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ABSTRACT
Several emerging proof-of-work (PoW) blockchain protocols rely on

a “parallel-chain” architecture for scaling, where instead of a single

chain, multiple chains are run in parallel and aggregated. A key re-

quirement of practical PoW blockchains is to adapt to mining power

variations over time (Bitcoin’s total mining power has increased by

a 10
14

factor over the decade). In this paper, we consider the design

of provably secure parallel-chain protocols which can adapt to such

mining power variations.

The Bitcoin difficulty adjustment rule adjusts the difficulty target

of block mining periodically to get a constant mean inter-block time.

While superficially simple, the rule has proved itself to be sophisti-

cated and successfully secure, both in practice and in theory [11, 13].

We show that natural adaptations of the Bitcoin adjustment rule

to the parallel-chain case open the door to subtle, but catastrophic

safety and liveness breaches. We uncover a meta-design principle

that allow us to design variable mining difficulty protocols for three

popularPoWblockchainproposals (Prism [3],OHIE [27], Fruitchains

[21]) inside a common rubric.

The principle has three components: (M1) a pivot chain, based

on which blocks in all chains choose difficulty, (M2) a monotonicity

condition for referencing pivot chain blocks and (M3) translating

additional protocol aspects from using levels (depth) to using “dif-

ficulty levels”. We show that protocols employing a subset of these

principlesmayhave catastrophic failures. The security of the designs

is also proved using a common rubric – the key technical challenge

involves analyzing the interaction between the pivot chain and the

other chains, aswell as bounding the sudden changes in difficulty tar-

get experienced in non-pivot chains. We empirically investigate the

responsivity of the newmining difficulty rule via simulations based
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on historical Bitcoin data, and find that the protocol very effectively

controls the forking rate across all the chains.
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1 INTRODUCTION
Scaling problem. Built on the pioneering work of Nakamoto, Bit-

coin [18] is a permissionless blockchain operating on proof-of-work

based on the Nakamoto protocol. The Nakamoto longest-chain pro-

tocol was proven to be secure as long as the adversary controlled less

than 50% of themining power in the breakthroughwork [11]. Recent

works [9, 15, 24] have tried to improve the scalability ofBitcoin [5, 7],

in particular the throughput and latency, by redesigning the core

consensus protocol. A variety of approaches have been proposed, for

example hybrid consensus algorithms [14, 17, 22, 23] try to convert

the permissionless problem into a permissioned consensus prob-

lem by subselecting a set of miners from a previous epoch. While

such approaches achieve scalability, they are not natively proof-

of-work (PoW) and hence do not retain the dynamic availability,

unpredictability and security against adaptive adversaries that the

Nakamoto longest chain protocol enjoys.

Parallel-chain protocols.An emerging set of proof-of-work pro-

tocols maintain the native PoW property of Bitcoin and achieve

provable scaling by usingmany parallel chains. The chains run in
parallel and use an appropriate aggregation rule to construct an

ordered ledger of transactions out of the various parallel chains.

We will highlight three examples of parallel-chain protocols (PCP):

(1) Prism [3], which achieves high-throughput and low-latency us-

ing a proposer chain and many voter chains, (2)OHIE [27], which

https://doi.org/10.1145/3460120.3485254


achieves high-throughput using parallel chains and (3) FruitChains

[21], which achieves fairness using two distinct types of blocks

(blocks and fruits) mined in parallel. There are other approaches

such as ledger combiners [10], which achieve some of the same goals

using different architectures.

Commonstructure ofPCP. In all of these parallel-chain protocols
(PCP), there are multiple types of blocks (for example, inOHIE, each

type may correspond to a different chain) and we determine the

final type only after mining the block - we will term this process

as hash sortition. The idea of sortition was first formalized in [11]

called 2-for-1 PoW. All three PCPs adopt this technique to achieve

parallelmining. Aminer creates a single commitment (for example, a

Merkle root) to the potential version of the different block types and

performs amining operation. Depending on the region the hash falls,

the block is considered mined of a certain type. Different protocols

utilize different types of aggregation rules and semantics in order

to consider the final ledger out of these parallel chains.

Variablemining power problem.A key requirement of deployed

PoW blockchains is to adapt to the immense variation in mining

power. For example, themining power ofBitcoin increased exponen-

tiallybyanastonishing factorof10
14
during itsdecadeofdeployment.

If Bitcoin had continued to use the same difficulty for the hash puz-

zle, then the inter-block time would have fallen from the original

10 minutes to 6 picoseconds. Such a drop would have caused an

intolerable forking rate and seriously undermined the security of

Bitcoin, lowering the tolerable adversarialminingpower fromnearly

50% to 10
−11

. However, this is prevented by adjusting the difficulty

threshold of Bitcoin using a difficulty adjustment algorithm.

Bitcoin difficulty adjustment algorithm. There are three core
ideas to the Bitcoin difficulty adjustment algorithm: (a) vary the

difficulty target of block mining based on the median inter-block

time from the previous epoch (of 2016 blocks), (b) use the heaviest
chain (calculated by the sum of the block difficulties) instead of the

longest chain to determine the ledger, and (c) allow the difficulty to

be adjusted onlymildly every epoch (by an upper bound of a factor of

4). While this appears to be a simple and intuitive algorithm, minor

seemingly-innocuous variants turn out to be dangerously insecure.

Difficulty adjustment terminology. Throughout the paper, we
call the hash puzzle threshold in PoWmining the target of a block.
The block difficulty of each block is measured in terms of howmany

times the block is harder to obtain than using the initial target of the

systemthat is embedded in thegenesis block.However, for simplicity,

we will adapt the notation of block difficulty to be the inverse of the

target of the block. The chain difficulty of a chain is the sum of block

difficultiesof all blocks that comprise thechain, theneachblock in the

chain covers an interval of chain difficulty. The chainwith the largest

chain difficulty is said to be the heaviest chain. We also refer the

chain difficulty of a block as the chain difficulty of the chain ending

at this block. This notation is summarised in the following table.

Target Threshold of the hash puzzle in PoWmining

Block difficulty Inverse of the target of a block

Chain difficulty Sum of block difficulties of all blocks in the

chain

Difficultyadjustment requiresnuanceddesign.Consider a sim-

pler algorithm using only (b), i.e., simply let the nodes choose their

own difficulty and then use (b) the heaviest chain rule. At a first

glance, this rule appears kosher - the heaviest chain rule seems

to afford no advantage to any node to manipulate their difficulty.

However, this lack of advantage only holds in expectation, and the

variance created by extremely difficult adversarial blocks can thwart

a confirmation rule that confirms deeply-embedded blocks, no mat-

ter how deep, with non-negligible probability proportional to the

attacker’s mining power (refer to Appendix A for a detailed discus-

sion). Now consider amore detailed rule involving only (a) and (b). It

turns out that there is a difficulty raising attack (refer to Appendix A

for a detailed discussion), where the adversary creates an epoch

filled with timestamps extremely close-together, so that the diffi-

culty adjustment rule from (a) will set the difficulty extremely high

for the next epoch, at which point, the adversary can utilize the high

variance of the mining similar to the aforementioned attack. This

more complex attack is only thwarted using the full protocol that

employs (a), (b) and (c) together. The full proof of the Nakamoto

heaviest chain protocol was obtained in a breakthrough work [12].

Difficulty adjustment in PCP.When there are multiple parallel-

chains, one natural idea is to apply Bitcoin’s difficulty adjustment

algorithm to each of the chains independently. However, this idea

does not integrate well with hash sortition since the range of a par-

ticular chain will depend on the state of other chains. Instead, since

the mining power variation is the same across all chains, a natural

approach is to use the same difficulty threshold across all chains,

which is then modulated based on past evidence. How should this

common difficulty threshold be chosen? One approach is to utilize

inter-block arrival times across all the chains to get better statistical

averaging and respond faster tomining power variation. However, it

requires some sort of synchronization across the chains and breaks

the independence assumption.

General methodology. We propose a general methodology by

which to adapt parallel-chain architectures to the variable mining

rate problem. Our general methodology is comprised of three parts,

as detailed below.

• M1: Pivot-chain. Use a single chain as the pivot chain for

difficulty adjustment. Blocks mined in any other chain need

to refer to a block in the pivot chain and use the target inferred

therefrom.

• M2: Monotonicity. In a non-pivot chain, blocks can only

refer to pivot-chain blocks of non-decreasing chain difficulty.

• M3: Translation.Wherever the protocol uses the concept

of a block’s level, it is updated to refer to the block’s chain

difficulty instead.

UsingM1 pivot-chain for difficulty adjustment ensures that we can

continue to use the hash-sortition method. TheM2monotonicity

rule ensures that blocks in non-pivot chain do not refer to stale/old

pivot blocks with target which is very different from expected in the

present round. Finally, theM3 translation rule ensures that other

aspects of the protocol, such as the confirmation rule are adapted

correctly to deal with the variable difficulty regime correctly. We

show in Section 3 why each of the three aspects of our methodol-

ogy is critical in designing variable difficulty for Prism by showing

attacks for subsets of M1,M2, andM3.
On the positive side,we showa concrete adaptation of our general

methodology to various schemes, in particular to Prism in Section 3,

toOHIE in Section 4 and to FruitChains in Section 5.



Securityproofs.Theproblemofanalyzing thedifficultyadjustment

mechanism in Bitcoin was first addressed in [12] in the lock-step

synchronous communication model. It introduces a setting where

the number of participating parties’ rate of change in a sequence of

rounds is bounded but follows a predetermined schedule. Later two

concurrent works [6, 13] analyzed the problem in a bounded-delay

network with an adaptive (as opposed to predetermined) dynamic

participation, with different proof techniques. Following the two

later papers, we adopts the more general network and adversary

models: we assume a Δ-synchronous communication model, where

every message that is received by a honest node is received by all

other honest nodes within Δ rounds; we allow the adversary to con-

trol the mining rate even based on the stochastic realization of the

blockchain, as long as the mining rate does not change too much

in a certain period of time. We assume that the adversarial nodes

are Byzantine and they do not act rationally. Under this general

model, we establish that our proposed modification to Prism,OHIE

and FruitChains satisfy the dual security properties of safety and

liveness. The proofs require a new understanding of how difficulty

evolution in a non-pivot chain progresses based on the difficulty

in the pivot chain - this statistical coupling presents a significant

barrier to surmount in our analysis, and differs from previous work

in this area. We show these results in Section 6.

Systems implementation.Our variable difficulty schemedoes not

add significant computation and communication overhead on exist-

ing parallel-chain protocols, making our protocol an easy upgrade.

We conduct extensive simulation studies to examine how our sys-

tems respond tovaryingminingpower.Results showthatour scheme

is able to closely match the system mining power and the mining

difficulty for each individual chain, thus keeping the chain forking

rate stable. We examine adversarial behavior and how it can influ-

ence the difficulties of various chains, and confirm that our scheme is

secure against significant adversarial presence. The simulations are

based on historical Bitcoin mining power data and parameters col-

lected from real-world experiments of the Prism [26] parallel-chain

protocol, making the insights meaningful for real-world systems.

Other related works. A recently proposed blockchain protocol

Taiji [16] combines Prism with a BFT protocol to construct a dy-

namically available PoW protocol which has almost deterministic

confirmation with low latency. Since Taiji inherits the parallel-chain

structure from Prism, our meta-principles will also apply. The vul-

nerability of selfish mining has recently been discussed on several

existing blockchain projects with variable difficulty in [19]. Our pro-

posed variable difficulty FruitChains protocol guarantees fairness

of mining, thus disincentivizes selfish mining.

2 MODEL
Synchronous network. We describe our protocols in the now-

standard Δ-synchronous networkmodel considered in [2, 13, 20] for

the analysis of proposed variable difficulty protocols, where there is

an upper bound Δ in the delay (measured in number of rounds) that

the adversary may inflict to the delivery of any message. Observe

that notion of “rounds” still exist in the model (since we consider dis-

cretized time), but now these are not synchronization rounds within

which all messages are supposed to be delivered to honest parties.

Similar to [13, 20], the protocol execution proceeds in “round”

with inputs provided by an environment program denoted byZ(1𝜅 )
to parties that execute theprotocolΠ,where𝜅 is a security parameter.

The adversaryA is adaptive, and allowed to take control of parties

on the fly, as well as “rushing”, meaning that in any given round the

adversarygets toobservehonest parties’ actionsbeforedecidinghow

toreact.Thenetwork ismodeledasadiffusion functionality similar to

those in [13, 20]: it allowsorderofmessages tobe controlledbyA, i.e.,

A can inject messages for selective delivery but cannot change the

contentsof thehonestparties’messagesnorprevent themfrombeing

delivered beyond Δ rounds of delay — a functionality parameter.

Random oracle.We abstract the hash function as a random ora-

cle functionality. It accepts queries of the form (compute,𝑥) and
(verify, 𝑥,𝑦). For the first type of query, assuming 𝑥 was never

queried before, a value𝑦 is sampled from {0,1}𝜅 and it is entered to

a table𝑇𝐻 . If 𝑥 was queried before, the pair (𝑥,𝑦) is recovered from
𝑇𝐻 . In both cases, the value𝑦 is provided as an answer to the query.

For the second type of query, a lookup operation is performed on

the table. Honest parties are allowed to ask one query per round

of the type compute and unlimited queries of the type verify. The
adversary A is given a bounded number of compute queries per

round and also unlimited number of verify queries. The bound

for the adversary is determined as follows. Whenever a corrupted

party is activated the bound is increased by 1; whenever a query is

asked the bound is decreased by 1 (it does not matter which specific

corrupted party makes the query).

Adversarial control of variable mining power.We assume no

rational node in the adversarial model. The adversary can decide

on the spot howmany honest parties are activated adaptively. In a

round 𝑟 , the number of honest parties that are active in the protocol

is denoted by 𝑛𝑟 and the number of corrupted parties controlled by

A in round 𝑟 is denoted by 𝑡𝑟 . Note that 𝑛𝑟 can only be determined

by examining the view of all honest parties and is not a quantity that

is accessible to any of the honest parties individually. We make the

“honest majority” assumption, i.e., 𝑡𝑟 < (1−𝛿)𝑛𝑟 for all 𝑟 , where the
positive constant 𝛿 < 1 is the advantage of honest parties. Further,

we will restrict the environment to fluctuate the number of parties

in a certain limited fashion. SupposeZ,A with fixed coins produces

a sequence of parties𝑛𝑟 , where 𝑟 ranges over all rounds of the entire

execution, we define the following notation.

Definition 2.1. Let 𝑟max ∈N is the total number of rounds in the
execution. For 𝛾 ∈R+, we call (𝑛𝑟 ),𝑟 ∈ [0,𝑟max], as (𝛾,𝑠)-respecting if
for any set 𝑆 ⊆ [0,𝑟max] of at most 𝑠 consecutive rounds,

max

𝑟 ∈𝑆
𝑛𝑟 ≤𝛾min

𝑟 ∈𝑆
𝑛𝑟 .

We say thatZ is (𝛾,𝑠)-respecting if for allA and coins forZ andA
the sequence of honest parties 𝑛𝑟 is (𝛾,𝑠)-respecting.

3 PRISM
3.1 Fixed Difficulty Algorithm
Each block in the longest chain of the Bitcoin protocol performs

dual roles: Proposing and Voting. A proposed block gets confirmed

with high reliability only after the block, and several more blocks

extending it make it in the longest chain. The latency of the protocol

is the number of blocks for which one needs to wait (this number

depends on the reliability). To guarantee security, the mining rate



Figure 1: Fixed difficulty Prism. Snapshot of aminer’s view of
Prism block-trees. The confirmed blocks are darker in color
and the votes are shown using dotted arrows.

remains low [11], which leads to low throughput and high latency.

