simulated annealing, (¢c) minima hopping, (d) metadynamics, (e) particle swarm optimization, (f)
genetic or evolutionary algorithms.



Simulated Annealing

The simulating annealing algorithm, see Fig. 3(b), mimics the metallurgical process of heating a
substance until it melts, followed by controlled cooling, and subsequent crystallization. % This
process removes defects and dislocations from a material, thereby increasing its ductility. Sim-
ulated annealing for CSP begins by generating a (typically random) structure whose energy is
evaluated. Next, the structure is perturbed by randomly displacing atoms, changing unit cell pa-
rameters or permuting atoms of different types, and the energy of the new structure is evaluated.
Molecular dynamics can also be employed to move atoms. In the Monte Carlo method of Metropo-
lis the probability of acceptance of the new structure, P = exp(—AF /kgT), is calculated using the
energy difference between the two structures, A F, the Boltzmann constant, kg, and the so-called
simulation temperature, 7' 104°A random number 0 < ¢ < 1 is chosen; if ¢ < P the structure is
accepted, otherwise new structures are generated until one of them is accepted. As a result, 7' is not
a physical temperature, but rather a variable used to control the rejection rate. A run begins with a
large T', guaranteeing that most moves are accepted. During the run 7" is slowly decreased, thereby
mimicking the physical annealing process. Finally, a quench run is carried out with 7" = 0 K, so
that only downhill steps are accepted, and a local relaxation is performed.

To avoid getting stuck in local minima during the cooling procedure more complicated anneal-
ing schemes, which involve periodically raising the temperature, can be employed. Often, full
exploration of the PES can only be achieved if numerous runs starting from different initial con-
figurations are performed. Care must also be used in determining the size of the random mutation:
if it is too small, the run will not be able to tunnel through barriers between nearby minima, and
if it is too big the search essentially becomes random. Doll, Schon and Jansen have pioneered the
use of this method, and applied it towards a plethora of crystalline inorganic systems ' including

metal pernitrides, '° boron nitride, '’ and GeF,.'®
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Minima Hopping

In Godecker’s minima hopping method '%!'® molecular dynamics is used to explore the PES, and
each structure is optimized to the nearest local minimum. A structure’s energy is compared with
that of its predecessor, and the energy difference corresponding to an allowed move, Ey, is ad-
justed so that half of the new structures are accepted, as shown in Fig. 3(c). This method keeps
track of previously visited minima, and if the algorithm revisits them the kinetic energy employed
for the molecular dynamics is increased so as to promote exploration of unchartered regions of
the PES. It has been shown that aligning the initial molecular dynamics velocities along the di-
rections of soft phonon modes helps accelerate the search.!!!"!'> The minima hopping method has
been used extensively to predict the structures of materials under pressure such as superconducting
S.Se(i—z)H; phases,'!® binary intermetallics that are immiscible at 1 atm,* and structural candi-
dates for cold compressed graphite. !'* Minima hopping should not be confused with the similarly

named basin hopping method, which has been applied extensively to finite clusters, !> water-ice, ''®

and is under active development for more complex systems. '!7-119

Metadynamics

Metadynamics, developed by Parrinello and co-workers, is an enhanced sampling molecular dy-

120-122 The sampling is accelerated by using a history-dependent bias potential

namics technique.
that lifts previously visited areas of the PES. As shown in Fig. 3(d), metadynamics helps overcome
barriers and enables the discovery of new minima by depositing a sum of Gaussians along the sys-
tem’s trajectory. This so-called ‘basin-flooding’ is usually carried out in a space defined by a few
selected degrees of freedom, often referred to as the collective variables, such as the interatomic
distances, angles, coordination numbers, and unit cell parameters. One drawback of metadynamics
is that it may be necessary to understand the physics and chemistry of the process being studied
to define the correct collective variables. Another disadvantage is that transition barriers between

two or more basins could become flooded during the simulation, thereby preventing the global

minimum from being found. Therefore, it may be necessary to carry out more than one simulation
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starting from different configurations. Metadynamics has been used to study structural transfor-
mations of carbon under pressure, '** as well as high pressure modifications of carbon-dioxide, '**
and germanium.'? It has also been employed to simulate a wide range of rare events including

structural phase transitions, 1> and chemical reaction mechanisms. '?’

Particle Swarm Optimization

The particle swarm method was inspired by the behavior of large groups of animals such as schools
of fish, or flocks of birds.!?® Boldyrev’s group was the first to apply this method to clusters, !> and
Ma’s to solids using the CALYPSO (Crystal structure AnalL.Ysis by Particle Swarm Optimization)
software package.!* In the last decade CALYPSO has become one of the most popular tools
for predicting the structures of a wide range of chemical systems including clusters, 2D layered
materials, solids, interfaces, electrides, and superhard compounds. 3%131-133

In CALYPSO, the trajectory a single individual takes to traverse the multidimensional PES
depends on its position, x(t), and velocity, v(¢), as well as the position and velocity of the other
structures in the swarm, as illustrated in Fig. 3(e). The position of a structure at a later time, ¢ 4 1,
is given by

z(t+1)=z(t)+v(t+1) (1)

where

v(t+ 1) = wo(t) + 171 (Poest(t) — (1)) + cara(goest(t) — x(1)). 2)

In Eq. 2 ppex(t) is the position of the individual after local optimization, and gyes(t) of the global
minimum of the swarm at time ¢. The inertia weight, w, which ranges from 0.4 to 0.9, is modified
during the search. Large values of w promote global exploration of the PES, and small ones local
exploration. The random numbers r; and r, range between O to 1. The coefficients ¢; and ¢, weight
the contribution of the individual’s position versus that of the global minimum.

A PSO search begins by generating random structures that are locally optimized. Just as in

the AIRSS method, the performance of the algorithm can be improved by using sensible choices
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for the interatomic distances, and cell volumes, as well as employing symmetry in the random
structure generation. Most of the subsequent structures in the search are generated via Egs. 1 and
2, but random structures are also continuously added to the search to ensure that it does not get
stuck in a particular region of the PES. The PSO algorithm is able to broadly sample the PES,
while at the same time more thoroughly exploring the most promising areas, and it is able to learn

from its history.

