Securing Parallel-chain Protocols under Variable Mining Power

Xuechao Wang Viswa Virinchi Muppirala
University University of Washington at Seattle
of lllinois Urbana-Champaign USA
USA virinchi@uw.edu
xuechao2@illinois.edu
Lei Yang Sreeram Kannan Pramod Viswanath
MIT CSAIL University of Washington at Seattle University
USA of Illinois Urbana-Champaign

leiy@csail.mit.edu

ABSTRACT

Several emerging proof-of-work (PoW) blockchain protocols rely on
a “parallel-chain” architecture for scaling, where instead of a single
chain, multiple chains are run in parallel and aggregated. A key re-
quirement of practical PoW blockchains is to adapt to mining power
variations over time (Bitcoin’s total mining power has increased by
a 104 factor over the decade). In this paper, we consider the design
of provably secure parallel-chain protocols which can adapt to such
mining power variations.

The Bitcoin difficulty adjustment rule adjusts the difficulty target
of block mining periodically to get a constant mean inter-block time.
While superficially simple, the rule has proved itself to be sophisti-
cated and successfully secure, both in practice and in theory [11, 13].
We show that natural adaptations of the Bitcoin adjustment rule
to the parallel-chain case open the door to subtle, but catastrophic
safety and liveness breaches. We uncover a meta-design principle
that allow us to design variable mining difficulty protocols for three
popular PoW blockchain proposals (Prism [3], OHIE [27], Fruitchains
[21]) inside a common rubric.

The principle has three components: (M1) a pivot chain, based
on which blocks in all chains choose difficulty, (M2) a monotonicity
condition for referencing pivot chain blocks and (M3) translating
additional protocol aspects from using levels (depth) to using “dif-
ficulty levels”. We show that protocols employing a subset of these
principles may have catastrophic failures. The security of the designs
is also proved using a common rubric — the key technical challenge
involves analyzing the interaction between the pivot chain and the
other chains, as well as bounding the sudden changes in difficulty tar-
get experienced in non-pivot chains. We empirically investigate the
responsivity of the new mining difficulty rule via simulations based

Correspondence can be sent to ksreeram@uw.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

CCS °21, November 15-19, 2021, Virtual Event, Republic of Korea.

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11...$15.00
https://doi.org/10.1145/3460120.3485254

ksreeram@uw.edu USA

pramodv@illinois.edu

on historical Bitcoin data, and find that the protocol very effectively
controls the forking rate across all the chains.

CCS CONCEPTS

« Security and privacy — Distributed systems security.

KEYWORDS
Proof-of-Work; Parallel-chain; Security Analysis

ACM Reference Format:

Xuechao Wang, Viswa Virinchi Muppirala, Lei Yang , Sreeram Kannan, and
Pramod Viswanath. 2021. Securing Parallel-chain Protocols under Variable
Mining Power. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS’21), November 15-19, 2021, Virtual Event,
Republic of Korea. ACM, New York, NY, USA, 22 pages. https://doi.org/10.1145/
3460120.3485254

1 INTRODUCTION

Scaling problem. Built on the pioneering work of Nakamoto, Bit-
coin [18] is a permissionless blockchain operating on proof-of-work
based on the Nakamoto protocol. The Nakamoto longest-chain pro-
tocol was proven to be secure as long as the adversary controlled less
than 50% of the mining power in the breakthrough work [11]. Recent
works [9, 15, 24] have tried to improve the scalability of Bitcoin [5, 7],
in particular the throughput and latency, by redesigning the core
consensus protocol. A variety of approaches have been proposed, for
example hybrid consensus algorithms [14, 17, 22, 23] try to convert
the permissionless problem into a permissioned consensus prob-
lem by subselecting a set of miners from a previous epoch. While
such approaches achieve scalability, they are not natively proof-
of-work (PoW) and hence do not retain the dynamic availability,
unpredictability and security against adaptive adversaries that the
Nakamoto longest chain protocol enjoys.

Parallel-chain protocols. An emerging set of proof-of-work pro-
tocols maintain the native PoW property of Bitcoin and achieve
provable scaling by using many parallel chains. The chains run in
parallel and use an appropriate aggregation rule to construct an
ordered ledger of transactions out of the various parallel chains.
We will highlight three examples of parallel-chain protocols (PCP):
(1) Prism [3], which achieves high-throughput and low-latency us-
ing a proposer chain and many voter chains, (2) OHIE [27], which

https://doi.org/10.1145/3460120.3485254

achieves high-throughput using parallel chains and (3) FruitChains
[21], which achieves fairness using two distinct types of blocks
(blocks and fruits) mined in parallel. There are other approaches
such as ledger combiners [10], which achieve some of the same goals
using different architectures.

Common structure of PCP. In all of these parallel-chain protocols
(PCP), there are multiple types of blocks (for example, in OHIE, each
type may correspond to a different chain) and we determine the
final type only after mining the block - we will term this process
as hash sortition. The idea of sortition was first formalized in [11]
called 2-for-1 PoW. All three PCPs adopt this technique to achieve
parallel mining. A miner creates a single commitment (for example, a
Merkle root) to the potential version of the different block types and
performs a mining operation. Depending on the region the hash falls,
the block is considered mined of a certain type. Different protocols
utilize different types of aggregation rules and semantics in order
to consider the final ledger out of these parallel chains.

