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Abstract—Our goal in this work is to build effective yet robust
models to predict unreliable and inconsistent in-kind donations
at both weekly and monthly levels for two food banks across
coasts: the Food Bank of Central Eastern North Carolina in
North Carolina and Los Angeles Regional Food Bank in Cali-
fornia. We explore three factors: model, data length, and window
type. For the model, we evaluate a series of classic time-series
forecasting models against the state-of-the-art approaches such
as Bayesian Structural Time Series modeling (BSTS) and deep
learning models; for the data length, we vary training data from
2 weeks to 13 years; for the window type, we compare sliding vs.
expanding. Our results show the effectiveness of different models
heavily depends on the data length and the window type as well
as characteristics of the food bank. Motivated by these findings,
we investigate the effectiveness of employing an average of all
predictions formed by considering all three factors at both monthly
and weekly levels for both food banks. Our results show that this
average of predictions significantly and consistently outperforms
all classical models, deep learning, and BSTS for the donation
prediction at both monthly and weekly levels for both food banks.

Index Terms—Food Insecurity, Humanitarian Supply Chain,
Bayesian Structural Time Series, Long Short Term Memory,
Training Length, Expanding and Sliding Window

I. INTRODUCTION

Food insecurity in a household refers to the inability to
obtain nutritious food to maintain a healthy and active lifestyle
for the entire family [1]. More than 37 million Americans,
including over 11 million children, experienced some sort
of food insecurity in 2018 [1, 2]. Due to COVID-19, these
numbers more than doubled by April 2020 [3]. Hunger relief
organizations such as food banks attempt to meet the needs
of the food insecure [4]. These organizations achieve these
goals by recovering surplus food from a variety of sources and
distributing it to charitable agencies that in turn, distribute this
food to food insecure populations. Now more than ever before,
there is an urgent need for building effective, efficient, and
equitable food distribution systems that provide food equitably
to those in need, efficiently maximize the yield of the donated
supply minimizing waste, and distribute food in a cost effective
manner. However, the distribution networks of food banks
are dynamic and consist of multiple configurations (e.g., hub
and spoke) with many charitable autonomous agency partners
that receive donated food. Many food banks depend on both
in-continuous and non-obligatory donations from benefactors

[5, 6]. As a result, food aid distribution is challenged by the
unpredictable timing and quantity of the donated food supply
which in turn, makes transportation needs, usage, and routes
difficult to anticipate [6, 7].

Our goal in this work is to build an effective yet robust model
to predict in-kind donations made to food banks. Generally
speaking, donations made to food banks can be classified as
monetary vs. in-kind. The former refers to cash donations
from the federal and state governments and offers flexibility
in management, while the latter refers to non-cash donations
made by individuals and retail donors that vary from day to
day [5, 6]. In-kind donations require the immediate assignment
of manpower to manage them. In one of the food banks in this
work, for instance, over half of the food distributed is perishable
[8]. Food banks are unable to provide adequate refrigeration and
storage due to uncertainty about in-kind donations, which can
lead to food wastage [6]. Predicting these donations in advance
not only helps food banks plan storage facilities for fresh and
nutritious food better, but also helps them plan distributions
that are equally distributed [7].

While in-kind donations are important, they can be very
challenging to predict as there are so many variables such as
income, social status, age, and gender that impact non-cash
donations from retailers and individuals [9, 10, 11]. In addition,
unobserved factors such as empathy can be a driving force
in individual donors’ donations [12] while retail donations are
susceptible to changes in the economy, which is volatile, and
to customer consumption patterns [5].

In this work, we investigate in-kind donations for two food
banks on opposite coasts of the United States: The Food Bank
of Central and Eastern North Carolina (FBCENC) in North
Carolina (NC) and Los Angeles Regional Food Bank (LARFB)
in Los Angeles, California. At both the monthly and weekly
levels, we investigate the impact of three factors: the model,
the data length, and the window type.