Evolutionary/Genetic Algorithms

Evolutionary algorithms (EAs), or genetic algorithms (GAs) adapt concepts from the theory of
evolution, such as natural selection, mutation, and reproduction, so they may be employed within
CSP. An EA begins by generating chemically sensible random geometries (seeding with specific
structures is also possible), followed by optimization to the nearest local minimum by an external
program. The computed energy or enthalpy of each structure is employed to determine its fitness,
or probability to be chosen as a parent for procreation. This procedure allows the fittest structures
to pass on their genetic information (in this case the structural motifs) to future generations. As
shown in Fig. 3(f), children can be created by mutations of a single parent, or via combinations of
two parents. Mutations, such as distorting the unit cell shape, permuting atoms of different types,
or displacement of atoms either via a random-walk or periodic motion (such as a wave), typically
perturb a structure only slightly, thereby allowing the algorithm to perform a more thorough local
search. The real space cut-and-splice operation, which was introduced by Deaven and Ho for
clusters,!* and later adapted towards crystals by Glass, Oganov and Hansen,'® is employed for
breeding. This two parent operation can significantly perturb a structure, thereby enabling a broad
exploration of the PES. Similar to the PSO technique, EAs are able to thoroughly sample the PES,
while simultaneously zooming in on the most promising areas, and they can be biased if structural
information is known.

In the last fifteen years many groups have released EAs that can be used to predict the structures

of atomistic crystals given only their composition. These include USPEX (Universal Structure Pre-
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dictor: Evolutionary Xtallography),®135-138 GASP, 13140 MAISE, * EVO, '*! as well as algorithms
by Trimarchi and Zunger, '4*~'%> Abraham and Probert, 146 Fadda and Fadda, '*” Woodley and Cat-
low>2 , Wentcovitch et al.,'*® and Hammer et al.'*® In what follows we describe the specifics of

the XTALOPT EA developed in our group. *0—¢

The XTALOPT Evolutionary Algorithm

The XTALOPT EA, written in C++, was first developed as an extension to the AVOGADRO 13015
molecular editor, builder and visualizer, and made use of the OPENBABEL "? chemical toolkit,
which has many useful features including conversion between various file formats used to represent
chemical data. XTALOPT was initially released as an open-source program under the GNU Public
License (GPL), '>3 making it freely available for use and collaboration by members of the scientific

4445 which have been released under the more

community. In the latest versions of XTALOPT,
flexible 3-clause Berkeley Software Distribution (BSD) license,'>* OPENBABEL is used as an
external executable, and AVOGADRO2 '3 can optionally be employed to visualize crystals.
XTALOPT generates children via the two-parent cut-and-splice breeding operation, ' as well
as a number of single parent mutations. The latter consist of the hybrid operators “stripple”
(strain+ripple), where the shape of the unit cell is modified while simultaneously displacing the
atoms in a periodic wave, and permustrain (permutation+strain), in which atoms of two different
types are exchanged and the cell’s shape is changed. A number of variables in these operators
are user-defined, and have been previously described in Ref.*’ and Ref.? XTALOPT employs a
population-based pool, rather than a generation-based pool, since the former makes better use
of a high performance computing environment.?* Searches can be “seeded” with user-defined
structures, and geometric constraints can be enforced. The Spglib!>® package is employed for
spacegroup identification. Herein, recent developments to the XTALOPT**4157 EA will be de-
scribed. These modifications have made it possible to discover the global minimum of crystals

whose unit cells are larger and more complex than those that could previously be uncovered reli-

ably, enabled searches containing discrete molecular units, and made it possible to predict novel
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crystalline materials with a high Vickers hardness.

Our latest developments have improved the graphical user interface (GUI) within XTALOPT
to allow greater on-the-fly analysis of the progress of the evolutionary search, and also provided
a command line interface for users who do not wish to use a GUI. The initial generation of struc-
tures can now be created using custom interatomic distance constraints for atom pairs, and simple
molecular units can be employed if desired. These options give the user greater ability to fine-tune
the area of the PES to be explored during the course of the EA search. The mitosis method, which
enhances local order in large unit cells, and RANDSPG algorithm, which generates random sym-
metric structures, are two further techniques that can be used in the initial creation of structures,
and they can both dramatically speed up the search for more complex systems. Duplicate struc-
tures that are removed from the breeding pool are now identified using the XTALCOMP algorithm,
which directly compares two structures instead of relying on an indirect fingerprinting scheme.
Finally, a method for predicting hard and stable materials using macroscopic hardness models that
employs, as input, machine learned values of the shear modulus has been implemented. In the
following sections we describe each of the aforementioned developments, and present the results
of benchmark calculations that show how well they work. Finally, we give a few examples of some

high pressure crystalline lattices that have been predicted using XTALOPT .

New Developments

Graphical vs. Text Based Interface

To make it easy for experts and non-experts alike to set up and carry out CSP searches, inspect
generated and optimized individuals on-the-fly, visualize and analyze the results, and modify pa-
rameters during the run in real time, XTALOPT was initially paired with an easy-to-use GUIL. A
number of tabs that are associated with a given function comprise the GUI; some of these are illus-
trated in Fig. 4. In the ‘Structure Limits’ tab, Fig. 4(a), information regarding the composition and

structural parameters, such as the unit cell size and permitted interatomic distances, can be defined.
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Constraints that can be used in the generation of the first random set of individuals, which greatly
accelerate the prediction of certain classes of structures, can also be input in this tab. These include
the mitosis function, RANDSPG option, and the molecular unit builder, which are described fully
in the sections below. In the ‘Optimization Settings’ panel, the geometry optimization scheme that
is to be used during an XTALOPT run can be configured. Supported codes include GULP, which
employs interatomic potentials, as well as the first-principles VASP, PWscf, CASTEP, and SIESTA
codes, and a generic optimizer option is available since version r12.4

The ‘Search Settings’ panel, Fig. 4(b), specifies options that are employed in the XTALOPT
run. This includes the number of random structures that are produced in the first generation, the
total number of structures to be created in the search, parameters that determine the behavior of
the evolutionary operators, selection of seed structures, and tolerances for symmetry and dupli-
cate structure detection. If multiple formula units are to be investigated, parameters governing
crossover, and shared gene pools can be set here. Vickers hardness can also be calculated and used
to determine fitness.