Variable mining power problem. A key requirement of deployed
PoW blockchains is to adapt to the immense variation in mining
power. For example, the mining power of Bitcoin increased exponen-
tially by an astonishing factor of 101 during its decade of deployment.
If Bitcoin had continued to use the same difficulty for the hash puz-
zle, then the inter-block time would have fallen from the original
10 minutes to 6 picoseconds. Such a drop would have caused an
intolerable forking rate and seriously undermined the security of
Bitcoin, lowering the tolerable adversarial mining power from nearly
50% to 10~ 1. However, this is prevented by adjusting the difficulty
threshold of Bitcoin using a difficulty adjustment algorithm.
Bitcoin difficulty adjustment algorithm. There are three core
ideas to the Bitcoin difficulty adjustment algorithm: (a) vary the
difficulty target of block mining based on the median inter-block
time from the previous epoch (of 2016 blocks), (b) use the heaviest
chain (calculated by the sum of the block difficulties) instead of the
longest chain to determine the ledger, and (c) allow the difficulty to
be adjusted only mildly every epoch (by an upper bound of a factor of
4). While this appears to be a simple and intuitive algorithm, minor
seemingly-innocuous variants turn out to be dangerously insecure.
Difficulty adjustment terminology. Throughout the paper, we
call the hash puzzle threshold in PoW mining the target of a block.
The block difficulty of each block is measured in terms of how many
times the block is harder to obtain than using the initial target of the
system thatis embedded in the genesis block. However, for simplicity,
we will adapt the notation of block difficulty to be the inverse of the
target of the block. The chain difficulty of a chain is the sum of block
difficulties of all blocks that comprise the chain, then each block in the
chain covers an interval of chain difficulty. The chain with the largest
chain difficulty is said to be the heaviest chain. We also refer the
chain difficulty of a block as the chain difficulty of the chain ending
at this block. This notation is summarised in the following table.

Target Threshold of the hash puzzle in PoW mining
Block difficulty | Inverse of the target of a block

Chain difficulty | Sum of block difficulties of all blocks in the
chain

Difficulty adjustment requires nuanced design. Consider a sim-
pler algorithm using only (b), i.e., simply let the nodes choose their
own difficulty and then use (b) the heaviest chain rule. At a first

glance, this rule appears kosher - the heaviest chain rule seems
to afford no advantage to any node to manipulate their difficulty.
However, this lack of advantage only holds in expectation, and the
variance created by extremely difficult adversarial blocks can thwart
a confirmation rule that confirms deeply-embedded blocks, no mat-
ter how deep, with non-negligible probability proportional to the
attacker’s mining power (refer to Appendix A for a detailed discus-
sion). Now consider a more detailed rule involving only (a) and (b). It
turns out that there is a difficulty raising attack (refer to Appendix A
for a detailed discussion), where the adversary creates an epoch
filled with timestamps extremely close-together, so that the diffi-
culty adjustment rule from (a) will set the difficulty extremely high
for the next epoch, at which point, the adversary can utilize the high
variance of the mining similar to the aforementioned attack. This
more complex attack is only thwarted using the full protocol that
employs (a), (b) and (c) together. The full proof of the Nakamoto
heaviest chain protocol was obtained in a breakthrough work [12].
Difficulty adjustment in PCP. When there are multiple parallel-
chains, one natural idea is to apply Bitcoin’s difficulty adjustment
algorithm to each of the chains independently. However, this idea
does not integrate well with hash sortition since the range of a par-
ticular chain will depend on the state of other chains. Instead, since
the mining power variation is the same across all chains, a natural
approach is to use the same difficulty threshold across all chains,
which is then modulated based on past evidence. How should this
common difficulty threshold be chosen? One approach is to utilize
inter-block arrival times across all the chains to get better statistical
averaging and respond faster to mining power variation. However, it
requires some sort of synchronization across the chains and breaks
the independence assumption.

General methodology. We propose a general methodology by
which to adapt parallel-chain architectures to the variable mining
rate problem. Our general methodology is comprised of three parts,
as detailed below.

e M1: Pivot-chain. Use a single chain as the pivot chain for
difficulty adjustment. Blocks mined in any other chain need
to refer to a block in the pivot chain and use the target inferred
therefrom.

e M2: Monotonicity. In a non-pivot chain, blocks can only
refer to pivot-chain blocks of non-decreasing chain difficulty.

e M3: Translation. Wherever the protocol uses the concept
of a block’s level, it is updated to refer to the block’s chain
difficulty instead.

Using M1 pivot-chain for difficulty adjustment ensures that we can
continue to use the hash-sortition method. The M2 monotonicity
rule ensures that blocks in non-pivot chain do not refer to stale/old
pivot blocks with target which is very different from expected in the
present round. Finally, the M3 translation rule ensures that other
aspects of the protocol, such as the confirmation rule are adapted
correctly to deal with the variable difficulty regime correctly. We
show in Section 3 why each of the three aspects of our methodol-
ogy is critical in designing variable difficulty for Prism by showing
attacks for subsets of M1,M2, and M3.