For the model, we explore classical time-series models
including Autoregressive Integrated Moving Average Model
(ARIMA), Simple Moving Average (MA), Exponentially
Weighted Moving Average Model (ETS) as well as advanced
models such as deep learning models such as Long Short
Term Memory (LSTM) and Bayesian Structural Time Series
Models (BSTS). For the data length, we vary data length from



2 weeks to 13 years since the length of training data can greatly
influence donation predictions and different tasks often have
different “optimal” data lengths [13, 14, 15, 16, 17, 18, 19].
When it comes to the training windows, we compare expanding
vs. sliding windows. In the former, the origin of the data
remains fixed so that the training data expands with each time-
step, whereas in the latter, the origin of the data slides so that
the length of training data remains fixed with each time-step.
Studies have shown that expanding windows are more effective
for tasks involving long-term dependencies [14, 16, 20, 21, 22]
while sliding windows are more suitable for tasks involving
short-lived trends in data [13, 15, 23, 24]. According to our
preliminary findings, the effectiveness of the different models
depends largely on the length of the training data and the
type of window used. In light of this, we explore averaging
predictions because past studies have shown that simple av-
erages of predictions often outperform complex methods as
well as combinations of forecasts [25, 26]. Overall, our results
show that across both food banks, averaging these predictions
consistently beats the individual methods at both the weekly
and monthly levels. In summary, our main contributions are:

• To our knowledge, this is the first work that predicts
donations to two different food banks on both a monthly
and weekly basis.

• This is the first work to apply BSTS and LSTM to predict
food bank donations and compare their performance with
classical time-series forecasting models such as ARIMA,
MA, and so on, by systematically considering the impact
of different data lengths and window types on the effec-
tiveness of various models.

• Our results show that a simple method that takes the
average of predictions by combining different models,
data lengths, and window types can outperform all basic
models at both monthly and weekly levels for the two food
banks.

II. BACKGROUND AND RELATED WORK

Classical time-series models: Previous studies have explored
the use of classical time-series models, which include ARIMA,
MA, ETS, and Support Vector Regression (SVR), for predicting
food bank donations [6, 27, 28, 29]. For example, Davis et
al. compared ARIMA, MA, and ETS for monthly donation
prediction using six years’ donation data from one food bank
and showed that ETS performed the best in terms of the least
Mean Average Percentage Error (MAPE) [6]. Pugh and Davis
compared SVR against ETS on the same task with nine years
of donation data and found the former outperformed the latter
[27]. A classical time-series model employs the frequentist
method of making predictions and assumes that the parameters
in the model remain fixed for the entire time series of data.
Given the high degree of unpredictability in donations made to
the food bank, a more suitable model should be flexible and
be able to accommodate the dynamics of donation behaviors
[30, 31].

BSTS Models: BSTS [32] relies on Bayesian statistics for
making predictions and assumes that the state of the system is
continually changing. Therefore, BSTS is highly adaptive and is
capable of capturing complex, uncertain, and dynamic patterns
in a time-series such as that of the in-kind donations. BSTS
originated from a long line of research involving applying
Bayesian averaging (BA) over multiple models to avoid inferior
predictions from a single model [32]. BA predicts by con-
structing an ensemble model that combines multiple predictions
weighted by their similitude to the empirical distribution of
the predicted variable [33]. For example, Wright et al. applied
BA to a simple linear regression to predict inflation in the
United States; they found that BA gave superior forecasts as
compared to a simple averaging technique over multiple fore-
casts generated by the linear regressions and more importantly,
they found that BA was robust to outliers [34]. Scott and
Varian later proposed BSTS and used it to predict consumer
sentiment and showed that BSTS is more accurate than a
baseline naive autoregressive model [32]. Since then, BSTS
has been widely applied in humanitarian-related applications
such as predicting unemployment claims and retail sales [35],
alcohol-related harms [36], and positive COVID-19 cases [37].
LSTM has been widely applied to handle large-scale sequential
data and has demonstrated superior performance in time-series
forecasting as compared to classic time-series models. LSTM
can capture short term and long term dependencies in temporal
sequential data [38, 39, 40, 41, 42, 43]. There have been several
studies comparing LSTM to classic time-series forecasting. For
example, Simai et al. found that LSTM outperformed ARIMA
on a wide range of forecasting tasks such as stock indices
prediction, Housing index prediction, Food and Beverage index
prediction and so on [20]. Similarly, LSTM outperformed
ARIMA on the task of bitcoin price predictions in [44].
Data Lengths Explored: Past research has shown that for
making accurate forecasts, choosing an appropriate data length
is critical [13, 14, 15, 16, 17, 18]. Skabar et al. examined the
effectiveness of different training data lengths (from 10 days to
250 days) on DJIA trading strategies. They suggested using the
short-term and medium-term periodicity in data to determine
the training data length [45]. A study by Li et al. explored
how training data lengths affected detection of heart rhythm
disorders and found that an “optimally” short training data
length led to faster detection of faulty heart rhythms while
an extremely short length caused incorrect predictions [46].
In a study closely related to ours, Davis and Pugh examined
three options for training data length: 96, 48, and 24 months
and found that SVR models trained using 24 months of data
delivered the best performance (lowest MAPE for food bank
donations) [27].
Window Types Explored: Expanding and sliding windows
have both been extensively explored in past research. Gener-
ally speaking, the expanding window has been used to make
predictions in time-series data with long term dependencies
and has been used for a wide range of forecasting tasks,
such as prediction of stock indexes, housing indexes, food and