The ‘Progress’ and ‘Plot’ tabs (Figs. 4(c,d)) can be used to monitor an XTALOPT run in real-
time, or to analyze a finished search. In the ‘Progress’ tab, a continuously updated table of each
generated structure including its optimization status, enthalpy, space group, and ancestry (parent
structures and operators used to generate it) is found. Clicking on a structure and formula unit will
allow the user to replace, kill, or modify it as desired. In addition, a structure’s XRD pattern can
be generated (Fig. 4(e)). XTALOPT automatically checks to see if AVOGADRO?2 is running on the
user’s computer; if it is the coordinates of the crystal are automatically sent to AVOGADRO?2 when
the user clicks on the rows in the table, or on the points in the plot (Fig. 4(f)). In the ‘Plot’ tab, a
number of variables, including enthalpy, structure number, and cell volume can be chosen, and the
information can be plotted on either axis. Structures can be labeled by their Hermann-Mauguin
space group symbol, enthalpy, Vickers hardness, and more. A user may thus track the progress of
an XTALOPT run over time, and identify useful trends. For example, if low-enthalpy structures are

clustered around the lower bound of permitted volumes, the user might decrease this bound in the
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Figure 4: Select tabs from the graphical user interface of XTALOPT showing options for (a) ini-
tializing a structure search, (b) choosing the search settings, (c) visualizing its progress, and (d)
plotting the results. Additional tabs allow the user to set options for the local relaxations, and
compute cluster configuration. (e) The X-ray diffraction patterns for the structures produced can
be generated on-the-fly, and (f) they can be visualized and analyzed using AVOGADRO.

‘Structure Settings’ tab.

XTALOPT can also be run through a command line interface (CLI), first implemented in version
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r11.* An input file, detailing options found in the GUI, is required along with template files for
queue interfaces, and optimization schemes. These options are printed to the terminal window,
along with job submissions, progress, and errors. A text file that can be edited at any time to
update the desired settings is maintained in the working directory. CLI runs can be imported
into the GUI for post-analysis. In both the GUI and CLI versions, results are stored in another
continuously updated text file (results.txt), which includes most data found in the ‘Progress’ tab
of the GUI. Typically EA runs carried out with the CLI version are faster than those performed
with the GUI. The reason for this is that the regular updating and reloading of the GUI results table
requires more processing power as the search space grows. Additionally, the CLI mode removes
the need for GUI dependencies, and can be run fully on a remote cluster, thereby reducing network

communication processes and further increasing the speed.

Interatomic Distance

To avoid generating non-physical structures with unrealistically small distances between atoms,
and hasten exploration of the chemically relevant regions of the PES, minimum interatomic dis-
tances (IAD) were initially derived within XTALOPT from sums of covalent radii of two elements
extracted from a database. Although the IAD constraints could be changed according to a user-
defined scaling factor, this scaling factor was applied equally to all covalent radii in the system,
precluding distinct cutoffs for specific pairs of elements. With the inclusion of a new custom [AD
option in XTALOPT version r11,* each element pair may be assigned an individual IAD restric-
tion through an editable table, as illustrated in Fig. 4(a). In the first random generation, unit cells
are created according to the user specified constraints, and subsequently filled with atoms. A check
is performed to ensure compliance with the IAD restrictions. If the check fails, the program at-
tempts a different placement, iterating until all atoms are placed within acceptable IAD limits or
the structure is discarded following 1000 failed attempts. Minimum IAD values can also optionally
be checked following the local optimization steps. If this option is chosen, structures that do not

meet the IAD criteria will be marked as failed, and will be excluded from the breeding pool.
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Mbolecular Unit Builder

Many of the well-known molecular CSP algorithms have been tailored towards organic crystals,
such as the targets in the Cambridge Crystallographic Data Centre (CCDC) blind tests.%?"7 Dis-
crete units are also ubiquitous in important classes of inorganic materials including complex hy-

drides, 1815 expanded metal compounds, '®* hybrid organic-inorganic perovskites, 161162

and poly-
hedral clusters such as those present in Zintl compounds,'®* cluster-containing intermetallics, !4
white phosphorus, ' and various phases of boron.'%® A molecular unit building option, which was
implemented in XTALOPT version r10,*} was designed to facilitate the prediction of inorganic
compounds that contain such basic discrete units. This algorithm creates molecules that assume
any of the Valence Shell Electron Pair Repulsion (VSEPR) geometries up to octahedral in the first
random generation. The stoichiometry, coordination, and geometry assumed by the molecular unit,
the identities of the central atom and the atoms at the vertices, as well as the distances between
them, need to be defined, as shown in Fig. 4(a). A “no-center” molecular unit may also be specified
by choosing “None” for the central unit. This option can be useful for searches on clusters that do
not have a central atom, such as polyanion-containing Zintl phases. In some situations, the evolu-
tionary operators can break the discrete units apart. However, because the energies of the resulting
structures will typically be high, they will not be added to the breeding pool. This means that the
EA search will preferentially explore regions of the PES corresponding to intact molecules. The
molecular unit option is compatible with the mitosis operator used to construct large unit cells, but
cannot be used in concert with RANDSPG .

Consider, for example a SiHg composition with four formula units for which it is desirable
to bias the search towards compounds containing 4SiH, tetrahedra and 4H; molecules. All four
Si atoms would be chosen as the central atom, each coordinated with four neighboring hydrogen
atoms at a user specified distance, required to fall within the IAD criterion. The particular geomet-
ric arrangement of the hydrogens surrounding the Si can then be defined — in this case tetrahedral,
see-saw, or square planar are all possibilities. Random structures are generated by first placing the

central atoms and surrounding neighbors, followed by the remaining atoms (in this case, the eight
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hydrogens not involved in the molecular SiH4 units) randomly throughout the unit cell.

Mitosis

In the original implementation of XTALOPT the placement of atoms within the unit cell in the
first generation was done completely randomly, subject to the IAD restraints. However, for large
complex cells this method yields structures that are likely to have virtually no local order, as illus-
trated in Fig. 5(a). Such disordered parents produce offspring with overly high inherent disorder
and low diversity, thereby slowing down the identification of more ordered lower enthalpy struc-
tures. To overcome this problem, Oganov and co-workers introduced the “cell-splitting” technique
and implemented it within USPEX. 37167 In this method the original set of random structures is
generated via replicating smaller subcells to form a full unit cell that is more ordered, as shown
in Fig. 5(b). These smaller subcells contain 15-20 atoms and several splittings are employed con-
currently. When the stoichiometry of the system is not conducive towards generating identical

subcells, atoms are deleted to maintain the correct composition.

(@) (b)

Figure 5: An example of a unit cell that could be generated (a) purely randomly, and (b) by using
mitosis. The dashed black lines in (b) highlight the replicated subcells .