On the positive side, we show a concrete adaptation of our general
methodology to various schemes, in particular to Prism in Section 3,
to OHIE in Section 4 and to FruitChains in Section 5.

Security proofs. The problem of analyzing the difficulty adjustment
mechanism in Bitcoin was first addressed in [12] in the lock-step
synchronous communication model. It introduces a setting where
the number of participating parties’ rate of change in a sequence of
rounds is bounded but follows a predetermined schedule. Later two
concurrent works [6, 13] analyzed the problem in a bounded-delay
network with an adaptive (as opposed to predetermined) dynamic
participation, with different proof techniques. Following the two
later papers, we adopts the more general network and adversary
models: we assume a A-synchronous communication model, where
every message that is received by a honest node is received by all
other honest nodes within A rounds; we allow the adversary to con-
trol the mining rate even based on the stochastic realization of the
blockchain, as long as the mining rate does not change too much
in a certain period of time. We assume that the adversarial nodes
are Byzantine and they do not act rationally. Under this general
model, we establish that our proposed modification to Prism, OHIE
and FruitChains satisfy the dual security properties of safety and
liveness. The proofs require a new understanding of how difficulty
evolution in a non-pivot chain progresses based on the difficulty
in the pivot chain - this statistical coupling presents a significant
barrier to surmount in our analysis, and differs from previous work
in this area. We show these results in Section 6.

Systems implementation. Our variable difficulty scheme does not
add significant computation and communication overhead on exist-
ing parallel-chain protocols, making our protocol an easy upgrade.
We conduct extensive simulation studies to examine how our sys-
tems respond to varying mining power. Results show that our scheme
is able to closely match the system mining power and the mining
difficulty for each individual chain, thus keeping the chain forking
rate stable. We examine adversarial behavior and how it can influ-
ence the difficulties of various chains, and confirm that our scheme is
secure against significant adversarial presence. The simulations are
based on historical Bitcoin mining power data and parameters col-
lected from real-world experiments of the Prism [26] parallel-chain
protocol, making the insights meaningful for real-world systems.
Other related works. A recently proposed blockchain protocol
Taiji [16] combines Prism with a BFT protocol to construct a dy-
namically available PoW protocol which has almost deterministic
confirmation with low latency. Since Taiji inherits the parallel-chain
structure from Prism, our meta-principles will also apply. The vul-
nerability of selfish mining has recently been discussed on several
existing blockchain projects with variable difficulty in [19]. Our pro-
posed variable difficulty FruitChains protocol guarantees fairness
of mining, thus disincentivizes selfish mining.

2 MODEL

Synchronous network. We describe our protocols in the now-
standard A-synchronous network model considered in 2, 13, 20] for
the analysis of proposed variable difficulty protocols, where there is
an upper bound A in the delay (measured in number of rounds) that
the adversary may inflict to the delivery of any message. Observe
that notion of “rounds” still exist in the model (since we consider dis-
cretized time), but now these are not synchronization rounds within
which all messages are supposed to be delivered to honest parties.

Similar to [13, 20], the protocol execution proceeds in “round”

with inputs provided by an environment program denoted by Z (1)
to parties that execute the protocol IT, where k is a security parameter.
The adversary A is adaptive, and allowed to take control of parties
on the fly, as well as “rushing”, meaning that in any given round the
adversary gets to observe honest parties’ actions before deciding how
toreact. The network is modeled as a diffusion functionality similar to
thosein[13, 20]: itallows order of messages to be controlled by A, i.e.,
A can inject messages for selective delivery but cannot change the
contents of the honest parties’ messages nor prevent them from being
delivered beyond A rounds of delay — a functionality parameter.
Random oracle. We abstract the hash function as a random ora-
cle functionality. It accepts queries of the form (compute,x) and
(verify,x,y). For the first type of query, assuming x was never
queried before, a value y is sampled from {0,1}* and it is entered to
a table Ty If x was queried before, the pair (x,y) is recovered from
Ty . In both cases, the value y is provided as an answer to the query.
For the second type of query, a lookup operation is performed on
the table. Honest parties are allowed to ask one query per round
of the type compute and unlimited queries of the type verify. The
adversary A is given a bounded number of compute queries per
round and also unlimited number of verify queries. The bound
for the adversary is determined as follows. Whenever a corrupted
party is activated the bound is increased by 1; whenever a query is
asked the bound is decreased by 1 (it does not matter which specific
corrupted party makes the query).
Adversarial control of variable mining power. We assume no
rational node in the adversarial model. The adversary can decide
on the spot how many honest parties are activated adaptively.Ina
round r, the number of honest parties that are active in the protocol
is denoted by n, and the number of corrupted parties controlled by
A inround r is denoted by ¢,. Note that n, can only be determined
by examining the view of all honest parties and is not a quantity that
is accessible to any of the honest parties individually. We make the
“honest majority” assumption, i.e., & < (1—-8)n, for all r, where the
positive constant § < 1 is the advantage of honest parties. Further,
we will restrict the environment to fluctuate the number of parties
in a certain limited fashion. Suppose Z, A with fixed coins produces
a sequence of parties n,, where r ranges over all rounds of the entire
execution, we define the following notation.