beverage indexes [20], and electric load forecasts [22]. On the
other hand, the sliding window has been used to forecast time
series data with short-term to medium-term dependencies, or
to make more rapid forecasts. It has been used, for instance,
for the classification of electroencephalography in [23], for the
prediction of cloud computing resource demand in [24], and
for stock market forecasts in [15]. In summary, prior research
suggests that the expanding window functions better when the
frequency of data is greater than a few weeks or months [14],
while the sliding window comes in handy when dealing with
time-series data of high frequency (e.g. in hours) [14].
Prior work on Average of Predictions: Past work has
found that combining predictions from multiple predictors by
employing the average value of individual predictors is effective
in combining these predictions [25, 26, 47]. Note that this
simple averaging differs from BSTS in that BSTS makes
predictions using a structural time-series and assumes that
all the components in this equation are normally distributed.
It utilizes Bayesian statistics to determine how the predicted
component changes with changes in the remaining components
of the equation. Based on these distributions learned and the
new values seen, BSTS simulates a distribution of predictions
and then ensembles these predictions by weighting them by
their probability of being close to the empirical distribution.
On the other hand, a simple average of the predictions gives
all the predictors the same weight and does not make use of any
prior knowledge of the system while constructing this average.

III. METHODS

Problem Definition: Our dataset is a uni-variate time-series
data which can be represented as Y = {y1, y2, ..., yN}, where
N is the total number of time-stamps. For example, we have
N = 167 monthly events and N = 728 weekly events in
FBCENC dataset. The goal of this work is to predict yt, the
donation at t using y1, y2, ..., yt−1. In the following, we use ŷt
for predicted donation while yt is the actual donation.
Three Types of Predictive Models
Four Classical Models
1) ARIMA employs the autocorrelations between successive
points on a time-series and the past errors in prediction to
predict the next value on a time-series [48]. We have:

yt =
∑t−1
i=t−p αiyi + et

where p is a hyperparameter referring to the number of the
most recent terms to be considered; αt-p, αt-p+1, .. αt-1 are their
corresponding weights. Additionally, et is defined as:

et =
∑t−1
j=t−q βj < ŷj − yj >

where q is the number of the most recent prediction errors to
be considered and βt-q, βt-q+1,... βt-1 are corresponding weights.
Note that we need at least two data points to construct an
ARIMA model given p < t.
2) Simple (equally-weighted) MA models the value of yt in
terms of the average of the most recent m values where m ≥ 1.

yt = 1/m
∑t−1
i=t−m yi

Note that the same weight is given to the past m terms. MA
needs least two data points to construct a model since m < t.

3) ETS models the value of yt in terms of all the past values
[49]. We generated two variations of the ETS model: the one
without trend and seasonality is referred as ETS-Plain, in which
the weight given to the past value decreases as the distance from
the value being predicted increases.

yt =
∑t−1
i=1 α

t−iyi where 0 < α < 1
4) ETS-Plus integrates additive trend and seasonality into

consideration. We have
yt =

∑t−1
i=1 α

t−iyi + %t-1 + κt-p
where 0 < α < 1, %t-1 is the trend at time t − 1 and κ is the
seasonality at time t−p where p in the number of periods in the
time-series. For example, p is 12 when there is a seasonality
of 12 months in the data

Note that for both variations of ETS, to learn α we need at
least two data points to produce a prediction at monthly level
and six data points for weekly level prediction. We replace
the missing predictions for ETS at monthly and weekly level
with donation data from the previous time-step for uniform
comparison across all models.
Bayesian Structural Time Series Modeling (BSTS) employs
Bayesian averaging over multiple models to build a single
model while preserving the intricate temporal nature of a
time-series. Generally speaking, a structural time-series model
can be directly decomposed into its time-varying components
[50, 51, 52]. The BSTS models used in this work can be decom-
posed into its trend, seasonality, and regression components.
BSTS leverages Bayesian statistics to capture the trend and
seasonality in the data and the parameters in BSTS come from
a distribution instead of being single values.

