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For many applications proposed for programmable optical 
systems1–3, the key requirements are (1) large scale; (2) fast 
response: sub-microsecond for applications in machine learn-

ing4–7 and quantum control8–11; and (3) power efficiency to enable 
operation in the cryogenic environment for integration with 
superconducting detectors12,13 and artificial atoms14–16. Leading 
Mach–Zehnder mesh (MZM) platforms17 consist of cascaded 
Mach–Zehnder interferometers (MZIs) to perform the general 
special unitary SU(N) group requiring N(N – 1)/2 MZIs (ref. 18), as 
illustrated in Fig. 1a for a four-mode programmable SU(4) in a rect-
angular mesh arrangement19. To meet the scalability requirement, 
for even a modest mode count N, the most demanding technical 
challenge is reliable manufacturing and a clear path to electronics 
co-integration. Although presently only modern complementary 
metal–oxide–semiconductor (CMOS)-compatible VLSI processes 
offer these capabilities through foundry services, material choices 
are practically limited to Si (refs. 20,21) and silicon nitride (SiN) tech-
nologies22. For the high-bandwidth requirement within these mate-
rials, silicon-free carrier modulation23 is problematic for MZMs 
because of the inherently coupled phase and amplitude. Silicon 
electric-field-induced χ(2) (ref. 24) modulators are promising, but 
they have not been realized at scale and have a restricted operat-
ing wavelength power. A recently introduced alternative relies on 
piezo-optomechanical actuation of SiN waveguides25–28, which in 
the case of another study25 has enabled narrow-band operation 
up to 250 MHz with SiN waveguides for visible–near-infrared 
(NIR) operation and high optical power handling. Finally, the 
energy requirement is incompatible with any thermal modulation 
schemes, which dissipate an average of >800 mW for doped SiO2 
(ref. 21), >20 mW per modulator for SOI (ref. 29) and >40 mW per 

modulator for SiN (ref. 17). Electrostatic MEMS devices meet the 
power requirement (promising sub-picowatt hold power)30,31, but 
modulation timescales have thus far been limited to the microsec-
ond regime.

Figure 1b summarizes this power–modulation bandwidth 
trade space for SiN and Si platforms compatible with the scal-
ability requirement mentioned earlier. For a cross-platform com-
parison, Fig. 1b plots the power dissipated for π-phase shifts as a 
function of the circuit reconfiguration rate. In the thermal regime, 
the power dissipated is constant up to the maximum reconfigu-
ration bandwidth, whereas piezo-actuation contains a trade-off 
between faster programming speeds and power dissipated on 
chip. The piezo-optomechanical approach offers up to three 
orders of magnitude improvement in programming time with 
lower power consumption as that of thermal approach and three 
to five orders of magnitude improvement in power dissipation at 
the maximum thermal reconfigurability rate, showing the excep-
tional suitability of this technology for MZM systems. Motivated 
by these considerations, we advance our wafer-scale process for 
SiN photonic integrated circuits (PICs) (Fig. 1c) with phase-only 
piezo-optomechanical tuners, whose basic design and operation 
are shown in Fig. 1d,e, through the co-design and development 
of photonics, electromechanics, electrical and mechanical con-
trol systems, and driver software. We combine the best attributes 
of the different devices discussed in our previous work25 into a 
proof-of-principle MZM architecture capable of achieving 20 ns 
reconfiguration time, on-chip power dissipation per modulator 
below 200 µW when switching on average for every 1 µs and 6 nW 
hold power, operation at 700–780 nm with optical transmission up 
to 1,550 nm, and improved power efficiency at 5 K.
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Results
Device fabrication, design and theory of operation. Our devices 
are designed and fabricated on a 200 mm wafer following an 
improved process flow based on our previous work25. The opti-
cal layer consists of a 300-nm-thick SiN layer in a silicon dioxide 
cladding, located on top of aluminium nitride (AlN) piezoelectric 
actuators with functionality for selective release and metal routing; 
Supplementary Section 1 provides additional fabrication details. 
This process enables high-speed and broadband active modula-
tors. Specifically, Fig. 2a shows a full MZI with strain-actuated 
phase shifters both internal and external to the directional cou-
plers, as indicated by the unfolded layout in Fig. 1d. Each arm of 
the internal phase shifter contains an optical-path-length-matched 
piezo-actuated segment (imparting a phase Θ1,2) and same for the 
external phase shifter (imparting a phase Φ1,2). Each phase shifter 
consists of a 400-nm-width SiN waveguide passing through an 
adiabatic taper, expanding to a width of 5 µm for improved strain 
transfer25, propagating for a distance of 1.1 mm, and then through 
a second adiabatic taper back down to a 400-nm-wide single-mode 
turn. This loop repeats nine times, as shown in Fig. 2b, for a total 
path length of ~1 cm per phase shifter. The cross section shown in 
Fig. 2c,d reveals a slightly undercut 10-µm-wide pillar around the 
oxide-clad 5-µm-wide SiN waveguide and AlN actuators. Applying 
a potential difference across AlN transfers strain to the waveguide 
(a finite element simulation is shown in Fig. 2e), imparting a shift in 
the refractive index predominantly due to the strain-optic effect32 in 
addition to moving boundary effects33.