DEFINITION 2.1. Let rmax €N is the total number of rounds in the
execution. Fory e R*, we call (n;),r € [0,rmax], as (y,s)-respecting if
for any set S C [0,rmax] of at most s consecutive rounds,

max n, < ymin ny.
resS r=vy res r

We say that Z is (y,s)-respecting if for all A and coins for Z and A
the sequence of honest parties n, is (y,s)-respecting.

3 PRISM

3.1 Fixed Difficulty Algorithm

Each block in the longest chain of the Bitcoin protocol performs
dual roles: Proposing and Voting. A proposed block gets confirmed
with high reliability only after the block, and several more blocks
extending it make it in the longest chain. The latency of the protocol
is the number of blocks for which one needs to wait (this number
depends on the reliability). To guarantee security, the mining rate

Fixed difficulty PRISM

proposer blocktree voter chain 1 voter chain 2 voter chain m

level 0 G c (T; (T;
level 1 Jo” *
I !
level 2 j“ | |
level 3 o A . ;
level 4 3 ¢ .
I !
level 5 h; ; :
level 6 W s
. f \
level 7 ~
Hash < T T < Hash <2T 2T < Hash <3T mT < Hash < (m +1)T

leader sequence blocks 2-depth confirmed voter blocks

< reference link for vote

Figure 1: Fixed difficulty Prism. Snapshot of a miner’s view of
Prism block-trees. The confirmed blocks are darker in color
and the votes are shown using dotted arrows.

remains low [11], which leads to low throughput and high latency.
Prism [3] is a Proof-of-Work protocol that decouples block proposals
and voting to scale throughput and latency. We will briefly explain
the Prism as it was originally described in the fixed mining rate, i.e.,
fixed difficulty regime. As show in Figure 1, Prism runs multiple
m+1 separate parallel “blocktrees” where one of the trees, called the
proposer tree, consists of blocks from which the final transaction
ledger is constructed. We define a block’s level in the proposer tree as
the block’s depth from the genesis. The final transaction ledger will
comprise of one proposer block at each level chosen by the longest
chain in each of the m voter blocktrees; they are referred to as voter
chains. A voter block in any voter blocktree can vote for one or
more proposer blocks at different levels by including a pointer to
the corresponding proposer blocks in its payload. A voter block can
also consist of a null vote if the chain it entered already voted on
the latest level. At a given level of the proposer tree, a voter chain
can vote for exactly one proposer block. The net vote for a proposer
block can be counted by aggregating which of the m voter chains
voted for that block. The block with the most votes at any particular
level is termed as the leader block for that level, and the ledger is
constructed by concatenating the leader blocks at various levels.
Mining and sortition. In order to ensure that the adversary cannot
focus the mining power onto a single chain, a “sortition” mechanism
is used. A miner creates a “super-block” containing information
about its parent block in each of the m+1 trees. Each tree has a target
of T, and for 1 < i < m if a node creates a block of hash value in
between iT and (i+1)T, it will be able to mine this block in the voter
block-tree i. If it creates a block of hash value less than T, it will be
able to mine this block in the proposer block-tree as show in Figure 1.

The structure of this voting scheme in Prism enables low confirma-
tion latency. The high-level idea is that votes accrue only sequentially
in Bitcoin, whereas in Prism, votes accrue parallelly. Thus for a given
amount of security, confirmation only needs to wait for a much
shorter amount of time (since voting blocks are created in parallel),
thus reducing the amount of latency.