BSTS models predict yt using the state of the system St,
noise ηt, and a set of weights αt. St is determined by yt−1,
%t−1 which is the trend at t− 1, κt−1 which is the seasonality
at t− 1, and a noise component ωt.

yt = αtS t + ηt (1a)

S t = yt-1 + %t-1 + κt-1 + ωt (1b)

BSTS assumes all the components in Eq. 1b follow normal
distributions. More specifically, it is assumed that ηt and ωt
are independent and identically distributed and they follow
a normal distribution with mean µ = 0 and a corresponding
standard deviation of ση2 and σω2 respectively. BSTS uses the
Monte Carlo Markov Chains (MCMC) and the Kalman filter to
predict the marginal likelihoods for parameter αt which is then
uses to predict yt. For this, BSTS observes the past values of
the state S1, S2, ..St−1, and the values of the dependent variable
y1, y2, ..yt−1 to determine ση2 and σω2 for the noise ηt, ωt and
the marginal likelihoods for αt. It then uses the information on
marginal likelihoods of αt learnt along with the next observed
value for St to predict yt. Note that we need at least two data
points to construct an BSTS model.
Long Short Term Memory (LSTM) primarily passes
information through the LSTM cells [53]. In the standard
LSTM cell unit, the cell state ct serves as an internal memory
and controls the information flow. It is generated by forgetting



information through a forget gate f t, the most recent cell state
ct−1, adding new information through an input gate it, and
a candidate cell state c̃t. To apply LSTM to our uni-variate
time-series data, we have the following:

it = sigmoid(W i
hh

t−1 +W i
yy

t−1),

c̃t = tanh(W c
hh

t−1 +W c
yy

t−1),

f t = sigmoid(W f
hh

t−1 +W f
yy

t−1),

(2)

where ht−1 is a hidden state output by ct−1, {W h ∈ RH×H ,
W y ∈ RH} denote network parameters to be trained and H is
the number of hidden nodes. The new cell state can be obtained
as follows:

ct = f t ⊗ ct−1 + it ⊗ c̃t, (3)

where ⊗ denotes entry-wise product. Finally, we generate the
hidden states by filtering the new cell state through an output
gate layer ot, and produce the prediction of donation at each
event using a sigmoid function with parameter U :

ot = sigmoid(W o
hh

t−1 +W o
yy

t−1),

ht = ot ⊗ tanh(ct).
(4)

Training Window: Expanding vs. Sliding

Fig. 1: Expanding (Left) vs. Sliding (Right)

In this work, we used Temporal cross-validation (Temporal-
CV) because it was not feasible to use traditional cross-
validation (CV) to evaluate the effectiveness of time-series
models due to the temporal dependence in the data [18, 54].
In each round, we performed one single step ahead using the
training data length and evaluated the predicted value against
the ground truth; this data was then added to the training data
for the next round. Figure 1 shows that when carrying out
Temporal-CV, Expanding Window keeps the original training
data fixed while Sliding Window keeps the training data length
fixed.
Data Length For FBCENC, we had 14 years’ donation data
from 2006 to 2020. For LARFB, we had 6 years’ donation data
from 2013 to 2019. For the monthly and weekly predictions,
different lengths of training data and levels of granularity were
used.
Averaging Predictions To calculate the Average value of
predictions at a time-step t, we take the simple average of all
the predictions available at that time step.

IV. TWO DATA-SETS

We focused on the gross weight of the in-kind donations
made to the FBCENC (from July 2006 to May 2020) and
LARFB (from November 2014 to October 2019) by non-
government sources, such as individuals and retailers such as
Walmart. The weights are in unit of pounds (LB). These two

food banks serve two drastically different areas. FBCENC [8]
has six branches and serves 34 counties in North Carolina while
LARFB [55] caters to Los Angeles county in California. As a
result, there are significant differences in the trend, seasonality,
and distribution of donations made to the two food banks.
For example, using aggregated data we found that the weekly
data differs significantly from monthly data in that the former
fluctuates much more than the latter. For FBCENC, the monthly
donations vary from 1, 883K to 8, 036K LB while the weekly
donations vary from 3K to 8, 037K LB. For LARFB, the
monthly donations vary from 1, 419K to 4, 025K LB and the
weekly donations vary from 84K to 1, 930K LB.