A similar technique, dubbed “mitosis”, was introduced within X TALOPT version r9.*? The al-
gorithm determines the number of formula units present. The user defines how many subcells will
be replicated, and the number of replications along each lattice vector that will be employed to
make the supercell. The code is also able to handle stoichiometries that lack a common denomi-

nator and therefore a simple reduction into single formula units. For example, the stoichiometry
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NasH;4 can be defined as two units of NaH, with an extra Na atom. In this case, the mitosis method
will produce a two-cell supercell based on an NaH; subcell, and a single Na atom will be added

randomly to the supercell, subject to the IAD constraints.

RANDSPG Implementation

Inorganic crystals tend to adopt symmetric structures, and enforcing symmetry in CSP algorithms
can speed up finding the global minimum. For instance, a search among the entries in the Inorganic
Crystal Structure Database (ICSD) in 2006 revealed that over a quarter of inorganic crystals assume
one of the Pnma, P2,/c, Fm3m, and Fd3m space groups, while only 1% crystallize in the P1

168 Many CSP codes that employ symmetry in the initial generation place atoms on

space group.
sets of Wyckoff positions that belong to space groups consistent with the desired stoichiometry.
In USPEX atoms are placed on general Wyckoff positions, and the symmetry operations of the

space group are applied to determine the equivalent positions. !¢’

Atoms that wind up too close to
one another are merged into a single site with averaged coordinates. The initialization procedure
of CALYPSO'® works similarly, and atoms are placed on combinations of Wyckoff positions
compatible with the system stoichiometry, although with the interesting caveat that repeated space
groups are disfavored by 80% to enforce coverage of a wide swath of search space.

RANDSPG , an algorithm that can be used as a stand-alone structure generation protocol or
in tandem with XTALOPT ,* first determines all possible combinations of Wyckoff positions for
the given composition, and groups those with the same multiplicities and uniquenesses to speed
this search. Atoms are placed in lattices that are commensurate with the space group symmetry
according to one of the combinations of Wyckoff positions, subject to the IAD criteria. Because
some space groups share Wyckoff positions with smaller multiplicities, the most general Wyckoff
position must be used at least once in RANDSPG to ensure the correct space group is generated.
However, the option to use the most general Wyckoff position at least once was turned off in

XTALOPT to allow smaller formula unit crystals to be used for space groups that have a large

multiplicity for the most general Wyckoff position. To compensate for this, SPGLIB is employed
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Figure 6: The Spacegroup Options table in XTALOPT .

for symmetry detection to ensure the correct spacegroup is generated. The spacegroups are chosen
randomly unless the “Spg Options” button in Fig. 4(a) is checked. In this case, the Table in Fig.
6, which gives the user further control over the search, appears. The table displays the formula
units that may produce certain space groups, allows the user to decide how many structures of each
spacegroup will be generated, and omits spacegroups that are incompatible with the composition
and the formula units specified. If RANDSPG fails to create a requested spacegroup XTALOPT will
skip over it. If the number of generated crystals is not enough for the defined initial population
size after all requested space groups have been attempted, randomly selected space groups will
be made. When initializing an XTALOPT search with RANDSPG , it is recommended that a large
initial population is employed because the algorithm samples the PES widely, creating structures
that are both very high and very low in enthalpy, which are unlikely to be generated randomly

without symmetry constraints.
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In the standalone version of RANDSPG the user may choose not to enforce occupation of the
most general Wyckoff position, or to specify that a particular element occupies a user defined
Wyckoff position. Although these options are not included in the RANDSPG version interfaced
with XTALOPT, they can be used to create structures that can serve as “seeds” in a standard EA

search.

Niching with XTALCOMP

Maintaining diversity in the gene pool used for CSP is of utmost importance since the search can
become biased towards regions of the PES that were initially sampled, leading to convergence on
a structure that is not the global minimum. However, enforcing too much diversity is a double-
edged sword, as the failure of the most stable structures to proliferate can slow exploration of low
lying regions of the PES. Together, this indicates the need for accurate, reliable, and well-tested
duplicate identification procedures.

In the initial release of XTALOPT , structural fingerprints based on unit cell volumes, space
groups and enthalpies were compared, resulting in many false positives. More accurate finger-
printing methods include those based on pair distribution functions and diffraction patterns as in
USPEX, '%” or bond characterization matrices derived from bond angles and lengths as in CA-

6 or maintain lists of

LYPSO.!'® Other packages introduce a penalty term for similar structures, 4
coordinates and lattice parameters against which new structures are continually checked. '*

Since XTALOPT version r8 the XTALCOMP library*’:!7" has been used to identify duplicates
via direct mapping of structures onto one another. Two crystals with standardized orientations and
Niggli-reduced cells are compared within XTALCOMP . Candidate transforms that map a set of
reference vectors from one unit cell onto the lattice vectors of the reference cell are determined.
If one of these results in every atom from the transformed cell being mapped onto one in the
reference cell, the two are flagged as duplicates. If no such transformation is found, the two are

deemed to be unique. The tolerance for the mapping criterion can be edited in the ‘Search Settings’

tab of XTALOPT shown in Fig. 4(b). Tests have revealed that an EA search using the XTALCOMP
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algorithm outperforms one that employs the original approximate duplicate matching scheme.*’
Moreover, it has been shown that XTALCOMP can differentiate between phases differing by the
position of a single atom, with only one of the phases being dynamically stable at atmospheric

conditions, highlighting the importance of an “exact” duplicate matching scheme. '

Searches with Multiple Formula Units

One of the difficulties in CSP is that the number of formula units (FUs) in the global minimum
for a given chemical composition is often unknown. To address this problem a number of CSP
algorithms including CALYPSO, '® USPEX '*” and GASP!* have developed techniques enabling
simultaneous searches on multiple FUs. The details of these implementations vary, and herein
we describe the method first available in version r10 of XTALOPT.** A related problem is that
the stoichiometries that are stable and metastable also need to be determined. Towards this end
Trimarchi and Zunger introduced a technique to scan the composition space.'** Subsequently,
derivative methods have been introduced in many CSP codes. Because such searches would be
extremely computationally demanding this method was not implemented within XTALOPT , and
we suggest that a separate run is carried out for each stoichiometry instead.