3.2 Natural Approaches Are Insecure

Different difficulty adjustment for different chains (no M1).
To add support for variable mining power to Prism, a natural first
approachis toreplace thelongest chainrule [11] by the heaviest chain
rule [13] in all the parallel chains, and adjust the mining difficulty in
each chain separately. However, miners in Prism use cryptographic
sortition to mine blocks on all chains at the same time, and having
different thresholds for different chains depending on the state will
require complex coupling across chains. Furthermore, since the
mining power variation is the same across different chains, it is
efficient to have a single difficulty threshold across the entire system.
As we explained in the introduction, our general methodology
for converting a fixed-difficulty protocol into a variable-difficulty
protocol comprises of three attributes M1: Pivot-chain, M2: Mono-
tonicity and M3: Translation. We will now explore the subtleties
inherent in this process and show why a subset of these attributes
is insufficient for Prism.
M1 without M2 = Safety failure. To make the cryptographic
sortition technique applicable, a straightforward approach is to use
the proposer chain as a pivot chain for difficulty adjustment (M1): the
difficulty of the proposer blocks is adjusted according to the Bitcoin
rule [13], and the difficulty of voter blocks tracks that of the proposer
chain by reference links. However, if we allow the miners to use the
difficulty of any proposer block for the voter blocks, then safety
failures may occur on the voter chains. We demonstrate an example
safety failure here. Let the honest parties maintain the difficulty do
throughout the execution, and the adversary mines private proposer
blocks with timestamps in rapid succession to increase the difficulty
to do*k, where k is a desired security parameter on the voter chains
(i.e., we hope that a k-deep voter block will be stable forever). Even
if the adversary cannot keep up the chain difficulty of its private
proposer chain with the heaviest public chain, at the current time on
the voter chain, the adversary will refer to this very difficult block on
the proposer tree to create a very difficult block on the voter tree. If the
adversary islucky and mines one voter block with difficulty dy *k, the
probability of which is a constant rather than exponentially decaying
in k (via the same anti-concentration argument in Appendix A), then
it can overtake the heaviest voter chain and reverse a k-deep voter
block. This attack is described in Figure 2. To address this issue, we
require that on each voter chain the referred proposer blocks should
have non-decreasing chain difficulty (M2), so that the adversary can
no longer adopt an old mining difficulty from the proposer chain.
With M2, although the adversary may not refer to the tip of the
proposer chain, both our analysis in Section 6.4 and the simulation
in Section 7.3 show that the security of the voter chain can still be
guaranteed.
Voting rule: No M3 = Liveness Failure. In fixed difficulty Prism,
a voter block votes on all levels in the proposer tree that are unvoted
by the voter block’s ancestors. In the variable difficulty algorithm,
while the notion of “level” on the proposer chain is well-defined an
adversary can always mine a very long but easy proposer chain. Asa
result, if we still order proposer blocks by level, the leader sequence
will be full of adversarial blocks, which may cause liveness failure
as described in Figure 3. A natural generalization would be that
voter blocks vote for each difficulty value rather than level and the

proposer blocktree voter blocktree i

f
< V_t_\
[

1 3 A ‘ Heavier
< Chain

Figure 2: Attack on safety when we enforce M1 but not M2.

At the current time, the adversary will choose a very difficult
proposer block in a less heavier chain as its proposer-parent
in the voter chain, hurting the ledger’s security. The dotted
arrows represent the relation between the voter blocks and
their proposer parents.

proposer blocktree voter blocktree i

G G
: X
% .
\ » .
b |

S :

i
R
A

LY £
-
x

LY £

A A

x

4 4
-
x
-
2
N
A »

Figure 3: Attack onliveness when M1, M2 are enforced but not
M3. The adversary lowers the block difficulty and advances
inlevel on the proposer tree. The voter blocks will not be able
to vote for any honest blocks, hurting the ledger’s liveness.

leader sequence is also decided for each difficulty value (M3). See
the complete algorithm in the next subsection.

3.3 Variable Difficulty Algorithm

We now describe the full Prism protocol for the variable difficulty
setting constructed using our general methodology. We refer the
reader to Appendix D for a pseudocode of the algorithm. There
are two types of blocks in Prism blockchain: proposer blocks and
voter blocks. Proposer blocks contain transactions that are proposed
to be included in the ledger, and constitutes the skeleton of Prism
blockchain. Voter blocks are mined on m separate voter blocktrees,
each with its own genesis block. We say a voter block votes on a
proposer block B if it includes a pointer to B in its payload.

Block proposal rule. The proposer chain follows the heaviest chain
rule, and the difficulty adjustment uses the target calculation function
defined in [13] with parameter ® and 7, where ® is the length of an

Variable difficulty PRISM

proposer blocktree voter chain 1 voter chain 2 voter chain m

.. T w

Chain difficulty f e 1 | !

voter blocks in the

T n k
leader sequence blocks heaviest chain

reference link for
vote/proposer parent

Figure 4: A miner’s view of Prism block-trees with variable
chain difficulty. The confirmed blocks are darker in color.
Both the votes and proposer-parent links are shown using
the same dotted arrows.

epoch in number of blocks and 7 > 1 is the dampening filter (line 14
in Algorithm 2). All m voter chains also follow the heaviest chain
rule, but the difficulty adjustment on voter chains is more tricky and
we will discuss it soon when introducing sortition.

Whereas Bitcoin miners mine on a single blocktree, Prism miners
simultaneously mine one proposer block and m voter blocks via cryp-
tographic sortition. More precisely, while mining, each miner selects
m+1 parent blocks, which are the tips of the heaviest chains on the
proposer tree and the m voter trees. We call these tips proposer parent
and voter parents separately. And the miner maintains outstanding
content for each of the m+1 possible mined blocks: For the proposer
block, the content is a list of transactions; For the voter block on the
i-th voter tree, the content is a list of hashes of proposer blocks at
each difficulty in the proposer blocktree that has not yet received
a vote in the heaviest chain of the i-th voter tree. More precisely, on
the i-th voter tree, if the last proposer block voted by the heaviest
chain covers the difficulty interval (ag,bo] and the proposer parent
covers (a*,b*], then a valid voter block on the i-th voter tree must
satisfy the following conditions (see Algorithm 4).

e If b* =by, then it should contain no vote.

o If b* > by, then it should vote for an arbitrary number of pro-
poser blocks By,Ba,++,By, each covering (a1,b1], (az,b2], -+,
(an,bn], such that a; <bj—1 <b; forall 1 <i<nand b, =b".