We also explored the impacts of various economic elements
such as stock indices like DJIA and NASDAQ as well as big
donors such as Walmart and Food Lion stocks on our foodbank
donations. For the FBCENC monthly data, the correlation
coefficient r between FBCENC monthly donation and the
DJIA/NASDAQ stock one month prior can be as high as
0.79 ∼ 0.82. This correlation remained more or less unchanged
even using stock indices up to six months prior. Similarly, the
month-old walmart stock prices showed a noticeable correlation
of 0.75 with the monthly donation data. For Walmart stock
prices, the correlation ranged from 0.73 to 0.75 from two to six
months prior. However, no such correlation was found between
features of the economy and donations made for LARFB.

V. EXPERIMENTAL SETUP

1) Experimental Settings: Table I displays the list of the
settings for each of the three factors we considered (Models,
Data Length, and Window Type). For the Model, we explored
four classical time-series models that were explored on the task
of food bank donations: ARIMA, MA, ETS-Plain, and ETS-
Plus; three more advanced models that have not been applied
on this task: a deep learning model LSTM and two BSTS-
based models: BSTS-Plain and BSTS-Plus. BSTS-Plain is the
original BSTS model while BSTS-Plus incorporates economic
factors discussed in section IV above into the original BSTS
model. In addition to the settings explored, all models were
tuned using a grid search to find the optimal hyper-parameters.
The ETS, ARIMA, and MA models were tuned with the R
forecast package [49] using a state-space search technique. The
two BSTS models searched the optimal number of iterations
for Monte Carlo Markov Chains (MCMC), and the seed for
the algorithm. The BSTS models were implemented in R with
BSTS package. For the seed, we experimented with 1, 3, 5 ...
130. For the the number of iterations, we experimented with 10,
20 ... 6000. We chose a seed of 30 and 3000 iterations for this
problem. The LSTM models were implemented in Keras with
Tensorflow as the backend engine. For the number of layers
and neurons, we experimented with 1, 2, 4 layers and 2, 4, 6,
8 neurons. For the number of epochs, we experimented with
20, 40 ... 1000 epochs. We chose 100 epochs with four neurons
and one intermediate layer for this problem.
2) Experimental Setup: We employed Temporal-CV to
evaluate our different methods and took fiscal years into



TABLE I: Experimental Settings

Experimental Setting Variation Explored
Seven Models ARIMA, MA, ETS-Plain, ETS-Plus; BSTS-Plain, BSTS-Plus, LSTM

Data Length
Monthly Model (Up to 18) 2, 4, 6, 8, 10 months; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 years
Weekly Model (Up to 21) 2, 4, 6, 8, 10, 12, 24, 36 weeks; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 years

Two Window Types Expanding, Sliding

consideration. Note that a fiscal year is determined by the
corresponding organization and thus, we have July-June for
FBCENC and November-October for LARFB. For the rest of
the paper, yeart denotes the fiscal year starting in year t and
ending in year t+1. For each yeart, we built and evaluated our
models using different data lengths (up to the maximal training
data available) and window types settings shown in Table I.
More specifically, to implement Temporal-CV for a year yeart,
our training data consisted of the most recent data with length l
if available before yeart. We fit the model on the training data
and made a one step ahead prediction for the next step in the
time-series. For Temporal-CV at weekly level, we employed
the same process and made weekly predictions.

For both monthly and weekly predictions, we applied 13
rounds of Temporal-CV for each of fiscal year from year 2007
to 2019 for FBCENC and 5 rounds from 2014 to 2018 for
LARFB. For a given model and corresponding window type,
we explored different training data length settings based on the
corresponding setting in Table I and the amount of training
data available. For example, for year2007, an ARIMA with
Expanding window would be able to explore six settings (five
monthly setting + 1 year) and the number would increment
1 for each subsequent fiscal year. Therefore, a total of 156
possible settings can be explored for ARIMA with Expanding
window. By combining the two window types, for each model
our experiment explored 156 = 312 settings for monthly pre-
diction for FBCENC. Similarly, for each model, our experiment
explored 40 settings for monthly prediction for LARFB. The
same general procedure was used for weekly predictions: for
each model we explored 195 settings for FBCENC and 55
settings for LARFB respectively.