When applying a potential difference, the strain imparts phase 
change Δθ to the optical mode for a given length L of the phase 
shifter as follows:

Δθ = (2π/λ)(ΔneffL+ neffΔL), (1)

where λ is the free-space wavelength, neff is the static effective mode 
index, ΔL is the strain-induced path-length change in the phase 
shifter and Δneff is the total effective strain-induced change in the 
refractive index:

Δneff = Δneff,ε + Δneff,wg, (2)

Δneff,ε = −p11(n3eff/2)εxx, (3)

which includes contributions from strain-optic (Δneff,ε) effects and 
moving boundary (Δneff,wg) that contributes to waveguide modal 
dispersion. Here p11 is the diagonal component of the strain-optic 
coefficient for SiN, and εxx is the tensile strain component in the 
horizontal (x) direction parallel to the substrate surface (Fig. 2e). 
We estimate the strain values transferred to the SiN from a finite 
element model using approximate values of AlN piezoelectric cou-
pling coefficients25, layer-stack geometries and material properties, 
indicating that the dominant strain is tensile in the horizontal (x) 
direction and of magnitude εxx ≈ 1.5 × 10–6 per volt applied. The 
change in effective index due to strain (as shown in equation (3)) 
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is a signed quantity depending on the direction of induced strain, 
meaning opposite strains produced by a negative applied volt-
age produce an opposite-shift effective index. This effect allows 
for a push–pull or differential operation34 of the phase shifts 
Θ1,2, Φ1,2 ∈ [–π/2, π/2] in Fig. 2a for an applied Vs ∈ [–Vπ/2, Vπ/2], 
defined as the potential relative to ground with Vπ being the 
required voltage for a π phase shift.

Room-temperature operation. Figure 3 summarizes the modula-
tor performance at room temperature (300 K). Figure 3a,b shows the 
operation across a broadband range of wavelengths (700–780 nm). 
The plots shown here take advantage of the push–pull operation 
for optical loss balance (typical insertion loss of −3.5 dB at 737 nm; 
Supplementary Section 2 provides the loss characterization details) 
of the phase shifters by applying opposite-polarity voltages to each 
arm. We estimate VπL from the sinusoidal fits, yielding values from 
50 V ⋅cm (700 nm) to 65 V ⋅cm (780 nm) in the push–pull configura-
tion or a corresponding VπL in the range of 100–130 V cm per phase 
shifter. We attribute the variance in VπL to material and waveguide 
dispersion. From Fig. 3a, we observe an inherent static phase shift 
in our MZIs. This shift does not highly depend on the wavelength 
and is a result of local stress and refractive-index differences seen 
by the two arms of the MZI due to fabrication. We note that the 
peak of the MZI’s cross-port transmission (Fig. 3a) depends on the 
splitting ratios of our passive directional couplers and decreases as 
the wavelength increases, thus moving further away from the 50:50 
point. An improved 2 × 2 × 2 MZI design35,36 in conjunction with 
wavelength-tolerant directional couplers37 would enable full tun-
ability across the range of wavelengths tested.