Upon collecting this content, the miner tries to generate a block
with target according to the proposer parent via proof-of-work (M1).
Once a valid nonce is found, the output of the hash is determin-
istically mapped to either a voter block in one of the m trees or a
proposer block (lines 19-25 in Algorithm 2).

While mining, nodes may receive blocks from the network, which
are processed in much the same way as Bitcoin. For a received voter
block to be valid, the chain difficulty of its proposer parent must be

at least that of the proposer parent of its voter parent (M2). Upon
receiving a valid voter block, the miner updates the heaviest chain if
needed, and updates the vote counts accordingly. Upon receiving a
valid proposer block B with chain difficulty higher than the previous
heaviest chain, the miner makes B the new proposer parent, and
updates all m voter trees to vote for chain difficulties until B.
Ledger formation rule. Note that all the voters on one voter chain
may cover overlapping intervals. So we first sanitize them into
disjoint intervals: For n consecutive valid votes (a1, b1], (az, b2],
-+, (an,bn] on a voter chain, we sanitize them into new intervals
(a1,b1], (b1,b2],-+,(bn-1,bn]. In this way, we make sure that each
real-valued difficulty d is voted at most once by each voter chain,
hence d can receive at most m votes. Since voter blocks vote for
each difficulty value rather than level, the ledger is also generated
based on difficulty values (M3). Let v; (d) be the proposer block with
interval containing d voted by the heaviest chain on the i-th voter
tree. Let £(d) be the leader block of difficulty d, which is the plurality
of the set {v; (d) }]2,. For each proposer block B, in the proposer tree,
define g(By) as

9(Bp)= inf (d:¢(d) =Bp). 8

Note that if {d : ¢(d) = Bp} is empty, then g(Bp) = co. Finally, by
sorting all proposer blocks by g(-), we get the leader sequence of the
proposer blocks. A concrete example of this ledger formation rule is
shown in Figure 5.

Operationally, we only need to count votes for intervals in the
atomic partition of all intervals covered by the proposer blocks. Af-
ter finding the leader block for each atomic interval, we can get the
leader sequence by sanitizing the repeated proposer blocks.

Main result: persistence and liveness of Prism (Informal) We
show that Prism generates a transaction ledger that satisfies persis-
tenceand livenessin avariable mining power setting in Theorem 6.17.

4 OHIE
4.1 Fixed Difficulty Algorithm

OHIE [27] composes m parallel instances of Bitcoin longest chains.
Each chain has a distinct genesis block, and the chains have ids from
0 to m—1. Similar to Prism, OHIE also uses cryptographic sortition
to ensure that miners extend the m chains concurrently and they do
not know which chain a new block will extend until the PoW puzzle
is solved.

Each individual chain in OHIE inherits the proven security prop-
erties of longest chain protocol [11], and all blocks on the m chains
confirmed by the longest chain confirmation rule (eg. the k-deep rule)
are called partially-confirmed. However, this does not yet provide
a total ordering of all the confirmed blocks across all the m chains in
OHIE. The goal of OHIE is to generate a sequence of confirmed blocks
(SCB) across all m parallel chains. Once a partially-confirmed block
is added to SCB, it becomes fully-confirmed.

In OHIE, each block has two additional fields used for ordering
blocks across chains, denoted as a tuple (rank,next_rank).In SCB,
the blocks are ordered by increasing rank values, with tie-breaking
based on the chain ids. For any new block B that extends from its
parentblock denoted as parent(B), we directly set B’s rank to be the
same as parent(B)’s next_rank. A genesis block always has rank
of 0 and next_rank of 1. Properly setting the next_rank of a new

proposer chain voter chain

e Le

B1 4 g

1 . ‘I

w1 e ad

£ e i | |
BB, 1 <«

B S 2 }433' ‘ ‘

Ba 2 }4 B ‘I‘

«d) B1 B2 B3 B3' B4
B B1 B2 B3 B4 B2' B3'
a(B) 0) 2 4 1 3

Leader sequence: B1 B2' B3 B3' B4

Figure 5: An example of the ledger formation rule in Prism.
For simplicity, we only have one voter chain in the example.
The number inside each proposer block is the block diffi-
culty. In this example, the heaviest proposer chain has chain
difficulty 5. We find the leader block ¢(d) for each difficulty
level d in (0,5] according to the votes (as shown in the first
table). Then we find the grade g(-) of each proposer block
by Equation (1) as shown in the second table. Finally, the
proposer blocks are ordered by their grades.

block B is the key design in OHIE. Let B be the set of all tips of the
m longest chains before B is added to its chain, then the next_rank
of Bis given by

next_rank(B)=max{rank(B)+1, maé{next_rank(B')}}.
Be

If B copies the next_rank of a block B’ on a chain with different id,
then a reference link to B’ (or the hash of B’) is added into B. In the ex-
ample of Figure 6, when B11 is mined, B04 has the highest next_rank,
so B11 copies the next_rank of B04 and has a reference link to B04.