For each evaluation metric, we compared different models
overall performance first and then compared their performance
by < 24 months vs. ≥ 24 months. This is because consistent
with prior research, our results also showed that the length
of training data available has a significant impact on models
performance. By utilizing results from [27] which showed that
24 months of data delivered the best performance, we further
categorized our results by training data length: 1) with less than
24 months of training data and 2) with at least 24 months of
training data. For example, to calculate each model’s monthly
performance using < 24 months for FBCENC, we included a
total of 156 setting which is based on 6 data length settings
that are less than 24 months (2, 4, 6, 8, 10 months and one year)
× two window types × 13 fiscal years. To calculate the each
model’s performance using ≥ 24 months data, we used the
remaining 312− 156 = 156 settings.

3) Evaluation of Prediction Performance: To evaluate and
compare the performance of different models with their various
settings, we employed two evaluation metrics that are com-
monly used in the field: Mean Average Error (MAE) [56] which
is defined in equation 5a and Mean Average Percentage Error
(MAPE) [24, 44] which is defined in equation 5b.

MAE = (

t∑
i=1

abs(ŷi − yi))/t (5a)

MAPE = (

t∑
i=1

(abs(ŷi − yi)/yi) ∗ 100)/t (5b)

VI. RESULTS AND DISCUSSION

Tables II and III show the overall performance of different
models at a monthly and weekly level respectively. For each
table, the performance for FBCENC is in the upper part of the
table and for LARFB is in the lower part. For each foodbank,
we compare the four classical time-series forecasting models
against the two BSTS-based and LSTM models and our simple
Averaging prediction. In each of these tables, the best model in
each category of models is in bold; the best and the second-best
models across ALL are labeled with ** and ‡.

Both tables compare different models across all the corre-
sponding settings on the two evaluation metrics: MAE and
MAPE. In each metric, we report an average value and a
standard deviation for multiple settings of the model. For
both monthly and weekly, we first compare all the models’
“overall” performance by averaging the model across all the
data length and window type settings and then further compare
their performance with less than 24 months of training data
(columns 4 and 7) and with at least 24 months of training
data (columns 5 and 8) respectively. In the following, we will
first compare the performance of the seven models against our
simple Averaging and then we will shed some lights on the
impact of the data length and window type on the task of in-
kind donation predictions.

A. Model Performance

1) Monthly: For FBCENC (Upper), Table II shows that
amongst the four classical models, ETS-Plain has the best
overall MAE performance and also for both with < 24 months
and with≥ 24 months training data; in terms MAPE, ETS-Plain
also have the best overall MAPE and with ≥ 24 months training
data; ARIMA has the lowest MAPE with < 24 months training
data. Among the three advanced methods, BSTS-Plain is the
best for both evaluation metrics overall and for ≥ 24 months
training data. However, when we have < 24 months training



TABLE II: Performance (±standard deviation) of Monthly Models

Food Bank Model Mean Average Error (MAE) (103 lb) Mean Percentage Error (MAPE)
Overall < 24 mon ≥ 24 mon Overall < 24 mon ≥ 24 mon

FBCENC

ARIMA 459.00 (±436.66) 473.99 (±458.35) 455.23 (±447.93) 11.69 (±9.07) 11.96 (±9.21)
‡

11.14 (±9.07)
MA 464.25 (±432.92) 482.15 (±443.74) 452.88 (±448.66) 11.72 (±8.68) 12.11 (±8.70) 10.99 (±8.74)

ETS-Plain 452.28 (±426.55)
‡

468.99 (±437.61)
‡

435.58 (±437.60) 11.60 (±9.03)
‡

12.00(±9.22) 10.57 (±8.51)

ETS-Plus 455.68 (±425.13) 473.00 (±438.54) 437.62 (±435.11) 11.68 (±9.01) 12.09 (±9.24) 10.61 (±8.45)
BSTS-Plain 466.55(±371.12) 527.76 (±446.38) 408.59 (±365.27)

‡
12.31 (±8.97) 13.67 (±10.02) 10.28 (±7.80)

‡

BSTS-Plus 479.48 (±361.76) 529.44 (±448.53) 429.54 (±349.75) 12.61 (±8.96) 13.72 (±10.14) 10.77 (±7.67)
LSTM 491.57 (±458.40) 489.40 (±457.29) 508.21 (±501.95) 12.18 (±8.44) 12.24 (±8.98) 11.88 (±8.68)

Average 415.97 (±423.68)∗∗ 434.56 (±449.20)∗∗ 406.84 (±419.44)∗∗ 10.69 (±9.13)∗∗ 11.11 (±9.59)∗∗ 9.94 (±8.15)∗∗

LARFB

ARIMA 346.62 (±267.64) 343.34 (±260.87) 367.15 (±347.79) 15.05 (±9.02) 14.91 (±8.77) 15.91 (±11.59)
MA 316.60 (±251.90)