Prism [3] is a Proof-of-Work protocol that decouples block proposals

and voting to scale throughput and latency. We will briefly explain

the Prism as it was originally described in the fixed mining rate, i.e.,

fixed difficulty regime. As show in Figure 1, Prism runs multiple

𝑚+1 separate parallel “blocktrees” where one of the trees, called the
proposer tree, consists of blocks from which the final transaction

ledger is constructed.We define a block’s level in the proposer tree as

the block’s depth from the genesis. The final transaction ledger will

comprise of one proposer block at each level chosen by the longest

chain in each of the𝑚 voter blocktrees; they are referred to as voter

chains. A voter block in any voter blocktree can vote for one or

more proposer blocks at different levels by including a pointer to

the corresponding proposer blocks in its payload. A voter block can

also consist of a null vote if the chain it entered already voted on

the latest level. At a given level of the proposer tree, a voter chain

can vote for exactly one proposer block. The net vote for a proposer

block can be counted by aggregating which of the𝑚 voter chains

voted for that block. The block with the most votes at any particular

level is termed as the leader block for that level, and the ledger is

constructed by concatenating the leader blocks at various levels.

Mining and sortition. In order to ensure that the adversary cannot
focus themining power onto a single chain, a “sortition” mechanism

is used. A miner creates a “super-block” containing information

about its parent block in each of the𝑚+1 trees. Each tree has a target
of 𝑇 , and for 1 ≤ 𝑖 ≤ 𝑚 if a node creates a block of hash value in

between 𝑖𝑇 and (𝑖+1)𝑇 , it will be able to mine this block in the voter

block-tree 𝑖 . If it creates a block of hash value less than𝑇 , it will be

able tomine this block in the proposer block-tree as show in Figure 1.

The structureof this voting scheme inPrism enables lowconfirma-

tion latency.Thehigh-level idea is that votes accrueonly sequentially

inBitcoin, whereas inPrism, votes accrue parallelly. Thus for a given

amount of security, confirmation only needs to wait for a much

shorter amount of time (since voting blocks are created in parallel),

thus reducing the amount of latency.

3.2 Natural Approaches Are Insecure
Different difficulty adjustment for different chains (no M1).
To add support for variable mining power to Prism, a natural first

approach is to replace the longest chainrule [11]by theheaviest chain

rule [13] in all the parallel chains, and adjust the mining difficulty in

each chain separately. However, miners in Prism use cryptographic

sortition to mine blocks on all chains at the same time, and having

different thresholds for different chains depending on the state will

require complex coupling across chains. Furthermore, since the

mining power variation is the same across different chains, it is

efficient to have a single difficulty threshold across the entire system.

As we explained in the introduction, our general methodology

for converting a fixed-difficulty protocol into a variable-difficulty

protocol comprises of three attributesM1: Pivot-chain,M2: Mono-

tonicity andM3: Translation. We will now explore the subtleties

inherent in this process and showwhy a subset of these attributes

is insufficient for Prism.

M1 without M2 ⇒ Safety failure. To make the cryptographic

sortition technique applicable, a straightforward approach is to use

theproposer chain as apivot chain for difficulty adjustment (M1): the
difficulty of the proposer blocks is adjusted according to the Bitcoin

rule [13], and the difficulty of voter blocks tracks that of the proposer

chain by reference links. However, if we allow the miners to use the

difficulty of any proposer block for the voter blocks, then safety
failuresmay occur on the voter chains.We demonstrate an example

safety failure here. Let the honest parties maintain the difficulty 𝑑0
throughout the execution, and the adversarymines private proposer

blocks with timestamps in rapid succession to increase the difficulty

to 𝑑0∗𝑘 , where 𝑘 is a desired security parameter on the voter chains

(i.e., we hope that a 𝑘-deep voter block will be stable forever). Even

if the adversary cannot keep up the chain difficulty of its private

proposer chain with the heaviest public chain, at the current time on

the voter chain, the adversarywill refer to this very difficult block on

theproposer tree tocreateaverydifficultblockonthevoter tree. If the

adversary is luckyandminesonevoter blockwithdifficulty𝑑0∗𝑘 , the
probability ofwhich is a constant rather than exponentially decaying

in𝑘 (via the same anti-concentration argument inAppendixA), then

it can overtake the heaviest voter chain and reverse a 𝑘-deep voter

block. This attack is described in Figure 2. To address this issue, we

require that on each voter chain the referred proposer blocks should

have non-decreasing chain difficulty (M2), so that the adversary can
no longer adopt an old mining difficulty from the proposer chain.

With M2, although the adversary may not refer to the tip of the

proposer chain, both our analysis in Section 6.4 and the simulation

in Section 7.3 show that the security of the voter chain can still be

guaranteed.

Voting rule: NoM3⇒ Liveness Failure. In fixed difficulty Prism,

a voter block votes on all levels in the proposer tree that are unvoted

by the voter block’s ancestors. In the variable difficulty algorithm,

while the notion of “level” on the proposer chain is well-defined an

adversary can alwaysmine a very long but easy proposer chain. As a

result, if we still order proposer blocks by level, the leader sequence

will be full of adversarial blocks, which may cause liveness failure

as described in Figure 3. A natural generalization would be that

voter blocks vote for each difficulty value rather than level and the



Figure 2: Attack on safety when we enforce M1 but not M2.
At the current time, the adversarywill choose a very difficult
proposer block in a less heavier chain as its proposer-parent
in the voter chain, hurting the ledger’s security. The dotted
arrows represent the relation between the voter blocks and
their proposer parents.

Figure3:AttackonlivenesswhenM1,M2areenforcedbutnot
M3. The adversary lowers the block difficulty and advances
in level on theproposer tree. Thevoter blockswill not be able
to vote for any honest blocks, hurting the ledger’s liveness.

leader sequence is also decided for each difficulty value (M3). See
the complete algorithm in the next subsection.

3.3 Variable Difficulty Algorithm
We now describe the full Prism protocol for the variable difficulty

setting constructed using our general methodology. We refer the

reader to Appendix D for a pseudocode of the algorithm. There

are two types of blocks in Prism blockchain: proposer blocks and

voter blocks. Proposer blocks contain transactions that are proposed

to be included in the ledger, and constitutes the skeleton of Prism

blockchain. Voter blocks are mined on𝑚 separate voter blocktrees,

each with its own genesis block. We say a voter block votes on a

proposer block 𝐵 if it includes a pointer to 𝐵 in its payload.

Blockproposal rule.Theproposer chain follows theheaviest chain
rule, and thedifficultyadjustmentuses the target calculation function

defined in [13] with parameter Φ and 𝜏 , where Φ is the length of an

Figure 4: A miner’s view of Prism block-trees with variable
chain difficulty. The confirmed blocks are darker in color.
Both the votes and proposer-parent links are shown using
the same dotted arrows.

epoch in number of blocks and 𝜏 ≥ 1 is the dampening filter (line 14

in Algorithm 2). All𝑚 voter chains also follow the heaviest chain

rule, but the difficulty adjustment on voter chains is more tricky and

we will discuss it soon when introducing sortition.
Whereas Bitcoinminers mine on a single blocktree, Prismminers

simultaneouslymine one proposer block and𝑚 voter blocks via cryp-

tographic sortition.More precisely, whilemining, eachminer selects

𝑚+1 parent blocks, which are the tips of the heaviest chains on the
proposer tree and the𝑚 voter trees.We call these tips proposer parent
and voter parents separately. And the miner maintains outstanding

content for each of the𝑚+1 possible mined blocks: For the proposer

block, the content is a list of transactions; For the voter block on the

𝑖-th voter tree, the content is a list of hashes of proposer blocks at

each difficulty in the proposer blocktree that has not yet received

a vote in the heaviest chain of the 𝑖-th voter tree. More precisely, on

the 𝑖-th voter tree, if the last proposer block voted by the heaviest

chain covers the difficulty interval (𝑎0,𝑏0] and the proposer parent
covers (𝑎∗,𝑏∗], then a valid voter block on the 𝑖-th voter tree must

satisfy the following conditions (see Algorithm 4).

• If 𝑏∗=𝑏0, then it should contain no vote.
• If 𝑏∗>𝑏0, then it should vote for an arbitrary number of pro-

poser blocks 𝐵1,𝐵2,···,𝐵𝑛 , each covering (𝑎1,𝑏1], (𝑎2,𝑏2], ···,
(𝑎𝑛,𝑏𝑛], such that 𝑎𝑖 <𝑏𝑖−1<𝑏𝑖 for all 1≤ 𝑖 ≤𝑛 and 𝑏𝑛 =𝑏∗.

Upon collecting this content, the miner tries to generate a block

with target according to the proposer parent via proof-of-work (M1).
Once a valid nonce is found, the output of the hash is determin-

istically mapped to either a voter block in one of the𝑚 trees or a

proposer block (lines 19-25 in Algorithm 2).

Whilemining, nodesmay receive blocks from the network, which

are processed in much the same way as Bitcoin. For a received voter

block to be valid, the chain difficulty of its proposer parent must be



at least that of the proposer parent of its voter parent (M2). Upon
receiving a valid voter block, the miner updates the heaviest chain if

needed, and updates the vote counts accordingly. Upon receiving a

valid proposer block 𝐵 with chain difficulty higher than the previous

heaviest chain, the miner makes 𝐵 the new proposer parent, and

updates all𝑚 voter trees to vote for chain difficulties until 𝐵.

Ledger formation rule.Note that all the voters on one voter chain
may cover overlapping intervals. So we first sanitize them into

disjoint intervals: For 𝑛 consecutive valid votes (𝑎1,𝑏1], (𝑎2,𝑏2],
··· , (𝑎𝑛,𝑏𝑛] on a voter chain, we sanitize them into new intervals

(𝑎1,𝑏1], (𝑏1,𝑏2], ··· , (𝑏𝑛−1,𝑏𝑛]. In this way, we make sure that each

real-valued difficulty 𝑑 is voted at most once by each voter chain,

hence 𝑑 can receive at most𝑚 votes. Since voter blocks vote for

each difficulty value rather than level, the ledger is also generated

based on difficulty values (M3). Let 𝑣𝑖 (𝑑) be the proposer block with
interval containing 𝑑 voted by the heaviest chain on the 𝑖-th voter

tree. Let ℓ (𝑑) be the leader block of difficulty𝑑 , which is the plurality

of the set {𝑣𝑖 (𝑑)}𝑚𝑖=1. For each proposer block𝐵𝑝 in the proposer tree,
define 𝑔(𝐵𝑝 ) as

𝑔(𝐵𝑝 )= inf

𝑑≥0
{𝑑 : ℓ (𝑑)=𝐵𝑝 }. (1)

Note that if {𝑑 : ℓ (𝑑) = 𝐵𝑝 } is empty, then 𝑔(𝐵𝑝 ) = ∞. Finally, by
sorting all proposer blocks by𝑔(·), we get the leader sequence of the
proposer blocks. A concrete example of this ledger formation rule is

shown in Figure 5.

Operationally, we only need to count votes for intervals in the

atomic partition of all intervals covered by the proposer blocks. Af-

ter finding the leader block for each atomic interval, we can get the

leader sequence by sanitizing the repeated proposer blocks.

Main result: persistence and liveness of Prism (Informal)We

show that Prism generates a transaction ledger that satisfies persis-
tence and liveness inavariableminingpowersetting inTheorem6.17.

4 OHIE
4.1 Fixed Difficulty Algorithm
OHIE [27] composes𝑚 parallel instances of Bitcoin longest chains.

Each chain has a distinct genesis block, and the chains have ids from

0 to𝑚−1. Similar to Prism,OHIE also uses cryptographic sortition

to ensure that miners extend the𝑚 chains concurrently and they do

not knowwhich chain a new block will extend until the PoW puzzle

is solved.

Each individual chain inOHIE inherits the proven security prop-

erties of longest chain protocol [11], and all blocks on the𝑚 chains

confirmedby the longest chain confirmation rule (eg. the𝑘-deep rule)

are called partially-confirmed. However, this does not yet provide
a total ordering of all the confirmed blocks across all the𝑚 chains in

OHIE. The goal ofOHIE is to generate a sequence of confirmed blocks
(SCB) across all𝑚 parallel chains. Once a partially-confirmed block

is added to SCB, it becomes fully-confirmed.
InOHIE, each block has two additional fields used for ordering

blocks across chains, denoted as a tuple (rank,next_rank). In SCB,
the blocks are ordered by increasing rank values, with tie-breaking
based on the chain ids. For any new block 𝐵 that extends from its

parent block denoted asparent(𝐵), we directly set𝐵’srank to be the
same as parent(𝐵)’s next_rank. A genesis block always has rank
of 0 and next_rank of 1. Properly setting the next_rank of a new

Figure 5: An example of the ledger formation rule in Prism.
For simplicity, we only have one voter chain in the example.
The number inside each proposer block is the block diffi-
culty. In this example, the heaviest proposer chain has chain
difficulty 5. We find the leader block ℓ (𝑑) for each difficulty
level 𝑑 in (0,5] according to the votes (as shown in the first
table). Then we find the grade 𝑔(·) of each proposer block
by Equation (1) as shown in the second table. Finally, the
proposer blocks are ordered by their grades.

block 𝐵 is the key design inOHIE. LetB be the set of all tips of the

𝑚 longest chains before 𝐵 is added to its chain, then the next_rank
of 𝐵 is given by

next_rank(𝐵)=max{rank(𝐵)+1,max

𝐵′∈B
{next_rank(𝐵′)}}.

If 𝐵 copies the next_rank of a block 𝐵′ on a chain with different id,
then a reference link to𝐵′ (or the hash of𝐵′) is added into𝐵. In the ex-
ampleof Figure 6,whenB11 ismined,B04has thehighestnext_rank,
so B11 copies the next_rank of B04 and has a reference link to B04.

OHIE generates a SCB in the following way. Consider any given

honest node at any given time and its local view of all the𝑚 chains.

Let𝑦𝑖 be thenext_rankof the lastpartially-confirmedblockonchain

𝑖 in this view. Let confirm_bar←min
𝑘
𝑖=1
𝑦𝑖 . All partially-confirmed

blocks whose rank is smaller than confirm_bar are deemed fully-

confirmedand included inSCB. Finally, all the fully-confirmedblocks

will be ordered by increasing rank values,with tie-breaking favoring
smaller chain ids. As an example, in Figure 6, we have 𝑦0 = 4,𝑦1 =

7,𝑦2=9, henceconfirm_bar is4. Therefore, the8partially-confirmed

blocks whose rank is below 4 become fully-confirmed.

4.2 Variable Difficulty Algorithm
Following the same meta-principle of designing variable difficulty

Prism, we can also turn the fixed difficulty OHIE into a variable

difficulty algorithm by making the following changes.



Figure 6: OHIE with fixed difficulty. Each block has a tuple
(rank,next_rank). In this figure, a block that is at least 2-deep
in its chain is partially-confirmed. The blocks arrive in this
order: B00, B10, B20, B01, B02, B03, B04, B11, B12, B13, B14,
B21, B22, B23.

Figure 7:OHIEwith variable difficulty. Each block has a tuple
(rank,next_rank). In this figure, a block that is at least 2-deep
in its chain is partially-confirmed. The width of a block
represents its mining difficulty. Different from the fixed
difficulty algorithm, themining difficulty is adjusted every 3
blocks on chain 0; Each block 𝐵 on chain 𝑖 (𝑖 >0) has a chain 0
parent (shown by the red reference link), which decides the
mining difficulty of 𝐵. The blocks arrive in this order: B00,
B10,B20,B11,B01,B02,B03,B04,B12,B13,B21,B05,B14,B22.

• Each individual chain follows the heaviest chain rule instead

of the longest chain rule.

• The mining difficulty of chain 0 is adjusted the same way as

the Bitcoin rule [13].

• Following our design principleM1, each block 𝐵 on chains

1,2,...,(𝑚−1) will also have a chain 0 parent 𝐵̂ (assigned before

mining). Themining difficulty of𝐵 is the same as the difficulty

used tomine a child block of 𝐵̂. To prevent the adversary from

adopting an old mining difficulty from chain 0, we require

that on each chain the referred chain 0 parent should have

non-decreasing chain difficulty (M2). As an example in Fig-

ure 7, each block on chain 1 and chain 2 refers to (shown in

red dashed arrow) a chain 0 parentwith non-decreasing chain

difficulty, which decides the mining difficulty of the block.

• A straightforward adoption on how to decide the next_rank
of a block would follow from our design principleM3. Let B
be the set of all tips of the𝑚 heaviest chains before 𝐵 is added

to its chain, then the next_rank of 𝐵 is given by

next_rank(𝐵)=max{rank(𝐵)+diff (𝐵),max

𝐵′∈B
{next_rank(𝐵′)}}.