In the ‘Structure Limits’ tab, shown in Fig. 4(a), the number of FUs to be considered in the
XTALOPT search must be specified. By default, each set of FUs maintains a separate gene pool,
although stable structures can seed the gene pools of other FUs if they can be accessed via primitive
reduction or supercell generation. Crossovers between structures with different FUs, as shown in
Fig. 7, can also be performed if this option is chosen in the ‘Search Settings’ tab (Fig. 4(b)). In
such a situation, the sum of the contributions of the two parent crystals is not required to be 100%,
as the FU of the offspring must only be a valid choice, and not necessarily the same as that of the
parents. The option to allow FU crossover can be turned on partway into a run, for example at a
user-defined generation, to allow individual FUs to first find locally stable structures before being
influenced by other FUs.

All FUs can also share a single gene pool, comparing structures based on their enthalpy per
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Figure 7: Formula unit crossover in XTALOPT . Top: Generation of 5 FU offspring unit cell from
one 5 FU parent crystal with 80% contribution, and 2 FU parent crystal with 50% contribution.
Bottom: Two parent crystals with 2 FUs and 75% contribution each produce an offspring structure
with 3 FUs.

FU. Because this option biases the search toward FUs that have generated the most stable structures
thus far, it is best to turn it on later in the run, once each FU has sufficiently explored its PES. This
approach may enable the search to evolve towards the most stable FU. If the ‘allow initial mitosis’
checkbox in the ‘Search Settings’ tab is chosen, supercells will be generated from smaller FUs.
The main difference between this implementation of mitosis, and the one chosen in the ‘Structure
Limits’ tab, is that here the small FUs are first optimized, and the larger cell is generated from a
supercell that has been subject to mutations. Sharing a gene pool also enables the option ‘Chance
of later mitosis: n%’, which results in an n% chance that a structure selected for procreation will

be employed to build a mutated supercell.

Searching for Superhard Materials

In addition to finding particularly stable compounds, CSP algorithms can also be tailored to search
for materials with desired properties. Because superhard systems are important in various applica-
tions including cutting and polishing, or as abrasives and in armor, the widely used CSP programs

USPEX, 17! and CALYPSO!”? have implemented a technique for their prediction. Knoops or
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Vickers hardnesses are estimated using microscopic models that require as input quantities that
can be obtained from the crystal structure, or rapidly computed.'’*!”* Instead of solely using a
thermodynamic quantity to determine a structure’s fitness, the hardness values are also considered.
However, the microhardness models used to estimate hardness are known to fail, as in the case of
T-carbon, a porous structure that was erroneously predicted to be superhard by such a model.!”> A
macroscopic model, on the other hand, gave values that agreed with physical reasoning.!7®
Macroscopic hardness models, which are based on elastic properties such as shear and bulk
moduli, are far more robust than microscopic ones. Unfortunately, first principles calculations of

177,178

the elastic moduli are extremely time consuming, because up to 24 geometry optimizations

may be necessary for a single structure. To remedy this problem version r12 of XTALOPT®

d!” with a machine learning (ML) model, ' trained on materials within the

has been interface
AFLOW (Automatic FLOW) database, to predict a crystal’s Voigt-Reuss-Hill average values of
the shear, Giyry, and bulk, Byry, moduli.'3"-182 Tests on structures whose hardness values are
known, as well as crystals generated during the course of an evolutionary search illustrated that
the Teter model 1831%* provides the most robust estimate of the Vickers hardness, via the equation
H, = 0.151Gygru, when ML values of the moduli were employed. '%

It is desirable to predict superhard materials that could be made in experiments, meaning that
they are local minima whose energies are not too high. Therefore, the new fitness function imple-
mented within XTALOPT considers both the energy/enthalpy of an individual, £;, as well as its

ML Vickers hardness, I, ;. The probability, p;, that a structure is chosen for procreation is then

calculated as:

vaax - Hvz' E@ - Ernin
=N|1- ’ ) (1 — ) (2 D
bi [ v (Hv,max - Hv,min) ( w) (Emax - Emin) ’ (3)

where Hyma/Hymin, and Epa/Erin are the highest and lowest Vickers hardnesses, and energies

or enthalpies in the breeding pool. The user defined weighting factor, w, can be chosen to favor

either stable or hard structures in the search, and the normalization constant, NV, is determined so
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Figure 8: (left) The Vickers hardness, H,, vs. the energy of structures generated during the CSP
searches carried out on the carbon system in Ref. '8 The horizontal dashed line corresponds to
H, = 40 GPa, and the vertical line to ¥ = —8.80 eV/atom. The phases in the yellow quadrant are
low in energy and superhard. Some experimentally known or previously predicted structures are
pointed out: lonsdaleite (lon), diamond (dia), Z-carbon (sie), W-carbon (cnw), M-carbon (cbn),
bet-Cy (crb), Y-carbon (cag), and bc8 (gsi). (right) Two of the newly predicted superhard phases
along with their machine-learned f,. The cages colored in blue are related to diamond, and those
in yellow and green are related to lonsdaleite.

that > p; = 1. Choosing the option ‘Calculate the hardness with AFLOW ML?’ in the ‘Search
Settings’ tab will prompt XTALOPT to obtain the ML-derived shear moduli of optimized crystals
via a RESTful API'” so their hardness values may be estimated.

This implementation was tested on the carbon system, and searches were carried out on cells
containing 8, 12, 16, and 20 FUs. '3 The enthalpies and Vickers hardness values of all of the
optimized crystals are plotted in Fig. 8. Thirty-six previously known structures, and forty-three
new, low energy, metastable, superhard phases were identified. Many of the novel phases, two of
which are shown in Fig. 8, were composed of bits of diamond, lonsdaleite (hexagonal diamond),

or other known superhard materials.

Benchmark Calculations

Quantifying the performance of CSP methods is difficult because of their stochastic nature. Con-

sider an EA search where there is always a finite, albeit potentially small, probability that the
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global minimum structure appears in the first random set of individuals, or not at all. Moreover,
because various parameters in the evolutionary operators are chosen randomly, as are the parents,
each search may explore different areas of the PES. As a result, an EAs performance can only
be quantified if many searches using the same parameter set are carried out and the results are
analyzed statistically. Unfortunately, these types of benchmarks on large and complex unit cells
are too expensive for first-principles methods. Therefore, we have chosen systems where reli-
able interatomic potentials are available,’? in particular a 16 FU supercell of TiO, (48 atoms), for
which the rutile structure is the global minimum, and a 10 FU supercell of the ternary SrTiO3 (50
atoms), which crystallizes in a perovskite structure. These systems have previously been used in
benchmarks carried out with various CSP codes. 40:47:48.167.169

A number of metrics can be employed to quantify how well a particular CSP algorithm per-
forms, with the most obvious being the success rate. Others include the best and average number
of structures required to find the global minimum, as well as the standard deviation. It can also be
illuminating to determine what percentage of structures correspond to the global minimum when
they are generated quasi-randomly, i.e. using the same constraints as those in the CSP search.
Comparison with the trajectory of the EA illustrates the advantage of the evolutionary approach,
and how the parameters and options employed shape its trajectory.