‡
306.64 (±249.87)∗∗ 374.83 (±335.08) 13.75 (±8.85)

‡
13.32 (±8.78)∗∗ 16.25 (±11.51)

ETS-Plain 330.90 (±273.50) 326.25 (±269.37) 358.83 (±326.12) 14.16 (±9.37) 13.99 (±9.28) 15.31 (±10.84)
‡

ETS-Plus 336.85 (±273.02) 333.59 (±268.25) 362.04 (±330.42) 14.41 (±9.32) 14.28 (±9.21) 15.44 (±10.80)
BSTS-Plain 410.53 (±248.83) 406.04 (±256.46) 424.08 (±291.33) 18.08 (±9.32) 17.81 (±9.66) 18.99 (±11.33)
BSTS-Plus 411.38 (±247.70) 407.68 (±255.73) 418.98 (±275.56) 18.18 (±9.41) 17.92 (±9.70) 18.87 (±10.97)

LSTM 326.06 (±256.06) 321.86 (±249.04) 352.58 (±337.86)∗∗ 14.25 (±8.56) 13.99 (±8.15) 15.62 (±11.73)

Average 313.84 (±262.80)∗∗ 312.11 (±258.60)‡ 352.68(±323.19)‡
13.53 (±9.45)∗∗ 13.45 (±9.23)‡

15.28 (±11.25)∗∗

For each category, the best model is in bold; The best and the second-best models across ALL are labeled with ** and ‡.

TABLE III: Performance (± standard deviation) of Weekly Models

Food Bank Model Mean Average Error (MAE) (103 lb) Mean Percentage Error (MAPE)
Overall < 24 mon ≥ 24 mon Overall < 24 mon ≥ 24 mon

FBCENC

ARIMA 311.19 (±263.22)
‡

350.37 (±285.47) 264.59 (±275.33)∗∗ 71.30 (±677.06) 74.55 (±669.57) 41.33 (±257.08)
MA 336.15 (±302.24) 347.03 (±307.71)

‡
330.20 (±309.25) 73.81 (±701.37) 75.01 (±700.71) 46.46 (±202.66)

ETS-Plain 344.36 (±317.85) 370.98 (±333.77) 316.87 (±334.98) 69.71 (±627.90) 73.39 (±629.12) 41.23 (±176.25)

ETS-Plus 353.63 (±311.58) 376.45 (±340.12) 328.99 (±317.30) 73.40 (±671.00) 76.02 (±671.72) 44.19 (±184.98)
BSTS-Plain 338.37 (±269.55) 376.72 (±306.36) 285.32 (±302.26) 75.51 (±748.43) 79.35 (±745.61) 40.45 (±191.85)

‡

BSTS-Plus 349.07 (±271.03) 393.17 (±315.68) 286.70 (±301.72) 76.11 (±732.51) 80.51 (±729.70) 40.64 (±191.53)
LSTM 347.90 (±335.30) 355.58 (±331.98) 347.15 (±352.59) 67.35 (±619.24)∗∗ 68.88 (±619.10)∗∗ 42.29 (±163.18)

Average 297.54 (±294.84)∗∗ 329.89 (±322.14)∗∗ 273.85 (±286.00)‡
67.39 (±682.24)‡

70.64 (±680.55)‡
38.57 (±195.07)∗∗

LARFB

ARIMA 121.05 (±117.09) 122.70 (±117.63) 115.87 (±127.02) 26.79 (±39.44) 27.11 (±39.70) 26.57 (±41.85)
MA 113.57 (±111.53)

‡
113.86 (±112.31)

‡
115.55 (±123.95) 25.33 (±38.52)

‡
25.38 (±38.65)

‡
26.43 (±41.90)

ETS-Plain 117.00 (±112.98) 118.99 (±114.33) 111.22 (±122.52)‡
25.88 (±36.41) 26.28 (±36.25) 25.55 (±42.05)

‡

ETS-Plus 117.35 (±113.04) 119.34 (±114.42) 111.21 (±122.12) 25.94 (±36.41) 26.34 (±36.25) 25.55 (±41.97)
‡

BSTS-Plain 128.24 (±107.67) 128.57 (±111.22) 129.42 (±120.47) 27.57 (±31.25) 27.94 (±35.01) 27.28 (±28.14)
BSTS-Plus 128.63 (±107.24) 129.56 (±110.74) 126.00 (±120.73) 27.83 (±32.13) 28.33 (±35.82) 26.54 (±26.85)