If 𝐵 copies the next_rank of a block 𝐵′ on a chain with differ-
ent id, then a reference link to 𝐵′ (or the hash of 𝐵′) is added
into 𝐵. Note that 𝐵′may be different from 𝐵’s chain 0 parent,

eg. B21 in Figure 7. We point out that this design is not neces-

sary for the security analysis, but it is a very natural choice.

We refer the reader to Appendix G of [25] for a pseudocode of the

algorithm.

Main result: persistence and liveness of OHIE (Informal)We

show thatOHIE generates a transaction ledger that satisfies persis-
tence and liveness in a variable mining power setting in Appendix

D of [25].

5 FRUITCHAINS
5.1 Fixed Difficulty Algorithm
The FruitChains protocol was developed in order to solve the selfish

mining problem and develop incentives which are approximately

a Nash equilibrium. A key underlying step in FruitChains is to en-

sure that a node that controls a certain fraction of mining power

receives rewardnearly proportional to itsmining power, irrespective

of adversarial action. FruitChains runs an instance of Nakamoto

consensus but instead of directly putting the transactions inside the

blockchain, the transactions are put inside “fruits” and fruits are

included by blocks. Mining fruits also requires solving some PoW

puzzle. Similar to Prism andOHIE, the FruitChains protocol also

uses cryptographic sortition to ensure that miners mine blocks and

fruits concurrently and they do not know the type of the blocks until

the puzzle is solved. Additionally, a fruit is required to “hang” from

a block which is not too far from the block which includes the fruit.

In FruitChains, each of the fruit will have two parent blocks, we

call them fruit parent and block parent: the fruit parent is a recently

stabilized/confirmed block that the fruit is hanging from; the block

parent should be the tip of the longest chain. A block will also have

a fruit parent because the fruit mining and block mining are piggy-

backed atop each other, but a block actually does not care about this

field. See Figure 8 for illustration.We say that a fruit𝐵𝑓 is recentw.r.t.

a chainC if the fruit parent of𝐵𝑓 is a block that is atmost𝑅 deep inC,
where 𝑅 is called the recency parameter. The FruitChains protocol

requires that blocks only include recent fruits. Intuitively, the reason

why fruits need to be recent is to prevent the “fruit withhold attack”:

without it, an attacker could withhold fruits, and suddenly release

lots of them at the same time, thereby creating a very high fraction

of adversarial fruits in some segment of the chain.

We term a blockchain protocol as fair if players controlling a 𝜙

fraction of the computational resources will reap a 𝜙 fraction of

the rewards. Intuitively, the reason why the FruitChains protocol

guarantees fairness is that even if an adversary tries to “erase” some

blockmined by anhonest player (which contains somehonest fruits),

by the liveness of the longest chain protocol, eventually an honest

playerwill mine a new block including those fruits and the blockwill

be stable – in fact, by setting the recency parameter 𝑅 reasonably

large, we canmake sure that any fruitmined by an honest playerwill

be included sufficiently deep in the chain. And further, if rewards

and transaction fees are evenly distributed among the fruits in the



Figure 8: The FruitChains protocol.

long segment of the chain, then the FruitChains protocol guarantees

fairness.

5.2 Variable Difficulty Algorithm
Following our meta-principles, we can also turn the fixed difficulty

FruitChains into a variable difficulty algorithm bymaking the fol-

lowing changes.

• The underlying blockchain protocol follows the heaviest

chain rule instead of the longest chain rule, i.e., the block

parent of a block/fruit is the tip of the heaviest chain.

• The mining difficulty is adjusted the same way as the Bitcoin

rule [13], and the block/fruit miningwill use the samemining

difficulty, or the difficulties of fruit and block will remain the

same ratio (M1).
• A fruit𝐵𝑓 is recentw.r.t. a chainC at round 𝑟 if the fruit parent
of𝐵𝑓 is inC and has timestamp at least 𝑟−𝑅, where𝑅 is called
the recency parameter. And again, blocks only include recent

fruits, i.e., a block 𝐵 with timestamp 𝑟 is valid if for all fruits

𝐵𝑓 ∈𝐵, the fruit parent of 𝐵𝑓 has timestamp at least 𝑟−𝑅.

If rewards and transaction fees are designed to distribute pro-

portional to the fruit difficulty in a sufficiently long segment of the

chain, then the variable difficulty FruitChains protocol guarantees

fairness under a variable mining power setting. This is where the

meta-principleM3 kicks in. In the fixed difficulty setting, the reward

is distributed equally among all fruit miners equally in a window
of blocks. In the variable difficulty setting, the reward is distributed

proportional to the difficulty of the fruits. To model this in our

calculation of fairnesss, we say that the variable difficulty protocol

is fair if the fraction of difficulty of fruits of a given miner in a

window is approximately proportional to itsminingpower.Note that

monotonicity condition (M2) does not apply to variable difficulty

FruitChains as there is no chaining structure among the fruits. But

the recency condition on the fruits has the same effect and does pre-

vent the adversary from adopting an old mining difficulty for fruits.

Main result: persistence, liveness and fairness of FruitChains
(Informal) We show that FruitChains generates a transaction

ledger that satisfies persistence, liveness and fairness in a variable

mining power setting in Appendix E of [25].

6 SECURITYANALYSIS
6.1 Desired Security Properties

Notation6.1. WedenotebyC ⌈ℓ the chain resulting from“pruning”
the blocks with timestamps within the last ℓ rounds. If C1 is a prefix
of C2, we write C1 ≺ C2. The latest block in the chain C is called the
head of the chain and is denoted by head(C). We denote by C1∩C2 the
common prefix of chains C1 and C2. We say that a chain𝐶 is held by or
belongs to an honest party if it is one of the heaviest chains in its view.

The following two properties called common prefix and chain

quality, are essential in proving the persistence and liveness of the

transaction ledger. The common prefix property states that any two

honest parties’ chains at two rounds have the earlier one subsumed

in the later as long as the last a few blocks are removed, while chain

quality quantifies the contributions of the honest parties to any

sufficiently long segment of the chain.

Definition 6.2 (Common Prefix). The common prefix property
with parameter ℓcp ∈N states that for any two honest players holding

chains C1, C2 at rounds 𝑟1, 𝑟2, with 𝑟1 ≤𝑟2, it holds that C
⌈ℓcp
1
≺C2.

Definition 6.3 (ChainQuality). The chain quality property is
defined for two parameters ℓcq ∈N and 𝜇 ∈R. Let C be a chain held by
any honest party at round 𝑟 and let 𝑆0 ⊆ [0,𝑟 ] be an interval with at
least ℓcq consecutive rounds. Let C(𝑆0) be the segment of C containing
blocks with timestamps in 𝑆0 and 𝑑 be the total difficulty of all blocks
in C(𝑆0). The chain quality property states that the honest blocks in
C(𝑆0) have a total difficulty of at least 𝜇𝑑 .

In the context of Prism, let LedSeq𝑑 (𝑟 ) be the leader sequence
up to difficulty level 𝑑 at round 𝑟 . And the leader sequence at the

end of round 𝑟max, the end of the protocol execution, is the final
leader sequence, LedSeq𝑑 (𝑟max). Then similar to a single chain, we

can define the following properties on the leader sequence.

Definition 6.4 (Leader Seqence Common Prefix ). The leader
sequence common prefix property with parameter ℓ

lscp
∈N states that

for a fixed difficulty level𝑑 , let𝑅𝑑 be the first round in which a proposer
block covering 𝑑 was received by all honest players, then it holds that

LedSeq𝑑 (𝑟 )=LedSeq𝑑 (𝑟max) ∀𝑟 ≥𝑅𝑑 +ℓlscp . (2)

Definition6.5 (LeaderSeqenceQuality). The leader sequence
property is defined for two parameters ℓ

lsq
∈N and 𝜇 ∈R. Let C be a

proposer chain held by any honest party at round 𝑟 and let 𝐷 be the
difficulty range covered by all blocks in C with timestamps in the last
ℓ
lsq

rounds. The leader sequence quality property states that leader
blocks mined by honest players cover at least 𝜇 fraction of𝐷 .

Our goal is to generate a robust transaction ledger that satisfies

persistence and liveness as defined in [11, 27].

Definition 6.6 (from [11, 27]). A protocol Πmaintains a robust
public transaction ledger if it organizes the ledger as a blockchain of
transactions and it satisfies the following two properties:

• (Persistence) Consider the confirmed ledger 𝐿1 on any node𝑢1
at any round 𝑟1, and the confirmed ledger 𝐿2 on any node 𝑢2
at any round 𝑟2 (here𝑢1 (𝑟1) may or may not equal𝑢2 (𝑟2)). If
𝑟1+Δ<𝑟2, then 𝐿1 is a prefix of 𝐿2.



Figure 9: Proof sketch for Prism. M1, M2 and M3 are crucial
in proving these properties for the leader sequence.

• (Liveness) Parameterized by𝑢 ∈R, if a transaction tx is received
by all honest nodes formore than𝑢 rounds, then all honest nodes
will contain tx in the same place in the confirmed ledger.

6.2 Proof Sketch
Since there is a pivot chain in all threeprotocols (byM1), thefirst step
of our analysis is to prove some desired properties (including chain

growth, common prefix, and chain quality) of the pivot chain. As the

pivot chain just follows the difficulty adjustment rule as in Bitcoin,

we can directly borrow results from a beautiful paper [13]. The key

step is to show that by adopting the heaviest pivot chain, honest

nodes are always mining with “reasonable” block difficulties (this is

formally defined asGood round/chain in Section 6.3).We state all the

useful lemmas and summarize the proof from [13] in Appendix B.

The key technical challenge involves analyzing the properties

of the non-pivot chains. Unlike in a pivot chain where all blocks in

an epoch will have the same block difficulty, the block difficulties

may experience sudden changes in non-pivot chains. This presents

a significant barrier to surmount in our analysis, and differs from

previous work in this area. Recall thatM1 ensures that an honest

party chooses the target of the next block in a non-pivot chain from

the tip of the heaviest pivot chain in its view. Hence, the targets

used by an honest party for the non-pivot chains are also reasonable.

Thenhowabout the non-pivot-chain blocksmined by the adversary?

As discussed in Section 3, allowing the miners to choose arbitrary

mining difficulty in a non-pivot chain is risky. So we use the mono-

tonicity conditionM2 to ensure that non-pivot-chain blocks also

have “reasonable” block difficulties even if the adversarymines them.

Then we prove that any two heaviest non-pivot chains cannot

diverge for too long to prove the common prefix property. We do

this by considering two non-pivot chains𝐶1 and𝐶2 (in one of the

non-pivot block tree) that diverge for too long and consider the last

common honest block 𝐵 of𝐶1 and𝐶2.M2 ensures that the blocks
arriving after 𝐵 should refer to a pivot-chain block with monoton-

ically non-decreasing chain difficulty than the one referred by 𝐵. We

also argue that the chain difficulty intervals covered by uniquely

successful honest blocks (defined as honest blocks that are mined

more thanΔ rounds apart) in chains𝐶1 and𝐶2 do not overlap similar

to the analysis for the common prefix in [13]. To make𝐶1 and𝐶2

diverge, the adversary has to accumulate an enormous total difficulty

compared to uniquely successful honest blocks.

When the number of adversarial queries is high in the chains𝐶1
and𝐶2 after the block 𝐵, we bound the difficulty accumulated by the

adversary via concentration.When it is low, the variance is high; we

prove this by dividing the problem into 5 cases. Since the adversary

cannot contribute an enormous total difficulty compared to uniquely

successful honest blocks in one of the heaviest chains, the chain

quality property also holds. The full proof can be found in Section 6.4.

The last step of our proof is using the desired proprieties on each

individual chain to show the security of the full parallel-chain proto-

col. Since eachparallel-chainprotocol has its ownwayof forming the

transaction ledger, the proof also has to differ. By properly turning

the concept of block level to block’s chain difficulty (M3), we make

sure that our proof works out for all three protocols. We complete

the proof of persistence and liveness for Prism in Section 6.5 (and

the flowchart of the proof sketch can be found in Figure 9), while the

proof forOHIE can be found inAppendixDof the full version [25]. In

addition, we define and prove block reward fairness of FruitChains

under a variable mining setting in Appendix E of [25].

6.3 Definitions
𝑚 ∈N number of voter/parallel chains in Prism/OHIE

𝑛𝑟 number of honest parties mining in round 𝑟

𝑡𝑟 number of corrupted parties mining in round 𝑟

𝛿 advantage of honest parties (𝑡𝑟 < (1−𝛿)𝑛𝑟 for all 𝑟 )
Δ network delay in rounds

𝜅 security parameter; length of the hash function output

Φ∈N the length of an epoch in number of blocks

𝜏 ≥ 1 the dampening filter (Definition 6.7)

(𝛾,𝑠) restrictions on the fluctuation of the number of

parties across rounds (Definition 2.1)

𝑓 expected mining rate in number of blocks per round

𝜀 quality of concentration of random variables

𝜆 related to the properties of the protocol

ℓ minimum number of rounds for concentration bounds

𝑟max total number of rounds in the execution

Table 1: The parameters used in our analysis.

Let𝑇,Λ,Φ and𝑛 denote the target of a block, duration of an epoch,

epoch length and number of honest parties respectfully. Through-

out the analysis, the block difficulty of a block with target𝑇 is set

to be 1/𝑇 . The chain difficulty of a chain is equal to the sum of all

block difficulties that comprise the chain. The following is the target

recalculation function for the pivot chainwhich is the same function

used in Bitcoin.

Definition6.7 (from [11]). Consider a pivot chain of 𝑣 blockswith
timestamps (𝑟1 ...𝑟𝑣). For fixed constants 𝜅,𝜏,Φ,𝑛0 the initial number
of participants, 𝑇0 the initial target, the target calculation function
T :Z∗→R is defined as

T (∅)=𝑇0,

T (𝑟1 ...𝑟𝑣)=


1

𝜏𝑇 if 𝑛0

𝑛 (𝑇,Λ)𝑇0<
1

𝜏𝑇

𝜏𝑇 if 𝑛0

𝑛 (𝑇,Λ)𝑇0>𝜏𝑇
𝑛0

𝑛 (𝑇,Λ)𝑇0 otherwise



where 𝑛(𝑇,Λ)=2𝜅Φ/𝑇Λ, with Λ=𝑟Φ′−𝑟Φ′−Φ,𝑇 =T (𝑟1 ...𝑟Φ′−1), and
Φ′=Φ⌊𝑣/Φ⌋.

We now define a notion of “good” properties such as good round

and good chain. These properties will bound the targets used by the

honest parties, which will help us prove chain quality and common

prefix.

Definition 6.8 (Goodround, from [13]). Let𝑇𝑚𝑖𝑛
𝑟 and𝑇𝑚𝑎𝑥

𝑟 de-
note the minimum and the maximum targets the 𝑛𝑟 honest parties are
querying the oracle for in round 𝑟 . Round r is good if 𝑓 /2𝛾2 ≤𝑝𝑛𝑟𝑇𝑚𝑖𝑛

𝑟

and 𝑝𝑛𝑟𝑇𝑚𝑎𝑥
𝑟 ≤ (1+𝛿)𝛾2 𝑓 .

Definition 6.9 (Good chain, from [13]). Round 𝑟 is a target-
recalculation point of a pivot chain C, if C has a block with timestamp
𝑟 and height a multiple of Φ. A target-recalculation point 𝑟 is good if
the target𝑇 of the next block satisfies 𝑓 /2𝛾 ≤𝑝𝑛𝑟𝑇 ≤ (1+𝛿)𝛾 𝑓 . A pivot
chain C is good if all its target-recalculation points are good.

We will use the superscript 𝑃 to denote the variables, blocks,

chains and sets corresponding to the pivot chain/tree and 𝑖 to denote

the ones of the 𝑖𝑡ℎ non-pivot chain/tree.

At any round 𝑟 of an execution, the adversary may keep chains in

private that have the potential to be adopted by an honest party (be-

cause the private chains are heavier than the heaviest chain adopted

by the honest party). So, we expand our chains of interest beyond

the chains that belong to an honest party. For every non-pivot tree

and the pivot tree, we define a set of valid chainsS𝑃𝑟 andS𝑖𝑟 [13] that
include the chains that belong to or have the potential to be adopted

by an honest party.