Towards this end, we randomly generated 9000 structures with the Ti 03, stoichiometry, and
carried out 100 XTALOPT searches with 600 total structures per run using the aforementioned de-
velopments and interatomic potentials parameters. Table 1 provides the metrics for the six different
sets of searches performed. In the “normal” run the shortest interatomic distances were determined
using a scaling factor of 0.4 multiplied by the sum of the covalent radii. These results can be com-
pared to searches using custom minimum [AD constraints, and those that employed RANDSPG for
the first generation. The mitosis method was tested using three different sized subcells. Previous
benchmarks on this system showed that a larger number of structures in the initial generation ac-
celerated the search if it was performed using RANDSPG , but a smaller number of structures was

beneficial otherwise.*® The reason for this is that RANDSPG samples the PES more thoroughly,
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whereas large unit cells that are created purely randomly tend to have a high degree of similarity.
Therefore, for the “normal”, minimum IAD, and mitosis runs 20 random structures were used in
the initial generation, whereas for RANDSPG this number was increased to 50. Because rutile
does not contain any discrete molecular units, it is unlikely that the molecular unit builder would

improve the search, so this development was not tested.

Table 1: Benchmark tests carried out on TiO, with 16 formula units in the unit cell.

\ Random ¢ \ Structure Search °

Method % Min. | % Success Best Finish Average Finish o

normal ¢ 0.28% 100% 6 97 59

min. IAD ¢ 1.39% 100% 1 62 64
RANDSPG 3.40% 100% 1 47 55
mitosis —2 x 1 x 1 0.99% 100% 2 99 76
mitosis —2 X 2 x 1 10.36% 100% 1 16 24
mitosis — 2 x 2 x 2 28.82% 100% 1 4 3
USPEX — normal &/ — 100% — 80 69
USPEX — symmetry &/ — 100% — 77 76
USPEX - cell splitting “9 — 100% — 41 40
CALYPSO - normal " 0.00% 100% — 500 —
CALYPSO — symmetry ™ | 6.25% 100% — 220 —

¢ 9000 structures were randomly generated and locally optimized to the nearest stationary point.
b 100 separate evolutionary searches were carried out, each with 600 locally optimized structures.
The searches that used RANDSPG generated 50 random individuals; all other searches employed
20 random individuals. The volume was fixed to 30.3125 A3 per FU.

¢ A scaling factor of 0.4 multiplied by the sum of the covalent radii yielded the following mini-
mum distances: Ti-Ti 1.28 A, 0-0 0.52 A, Ti-O: 0.90 A.

dTAD employed: Ti-Ti 3.00 A, 0-02.00 A, Ti-O: 1.00 A.

¢ Reference 167.

100 searches were conducted with up to 400 structures per run.

9 73 searches were conducted with “split-factors” of 2 and 4; soft-mutation was employed.

h Reference 169.

#3250 structures were locally optimized to benchmark the generation of random structures. The
PSO algorithm was benchmarked by carrying out 10 searches until the global minimum was

found.

Before discussing the results of the evolutionary runs, let us take a quick look at how well
these parameters performed in a quasi-random search. In the “normal” run 25 out of 9000 Ti;603;
structures, or 0.28%, corresponded to rutile, suggesting that ~360 individuals would need to be

generated to have some assurance the global minimum would be found at least once. Rutile was
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generated 125 times (1.39%) using the custom IAD option, clearly illustrating that simple chem-
ically motivated constraints are extremely beneficial within CSP. With RANDSPG the probability
of finding rutile increased to 3.40%. It should be noted that this number is highly dependent upon
the exact structural constraints applied. In the manuscript introducing the RANDSPG technique a
success rate of 1.78% was obtained, but it was also shown that this number can be as high as 23.8%
when the exact cell parameters and interatomic distances found in rutile are used.*® Because the
mitosis method generates subcells consisting of 8, 4, and 2 FU and uses them to create 2 x 1 x 1,
2 x 2 x 1and2 x 2 x 2 supercells, respectively, it is easy to understand why mitosis dramatically
improved the chances of finding rutile randomly as compared to the “normal” run: the problem is
effectively reduced to randomly creating the 2 FU primitive cell of rutile within the subcell.

All of the CSP searches identified rutile as the global minimum. For each benchmark the best
finish was less than 20, meaning that rutile was found at least once in the randomly generated set
of structures. The average finish for mitosis with 8 FU was similar to that of the “normal” run.
As compared to the “normal” search, custom IAD constraints decreased the average number of
structures needed to find rutile by 36%, and RANDSPG decreased this number by a little over 50%.
For mitosis with 4 and 2 FU supercells the average finish was smaller than 20 suggesting that a
purely random search is likely sufficient to locate the global minimum using these approaches.

167 shows that cus-

Comparing XTALOPT to another popular evolutionary algorithm, USPEX,
tom IAD constraints yielded similar average finishes to a normal USPEX run (which employs
these constraints by default). RANDSPG gave significantly lower average finishes (47) than the
technique used to generate random symmetric structures in USPEX (77). Finally, “split-factors”
of 2 and 4, corresponding to subcells containing 8 and 4 FUs, found the global minimum by 41
structures on average in USPEX , which is not too different than the average taken for the mi-
tosis method using subcells of the same size (58). Comparing to the CALYPSO'® algorithm,
XTALOPT was able to locate the global minimum much more quickly both in a “normal” run and

when symmetry constraints were employed (97 vs. 500, and 47 vs. 220 structures, respectively).

As shown in Table 2, for the more complex ternary SrTiO; with 10 FU and 50 atoms in the
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unit cell the global minimum structure could not be found even once when 9000 individuals were
generated quasi-randomly using both the “normal” settings, and via RANDSPG . When chemically
motivated minimum [AD constraints were employed, the perovskite structure was generated once,
and this number increased to six when a 5 FU subcell was used to create a 2 x 1 x 1 supercell.
Comparing with the results obtained for the 48 atom TiO, supercell clearly shows that the ternary
is much more difficult to predict than the binary. Not surprisingly, when a 2 FU subcell was

replicated 5 x 1 x 1 times the success rate improved to 19.20% (1741 structures).