Time-resolved measurements shown in Fig. 3c–e indicate short 
rise and fall times of ~5 ns. Figure 3c plots the transmission when 
averaging over 16 square-wave voltage pulses applied through 
an arbitrary waveform generator (AWG), indicating a fall time of 

5 ns. As shown in Fig. 3d, the modulator follows a Gaussian pulse 
with a full-width at half-maximum of 15 ns. We do not observe 
substantial hysteresis during active modulation, estimating a <1% 
deviation from single-shot traces limited by detector noise and sta-
bility of our measurement setup. Figure 3f plots the small-signal 
frequency-resolved modulator response, indicating a −3 dB cutoff 
at ν3dB = 120 MHz. This cutoff is consistent with the RC time con-
stant during measurement, consisting of the device capacitance of 
17 pF and series resistance of ~80 Ω arising from the voltage source 
and on-chip routing metal. We attribute the peak at 241 MHz to 
the fundamental mechanical resonance, which is 253 MHz as per 
our finite element model (Fig. 2e). The shape of the peak exhib-
its a characteristic resonance and anti-resonance feature typical of 
mechanical resonators38,39. We note that the AWG used for these 
tests does not produce the full 20 V swing across its entire band-
width (500 MHz), which accounts for the distorted Gaussian enve-
lope and atypical falling edge shown in Fig. 3d,e, respectively. The 
contrast in these measurements is low, as this device is optimized 
for cryogenic operation, as described later.

Cryogenic operation at 5 K. We performed the cryogenic char-
acterization in a 4 K closed-cycle cryostat (Montana Instruments). 
Using a fibre array and radio-frequency probe mounted on nanopo-
sitioners inside the cryostat (Supplementary Section 5), we applied 
various voltage waveforms. The transmission curves in Fig. 4 show 
no degradation in the switching operation, with an overall similar 
performance at a base temperature of 5 K (Fig. 4a,b) compared with 
room temperature. Figure 4c indicates an extinction of approxi-
mately 30 dB. We remark that compared with Fig. 3a, the static 
phase offset shown in Fig. 4c shifts due to differences in thermal 
contraction and stress-optic effects in the two MZI arms at cryo-
genic temperatures. Figure 4d plots a time trace when holding 
Vs = 20 V, indicating very stable open-loop operation (<0.5% drift) 
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on the timescale of minutes. The corresponding hold power of 2 nW 
is nearly eight orders of magnitude smaller than the cooling power 
(90 mW) of the Montana cryostat. This low power consumption is 
a critical benefit, as even state-of-the-art thermal SiN waveguide 
modulators (Fig. 1b) would easily overwhelm the cryostat’s cooling 
power. We note that the actual extinction ratio of the modulator 
is larger than 30 dB; however, limited volume in the cryostat pre-
vented the use of differential driving (as demonstrated at room tem-
perature) and limited the phase change to approximately π/2 rather 
than π.

4 × 4 programmable interferometer. Having characterized the 
MZIs, we now consider a proof-of-principle SU(4) programmable 
unitary transformation, which consists of N(N − 1)/2 = 6 MZIs. The 
MZM is fully programmable, where all the phase shifters are com-
puter controlled (Supplementary Section 3).