We will be dealing with random variables to quantify the diffi-

culty accumulated by the honest parties and the adversary in our

analysis. At round 𝑟 , define the real random variable 𝐷𝑃
𝑟 equal to

the sum of the difficulties of all pivot-chain blocks computed by

honest parties. Also, define 𝑌𝑃
𝑟 to equal the maximum difficulty

among all pivot-chain blocks computed by honest parties, and𝑄𝑃
𝑟

to equal 𝑌𝑃
𝑟 when 𝐷𝑃

𝑢 = 0 for all 𝑟 <𝑢 < 𝑟 +Δ and 0 otherwise. We

call an honest block uniquely successful if it is mined at round 𝑟

such that 𝑄𝑟 > 0. Similarly define 𝐷𝑖
𝑟 ,𝑌

𝑖
𝑟 and 𝑄𝑖

𝑟 for the 𝑖-th non-

pivot chain (1 ≤ 𝑖 ≤𝑚 in Prism and 1 ≤ 𝑖 ≤𝑚− 1 in OHIE). For a

set of rounds 𝑆 , we define 𝐷𝑃 (𝑆) =∑
𝑟 ∈𝑆𝐷

𝑃
𝑟 ,𝑄

𝑃 (𝑆) =∑
𝑟 ∈𝑆𝑄

𝑃
𝑟 and

𝐷𝑖 (𝑆)=∑𝑟 ∈𝑆𝐷
𝑖
𝑟 ,𝑄

𝑖 (𝑆)=∑𝑟 ∈𝑆𝑄
𝑖
𝑟 for all 𝑖 .

Regarding the adversary, for a set of 𝐽 adversarial queries to the

oracle, let𝑇 (𝐽 ) be target associated with the first query in 𝐽 . Define
the real random variable𝐴𝑃 (𝐽 ), as the sum of difficulties of all the

adversarial blocks created during queries in 𝐽 with difficulty less

than 𝜏/𝑇 (𝐽 ). For all 𝑖 , define 𝐴𝑖 (𝐽 ) as the sum of difficulties of all

the adversarial blocks created during queries in 𝐽 with difficulty

less than 𝑏𝑖 (𝐽 ) =𝑚𝑎𝑥 𝑗 ∈𝐽 𝑠𝑢𝑝{𝐴𝑖𝑗 −𝐴
𝑖
𝑗−1 |E 𝑗−1 = 𝐸 𝑗−1}, a function

associated with the set of queries 𝐽 (defined according to Theorem

8.1 in [8]).𝐴𝑃
𝑗
is the difficulty of the pivot-chain block with difficulty

at most 𝜏/𝑇 (𝐽 ) obtained at the 𝑗𝑡ℎ query of 𝐽 .𝐴𝑖
𝑗
is the difficulty of

the block obtained at 𝑗𝑡ℎ query of 𝐽 for non-pivot chain 𝑖 .

Let E denote the entire execution and let E𝑟 be the execution just
before round 𝑟+1. To obtain meaningful concentration of our ran-

domvariables, we should be considering a sufficiently long sequence

of at least

ℓ ≜
4(1+3𝜀)

𝜀2 𝑓 [1−(1+𝛿)𝛾2 𝑓 ]Δ+1
max{Δ,𝜏}𝛾3𝜆 (3)

consecutive rounds.

We requireΦ the duration of an epoch to be large enough in order

to obtain meaningful security bounds:

Φ≥ 4(1+𝛿)𝛾2 𝑓 (ℓ+3Δ)/𝜀. (4)

In order for the proofs for the security analysis to work, the pa-

rameters of the protocol should satisfy the following conditions:

[1−(1+𝛿)𝛾2 𝑓 ]Δ ≥ 1−𝜀, 8𝜀 ≤𝛿 ≤ 1. (5)

Note that Equations (4) and (5) can always be satisfied by setting

Φ to be large enough and 𝑓 to be small enough. Also note that (4)

and (5) are not tight bounds on the parameters and are just sufficient

conditions for the analysis to work.

Wenowdefinewhat a typical execution,whichwill help us bound

the random variables in our analysis.

Definition 6.10 (Typical Execution). For any set 𝑆 of at least
ℓ consecutive good rounds, any set of 𝐽 consecutive adversarial queries
and 𝛼 (𝐽 )=2( 1𝜀 +

1

3
)𝜆/𝑇 (𝐽 ), an execution 𝐸 is typical if

(1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ𝑝𝑛(𝑆)<𝑄𝑖/𝑃 (𝑆) ≤𝐷𝑖/𝑃 (𝑆)< (1+𝜀)𝑝𝑛(𝑆),

𝐴𝑃 (𝐽 )<𝑝 |𝐽 |+max{𝜀𝑝 |𝐽 |,𝜏𝛼 (𝐽 )},

𝐴𝑖 (𝐽 )<𝑝 |𝐽 |+max{𝜀𝑝 |𝐽 |,𝑏𝑖 (𝐽 )𝜆( 1
𝜀
+ 1
3

)},

where 𝑏𝑖 (𝐽 )=𝑚𝑎𝑥 𝑗 ∈𝐽 𝑠𝑢𝑝{𝐴𝑖𝑗 −𝐴
𝑖
𝑗−1 |E 𝑗−1=𝐸 𝑗−1}.

We now show that a typical execution is a high-probability event.

Theorem 6.11. For an execution E of 𝑟max rounds, in a (𝛾, 𝑠)-
respecting environment, the probability of the event “E not typical” is
bounded by O(𝑟2

max
)𝑒−𝜆 .

The proof for Theorem 6.11 can be found in Appendix C.1

6.4 Non-pivot chain properties
Pivot chain behaves similar to the Bitcoin chain and its properties

can be found in Appendix B

Next we prove some desired properties for the non-pivot chains.

Lemma 6.12 (Chain growth for non-pivot chain, from [13]).

Suppose that at round 𝑢 of an execution 𝐸, an honest party broad-
casts a 𝑖-th non-pivot chain of difficulty 𝑑 . Then, by round 𝑣 , every
honest party receives a chain of difficulty at least 𝑑 +𝑄𝑖 (𝑆), where
𝑆 = {𝑟 :𝑢+Δ≤𝑟 ≤𝑣−Δ}.

The proof of Lemma 6.12 is identical to Lemma B.3.

At round 𝑟 , to mine on a non-pivot chain block, an honest party

picks a target from the tip of a pivot chain in S𝑃𝑟 which has good

targets at round 𝑟 because of Lemma B.4. So, as a consequence of

M1, all the targets used by the honest parties on a non-pivot chain
also satisfies 𝑓 /2𝛾2 ≤𝑝𝑛𝑟𝑇𝑟 ≤ 𝑓 (1+𝛿)𝛾2.

Lemma 6.13 (Common prefix for non-pivot chains). For a typ-
ical execution in a (𝛾,2(1+𝛿)𝛾2Φ/𝑓 )-respecting environment, each
non-pivot chain satisfies the common-prefix property with parameter
ℓcp= ℓ+2Δ.



Figure 10: The leader blocks at each difficulty level in the
proposer tree.

The proof of Lemma 6.13 is in Appendix C

Lemma 6.14 (Chainqality for non-pivot chains). For a typ-
ical execution in a (𝛾,2(1+𝛿)𝛾2Φ/𝑓 )-respecting environment, each
non-pivot chain satisfies the chain-quality property with parameter
ℓcq= ℓ+2Δ and 𝜇=𝛿−3𝜀.

The proof of Lemma 6.14 is in Appendix C.3.

6.5 Persistence and Liveness of Prism
Lemma 6.15 (Leader seqence common prefix). For a typical

execution in a (𝛾,2(1+𝛿)𝛾2Φ/𝑓 )-respecting environment, the leader
sequence satisfies the leader-sequence-common-prefix property with
parameter ℓ

lscp
=2ℓ+4Δ.

Lemma 6.16 (Leader seqenceqality). For a typical execution
ina (𝛾,2(1+𝛿)𝛾2Φ/𝑓 )-respecting environment, the leader sequence sat-
isfies the leader-sequence-quality property with parameter ℓ

lsq
= ℓ+2Δ

and 𝜇=𝛿−3𝜀.

The proofs of Lemma 6.15 and Lemma 6.16 are in Appendix C.4.

Theorem 6.17 (Persistence and liveness of Prism). For a typ-
ical execution in a (𝛾,2(1+𝛿)𝛾2Φ/𝑓 )-respecting environment, Prism

satisfies persistence and liveness with parameter𝑢= 4(1+𝜀)𝛾2 (ℓ+2Δ)
(𝛿−3𝜀) (1−𝜀)2 .

Proof. Byour definition, the persistence ofPrism is equivalent to

the leader sequence common prefix property proved in Lemma 6.15.

We next prove the liveness property. Suppose a transaction tx is

received by all honest nodes before or at round 𝑟0. Let 𝑟 ≥ 𝑟0+𝑢 be
current time andwe shall prove that tx is contained in the permanent

leader sequence of all honest nodes at round 𝑟 . As shown in Figure

10, let 𝑆1 = {𝑟0,···,𝑟 }, 𝑆2 = {𝑟−2ℓ−4Δ,···,𝑟 }, and 𝐽 be the adversarial
queries in 𝑆2. By Lemma 6.15, for a difficulty level 𝑑 , if 𝑑 is covered

by an honest block mined in 𝑆1\𝑆2, then the block covering 𝑑 will
be permanent in the leader sequence at round 𝑟 . We know that the

difficulty level grows at least 𝑄𝑃 (𝑆1) ≥ (1 − 𝜀)2𝑝𝑛𝑟𝑢/𝛾 in 𝑆1. By

Lemma 6.16, we have that among the chain growth in 𝑆1, different

difficulty levels with size at least (𝛿−3𝜀) (1−𝜀)2𝑝𝑛𝑟𝑢/𝛾 is covered by
honest leader blocks (which may not be permanent at round 𝑟 ). On

the other hand, the proposer blocks that are not permanent (mined

in 𝑆2) cover different difficulty levels with size at most

𝐷𝑃 (𝑆2)+𝐴𝑃 (𝑆2)<2𝐷𝑃 (𝑆2) ≤ 2(1+𝜀)𝑝𝛾𝑛𝑟 (2ℓ+4Δ)
=4(1+𝜀)𝑝𝛾𝑛𝑟 (ℓ+2Δ) .

Hence at least one honest proposer block 𝐵 mined after 𝑟0 is per-

manent in the leader sequence at round 𝑟 . Since either 𝐵 or some

proposer block referred by 𝐵 will contain tx, in both case we can

conclude the proof.

□

7 EVALUATION
In our evaluation, we answer the following questions.

• Is the proposed scheme effective in matching the mining dif-

ficulty and the miner hash power?

• Does theblockchain forkingrate remain lowunderourscheme,

even with changing miner hash power?

• Does our scheme ensure that non-pivot chains adopt the dif-

ficulty of pivot chains, even with presence of the adversary?

• Does our scheme cause major computation and communica-

tion overhead when applied?

7.1 Experimental Setup
Simulator. To evaluate our scheme, we build a mining simulator

for parallel-chain protocols in Golang. The simulator uses a round-

by-round model with an adjustable round interval. In each round,

blocks are mined on each of the parallel chains, and the number of

blocks mined is determined by drawing from independent Poisson

random variables with mean set to the product of the round interval

and the per-chain mining rate. Miners receive newly-mined blocks

after an adjustable network latency.

Simulated protocol. Our simulator does not consider the inter-
pretation of the chains, such as transaction confirmation, ledger

formation, etc. We only simulate the mining process. As a result,

our evaluation is not tied to any particular protocol. Meanwhile, it

is meaningful broadly to all PoW parallel-chain protocols, because

they share this mining process.

There are 1 pivot chain and 1000 non-pivot chains. We simulate

PoWmining on each of the chains at the samemining rate 𝑓 . Each

pivot-chain block contains its timestamp, difficulty, and parent. Each

non-pivot-chain block also contains all these fields, plus a reference

to a pivot-chain block (M1). We simulate two parties of miners: hon-

est and adversary. Honest miners follow the general methodology

described in section 1 by always referring to the best block in the

pivot chain. They enforce the rulesM1,M2 by rejecting any non-
compliant block . We design different adversarial miners to simulate

attacks, and we provide more details later in Section 7.3.

Parameters. The round interval and the network latency are set to
2 seconds according to data collected in large-scale experiments of

Prism [26]. The target mining rate 𝑓 is set to 0.1 block per second

per chain according to [26]. The epoch length Φ is set to 2016 blocks,

and the dampening filter 𝜏 is set to 4 according to Bitcoin . We replay

the historical Bitcoinmining power data [1] during the simulation.

7.2 Adaptation to ChangingMiner Power
The main purpose of our scheme is to ensure the mining difficulty

adapts to changing mining power. To show that, we simulate our

scheme while varying the mining power according to the histori-

cal Bitcoinminer hash rate trace from Jan 2, 2019 to Feb 20, 2020.

Figure 14 shows that even though the miner hash power has tripled

during the simulated period, the mining difficulty of every chain



Figure 11: Forking rate of all parallel
chains in two simulations, one using our
scheme and one using fixed difficulty.

Figure 12: Frequency histogram of the
delay where non-pivot chains update
their difficulty to follow that of the pivot
chain. Note the y-axis is log scale.

Figure 13: Frequencyof difficulty change
on anon-pivot chainwhere 30% ofminer
power is adversarial.

Figure 14: Miner hash power and mining difficulty of each
chainwhen simulatingour schemeover thehistoricalBitcoin
miner power trace. Difficulty is plotted as a region to show
the max and min difficulty across all chains. Both metrics
are normalized over their initial values.
keeps tracking the miner hash power very closely. Also, at any point

in time, the max and min difficulty of all chains are very close. This

demonstrates that the mining difficulty of all chains are always

closely coupled, and no single chain experiences unstable difficulty

or vulnerability.

As mentioned in Section 1, support for variable miner power is

crucial to keeping the blockchain secure. If the miner hash power

increases while the mining difficulty stays the same, the forking rate

will increase due to decreased block inter-arrival time. To show our

scheme is effective in keeping the blockchain secure,we compare the

forking rate of two simulations: one using our scheme and one using

a fixedmining difficulty.We use the sameBitcoinmining power data

as in the previous experiment, and Figure 11 shows the results. Here,

we report the forking rate as the ratio of the number of blocks not

on the longest chain, to the number of blocks on the longest chain.

If a fixed difficulty is used, the forking rate quickly increases as the

miner power increases, to almost tripling towards the end of the

simulation. In comparison, our scheme keeps the forking rate low

across all parallel chains for the whole simulation. This is because

the mining difficulty and the miner hash power are closely matched

under our scheme, so the block mining rate stays at a safe level.

7.3 Difficulty Update on Non-pivot Chains
Onemajor challenge in designing our scheme is to ensure non-pivot

chains adopt the pivot chain difficulty quickly after a new epoch

begins, and we achieve it with theM2 (Monotonicity, cf. Section 1).

To show that adversarial miners cannot delay this process, we sim-

ulate our scheme where 30% of miners are adversarial. Adversarial

miners do not voluntarily refer to the latest block on the pivot chain

after a new epoch begins, but rather try to stay in the previous epoch

(and mining difficulty) for as long as possible. We also simulate an

all-honest scenario for comparison.Wemeasure howsoonnon-pivot

chains adopt new difficulty by tracking the delay from the last block

of the previous epoch on the pivot chain to the first block of the new

epoch of the non-pivot chain. Figure 12 shows the results. In either

scenario, the difficulty of non-pivot chains is updated within 1–5

block intervals (0–50 seconds in real time). Although adversarial

presence does delay the update of difficulty, the delay is not signifi-

cant. This demonstrates that our mechanism ensures in-time update

of non-pivot-chain difficulty.

We demonstrate thatM2 is essential to ensuring the mining diffi-

culty does not vary too frequently on non-pivot chains.We compare

two simulations where 30% of miner power is adversarial. In one

case, we apply our full scheme. In the other case, we disable M2
so that the adversary is free to choose whatever block on the pivot

chain to refer when mining non-pivot chain blocks. Specifically,

the adversary always tries to mine blocks with the lowest difficulty

possible by referring to the genesis pivot-chain block. We focus on

one non-pivot chain, and track the frequency of difficulty change.