Table 2: Benchmark tests carried out on SrTiO; with 10 formula units in the unit cell.

Random“ \ Structure Search ¢
Method % Min. | % Success Best Finish Average Finish o
normal ¢ 0% 69% 208 892 351
min. IAD © 0.01% 53% 59 739 392
RANDSPG 0% 78% 44 805 339
mitosis —2 x 1 x 1 0.07% 81% 10 643 410
mitosis —5 X 1 x 1 19.20% 100% 1 6 5
USPEX — cell splitting /9 — \ 94% — 524 297

%9000 structures were randomly generated and locally optimized to the nearest stationary point.
b 100 separate evolutionary searches were carried out, each with 1500 locally optimized struc-
tures. All of the searches generated 50 random individuals. The unit cell volumes were con-
strained to 59-60 A3 per FU.

¢ The average finish is based upon the completed runs, and did not include the runs that did not
find the global minimum.

4 A scaling factor of 0.4 multiplied by the sum of the covalent radii yielded the following min-
imum distances: Sr-Ti: 1.42 A, Sr-O: 1.04 A, Sr-Sr: 1.56 A, Ti-O: 0.90 A, Ti-Ti: 1.28 A, 0-O:
0.52 A

¢ IAD employed: Sr-Ti: 2.50 A, Sr-O: 1.50 A, Sr-Sr: 3.00 A, Ti-O: 1.20 A, Ti-Ti: 3.00 A, 0-O:
1.50 A

f Reference 167.

9 35 searches were conducted with about 1000 structures per run, and using “split-factors” of 2
and 4.

Turning to the performance of the EA search, the original implementation of XTALOPT found
perovskite SrTiOs in only 7-12% of runs that optimized 1000 structures each.*’ Table 2 shows
the results obtained here for searches that generated 50 random structures and optimized a total of
1500 individuals. Clearly, the developments described above dramatically increased the success

rate, even though not all of the searches found the global minimum. Therefore, the average finish
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and standard deviation columns should be taken with a grain of salt, as the numbers were obtained
using only the data from the successful runs. The “normal” search had a slightly higher success
rate than when custom IAD restraints were employed (69% vs. 53%), but it had a significantly
larger “best finish” (208 vs. 59 individuals). The IAD success rate could be improved by using a
different set of minimum IAD parameters, however care must be taken to avoid values that are too
restrictive and lead to a large number of individuals being discarded prior to local optimization.
Using RANDSPG in the first generation increased the success rate to 78% and decreased the “best
finish” to 44, highlighting again the power of random symmetric initialization in a CSP search.
The mitosis method was used to create subcells consisting of 5 and 2 FU (containing 25 and 10
atoms, respectively) and replicate them accordingly. The former had a success rate similar to that
of RANDSPG , and unsurprisingly the latter was the only method that consistently located the
global minimum with a success rate of 100%.

SrTiO; was also employed to benchmark USPEX , with runs that used “split-factors” of 2
and 4 (subcells containing 25 and ~12 atoms). '’ These parameters closely resemble our mitosis
2x1x1landb5 x 1 x1settings. USPEX attained a success rate of 94% after 1000 structures were
optimized, and this value increased to 100% when when the runs generated 1750 individuals. This
suggests that the performance of cell-splitting in USPEX is similar to mitosis within XTALOPT .

Because we were not able to find reliable potential parameters for inorganic materials that con-
tain the types of discrete molecular entities for which the molecular unit builder in XTALOPT was
designed, it was necessary to carry out benchmarks using Density Functional Theory (DFT) cal-
culations. Unfortunately, it would be prohibitively expensive to carry out hundreds of DFT-based
EA searches, making it impossible to obtain statistical data about the performance of the molec-
ular unit builder. Nonetheless, a comparison of the results of a single EA run carried out using
the molecular unit builder, to one without is still able to clearly illustrate how this development
accelerates the search.

Our tests showed that the molecular unit builder coupled with DFT optimizations successfully

predicted the crystal lattices illustrated in Fig. 9: Pnma LiBH, (Z = 4),'% and C2/c NaSi
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Figure 9: The global minima for XTALOPT searches carried out using the new
molecular unit builder implementation: (a) Pnma LiBH4, ' and (b) C2/c NaSi.'¥’
Boron/lithium/hydrogen/silicon/sodium atoms are colored green/purple/pink/grey/yellow.

(Z = 16).'¥ When BH; tetrahedra were treated as discrete units in the randomly generated set
of individuals, the global minimum was found by the 249'" structure. For comparison, the most
stable phase located in an atomistic search wherein 630 individuals were optimized was found on
the 521" relaxation. This structure has P1 symmetry and contains two BH, ™ units, one B,Hj unit
and an H, unit, and it was 56 meV/atom less stable than the global minimum. The prototypical
Zintl phase of NaSi was found by XTALOPT by the 583" structure when molecular units were
employed. When they were not, the lowest energy structure obtained after 600 relaxations was still
16 meV/atom higher in energy than C'2/c NaSi. These tests show that the molecular unit builder

dramatically accelerates the prediction of crystals containing clusters or simple molecules.

Applications of XTALOPT

Because EA based CSP techniques learn from their history, whereas purely random searches do
not, the former typically outperform the latter. Metadynamics, simulated annealing, and minima
hopping perform best when exploring a limited region of the PES, so multiple runs with different
starting configurations may be required to predict a crystal whose structure is totally unknown.
The PSO technique and EAs are the methods of choice for predicting novel materials without any
experimental information because they are able to broadly sample the PES while at the same time
thoroughly exploring the most promising areas. The XTALOPT EA has been designed for pre-
dicting the structures of three dimensional crystals where the atoms can be treated independently,

or those containing simple single-centered molecular units. When interfaced with a program that
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optimizes molecules using first-principles calculations the most complex systems our group has
carried out searches on were ternaries with up to ~125 atoms in the unit cell. If experimental
lattice parameters are known, the mitosis method can be employed, or if simple molecular units
are present, systems that are more complex can potentially be considered. However, for predict-

87,89

ing molecular crystals, when data from large materials databases can be used to accelerate the

h, 37-39

searc or when searching for emerging ordered structures in a disordered system, for exam-

188,189

ple, during crystal nucleation other algorithms may be preferred. Interfacing CSP methods

with machine-learning interatomic potentials is sure to increase the complexity of the structures
that can be predicted in the near future. '°%!1!