Figure 5 summarizes the MZM characterization. After a basic 
voltage calibration, we run voltage sweeps across all the six MZIs, 
producing internal phase-shifter transmissions as shown in Fig. 
5d. The optical input and output combinations (Fig. 5c) here for 

each plotted MZI show maximum power differences on actuation; 
a full dataset of all the 12 phase shifters is shown in Supplementary 
Section 4. Figure 5d plots the transmission of output port 3 on actu-
ating ‘MZI3’, which indicates an optical extinction ratio in excess 
of 40 dB. The total loss through the MZM ranges from −14 to 
−21 dB at 737 nm, depending on the optical path taken, primarily 
due to waveguide bending losses in the phase shifters, which could 
be completely eliminated with an unfolded implementation or 
larger-radii waveguide bends. We confirm that our MZM maintains 
the 100 MHz bandwidth as demonstrated in single MZI devices by 
applying a 10 V, 100 MHz sinusoid to the internal phase shifter of 
MZI2 and monitor the optical outputs 5 and 6 with a laser coupled 
through optical input 3. We utilize a lock-in detection scheme on 
the output photodiodes to extract the signal at 100 MHz (Fig. 5e,f) 
for both channels and a relative phase offset of 0.59π; the small 
deviation from π/2 is likely due to the 125 MHz bandwidth of the 
photodiode being close to the driving frequency.

Although the results shown in Fig. 5 demonstrate the program-
mability of our MZM as a single packaged device, voltage-handling 
limitations of our on-chip vias (see Discussion below) currently 
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prevent accessing the full scope of SU(4) operations and thus the 
use of certain calibration procedures34,40,41 to discern 4 × 4 matrices 
or unitary fidelities produced by the chip. However, with expected 
improvements in overall loss, loss balance between MZIs, and a full 
2π-phase actuation (enabled by a combination of better via design, 
fabrication processes, and control electronic systems), we will 
explore such measurements in future experiments.

Discussion
We have demonstrated a four-mode programmable interferometer 
in a 200 mm CMOS foundry. The MZM comprises cryogenically 
compatible, piezo-optomechanical phase shifters with >100 MHz 
bandwidth operating in the visible–NIR wavelengths, which should 
be immediately applicable to many hybrid photonic architectures16, 
quantum protocols8,42 and machine-learning algorithms6.

Although the devices presented here show promise for uni-
versal linear-optic programmable photonics in new performance 
regimes and application spaces, there are still some non-idealities 
that will be improved in future work. First, the dominant source 
of loss in all devices presented is the bends induced by waveguide 
meanders and directional couplers, measured to be −2.7 dB of the 

−3.5 dB MZI insertion loss (Supplementary Section 2). Waveguide 
propagation losses (−0.39 dB cm–1) and adiabatic taper losses of 
−0.022 ± 0.038 dB per taper account for the remaining loss of 
−0.8 dB. We estimate that implementing less tightly folded ver-
sions of the same devices that have fewer bends and tapers would 
allow us to achieve MZI insertion losses substantially lower than 
−1 dB. Second, in these particular devices, small voids in AlN in 
the vicinity of electrical vias produced metal filamentation that 
degraded the device breakdown voltage and prevented the applica-
tion of voltages above Vs = 25 V. Although we found individual vias 
in the test structures on the same wafer that allowed Vs > 90 V, the 
yield was insufficient for an MZI comprising 90 vias. After a sys-
tematic failure analysis and cross-sectional imaging, the process 
yield improved greatly so that full SU(N) devices appear likely with 
maximum Vs > 90 V (Supplementary Section 6). Besides the electri-
cal vias, we have not observed any causes of systematic failure (such 
as mechanical failure or fatigue) in our devices, likely attributed to 
the relatively low strain and stress values under operation.