Difficulty change is defined as a block on the longest chain having

different difficulty than its parent. Figure 13 shows the results. Under

our scheme, non-pivot chain difficulty does not change for most of

the time, and only changes swiftly at the beginning of new epochs,

so the curve for our scheme stays close to zero. On the contrary, if

we disableM2, the difficulty oscillates violently, as frequently as 0.2

times per second on average. This shows that our design is essential

to maintain stable mining difficulty of non-pivot chains.

7.4 Analysis of Overhead
Finally, we analyze and show that our schemes will cause minimal

overhead when implemented on existing parallel-chain protocols.

Communicationandstorage.Everyblockonthenon-pivotchains
needs to refer to a block on the pivot chain (M1), which takes the size
of a hash (usually 32 bytes). This is a very small overhead compared

to the size of the blockchain. For example, inPrism, the size of a voter

(non-pivot-chain) block is 534 bytes [26]. The pivot-chain reference

constitutes to an increase of 6% in communication and storage cost

for voter blocks. Notice that voter blocks themselves only make up

for 0.21% of the size of the Prism blockchain [26], so the overhead of

pivot-chain referencing is negligible, regardless of the parameters.

Computation.Our scheme changes themining and the transaction

confirmation process of parallel chain protocols. For mining, notice



Table 2: Confirmation overhead vs epoch length Φ

Φ 10 100 1000 2016

Overhead 0.43% 0.07% 0.11% 0.12%

that the pivot chain follows the same difficulty adjustment rule as

Bitcoin, which is proven practical by its real-world deployment.Min-

ing on non-pivot chains uses the same difficulty as the pivot chain,

so there is no additional bookkeeping.

For transaction confirmation, we use Prism as a concrete example

(note that no computation overhead exists in transaction confirma-

tion forOHIE and FruitChains). Under static difficulty, Prism selects

a leader for every level of the proposer tree. WithM3, we partition
the proposer tree into real-valued difficulty intervals such that no
interval is partially occupied by any proposer block. We need to

select a leader for each of such intervals (section 3.3). To determine

the overhead,we need to answer: howmanymore intervals are there

compared to levels?

We simulate the mining process of Prism with 1000 voter chains,

epoch length Φ= 2016 blocks, target mining rate 𝑓 = 0.1 block per

second, and found the number of intervals is only 0.12% more than

the number of levels. That is, our scheme incurs a confirmation over-

head of 0.12%. This is expected, because only forks that happen at

the beginning of an epoch will lead to extra intervals, and such a

fork rarely exists with Φ=2016 and 𝑓 =0.1. Decreasing Φmay cause

the overhead to increase because there are more epochs and it is

more likely to fork at the beginning of an epoch. Table 2 plots the

confirmation overhead for differentΦ; we see that even atΦ=10, the

overhead is smaller than 1%.

8 DISCUSSION
We presented a general methodology by which any parallel chain

protocol can be converted from the fixed difficulty to the variable dif-

ficulty setting. We also proved the safety, liveness, and performance

of the proposed scheme using novel proof method that analyzes the

coupling between the pivot and non-pivot chains. There are several

open directions of research. 1) In our design methodology, we pro-

posed using a single chain as a pivot chain to set the difficulty target

for all blocks. However, if we can use the information (for example,

inter-block arrival times) from all the chains together to determine

the difficulty target, we can get much better statistical averaging.

This can lead to protocols which can adapt to much more aggressive

mining power variation than is possible with a single-chain protocol.

Such a protocol needs to be designedwith care since it leads to strong

coupling across all the chains. In particular, every chain needs to

know the state of all other chains in order to check the correctness

of the difficulty target. Since other chains can have forking in the

meanwhile, it may lead to unintended complex interactions. 2) We

analyzed various protocols under the variable difficulty setting. One

new protocol, called Ledger-combiners [10] uses parallel-chains for

robustly combining multiple ledgers as well as for achieving low

latency. Analyzing that protocol in the variable difficulty setting is

an interesting direction for future work.
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APPENDIX
A THEDIFFICULTYRAISINGATTACK
Bitcoin set its target recalculation using a “dampening filter”-like

adjustment (as defined in Definition 6.7). It turns out that this design

is surprisingly foresighted. If wemake a relaxation of the adjustment

mechanism by removing the dampening filter, then it is subject to

an attack called difficulty raising attack firstly discovered in [4]. At

a high level, in this attack the adversary mines private blocks with

timestamps in rapid succession, and induce one block with arbitrar-

ily high difficulty in the private chain; via an anti-concentration

argument, a sudden adversarial advance that can break agreement

amongst honest parties cannot be ruled out. In this appendix, we

describe this attack in detail and explain why having a “dampening

filter” in the target recalculation function could resolve it.

A simple attack. As a prelim, we first look at a simple attack if

the protocol lets miners to choose their own difficulty and use the

heaviest chain rule. At a first glance, this rule appears kosher - the

heaviest chain rule seems to afford no advantage to any miner to

manipulate their difficulty. However, this lack of advantage only

holds in expectation, and the variance created by extremely diffi-

cult adversarial blocks can thwart a confirmation rule that confirms

deeply-embedded blocks, no matter how deep, with non-negligible

probability. We give a simple calculation here. For simplicity, we

using the difficulty defined in the genesis block as the difficulty unit

and the expected inter-block time (10 minutes in Bitcoin) as the time

unit. Let𝑛 be number of honest queries to the hash function per unit

time and 𝑡 be the number of adversarial queries per unit time. Then

we know that to mine a block with unit difficulty, each query solves

the PoW puzzle with probability 1/𝑛. We further assume that𝑛 and 𝑡

don’t change over time and thenetwork delay amonghonest nodes is

zero. Note that these assumptions only make the adversary weaker.

The goal of the adversary is to double-spend a coin by mining a

heavier chain than the public honest chain from the genesis.

Supposehonestminers are adopting the initialminingdifficulty as

defined in the genesis block, hence on average it take 𝑘 units of time

to mine a honest chain with 𝑘 blocks. To mine a heavier chain, the

adversary only needs to mine one block which has difficulty 𝑘 (See

Figure 15 for illustration), within 𝑘 unit of time. The adversarial can

make 𝑡𝑘 queries in𝑘 units of time, andeachquery succeedswithprob-

ability 1/𝑛𝑘 . Hence the success probability of this attack would be

P(attack succeeds)=1−(1− 1

𝑛𝑘
)𝑡𝑘 ≈1−𝑒𝑡/𝑛,

since𝑛 and 𝑡 are large in PoWmining. Note that the success probabil-

ity is a constant independent of𝑘 , therefore any𝑘-deep confirmation

rule will fail.

Difficulty raising attack. However, even if we adopts a epoch

based difficulty adjustment rule as inBitcoin (butwithout the “damp-

ening filter”), there is still a difficulty raising attack. We using the

difficulty of the first epoch (defined in the genesis block) as the diffi-

culty unit and the expected inter-block time (10 minutes in Bitcoin)

as the time unit. Let Φ be the length of an epoch in number of blocks

(2016 in Bitcoin). And we define 𝑛 and 𝑡 the same as above.

Note that the adversary can put any timestamp in its private

blocks, so the difficulty of the second epoch in its private chain can be

arbitrary value as long as the adversary completes the first epoch. Let

𝐵withdifficulty𝑋 be thefirst blockof the secondepoch in theprivate

Figure 15: A simple attack if allowingminers to choose their
own difficulty. The adversary mines one block which is as
difficult as 𝑘 honest blocks.

Figure 16: The difficulty raising attack. The adversary raises
the difficulty to extremely high in the second epoch by
faking timestamps.

chain (that is each query solves the PoW puzzle with probability

1/𝑛𝑋 ), then𝐵 has chain difficultyΦ+𝑋 . See Figure 16 for illustration.
To mine an honest chain with chain difficulty Φ+𝑋 , on average it

takes Φ+𝑋 time. On the other hand, it takes on average 𝑛Φ/𝑡 time

for the adversary to complete the first epoch in its private chain.

Therefore, to succeed in this attack, the adversary needs to mine the

block 𝐵 within Φ+𝑋−𝑛Φ/𝑡 time, which happens with probability:

P(attack succeeds)=1−(1− 1

𝑛𝑋
) (Φ+𝑋−𝑛Φ/𝑡 )𝑡

=1−(1− 1

𝑛𝑋
)𝑋𝑡−(𝑛−𝑡 )Φ

≈1−𝑒𝑡/𝑛,
if𝑋≫Φ≫1. Note that the success probability is independent of the

length of the public longest chain, hence any 𝑘-deep confirmation

rule will fail.

However, Bitcoin is saved by the dampening filter in the target

recalculation function. As in Definition 6.7, the difficulty can be in-

creasedbya factor of atmost𝜏 between twoconsecutive epochs (𝜏 =4

in Bitcoin). Then we shall analyze the difficulty raising attack under

the same assumptions made above. Since the epoch size Φ≫1, the

time for the adversary to complete one epoch or mine Φ blocks with

the same difficulty will satisfy the concentration bound of binomial

random variables. Hence if the adversary always rises the difficulty

by 𝜏 in each epoch, then it takes on average 𝑛
𝑡

∑ℓ−1
𝑖=0𝜏

𝑖Φ time for the

adversary to complete ℓ epochs in its private chain, and the public

honest chain will on average have difficulty
𝑛
𝑡

∑ℓ−1
𝑖=0𝜏

𝑖Φ during this

time. Since the private chain has chain difficulty

∑ℓ−1
𝑖=0𝜏

𝑖Φ, the gap
of chain difficulties between the public honest chain and the private



chain will be

(𝑛
𝑡
−1)

ℓ−1∑
𝑖=0

𝜏𝑖Φ= (𝑛
𝑡
−1) 𝜏

ℓ−1
𝜏−1 Φ.

Each block of the (ℓ + 1)-th epoch in the private chain will have

difficulty 𝜏 ℓ , hence the adversary still needs to mine approximately

𝑛−𝑡
𝑡 (𝜏−1) Φ blocks in order to catch up the honest chain. As Φ≫1, the

time for the adversary to catch up is still controlled by the concen-

tration bound, and the success probability of this attack will be at

most 𝑒−𝜃 (Φ) . By setting Φ large enough, the difficulty raising attack

can be ruled out.

While this specific attack could in principle be thwarted, to have

security guarantee we still need to consider all possible attacks in

the presence of a full-blown adversary. A full and beautiful analysis

of Bitcoin rule is provided in [13] and we shall give a proof sketch

in Appendix B.

B BITCOIN
BACKBONE PROPERTIES REVISITED

Wewill briefly revisit the analysis in [13] because the pivot chain is

identical to the Bitcoin chain.

We will additionally define a stale chain and accuracy related to

timestamps of the blocks.

Definition B.1 (from [13]). Ablock created at round𝑢 is accurate
is it has a timestamp 𝑣 such that |𝑢−𝑣 | ≤ ℓ+2Δ. A chain is accurate if
all its blocks are accurate. A chain is stale if for some𝑢 ≥ ℓ+2Δ it does
not contain a honest block with timestamp 𝑣 ≥𝑢−ℓ−2Δ.

Recall that we defineS𝑃𝑟 as the set of pivot chains that belong to

or have the potential to be adopted by an honest party at round 𝑟 in

Section 6.3. Nowwe define a series of useful predicates with respect

toS𝑃𝑟 .

Definition B.2 (from [13]). For a round 𝑟 ,
𝐺𝑜𝑜𝑑𝑅𝑜𝑢𝑛𝑑𝑠 (𝑟 ) := “All rounds𝑢 ≤𝑟 are good.”
𝐺𝑜𝑜𝑑𝐶ℎ𝑎𝑖𝑛𝑠 (𝑟 ) := “For all rounds𝑢 ≤𝑟 , every chain inS𝑃𝑢 is good.”
𝑁𝑜𝑆𝑡𝑎𝑙𝑒𝐶ℎ𝑎𝑖𝑛𝑠 (𝑟 ) := “For all rounds 𝑢 ≤ 𝑟 , there is no stale chain in
S𝑃𝑢 .”
𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 (𝑟 ) := “For all rounds 𝑢 ≤ 𝑟 , all chains in S𝑃𝑢 are accu-
rate.”
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑟 ) := “For all rounds𝑢 ≤𝑟 and durationΛ of an epoch of any
chain inS𝑃𝑢 , 1

2(1+𝛿)𝛾2

𝑚
𝑓
≤Λ≤ 2(1+𝛿)𝛾2𝑚

𝑓
.”

The following lemma provides a lower bound on the progress of

the honest parties, which holds irrespective of any adversary.

Lemma B.3 (Chain growth for pivot chain, from [13]). Sup-
pose that at round𝑢 of an execution 𝐸, an honest party broadcasts a
pivot chain of difficulty𝑑 . Then, by round 𝑣 , every honest party receives
a chain of difficulty at least 𝑑+𝑄𝑃 (𝑆), where 𝑆 = {𝑟 :𝑢+Δ≤𝑟 ≤𝑣−Δ}.

In order to prove properties like common prefix and chain quality

for the pivot chain, we need all rounds in a typical execution to be

good.

LemmaB.4 (Allrounds inatypicalexecutionaregood,Theo-

rem2from [13]). Consider a typical execution in a (𝛾,2𝛾2 (1+𝛿)Φ/𝑓 )-
respecting environment. If the protocol is initiated such that the first

Figure 17: An induction argument to prove that all rounds in
a typical execution are good.

round it good, and all the conditions 3, 4 and 5 are satisfied, then all
rounds are good.

Proof. The elaborate proof can be found in [13] and we summa-

rize it as follows.

We will use an induction argument. In a (𝛾,𝑠)-respecting environ-
ment, 𝑠 ≥ 2(1+𝛿)𝛾2𝑚/𝑓 covers at least the first epoch. It is easy to
see that if the initial target is good, the rounds in the first epoch are

good, and the first target recalculation point is good. We will prove

that the subsequent rounds and target recalculation points are good

using an induction argument shown in Figure 17. The predicates are

defined as follows.

We prove 𝑁𝑜𝑆𝑡𝑎𝑙𝑒𝐶ℎ𝑎𝑖𝑛𝑠 (𝑟 ) from𝐺𝑜𝑜𝑑𝑅𝑜𝑢𝑛𝑑𝑠 (𝑟−1) using typ-
icality bounds, showing that the adversary cannot accumulate more

difficulty than the lower bound of the minimum chain growth,𝑄𝑃
.

Let𝑤 be the timestamp of the last honest block on the stale chain.

Set𝑈 = {𝑢 :𝑤 ≤𝑢 ≤𝑟 },𝑆 = {𝑢 :𝑤+Δ≤𝑢 ≤𝑟−Δ} and 𝐽 be the adversar-
ial queries in𝑈 . We will first consider the case where the chain has

more than one target recalculation point. In this casewe divide 𝐽 into

sub-queries 𝐽𝑖 such that each subset covers at least𝑚/2 blocks and
has exactly one target recalculation point in it. In this case, we have

𝐴𝑃 (𝐽 ) =∑
𝑖𝐴

𝑃 (𝐽𝑖 ) <
∑
𝑖 (1+𝜀)𝑝 |𝐽𝑖 | = (1+𝜀)𝑝 |𝐽 |. We arrive at a con-

tradiction by showing (1+𝜀)𝑝 |𝐽 | is lower than𝑄𝑃 (𝑆)’s lower bound.
In case of at most one target recalculation point, if𝐴(𝐽 )< (1+𝜀)𝑝 |𝐽 |
applies, the argument from the previous case applies. If𝐴(𝐽 )< (1+
1/𝜀) (1/3+1/𝜀)𝜆𝜏/𝑇 (𝐽 ), weprove that the lower boundof𝑄𝑃 (𝑆) con-
sidering only the first 𝑙 roundswill cover (1+1/𝜀) (1/3+1/𝜀)𝜆𝜏/𝑇 (𝐽 ).
𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 (𝑟 ) follows from 𝑁𝑜𝑆𝑡𝑎𝑙𝑒𝐶ℎ𝑎𝑖𝑛𝑠 (𝑟 ).