LSTM 116.14 (±110.94) 115.52 (±111.41) 122.23 (±128.06) 25.95 (±37.86) 25.49 (±36.82) 29.28 (±46.43)
Average 107.54 (±114.02)∗∗ 108.33 (±115.72)∗∗ 110.82 (±118.62)∗∗ 23.93 (±36.26)∗∗ 24.13 (±37.24)∗∗ 25.07 (±36.10)∗∗

For each category, the best model is in bold; The best and the second-best models across ALL are labeled with ** and ‡.

data, LSTM performs the best. Finally, our simple Averaging
prediction performs the best across all the models and across
the two training data length categories.

For LARFB (Lower), Table II shows that amongst the
four classical models MA performs the best overall and for
< 24 months training data while ETS-Plain perform the best
for ≥ 24 months training data. Among the three advanced
methods, LSTM is the best across the board. Finally, our simple
Averaging prediction performs the best across all the models
on MAE and MAPE for overall (columns 3 and 6) and are the
best or the second best with very close performance to the best
model for either < 24 months data or with ≥ 24 months data.

In short, across the two food banks and three categories of
models, our simple Averaging prediction performed the best
overall.

2) Weekly: Table III compares different models’ perfor-
mance at a weekly level. For FBCENC (Upper), Table III
shows that in terms of MAE, amongst the four classical models
ARIMA has the best overall performance and also with ≥ 24
months training data. However, with < 24 months training

data, MA performs the best. In terms of MAPE, ETS-Plain
has overall best performance and also for both with < 24
months and with ≥ 24 months’ training data. Amongst the
three advanced methods, BSTS-Plain and LSTM split the best
performance. The former has the best overall MAE, MAE with
≥ 24 months training data and MAPE with ≥ 24 months
training data while LSTM has the best MAE with < 24
months training data, the best overall MAPE and MAPE with
< 24 months training data. Finally, our simple Averaging
prediction performed the best or the second best with very close
performance to the best model across the six columns.

For LARFB (Lower), Table III shows that amongst the
four classical models MA performs the best overall and for
< 24 months training data while ETS-Plus perform the best
for ≥ 24 months training data. Among the three advanced
methods, LSTM performs the best except on MAPE with ≥ 24
months training data. In short, our simple Averaging prediction
generally performed the best across all the models on both
MAE and MAPE for weekly predictions.



(a) FBCENC (b) LARFB

Fig. 2: Data Length & Window Type Comparison - Monthlys

(a) FBCENC (b) LARFB

Fig. 3: Data Length & Window Type Comparison - Weekly

B. Data Length & Window Type

The Figure 2 and 3 show the effect of Data Length and
Window Type on the weekly and monthly levels respectively.
In each figure, the x-axis refers to the month and year, while
the y-axis refers to the available training data length (in black)
which increases over time. For each month, we pick the best
model (with the smallest MAE) and describe the corresponding
training data length and the window type involved (colored bars
with red bars bars for expanding windows while blue bars for
sliding window). These graphs show that as more training data
available, the best model often involves much shorter training
data. Furthermore, we can observe that no clear patterns on
Data Length or Window Type that would give the optimal
performance. In short, this observation suggests that there is
a clear need to combine all three factors: Model, Data Length,
and Window Type for prediction.

VII. CONCLUSION AND FUTURE WORK

The prediction of food donations is necessary to prevent
wastage and to provide food-insecure households with equal
and timely access to donations. With data on potential do-
nations, food banks can more efficiently allocate manpower
and plan storage and distribution of donations. In this work,
examined methods of predicting food bank donations involving
two food banks with radically different characteristics and at a
monthly and weekly level. For this, we did a detailed analysis
of the problem involved looking at three aspects: the best

predictive model, the optimal amount of historical data, and
the type of window that provided the best predictions. We
found that no one method gives consistently good predictions
of food donations due to the changing nature of the data and the
presence of concept drift in the data. Thus, we use an Average
of the predictions derived from each combination. Although
this approach is simple, it outperformed the base methods for
both food banks consistently both on a monthly and weekly
basis. From this, we can conclude that for this problem, we
must combine predictions generated based on the observed
data. Our future work will focus on combining these predictions
with more robust meta-learning models. Furthermore, since
these in-kind donations are not made by a single donor, but
rather by many donors, we will investigate a bottom-up learning
approach for predicting these donations in our future work.
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