With this in mind, currently the XTALOPT EA has successfully been employed to predict
the structures of a number of atomistic inorganic crystals, a few recent examples can be found in
Refs. 127293 Our group has mostly applied XTALOPT to study hydrides under conditions of extreme
pressures, 77204220 because they have the potential to behave as conventional (Bardeen-Cooper-
Schrieffer) high-temperature superconductors.?%?” This line of reasoning can be traced back to
Ashcroft who pointed out that hydrogen,??! and hydrogen-dominant alloys?*? could have all of the
properties required for conventional high-temperature superconductivity (large electron-phonon
coupling, high density of states at the Fermi level, wide bands and high vibrational frequencies).

Whereas the metallization of hydrogen has been fraught with difficulties, tremendous advances
have been made in the search for superconductivity in compressed hydrides. CSP techniques cou-
pled with DFT calculations have predicted the most stable and interesting metastable binary hy-
drides and studied their propensity for superconductivity.?® Two regions of the periodic table turn
out to be particularly promising. The first are alkaline earth or rare earth polyhydrides, where ex-
ceedingly large 7.s have been predicted for compounds that are composed of hydrogenic clathrate
lattices; one of these, F'm3m LaH,j, is illustrated in Fig. 1(c). The other region is found in the p-
block elements, with a hydride of sulfur being the binary with the highest 7. (203 K near 150 GPa).
This Im3m HsS phase was synthesized?* at about the same time it was theoretically predicted.?**

As shown in Fig. 10(a) it is formed from two interpenetrating perovskite lattices where each S
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atom is octahedrally coordinated by H atoms, and each H atom is bonded to two S atoms.

(a) Im3mH,S (b) Pnma CSH, (c) P6m2 CaSH,
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Figure 10: Superconducting high-pressure hydride phases based on H-S lattices: (a) Im3m
H3S,%** (b) Pnma CSH7,2" and (c) P6m2 CaSHs. Sulfur/hydrogen/carbon/calcium atoms are
colored yellow/white/brown/green.

Ternary hydrides are the next frontier, and the developments that have been made in CSP are
enabling the theoretical exploration of their phase diagrams. Recently, we have uncovered two
classes of metastable hydrides related to H3S as shown in Fig. 10(b,c). Our group,?!” and oth-
ers>? have found that a number of CSH stoichiometry phases, differing in the number of formula
units comprising the unit cell and the orientations of the methane molecules intercalated within the
H;S framework emerge as being metastable at ~100 GPa. Electron-phonon calculations predicted
T.s as high as 194 K at 150 GPa,?"” and 181 K at 100 GPa.?? These results suggest that other
superconducting materials could be attained by varying the chemical identity of the intercalant, in-
cluding noble gases?? or other small molecules. Remarkably, experiments have recently measured
room-temperature superconductivity (7, as high as 288 K at 267 GPa) in one or more hydrogen
rich CSH,, phases that have yet to be characterized.??” Currently, it is not clear if the CSH; phases

predicted in Refs.?!%2%

could account for the experimental results since their computed 7.s de-
crease with increasing pressure, but experimentally the opposite trend is observed. One reason for
the discrepancy might be that the computations were carried out in the static lattice approximation,
neglecting the effect of temperature, quantum nuclei, and anharmonic effects, which are known to
be important for the properties of high-pressure hydrides.?*8

The second ternary phase we predicted is composed of honeycomb HS layers separated by

layers of CaH,.??° It was computed to be thermodynamically stable at 300 GPa when the zero-
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point energy was included, and remained metastable down to 128 GPa, at which point it achieved
its highest calculated 7. of 100 K. We suggested that replacing S by Se or Te, and/or Ca by Mg,
Sr or Ba would yield other superconducting materials that might be stable over a wider pressure

range.

Conclusions

Spectacular advances in algorithms for a priori crystal structure prediction, coupled with devel-
opments in computer hardware and software have facilitated inverse-materials design. Recent
materials-by-design success stories show a glimpse of what the future may hold. In this Feature
Article we have described some of the main computational techniques that can be used for au-
tomated crystal structure prediction without using any experimental information. This includes
the generation of random lattices, simulated annealing, minima hopping, metadynamics, particle
swarm optimization and evolutionary algorithms (EAs). Among the advantages of EAs is that they
can both broadly sample the potential energy landscape, as well finely explore the most promis-
ing regions. Moreover, they can be biased with crystal prototypes or constrained by experimental
observables.

Our focus i1s on the XTALOPT EA developed in our group, which is available to the scientific
community under well-recognized open source licenses (GPL releases 10 or earlier, BSD releases
11 and 12). XTALOPT is cross-platform, can be used on various queuing systems, and has been
interfaced with a number of programs designed for periodic lattices (e.g. GULP for interatomic
potentials, and VASP, PWscf, CASTEP, SIESTA for first-principles calculations). The XTALOPT
EA can be executed either using an intuitive and flexible graphical user interface (GUI) or a com-
mand line interface (CLI). The results of each type of run can be analyzed and post-processed via
the GUI that is based on the AVOGADRO molecular editor, builder and visualizer.

We describe the GUI features available including functionality to visualize and manipulate

crystals, and visualize their calculated XRD patterns within AVOGADRO. Moreover, we outline
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new developments, including generating the initial set of structures using custom interatomic dis-
tance constraints, random symmetric structures, or discrete molecular units that assume any of the
Valence Shell Electron Pair Repulsion geometries up to octahedral. We further show that repli-
cating small subcells to create larger supercells in the first generation can accelerate locating the
global minimum of large, complicated unit cells, and discuss how searches can consider multiple
formula units simultaneously. The XTALCOMP duplicate matching scheme is described. Finally,
we present a novel algorithm that employs a machine-learned estimate of a material’s Vickers
hardness, in conjunction with the computed energy or enthalpy to search for superhard materials.
Benchmark calculations on binary and ternary compounds with lattices containing ~50 atoms
in the unit cell are carried out to test our new developments. The tests clearly show improvements
in the success rate, and decrease in the average number of structures that need to be optimized
to locate the global minimum. We demonstrate that using molecular units in the first random
generation accelerates the discovery of the most stable structures of LiBH, (Z = 4) and the Zintl
phase NaSi (Z = 16). Finally, we briefly outline our applications of XTALOPT to hydride materials
under pressure, and discuss two new families of superconducting ternary compounds that it has

discovered.
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