We then prove the bound on duration by contradiction, assuming

that the previous target recalculation point is good using property

𝐺𝑜𝑜𝑑𝐶ℎ𝑎𝑖𝑛𝑠 (𝑟 − 1). The lower bound is contradicted by showing

that even if the adversary and honest party join forces, they can’t

produce 𝑒 blocks in less than
1

2(1+𝛿)𝛾2

𝑚
𝑓
. The upper bound is con-

tradicted by showing that the lower bound of𝑄𝑃
produces at least

𝑒 blocks in 2(1+𝛿)𝛾2𝑚
𝑓
rounds. To prove𝐺𝑜𝑜𝑑𝐶ℎ𝑎𝑖𝑛𝑠 (𝑟 ), we prove

that the next target-recalculation point is good. This is proved again,

using a contradiction for both the bounds of a good target recalcu-

lation point. Finally, we use 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑟 ),𝐺𝑜𝑜𝑑𝐶ℎ𝑎𝑖𝑛𝑠 (𝑟 ) and the
(𝛾,2(1 + 𝛿)𝛾2𝑚/𝑓 )-respecting environment assumption to prove

𝐺𝑜𝑜𝑑𝑅𝑜𝑢𝑛𝑑𝑠 (𝑟 ). □



The following lemma from [13] is useful to prove common prefix

and chain quality of the pivot chain.

Lemma B.5 (Lemma 2(c) from [13]). Consider a typical execution
in a (𝛾,𝑠)-respecting environment. Let 𝑆 = {𝑟 :𝑢 ≤ 𝑟 ≤ 𝑣} be a set of
rounds with at least ℓ rounds and 𝐽 be the set of adversary queries in
𝑈 = {𝑟 :𝑢−Δ≤𝑟 ≤ 𝑣+Δ}. If𝑤 is a good round such that |𝑤−𝑟 | ≤ 𝑠 for
any 𝑟 ∈𝑆 , then𝐴𝑃 (𝐽 )< (1−𝛿+3𝜀)𝑄𝑃 (𝑆)

The following properties of the pivot chain are from [13].

Lemma B.6 (Common prefix for pivot chain). For a typical exe-
cution in a (𝛾,2(1+𝛿)𝛾2Φ/𝑓 )-respecting environment, the pivot chain
satisfies the common-prefix property with parameter ℓcp= ℓ+2Δ.

Lemma B.7 (Chainqality for pivot chain). For a typical exe-
cution in a (𝛾,2(1+𝛿)𝛾2Φ/𝑓 )-respecting environment, the pivot chain
satisfies the chain-quality property with parameter ℓcq = ℓ +2Δ and
𝜇=𝛿−3𝜀.

C PROOF FOR SECTION 6
C.1 Proof for typical execution
The following concentration bound on a martingale is helpful to

bound the probability of a not typical execution.

Theorem C.1 (from [13]). Let (𝑋1,𝑋2,...) be a martingale with re-
spective the sequence (𝑌1,𝑌2,...), if an event𝐺 implies𝑋𝑘−𝑋𝑘−1 ≤𝑏 and
𝑉 =

∑
𝑘𝑣𝑎𝑟 [𝑋𝑘−𝑋𝑘−1 |𝑌1,...,𝑌𝑘−1] ≤𝑣 , then for non-negative 𝑛 and 𝑡

𝑃 (𝑋𝑛−𝑋0 ≥ 𝑡,𝐺) ≤𝑒
− 𝑡2

2𝑣+ 2𝑏𝑡
3 .

And for the proof of Theorem 6.11

Proof. The proof for𝑄𝑃 (𝑆),𝐷𝑃 (𝑆) and 𝐴𝑃 (𝐽 ) can be found in

[13] and the same proof follows for𝑄𝑖 (𝑆) and𝐷𝑖 (𝑆).Wewill prove it

for𝐴𝑖 (𝐽 ). For each 𝑗 ∈ 𝐽 , let𝐴 𝑗 be the difficulty of the block obtained

with the 𝑗𝑡ℎ query as long as the target was at least 1/𝑏𝑖 (𝐽 ). Define

𝑋0=0,

𝑋𝑘 =
∑
𝑗 ∈[𝑘 ]

𝐴 𝑗 −
∑
𝑗 ∈[𝑘 ]

E[𝐴 𝑗 |E 𝑗−1],𝑘 ∈ [|𝐽 |],

which is a martingale with respect to the sequence E 𝑗−1, 𝑗 ∈ 𝐽 . For
the above martingale, for all 𝑘 ∈ [|𝐽 |], we have 𝑋𝑘 −𝑋𝑘−1 ≤ 𝑏𝑖 (𝐽 ),
using the definition of 𝑏𝑖 (𝐽 ) and 𝑣𝑎𝑟 [𝑋𝑘 − 𝑋𝑘−1] ≤ 𝑝𝑏𝑖 (𝐽 ) and
E[𝐴 𝑗 |E 𝑗−1] ≤𝑝 . We will apply Theorem C.1 with 𝑡 =max{𝜀𝑝 |𝐽 |,
𝑏𝑖 (𝐽 )𝜆( 1𝜀 +

1

3
)} ≥𝑏𝑖 (𝐽 )𝜆( 1𝜀 +

1

3
) and 𝑣 =𝑏𝑖 (𝐽 )𝑝 |𝐽 | to obtain

𝑃𝑟 [
∑
𝑗 ∈𝐽
𝐴 𝑗 ≥𝑝 |𝐽 |+𝑡] ≤𝑒𝑥𝑝{−

𝑡

2𝑏𝑖 (𝐽 ) ( 1
3
+ 1𝜀 )
} ≤𝑒−𝜆 .

□

Lemma C.2 (Proposition 2 from [13]). In a (𝛾,𝑠)-respecting envi-
ronment, let𝑈 be a set of at most 𝑠 consecutive rounds and 𝑆 ⊆𝑈 then,
for any 𝑛 ∈ {𝑛𝑟 :𝑟 ∈𝑈 } we have

𝑛

𝛾
≤ 𝑛(𝑆)|𝑆 | ≤𝛾𝑛,

𝑛(𝑈 ) ≤ (1+𝛾 |𝑈 \𝑆 ||𝑆 | )𝑛(𝑆) .

C.2 Proof of Lemma 6.13
By the definition of typical execution, we have the following lemma

that will be useful in the proof.

Lemma C.3. Under a typical execution, for the set of rounds 𝑆 with
|𝑆 | ≥ ℓ , let𝑄𝑃 (𝑆) correspond to the pivot tree and𝑄𝑖 (𝑆) correspond to
any non-pivot tree then,𝑄𝑖 (𝑆) >𝑄𝑃 (𝑆) (1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ/(1+
𝜀).

Proof. This follows from the definition of typicality, we use the

following inequalities

(1+𝜀)𝑝𝑛(𝑆)>𝑄𝑃 (𝑆),

𝑄𝑖 (𝑆)> (1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ𝑝𝑛(𝑆).
□

The following proposition will be useful in the proof of non-pivot

chain’s common prefix.

Proposition 1. In a typical execution,we have the following bound

𝐴𝑖 (𝐽 )< (1+𝜀)𝑝 |𝐽 |

for 𝑝 |𝐽 | ≥ 2𝑏𝑖 ( 𝐽 )𝜆
𝜀 ( 1

3
+ 1𝜀 ) .

𝐴𝑖 (𝐽 )< (1+𝜀) 2𝑏
𝑖 (𝐽 )𝜆
𝜀
( 1
3

+ 1
𝜀
)<
(1−𝜀2) ( 𝜀

3
+1)𝜀Φ

8𝛾5 (1+𝛿) (1+3𝜀)
𝑏𝑖 (𝐽 )
𝜏

for 𝑝 |𝐽 |< 2𝑏𝑖 ( 𝐽 )𝜆
𝜀 ( 1

3
+ 1𝜀 ), the second inequality follows from the bound

on ℓ .

For the proof of Lemma 6.13

Proof. Consider the 𝑖𝑡ℎ non-pivot chain, suppose commonprefix

fails for two chainsC1 andC2 held byhonest players at rounds 𝑟1 ≤𝑟2
respectively, that is, ∃𝐵 ∈C ⌈ℓ+2Δ

1
, s.t. 𝐵∉C2. It is not hard to see that

in such a case there was a round 𝑟 ≤𝑟2 and two honest held chains
C and C′ in S𝑖𝑟 , such that 𝐵 ∈ C ⌈ℓ+2Δ but 𝐵 ∉C′. Then we know 𝐵

is a descendant of head(C∩C′), and hence head(C∩C′) ∈ C ⌈ℓ+2Δ.
Therefore, the timestamp of head(C∩C′) is less than 𝑟−ℓ−2Δ.

Let 𝑣 < 𝑟 − ℓ − 2Δ be the timestamp of head(C ∩C′) and𝑤 ≤ 𝑣
be the timestamp of the last honest block 𝐵𝑖

ℎ
on (C ∩ C′). Let

𝑈 𝑖 = {𝑢 : 𝑤 ≤ 𝑢 ≤ 𝑟 },𝑆𝑖 = {𝑢 : 𝑤 + Δ ≤ 𝑢 ≤ 𝑟 − Δ} and let 𝐽 𝑖 be

the adversarial queries in rounds𝑈 𝑖
. LetS𝑃

𝑟,𝑤−Δ be the collection of

pivot chains heavier than at least one chain inS𝑤−Δ. And for 𝑗 ∈ 𝐽 𝑖 ,
let S𝑃

𝑗,𝑤−Δ be the collection of pivot chains heavier than at least

one chain in S𝑤−Δ. Due to conditionM2, all the difficulties of the

blocks in𝐶 or𝐶 ′ that come after 𝐵𝑖
0
are extendingS𝑃

𝑟,𝑤−Δ. We have

𝑏 =𝑏𝑖 (𝐽 )=max𝑗 ∈𝐽 𝑖 sup{𝐴𝑖𝑗 −𝐴
𝑖
𝑗−1 |E 𝑗−1 =𝐸 𝑗−1}=max𝑗 ∈𝐽 𝑖 𝑠𝑢𝑝{𝐴𝑖𝑗 −

𝐴𝑖
𝑗−1 |E 𝑗−1 = 𝐸 𝑗−1} = max𝑗 ∈𝐽 𝑖 sup{diff (𝐶𝑃𝐵∗) |𝐶∗ ∈ S𝑗,𝑤−Δ} =

sup𝐶𝑃 ∈S𝑟,𝑤−Δ {diff (𝐶
𝑃𝐵∗)}. The last equality applies because, for

𝑗 ∈ 𝐽 𝑖 , S𝑗,𝑤−Δ ⊆ S𝑟,𝑤−Δ. Let 𝐶∗ ∈ S𝑟,𝑤−Δ be the chain for which

diff (𝐶∗𝐵∗)=𝑏. In case such𝐶∗ doesn’t exist, there exists a sequence
of chains 𝐶∗𝑛 , such that diff (𝐶∗𝑛𝐵∗) approaches 𝑏 in limit. Let the

block 𝐵𝑃
ℎ
be the last honest block on𝐶∗ with timestamp 𝑥 .

We claim that if 𝑟 > ℓ +2Δ+𝑤 , then 𝐴𝑖 (𝐽 𝑖 ) < (1+𝛿 +3𝜀)𝑄𝑖 (𝑆𝑖 ).
The proof is as follows. When 𝑝 |𝐽 𝑖 | ≥ 2𝑏𝜆

𝜀 (
1

3
+ 1𝜀 ), the concentration



Figure 18: Common Prefix Proof (Left):𝑤 <𝑥 , (Right):𝑤 >𝑥

bound𝐴𝑖 (𝐽 𝑖 )< (1+𝜀)𝑝 |𝐽 𝑖 | applies. We have 𝑛(𝑈 𝑖 ) ≤𝑛(𝑆𝑖 ) (1+𝛾 |𝑈 \
𝑆 |/|𝑆 |)< (1+𝜀2/2)𝑛(𝑆) and

𝐴𝑖 (𝐽 𝑖 )< (1+𝜀) (1−𝛿)𝑝𝑛(𝑈 𝑖 )< (1+𝜀) (1+𝜀2/2) (1−𝛿)𝑝𝑛(𝑆𝑖 )
< (1−𝛿+𝜀)𝑝𝑛(𝑆𝑖 )< (1−𝛿+3𝜀)𝑄𝑖 (𝑆𝑖 )

Wewill prove this when 𝑝 |𝐽 𝑖 |< 2𝑏𝜆
𝜀 (

1

3
+ 1𝜀 ).

Case 1 𝐶∗ has at most one target-recalculation point after 𝐵𝑃
ℎ

and𝑤 ≤𝑥 ≤𝑟⇒ 𝑓 /2𝛾2𝜏 < 1

𝑏
𝑛𝑥𝑝

Case 2 𝐶∗ has at least two target-recalculation point after 𝐵𝑃
ℎ

and𝑤 ≤𝑥 ≤𝑟
Case 3 𝑥 <𝑤,|𝑤−𝑥 |>𝛾2 (1+𝛿)Φ/𝑓 −ℓ−2Δ
Case 4 𝑥 <𝑤,|𝑤−𝑥 |<𝛾2 (1+𝛿)Φ/𝑓 −ℓ−2Δ, and𝐶∗ has at most

one target-recalculation point after 𝐵𝑃
ℎ

Case 5 𝑥 <𝑤, |𝑤−𝑥 | <𝛾2 (1+𝛿)Φ/𝑓 −ℓ−2Δ, and𝐶∗ has at least
two target-recalculation point after 𝐵𝑃

ℎ

Cases 1, 2 are shown in left and cases 3,4,5 in right of Figure 18.

Case 1: The last honest block 𝐵𝑃
ℎ
in the chain𝐶∗ has a timestamp

𝑥 ≥ 𝑤 . We will look at the case when 𝐶∗ has at most one target

recalculation point after 𝐵𝑃
ℎ
. In this case the difficulty 𝑏 satisfies

𝑓

2𝛾2𝜏
< 1

𝑏
𝑛𝑥𝑝 since the difficulty can raise by at most a factor of 𝜏

and considering the first ℓ rounds in 𝑆𝑖 , we have 𝑛(𝑆𝑖 )> 𝑛𝑥
𝛾 ℓ . Using

typicality we have, 𝑝 |𝐽 | ≤ (1−𝛿+𝜀2/2)𝑝𝑛(𝑆) and

𝜀 (1−2𝜀)𝑝𝑛(𝑆𝑖 )>𝜀 (1−2𝜀) 𝑝𝑛𝑥 ℓ𝑏
𝛾𝑏

>
𝜀 (1−2𝜀) 𝑓 ℓ𝑏

2𝛾3𝜏
≥ 2𝑏𝜆( 1

𝜀
+ 1
3

),

𝐴𝑖 (𝐽 𝑖 )<𝑝 |𝐽 |+2𝑏𝜆( 1
𝜀
+ 1
3

) ≤ (1−𝛿+𝜀)𝑝𝑛(𝑆𝑖 )< (1−𝛿+3𝜀)𝑄𝑖 (𝑆𝑖 )

Case 2: The last honest block 𝐵𝑃
ℎ
in the chain𝐶∗ has a timestamp

𝑥 ≥𝑤 . We will look at the case when𝐶∗ has more than one target re-

calculation point after 𝐵𝑃
ℎ
. Let𝑈 𝑃

be the set of rounds {𝑢 :𝑥 ≤𝑢 ≤𝑟 },
𝑆𝑃 be the set of rounds {𝑢 :𝑥 +Δ≤𝑢 ≤ 𝑟 −Δ} and 𝐽𝑃 be the queries

made by the adversary for the proposer chain in 𝑈 𝑃
. In this case

difficulty accumulated by the adversary in 𝐽𝑃 queries is at least
𝑏
𝜏 Φ.

Using typicality, we have 𝑝 |𝐽𝑃 | > 𝑏Φ
𝜏 (1+𝜀) and using honest party’s

advantage we have 𝑛(𝑆𝑖 ) ≥𝑛(𝑆𝑃 )> | 𝐽 𝑃 |
(1−𝛿) (1+𝜀2/2) .

(1−𝛿+3𝜀)𝑄𝑖 (𝑆𝑖 )> (1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ (1−𝛿+3𝜀)𝑝 |𝐽
𝑃 |

(1−𝛿) (1+𝜀2/2)

>
𝑏Φ

𝜏
≥𝐴𝑖 (𝐽 𝑖 ).

The last inequality implies from Proposition 1.