OHIE generates a SCB in the following way. Consider any given
honest node at any given time and its local view of all the m chains.
Lety; be the next_rank of the last partially-confirmed block on chain
i in this view. Let confirm_bar « mini.‘:1 y;. All partially-confirmed
blocks whose rank is smaller than confirm_bar are deemed fully-
confirmed and included in SCB. Finally, all the fully-confirmed blocks
will be ordered by increasing rank values, with tie-breaking favoring
smaller chain ids. As an example, in Figure 6, we have yo =4,y; =
7,y2=9,hence confirm_baris 4. Therefore, the 8 partially-confirmed
blocks whose rank is below 4 become fully-confirmed.

4.2 Variable Difficulty Algorithm

Following the same meta-principle of designing variable difficulty
Prism, we can also turn the fixed difficulty OHIE into a variable
difficulty algorithm by making the following changes.

Fixed difficulty OHIE

BOO BO1 B02 BO3 BO4

Chaino[o1 12— 23 34 7
B10 Eﬁ/_v/ B12 B13 B4

Chain1[o1 |15 —
B20 521//—\ B22 B23
Chain2(0,1 — 1,8 89

Confirm_bar = min(4,7,9) = 4
SCB: B00 B10 B20 B01 B11 B21 B02 B0O3

D Partially-confirmed
—> Reference link for copying next_rank
Figure 6: OHIE with fixed difficulty. Each block has a tuple
(rank,next_rank). In this figure, a block that is at least 2-deep
in its chain is partially-confirmed. The blocks arrive in this
order: B00, B10, B20, B01, B02, B03, B04, B11, B12, B13, B14,
B21, B22, B23.

Fully-confirmed

Variable difficulty OHIE

B00 Bo1 Bo2 B03 B04 B0S
T S P T Ty B
A3 SIS .

B10 - B B2 _ Rt TeoB13 N el B4
Chainto1 | {12 | 27 = { 79 < gn

B20 B21 /_—/ . B2
Chain2 01 — 1,9 9,11

Confirm_bar = min(7,9,9) =7
SCB: B00 B10 B20 B01 B11 B21B12 B03 B04

D Partially-confirmed

— > Reference link for copying next_rank

Fully-confirmed

—————— » Reference link to chain 0 parent

Figure 7: OHIE with variable difficulty. Each block has a tuple
(rank,next_rank). In this figure, a block that is at least 2-deep
in its chain is partially-confirmed. The width of a block
represents its mining difficulty. Different from the fixed
difficulty algorithm, the mining difficulty is adjusted every 3
blocks on chain 0; Each block B on chain i (i > 0) has a chain 0
parent (shown by the red reference link), which decides the
mining difficulty of B. The blocks arrive in this order: B00,
B10,B20,B11, B01, B02,B03, B04,B12, B13, B21, B05, B14, B22.

o Each individual chain follows the heaviest chain rule instead
of the longest chain rule.

e The mining difficulty of chain 0 is adjusted the same way as
the Bitcoin rule [13].

e Following our design principle M1, each block B on chains
1,2,...,(m—1) will also have a chain 0parentB (assigned before
mining). The mining difficulty of B is the same as the difficulty
used to mine a child block of B. To prevent the adversary from
adopting an old mining difficulty from chain 0, we require
that on each chain the referred chain 0 parent should have
non-decreasing chain difficulty (M2). As an example in Fig-
ure 7, each block on chain 1 and chain 2 refers to (shown in
red dashed arrow) a chain 0 parent with non-decreasing chain
difficulty, which decides the mining difficulty of the block.

o A straightforward adoption on how to decide the next_rank
of a block would follow from our design principle M3. Let 8
be the set of all tips of the m heaviest chains before B is added

to its chain, then the next_rank of B is given by

next_rank(B) =max{rank(B)+diff(B),gla%{next_rank(B')}}.
g

If B copies the next_rank of a block B’ on a chain with differ-
ent id, then a reference link to B’ (or the hash of B’) is added
into B. Note that B’ may be different from B’s chain 0 parent,
eg. B21 in Figure 7. We point out that this design is not neces-
sary for the security analysis, but it is a very natural choice.

We refer the reader to Appendix G of [25] for a pseudocode of the
algorithm.

Main result: persistence and liveness of OHIE (Informal) We
show that OHIE generates a transaction ledger that satisfies persis-
tence and liveness in a variable mining power setting in Appendix
D of [25].

5 FRUITCHAINS
5.1 Fixed Difficulty Algorithm

The FruitChains protocol was developed in order to solve the selfish
mining problem and develop incentives which are approximately
a Nash equilibrium. A key underlying step in FruitChains is to en-
sure that a node that controls a certain fraction of mining power
receives reward nearly proportional to its mining power, irrespective
of adversarial action. FruitChains runs an instance of Nakamoto
consensus but instead of directly putting the transactions inside the
blockchain, the transactions are put inside “fruits” and fruits are
included by blocks. Mining fruits also requires solving some PoW
puzzle. Similar to Prism and OHIE, the FruitChains protocol also
uses cryptographic sortition to ensure that miners mine blocks and
fruits concurrently and they do not know the type of the blocks until
the puzzle is solved. Additionally, a fruit is required to “hang” from
a block which is not too far from the block which includes the fruit.