In addition to device performance improvements, design 
variations and prospects for large-scale photonics remain to be 
explored. With our current technology and SU(2) device footprint  
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(approximately 1.3 mm × 0.6 mm), we can conceivably fit 
>500 components on a single die without any lithographic modi-
fications (such as stitching between reticle fields), enough to 
make an SU(32) device. Simply lengthening the phase shifters 
would also allow them to operate at CMOS-level voltages at the 
cost of actuation bandwidth due to increased device capacitance 
(a 10-cm-length phase shifter would potentially have Vπ ≈ 5–10 V 
and ν3dB ≈ 12 MHz). Alternatively, strain-concentrating structures 
or mechanical resonance effects would help shrink our current 
device size by reducing the required driving voltage. Moreover, 
high-scandium-concentration Sc(1–x)AlxN has shown a fivefold 
increase in piezoelectric responsivity43, promising a further five 
times reduction in Vπ or device length.

Finally, the layer stack of our PIC (Supplementary Table 1 and 
Fig. 2c), which places the optical layers on top, enables many exten-
sions to the platform. The optical layer—on top of all the metal 
and piezoelectric layers—allows for alternative optical layers to 
expand the transparency window into the ultraviolet regime44–46. 
Moreover, heterogeneously integrated thin films for either pho-
ton generation14,47,48 and detection13 or nonlinear interactions49–52 
could be placed directly on top of the optical layer with photons 
coupling evanescently to the rest of the integrated photonics. The 
AlN-actuator-based photonic platform is also entirely post-CMOS 
compatible and therefore can be directly fabricated on fully formed 
CMOS integrated circuits53 for direct biasing or control of hybrid 
systems54–56; thus, the architecture presented here can be scaled to 
both very large photonic circuit sizes and very small photonic cir-
cuit pitches without electrical control bottlenecks.
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Methods
Hold-power consumption and reconfiguration energy calculations. We first 
calculate the device capacitance C and on-chip routing metal resistance Rchip 
based on the measured RC roll-off in our frequency response curve, yielding 
C = 17 pF and Rchip = 30 Ω in addition to a series voltage source resistance of 50 Ω. 
The device leakage resistance based on previous measurements25 is estimated 
to be 500 MΩ and 200 GΩ at 300 and 5 K, respectively. The hold power P = IV, 
where I and V are the leakage current and applied voltage across the device, 
respectively, is found for two phase shifters holding 25 V to maintain a phase 
shift of π. The reconfiguration energy dissipated on chip is calculated using the 
formula E = (Rchip/Rtot)CV2, where Rtot is the total series resistance of the circuit 
including external resistors in the AWG and Vs = 50 V. This equation accounts 
for two phase shifters with a 50 V swing and represents energy dissipated from 
on-chip resistances from vias and routing metal lines. To reduce on-chip energy 
dissipation for slower reconfiguration rates, Rtot is adjusted such that the corner 
frequency 1/(2πRtotC) matches the current reconfiguration frequency (which is 
done off chip at the voltage source). This minimizes the on-chip energy dissipation 
as well as maintaining the necessary reconfiguration rate. The total power 
dissipated (Fig. 1b) is simply the hold power plus the reconfiguration energy times 
the reconfiguration rate.

Device characterization. We characterize individual MZI modulators both 
at room temperature and cryogenic temperature with a 250-µm-pitch optical 
fibre array that is coupled through gratings to the on-chip waveguides. We use 
a 150-µm-pitch radio-frequency probe (in the ground–signal–ground–signal–
ground configuration at room temperature and ground–signal–ground at 
cryogenic temperature) to apply high-frequency electrical signals.

Digital lock-in amplifier. A time trace of output channels 5 and 6 of the MZM 
is directly digitized by a high-speed oscilloscope. The time traces are digitally 
integrated (for 4 ms) with sinusoids of varying frequencies and phases, whose 
resulting amplitudes form the data for the plots in Fig. 5e,f. The two photodiodes 
used for both channels have bandwidths of 125 and 600 MHz. Please see 
Supplementary Information for more detailed experimental methods.

Data availability
The data that support the plots and findings within this paper are available from 
the corresponding authors upon reasonable request.
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