Case 3: Consider the case when 𝑥 <𝑤 and |𝑤−𝑥 |>𝑠/2−ℓ−2Δ. Let
𝑆 ′ := {𝑢 : 𝑥 +Δ ≤ 𝑢 ≤𝑤 −Δ},𝑈 𝑃 = {𝑢 : 𝑥 ≤ 𝑢 ≤ 𝑟 } and 𝐽𝑃 be the set

of adversarial queries for the proposal tree in the rounds𝑈 𝑃
. The

difficulty accumulated in the chain𝐶∗ in 𝐽𝑃 queries is more than

that of the chain growth in 𝑆 ′.

𝐴𝑃 (𝐽𝑃 ) ≥𝐶ℎ𝑎𝑖𝑛𝐺𝑟𝑜𝑤𝑡ℎ𝑃 (𝑆 ′) ≥𝑄𝑃 (𝑆 ′) .

Since 𝑠 =
2𝛾2 (1+𝛿)Φ

𝑓
, we have |𝑆 ′ | ≥ (1+𝛿) (1−𝜀)𝛾2Φ/𝑓 . Considering

the first 𝑠/2− ℓ rounds in 𝑈 𝑃 \𝑈 𝑖
, if 𝑇𝑥 is the target used by the

honest party in round 𝑥 , then
𝑛 (𝑆′)
|𝑆′ | ≥

𝑛𝑥
𝛾 and𝑇𝑥𝑛𝑥𝑝 ≥ 𝑓

2𝛾2
. Using

these, we have

𝑄𝑃 (𝑆 ′)> (1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ𝑝𝑛(𝑆 ′)

≥ (1+𝛿) (1−𝜀)3𝛾Φ𝑝𝑛𝑥𝑇𝑥
2𝑓 𝑇𝑥

≥ (1+𝛿) (1−𝜀)3 Φ

2𝛾𝑇𝑥
>

Φ

2𝑇𝑥𝛾

Note that startingwith target𝑇𝑥 , if𝐶
∗
has atmost one target recalcu-

lation point after 𝐵𝑃
ℎ
, then the accumulated difficulty is at least

Φ
2𝛾

𝑏
𝜏 ,

which is a smaller quantity than
Φ

2𝑇𝑥𝛾
. If the chain hasmore than one

target recalculation point, then the accumulated difficulty is at least

𝑚𝑏
𝜏 which is larger than

Φ
2𝛾

𝑏
𝜏 . Hence, the accumulated difficulty will

be at least
Φ
2𝛾

𝑏
𝜏 in any case.

|𝐽𝑃 |𝑝 (1+𝜀)>𝐴𝑃 (𝐽𝑃 ) ≥𝑄𝑃 (𝑆 ′),

𝐴𝑃 (𝐽𝑃 )> Φ

2𝛾

𝑏

𝜏

We have 𝑛(𝑆𝑖 )+𝑛(𝑆 ′)> | 𝐽 𝑃 |
(1−𝛿) (1+𝜀2/2) and

𝑄𝑖 (𝑆𝑖 )+𝑄𝑖 (𝑆 ′)> (1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ 𝑝 |𝐽𝑃 |
(1−𝛿) (1+𝜀2/2)

,

𝑄𝑖 (𝑆 ′)<𝑄𝑃 (𝑆 ′) (1+𝜀)
(1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ

<
(1+𝜀)2

(1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ
𝑝 |𝐽𝑃 |

Combining both we have,

𝑄𝑖 (𝑆𝑖 )>𝑝 |𝐽𝑃 | ( (1−𝜀) [1−(1+𝛿)𝛾
2 𝑓 ]Δ)2−(1+𝜀)2 (1−𝛿) (1+𝜀2/2)

(1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ (1−𝛿) (1+𝜀2/2)
,

and then

(1−𝛿+3𝜀)𝑄𝑖 (𝑆𝑖 )

>(1+3 𝜀

1−𝛿 )
(𝛿 (1+𝜀2/2) (1+𝜀)2−6𝜀)

(1−𝜀2) [1−(1+𝛿)𝛾2 𝑓 ]Δ (1+𝜀2/2)
Φ

2𝛾

𝑏

𝜏

>𝐴𝑖 (𝐽 𝑖 ),
Where the last inequality follows from the condition 𝛿 >8𝜀.

Case 4: Consider the case the last honest block in the chain con-

taining 𝐵’s proposer parent has a timestamp 𝑥 <𝑤 and |𝑤 −𝑥 | <
𝑠/2−ℓ−2Δ and𝐶∗ has at most one target recalculation point after



𝐵𝑃
ℎ
. Let 𝑆 ′ := {𝑢 :𝑥 +Δ ≤𝑢 ≤𝑤 −Δ}. The difficulty accumulated𝐶∗

in 𝐽𝑃 queries is more than that of the chain growth in 𝑆 ′. Consid-
ering just first ℓ rounds in 𝑆𝑖 , we have 𝑛(𝑆𝑖 )> ℓ𝑛𝑥/𝛾 and 𝑏 satisfies
𝑓

2𝛾2𝜏
< 1

𝑏
𝑛𝑥𝑝 . Using these bounds and Lemma B.3, we have

𝜀 (1−2𝜀)𝑝𝑛(𝑆𝑖 )>𝜀 (1−2𝜀) 𝑝𝑛𝑥 ℓ𝑏
𝛾𝑏

>
𝜀 (1−2𝜀) 𝑓 ℓ𝑏

2𝛾3𝜏
≥ 2𝑏𝜆( 1

𝜀
+ 1
3

),

𝐴𝑖 (𝐽 𝑖 )<𝑝 |𝐽 |+2𝑏𝜆( 1
𝜀
+ 1
3

) ≤ (1−𝛿+𝜀)𝑝𝑛(𝑆𝑖 )< (1−𝛿+3𝜀)𝑄𝑖 (𝑆𝑖 )

Case 5: Consider the case the last honest block in the chain con-

taining 𝐵’s proposer parent has a timestamp 𝑥 <𝑤 and |𝑤 −𝑥 | <
𝑠/2−ℓ−2Δ. Let 𝑆 ′ := {𝑢 :𝑥 +Δ ≤𝑢 ≤𝑤−Δ}. The difficulty accumu-

lated by𝐶∗ in 𝐽𝑃 queries is more than that of the chain growth in 𝑆 ′.
We will consider the case𝐶∗ has more than one target recalculation

point after 𝐵𝑃
ℎ
. The adversary accumulates more than

𝑏
𝜏 Φ difficulty

in 𝐽𝑃 queries and similar toCase 4, we have

|𝐽𝑃 |𝑝 (1+𝜀)>𝐴𝑃 (𝐽𝑃 ) ≥Φ𝑏
𝜏
,

𝐴𝑃 (𝐽𝑃 ) ≥𝑄𝑃 (𝑆 ′),

𝑛(𝑆𝑖 )+𝑛(𝑆 ′)> |𝐽𝑃 |
(1−𝛿) (1+𝜀2/2)

,

and

𝑄𝑖 (𝑆𝑖 )+𝑄𝑖 (𝑆 ′)> (1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ 𝑝 |𝐽𝑃 |
(1−𝛿) (1+𝜀2/2)

,

𝑄𝑖 (𝑆 ′)<𝑄𝑃 (𝑆 ′) (1+𝜀)
(1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ

<
(1+𝜀)2

(1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ
𝑝 |𝐽𝑃 |

Combining both we have

𝑄𝑖 (𝑆𝑖 )>𝑝 |𝐽𝑃 | ( (1−𝜀) [1−(1+𝛿)𝛾
2 𝑓 ]Δ)2−(1+𝜀)2 (1−𝛿) (1+𝜀2/2)

(1−𝜀) [1−(1+𝛿)𝛾2 𝑓 ]Δ (1−𝛿) (1+𝜀2/2)
,

and then

(1−𝛿+3𝜀)𝑄𝑖 (𝑆𝑖 )

>(1+3 𝜀

1−𝛿 )
(𝛿 (1+𝜀2/2) (1+𝜀)2−6𝜀)Φ𝑏

(1−𝜀2) [1−(1+𝛿)𝛾2 𝑓 ]Δ (1+𝜀2/2)𝜏
>𝐴𝑖 (𝐽 𝑖 ),

The last inequality follows from the condition 𝛿 >8𝜀.

Wealsoclaimthat, if𝑟−𝑤 > ℓ+2Δ, then2𝑄𝑖 (𝑆𝑖 ) ≤𝐷𝑖 (𝑈 𝑖 )+𝐴𝑖 (𝐽 𝑖 ),
which leads to a contradictionas𝐷𝑖 (𝑈 𝑖 )< (1+5𝜀)𝑄𝑖 (𝑆) and𝐴𝑖 (𝐽 𝑖 )<
(1−𝛿+3𝜀)𝑄𝑖 (𝑆𝑖 ).

Towards proving the claim above, associate with each 𝑟 ∈𝑆 such
that𝑄𝑖

𝑟 > 0 an arbitrary honest block that is computed at round 𝑟

for difficulty𝑄𝑖
𝑟 . Let B be the set of these blocks and note that their

difficulties sum to𝑄𝑖 (𝑆). Then consider a block 𝐵 ∈B extending a

chain C∗ and let 𝑑 =diff (C∗𝐵). If 𝑑 ≤diff (C∩C′) (note that𝑢 <𝑣 in
this case andhead(C∩C′) is adversarial), let𝐵0 be theblock inC∩C′
containing d. Such a block clearly exists and has a timestamp greater

than 𝑢. Furthermore, 𝐵0 ∉B, since 𝐵0 was an adversarial block. If

𝑑 > diff (C∩C′), note that there is a unique 𝐵 ∈ B such that 𝑑 ∈ 𝐵.
Since𝐵 cannot simultaneously be on chainC andC′, there is a𝐵0 ∉B

either onC or onC′ that contains𝑑 . Hence there exists a set of blocks
B′ computed in𝑈 such thatB∩B′= and {𝑑 ∈𝐵 :𝐵 ∈B}⊆ {𝑑 ∈𝐵 :𝐵 ∈
B′}. Because each block in B′ contributes either to𝐷𝑖 (𝑈 )−𝑄𝑖 (𝑆)
or to𝐴𝑖 (𝐽 ), we have𝑄𝑖 (𝑆𝑖 ) ≤𝐷𝑖 (𝑈 𝑖 )−𝑄𝑖 (𝑆)+𝐴𝑖 (𝐽 𝑖 ).

□

C.3 Chain Quality of Non-pivot Chains
Proof of Lemma 6.14. Without loss of generality, we focus on

the first non-pivot chain. Let 𝐵𝑖 denote the 𝑖-th block of C and con-

sider𝐾 consecutiveblocks𝐵𝑢 ,···,𝐵𝑣 inCwith timestamp in𝑆0.Define

𝐾0 as the least number of consecutive blocks 𝐵𝑢′,···,𝐵𝑣′ that include
the 𝐾 given ones (i.e., 𝑢 ′ ≤ 𝑢 and 𝑣 ≤ 𝑣 ′) and have the properties

(1) that the block 𝐵𝑢′ was mined by an honest party at some round

𝑟1 or is the genesis block in case such block does not exist, and (2)

that there exists a round 𝑟2 such that the chain ending at block 𝐵𝑣′ is

adopted by somehonest node at round 𝑟2. Let𝑑
′
be the total difficulty

of these 𝐾 ′ blocks. Define𝑈 = {𝑟1,···,𝑟2}, 𝑆 = {𝑟1+Δ,···,𝑟2−Δ}, and
𝐽 the adversarial queries in𝑈 associated with the𝐾 ′ blocks. Then
we have |𝑆 | = |𝑈 | − 2Δ ≥ |𝑆0 | − 2Δ ≥ ℓ . Then following the same

argument from Lemma 6.13, we have𝐴1 (𝐽 )< (1−𝛿+3𝜀)𝑄1 (𝑆). Let
𝑥 denote the total difficulty of all the blocks from honest parties that

are included in the𝐾 blocks and—towards a contradiction—assume

𝑥 < 𝜇𝑑 ≤ 𝜇𝑑 ′. In a typical execution, all the 𝐾 ′ blocks have been
mined in𝑈 . But then we have the following contradiction

𝐴1 (𝐽 ) ≥𝑑 ′−𝑥 > (1−𝜇)𝑑 ′≥ (1−𝜇)𝑄1 (𝑆)= (1−𝛿+3𝜀)𝑄1 (𝑆) .

Therefore, we can conclude the proof. □

C.4 Common Prefix
and Chain Quality of the Leader Sequence

Proof of Lemma 6.15. Let 𝑟 ≥𝑅𝑑 +2ℓ+4Δ be the current round.

For 1≤ 𝑖 ≤𝑚, let C𝑖 be the heaviest voter chain 𝑖 in an honest node
𝑢’s view at round 𝑟 . By the common prefix property in Lemma 6.13,

blocks in C ⌈ℓ+2Δ
𝑖

remain unchanged until 𝑟max. In addition, by the

chain quality property in Lemma 6.14, we know that for 1≤ 𝑖 ≤𝑚,

there exists at least onehonest block𝐵𝑖 on chainC𝑖 whose timestamp

is in the interval (𝑟−2ℓ−4Δ,𝑟−ℓ−2Δ),i.e., 𝐵𝑖 is on the chain C ⌈ℓ+2Δ𝑖
.

As 𝐵𝑖 is an honest block mined after 𝑅𝑑 , 𝐵𝑖 or an ancestor of 𝐵𝑖 must

have voted for the difficulty level 𝑑 . Therefore the leader sequence

remains unchanged up to difficulty level 𝑑 until 𝑟max. □

Proof of Lemma 6.16. Let 𝑟 be the current round, C be the pro-

poser chain held by honest player 𝑃 , and 𝑑 = diff (C). Let interval
𝐷 = (𝑑 ′,𝑑] be the difficulty range covered by all blocks in C with

timestamp in last ℓ+2Δ rounds. Define:

𝑑∗ :=max

(
˜𝑑 ≤𝑑 ′ 𝑠 .𝑡 the honest players mined

the first proposer block covering
˜𝑑
)

Let 𝑟∗ be the round inwhich the first proposer block covering𝑑∗ was
mined. 𝑟∗=0 and𝑑∗=0 if such proposer block does not exists. Define
𝑈 = {𝑟∗,···,𝑟 }, 𝑆 = {𝑟∗+Δ,···,𝑟−Δ}, and 𝐽 the adversarial queries in𝑈 .

Then we have |𝑆 | = |𝑈 |−2Δ≥ ℓ . From the definition of 𝑑∗ we have
the following two observations:

(1) All difficulties in (𝑑∗,𝑑 ′] are coveredbyat least oneadversarial
proposer block.



(2) All the proposer blocks covering (𝑑∗, 𝑑] are mined in the

interval𝑈 because there are no proposer blocks covering 𝑑∗

before round𝑟∗ andhencenoplayer canmineaproposerblock

covering a difficulty level greater than 𝑑∗ before round 𝑟∗.

Let 𝐿ℎ be the size of difficulty range covered by honest leader

blocks in the range (𝑑 ′,𝑑] and say
𝐿ℎ < 𝜇 (𝑑−𝑑 ′) ≤ 𝜇 (𝑑−𝑑∗) . (6)

Let 𝐿′
ℎ
be the size of difficulty range covered by honest leader blocks

in the range (𝑑∗,𝑑 ′]. The adversarial leader blocks have covered
difficulty ranges with size𝑑−𝑑∗−𝐿ℎ−𝐿′ℎ in the interval𝑈 . From our

first observation, we know that adversarial proposer blocks in the

difficulty range [𝑑∗,𝑑 ′] which are not leader blocks cover difficulty

ranges with size at least 𝐿′
ℎ
, and from our second observation, these

proposer blocks are mined in the interval𝑈 .

Therefore, we have the following bound on𝐴𝑃 (𝐽 )
𝐴𝑃 (𝐽 ) ≥ (𝑑−𝑑∗−𝐿ℎ−𝐿′ℎ)+𝐿

′
ℎ

=𝑑−𝑑∗−𝐿ℎ
(From Equation (6))>𝑑−𝑑∗−𝜇 (𝑑−𝑑∗)

= (1−𝜇) (𝑑−𝑑∗) . (7)

From the chain growth, we know that𝑑−𝑑∗ ≥𝑄𝑃 (𝑆) and combining

this with Equation (7) gives us

𝐴𝑃 (𝐽 )> (1−𝜇)𝑄𝑃 (𝑆)= (1−𝛿+3𝜀)𝑄𝑃 (𝑆), (8)

which contradicts Lemma B.5. □



D PSEUDOCODEOF PRISM

Algorithm 1 Prism: Main

1: procedureMain( )

2: Initialize()

3: while True do
4: ℎ𝑒𝑎𝑑𝑒𝑟,𝑃𝑝𝑓 ,𝐶𝑝𝑓 = PowMining()

5: // Block contains header, parent, content and merkle proofs

6: if header is a tx block then
7: 𝑏𝑙𝑜𝑐𝑘← ⟨ℎ𝑒𝑎𝑑𝑒𝑟,𝑡𝑥𝑃𝑎𝑟𝑒𝑛𝑡,𝑡𝑥𝑃𝑜𝑜𝑙,𝑃𝑝 𝑓 ,𝐶𝑝𝑓 ⟩
8: else if header is a prop block then
9: 𝑏𝑙𝑜𝑐𝑘← ⟨ℎ𝑒𝑎𝑑𝑒𝑟,𝑝𝑟𝑝𝑃𝑎𝑟𝑒𝑛𝑡,𝑢𝑛𝑅𝑓𝑇𝑥𝐵𝑘𝑃𝑜𝑜𝑙,𝑃𝑝𝑓 ,𝐶𝑝𝑓 ⟩
10: else if header is a block in voter blocktree 𝑖 then
11: 𝑏𝑙𝑜𝑐𝑘← ⟨ℎ𝑒𝑎𝑑𝑒𝑟,𝑣𝑡𝑃𝑎𝑟𝑒𝑛𝑡 [𝑖 ],𝑣𝑜𝑡𝑒𝑠𝑂𝑛𝑃𝑟𝑝𝐵𝑘𝑠 [𝑖 ],𝑃𝑝 𝑓 ,𝐶𝑝𝑓 ⟩
12: BroadcastMessage(𝑏𝑙𝑜𝑐𝑘) ⊲ Broadcast to peers

13: procedure Initialize( ) ⊲ All variables are global

14: // Blockchain data structure𝐶 = (𝑝𝑟𝑝𝑇𝑟𝑒𝑒,𝑣𝑡𝑇𝑟𝑒𝑒)
15: 𝑝𝑟𝑝𝑇𝑟𝑒𝑒←𝑔𝑒𝑛𝑒𝑠𝑖𝑠𝑃 ⊲ Proposer Blocktree

16: for 𝑖←1𝑡𝑜𝑚 do
17: 𝑣𝑡𝑇𝑟𝑒𝑒 [𝑖 ]←𝑔𝑒𝑛𝑒𝑠𝑖𝑠𝑀_𝑖 ⊲ Voter 𝑖 blocktree

18: // Parent blocks to mine on

19: 𝑝𝑟𝑝𝑃𝑎𝑟𝑒𝑛𝑡←𝑔𝑒𝑛𝑒𝑠𝑖𝑠𝑃 ⊲ Proposer block to mine on

20: for 𝑖←1𝑡𝑜𝑚 do
21: 𝑣𝑡𝑃𝑎𝑟𝑒𝑛𝑡 [𝑖 ] ←𝑔𝑒𝑛𝑒𝑠𝑖𝑠𝑀_𝑖 ⊲ Voter tree 𝑖 block to mine on

22: // Block content

23: 𝑡𝑥𝑃𝑜𝑜𝑙←𝜙 ⊲ Tx block content: Txs to add in tx bks

24: 𝑢𝑛𝑅𝑓𝑇𝑥𝐵𝑘𝑃𝑜𝑜𝑙←𝜙 ⊲ Prop bk content1: Unreferred tx bks

25: 𝑢𝑛𝑅𝑓 𝑃𝑟𝑝𝐵𝑘𝑃𝑜𝑜𝑙←𝜙 ⊲ Prop bk content2: Unreferred prp bks

26: for 𝑖←1𝑡𝑜𝑚 do
27: 𝑣𝑜𝑡𝑒𝑠𝑂𝑛𝑃𝑟𝑝𝐵𝑘𝑠 (𝑖)←𝜙 ⊲ Voter tree 𝑖 bk content



Algorithm 2 Prism: Mining

1: procedure PowMining( )

2: while True do
3: 𝑡𝑥𝑃𝑎𝑟𝑒𝑛𝑡←𝑝𝑟𝑝𝑃𝑎𝑟𝑒𝑛𝑡
4: // Assign content for all block types/trees

5: for 𝑖←1𝑡𝑜𝑚 do 𝑣𝑡𝐶𝑜𝑛𝑡𝑒𝑛𝑡 [𝑖 ]←𝑣𝑜𝑡𝑒𝑠𝑂𝑛𝑃𝑟𝑝𝐵𝑘𝑠[i]

6: 𝑡𝑥𝐶𝑜𝑛𝑡𝑒𝑛𝑡←𝑡𝑥𝑃𝑜𝑜𝑙
7: 𝑝𝑟𝐶𝑜𝑛𝑡𝑒𝑛𝑡←(𝑢𝑛𝑅𝑓𝑇𝑥𝐵𝑘𝑃𝑜𝑜𝑙,𝑢𝑛𝑅𝑓 𝑃𝑟𝑝𝐵𝑘𝑃𝑜𝑜𝑙)
8: // Define parents and content Merkle trees

9: 𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑇←MerklTree(𝑣𝑡𝑃𝑎𝑟𝑒𝑛𝑡,𝑡𝑥𝑃𝑎𝑟𝑒𝑛𝑡,𝑝𝑟𝑝𝑃𝑎𝑟𝑒𝑛𝑡 )
10: 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑀𝑇←MerklTree(𝑣𝑡𝐶𝑜𝑛𝑡𝑒𝑛𝑡,𝑡𝑥𝐶𝑜𝑛𝑡𝑒𝑛𝑡,𝑝𝑟𝐶𝑜𝑛𝑡𝑒𝑛𝑡 )
11: nonce← RandomString(1

𝜅
)

12: // Header is similar to Bitcoin

13: header← ⟨ 𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑇 .root, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑀𝑇 .root, nonce ⟩
14: if chainLength(𝑝𝑟𝑝𝑃𝑎𝑟𝑒𝑛𝑡 ) % e == 0 then
15: 𝑓 𝑛𝑒𝑤𝑝 ← RecalculateTarget(𝑓𝑝 )

16: 𝑓𝑣← (𝑓𝑣 ∗ 𝑓 𝑛𝑒𝑤𝑝 /𝑓𝑝 )
17: 𝑓𝑡← (𝑓𝑡 ∗ 𝑓 𝑛𝑒𝑤𝑝 /𝑓𝑝 )
18: 𝑓𝑝← 𝑓 𝑛𝑒𝑤𝑝

19: // Sortition into different block types/trees

20: if Hash(header) ≤𝑚𝑓𝑣 then ⊲ Voter block mined

21: 𝑖← ⌊Hash(header)/𝑓𝑣 ⌋ and break ⊲ on tree 𝑖
22: else if 𝑚𝑓𝑣 <Hash(header) ≤𝑚𝑓𝑣+ 𝑓𝑡 then
23: 𝑖←𝑚+1 and break ⊲ Tx block mined

24: else if 𝑚𝑓𝑣+ 𝑓𝑡 < Hash(header) ≤𝑚𝑓𝑣+ 𝑓𝑡 + 𝑓𝑝 then
25: 𝑖←𝑚+2 and break ⊲ Prop block mined

// Return header along with Merkle proofs

26: return ⟨ℎ𝑒𝑎𝑑𝑒𝑟,𝑝𝑎𝑟𝑒𝑛𝑡𝑀𝑇 .proof(𝑖), 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑀𝑇 .proof(𝑖) ⟩

Algorithm 3 Prism: Block and Tx handling

1: procedure ReceiveBlock(B) ⊲ Get block from peers

2: if B is a valid transaction block then
3: 𝑡𝑥𝑃𝑜𝑜𝑙 .removeTxFrom(B)

4: 𝑢𝑛𝑅𝑓𝑇𝑥𝐵𝑘𝑃𝑜𝑜𝑙 .append(B)

5: else if B is a valid block on 𝑖th voter tree and ValidVote(B,i) then
6: 𝑣𝑡𝑇𝑟𝑒𝑒 [𝑖 ].append(B) and 𝑣𝑡𝑇𝑟𝑒𝑒 [𝑖 ].append(B.ancestors())
7: // A vote is a range of difficulty along with the the corresponding proposer block

8: if B.chaindiff > 𝑣𝑡𝑃𝑎𝑟𝑒𝑛𝑡 [𝑖 ].chaindiff then
9: 𝑣𝑡𝑃𝑎𝑟𝑒𝑛𝑡 [𝑖 ]←B and 𝑣𝑜𝑡𝑒𝑠𝑂𝑛𝑃𝑟𝑝𝐵𝑘𝑠(𝑖).update(B)

10: else if B is a valid prop block then
11: if B.diff >𝑝𝑟𝑝𝑃𝑎𝑟𝑒𝑛𝑡 .diff then
12: 𝑝𝑟𝑝𝑃𝑎𝑟𝑒𝑛𝑡←B

13: for 𝑖←1𝑡𝑜𝑚 do ⊲ Add vote on level ℓ on all𝑚 trees

14: 𝑣𝑜𝑡𝑒𝑠𝑂𝑛𝑃𝑟𝑝𝐵𝑘𝑠 (i) [B.𝑙𝑒𝑣𝑒𝑙 ]←B

15: else if B.level >𝑝𝑟𝑝𝑃𝑎𝑟𝑒𝑛𝑡 .level+1 then
16: // Miner doesnt have block at level 𝑝𝑟𝑝𝑃𝑎𝑟𝑒𝑛𝑡 .level+1
17: ReqestNetwork(B.parent)

18: 𝑝𝑟𝑝𝑇𝑟𝑒𝑒 [B.level].append(B), 𝑢𝑛𝑅𝑓 𝑃𝑟𝑝𝐵𝑘𝑃𝑜𝑜𝑙 .append(B)
19: 𝑢𝑛𝑅𝑓𝑇𝑥𝐵𝑘𝑃𝑜𝑜𝑙 .removeTxBkRefsFrom(B)

20: 𝑢𝑛𝑅𝑓 𝑃𝑟𝑝𝐵𝑘𝑃𝑜𝑜𝑙 .removePrpBkRefsFrom(B)

21: procedure ReceiveTx(tx)
22: if tx has valid signature then 𝑡𝑥𝑃𝑜𝑜𝑙 .append(B)



Algorithm 4 Prism: Vote validation

1: procedure ValidVote(B,i ) ⊲ validate a vote

2: // voter block can’t vote for difficulty grater than its proposer parent

3: if B.vtContent[i].latestBlock.chaindiff > B.prpParent.chaindiff then
4: return False

5: if B.vtContent[i] has discontinuous votes then
6: return False

7: if B.vtContent[i].earliestBlock.parent.chaindiff > B.vtParent[i].chaindiff then
8: return False

9: // include the check where the difficulty ranges of the votes should end at proposal blocks

10: return True

Algorithm 5 Prism: Tx confirmation

1: procedure IsTxConfirmed(𝑡𝑥 )
2: Π←𝜙 ⊲ Array of set of proposer blocks

3: for ℓ←1𝑡𝑜 𝑝𝑟𝑝𝑇𝑟𝑒𝑒.maxLevel do
4: 𝑣𝑜𝑡𝑒𝑠𝑁𝑑𝑒𝑝𝑡ℎ←𝜙
5: for 𝑖 in 1𝑡𝑜𝑚 do
6: 𝑣𝑜𝑡𝑒𝑠𝑁𝑑𝑒𝑝𝑡ℎ [𝑖 ]←GetVoteNDepth(𝑖,ℓ)
7: if IsPropSetConfirmed(𝑣𝑜𝑡𝑒𝑠𝑁𝑑𝑒𝑝𝑡ℎ) then
8: Π [ℓ ]←GetProposerSet(𝑣𝑜𝑡𝑒𝑠𝑁𝑑𝑒𝑝𝑡ℎ)
9: else break
10: // Ledger list decoding: Check if tx is confirmed in all ledgers

11: 𝑝𝑟𝑝𝐵𝑘𝑠𝑆𝑒𝑞𝑠←Π [1]×Π [2]× ···×Π [ℓ ] ⊲ outer product

12: for 𝑝𝑟𝑝𝐵𝑘𝑠 in 𝑝𝑟𝑝𝐵𝑘𝑠𝑆𝑒𝑞𝑠 do
13: 𝑙𝑒𝑑𝑔𝑒𝑟 = BuildLedger(𝑝𝑟𝑝𝐵𝑘𝑠)
14: if 𝑡𝑥 is not confirmed in 𝑙𝑒𝑑𝑔𝑒𝑟 then return False

return True ⊲ Return true if tx is confirmed in all ledgers

15: // Return the vote of voter blocktree 𝑖 at level ℓ and depth of the vote
16: procedureGetVoteNDepth(𝑖,𝑑)
17: 𝑣𝑜𝑡𝑒𝑟𝑀𝐶←𝑣𝑡𝑇𝑟𝑒𝑒 [𝑖 ] .𝐻𝑒𝑎𝑣𝑖𝑒𝑠𝑡𝐶ℎ𝑎𝑖𝑛 ()
18: for 𝑣𝑜𝑡𝑒𝑟𝐵𝑘 in 𝑣𝑜𝑡𝑒𝑟𝑀𝐶 do
19: for 𝑣𝑜𝑡𝑒 in 𝑣𝑜𝑡𝑒𝑟𝐵𝑘 .votes do
20: if 𝑑 in 𝑣𝑜𝑡𝑒.𝑟𝑎𝑛𝑔𝑒 then
21: // Depth is the difficulty of children bks of voter bk on main chain

22: return (𝑣𝑜𝑡𝑒.𝑝𝑟𝑝𝐵𝑘 , 𝑣𝑜𝑡𝑒𝑟𝐵𝑘 .depth)

23: procedure BuildLedger(𝑝𝑟𝑜𝑝𝐵𝑙𝑜𝑐𝑘𝑠) ⊲ Input: list of prop blocks

24: 𝑙𝑒𝑑𝑔𝑒𝑟 ←[] ⊲ List of valid transactions

25: for 𝑝𝑟𝑝𝐵𝑘 in 𝑝𝑟𝑜𝑝𝐵𝑙𝑜𝑐𝑘𝑠 do
26: 𝑟𝑒 𝑓 𝑃𝑟𝑝𝐵𝑘𝑠←𝑝𝑟𝑝𝐵𝑘.getReferredPrpBks()
27: // Get all directly and indirectly referred transaction blocks.

28: 𝑡𝑥𝐵𝑘𝑠←GetOrderedTxBks(𝑝𝑟𝑝𝐵𝑘,𝑟𝑒 𝑓 𝑃𝑟𝑝𝐵𝑘𝑠)
29: for 𝑡𝑥𝐵𝑘 in 𝑡𝑥𝐵𝑘𝑠 do
30: 𝑡𝑥𝑠←𝑡𝑥𝐵𝑘 .getTxs() ⊲ Txs are ordered in 𝑡𝑥𝐵𝑘
31: for 𝑡𝑥 in 𝑡𝑥𝑠 do
32: // Check for double spends and duplicate txs

33: if 𝑡𝑥 is validw.r.t to 𝑙𝑒𝑑𝑔𝑒𝑟 then 𝑙𝑒𝑑𝑔𝑒𝑟 .append(𝑡𝑥 )

34: return 𝑙𝑒𝑑𝑔𝑒𝑟

35: // Return ordered list of confirmed transactions

36: procedureGetOrderedConfirmedTxs()
37: L←𝜙 ⊲ Ordered list of leader blocks

38: for 𝑝𝑟𝑝𝐵𝑘 in 𝑝𝑟𝑜𝑝𝐵𝑙𝑜𝑐𝑘𝑠 do
39: 𝑔 (𝑝) =𝑖𝑛𝑓𝑑 (𝑑 :GetLeader(𝑑) =𝑝)
40: 𝐿←𝑠𝑜𝑟𝑡 (𝑝,𝑘𝑒𝑦=𝑔 (𝑝))
41: return BuildLedger(L)
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