In FruitChains, each of the fruit will have two parent blocks, we
call them fruit parent and block parent: the fruit parent is a recently
stabilized/confirmed block that the fruit is hanging from; the block
parent should be the tip of the longest chain. A block will also have
a fruit parent because the fruit mining and block mining are piggy-
backed atop each other, but a block actually does not care about this
field. See Figure 8 for illustration. We say that a fruit By isrecent w.r.t.
achain C if the fruit parent of Br isablock that is at most Rdeepin C,
where R is called the recency parameter. The FruitChains protocol
requires that blocks only include recent fruits. Intuitively, the reason
why fruits need to be recent is to prevent the “fruit withhold attack”:
without it, an attacker could withhold fruits, and suddenly release
lots of them at the same time, thereby creating a very high fraction
of adversarial fruits in some segment of the chain.

We term a blockchain protocol as fair if players controlling a ¢
fraction of the computational resources will reap a ¢ fraction of
the rewards. Intuitively, the reason why the FruitChains protocol
guarantees fairness is that even if an adversary tries to “erase” some
block mined by an honest player (which contains some honest fruits),
by the liveness of the longest chain protocol, eventually an honest
player will mine a new block including those fruits and the block will
be stable — in fact, by setting the recency parameter R reasonably
large, we can make sure that any fruit mined by an honest player will
be included sufficiently deep in the chain. And further, if rewards
and transaction fees are evenly distributed among the fruits in the

G -« -« }4— -«
G -« -« }4— -« -«
Block —> Reference link for block parent
———> Reference link for fruit parent
Fruit Reference link for fruit inculsion

Figure 8: The FruitChains protocol.

long segment of the chain, then the FruitChains protocol guarantees
fairness.

5.2 Variable Difficulty Algorithm

Following our meta-principles, we can also turn the fixed difficulty
FruitChains into a variable difficulty algorithm by making the fol-
lowing changes.

e The underlying blockchain protocol follows the heaviest
chain rule instead of the longest chain rule, i.e., the block
parent of a block/fruit is the tip of the heaviest chain.

o The mining difficulty is adjusted the same way as the Bitcoin
rule [13], and the block/fruit mining will use the same mining
difficulty, or the difficulties of fruit and block will remain the
same ratio (M1).

e Afruit By isrecent w.r.t. a chain C at round r if the fruit parent
of B £ isin C and has timestamp at least r—R, where R is called
the recency parameter. And again, blocks only include recent
fruits, i.e., a block B with timestamp r is valid if for all fruits
By € B, the fruit parent of By has timestamp at least r—R.

If rewards and transaction fees are designed to distribute pro-
portional to the fruit difficulty in a sufficiently long segment of the
chain, then the variable difficulty FruitChains protocol guarantees
fairness under a variable mining power setting. This is where the
meta-principle M3 kicks in. In the fixed difficulty setting, the reward
is distributed equally among all fruit miners equally in a window
of blocks. In the variable difficulty setting, the reward is distributed
proportional to the difficulty of the fruits. To model this in our
calculation of fairnesss, we say that the variable difficulty protocol
is fair if the fraction of difficulty of fruits of a given miner in a
window is approximately proportional to its mining power. Note that
monotonicity condition (M2) does not apply to variable difficulty
FruitChains as there is no chaining structure among the fruits. But
the recency condition on the fruits has the same effect and does pre-
vent the adversary from adopting an old mining difficulty for fruits.
Main result: persistence, liveness and fairness of FruitChains
(Informal) We show that FruitChains generates a transaction
ledger that satisfies persistence, liveness and fairness in a variable
mining power setting in Appendix E of [25].

6 SECURITY ANALYSIS
6.1 Desired Security Properties

NoTATION6.1. Wedenote byC ¢ the chain resulting from “pruning”
the blocks with timestamps within the last £ rounds. If C; is a prefix
of Co, we write C1 < Cy. The latest block in the chain C is called the
head of the chain and is denoted by head(C). We denote by C1 NCy the
common prefix of chains C1 and Cy. We say that a chain C is held by or
belongs to an honest party if it is one of the heaviest chains in its view.

The following two properties called common prefix and chain
quality, are essential in proving the persistence and liveness of the
transaction ledger. The common prefix property states that any two
honest parties’ chains at two rounds have the earlier one subsumed
in the later as long as the last a few blocks are removed, while chain
quality quantifies the contributions of the honest parties to any
sufficiently long segment of the chain.

DEFINITION 6.2 (COMMON PREFIX). The common prefix property
with parameter fcp €N states that for any two honest players holding

7
chains C1, Cy at roundsry, ry, withry <rs, it holds thatClr P <Cy.

DEFINITION 6.3 (CHAIN QUALITY). The chain quality property is
defined for two parameters teq €N and p €R. Let C be a chain held by
any honest party at roundr and let Sy C [0,r] be an interval with at
least teq consecutive rounds. Let C(So) be the segment of C containing
blocks with timestamps in So and d be the total difficulty of all blocks
in C(So). The chain quality property states that the honest blocks in
C(So) have a total difficulty of at least pd.

In the context of Prism, let LedSeq (r) be the leader sequence
up to difficulty level d at round r. And the leader sequence at the
end of round rpayx, the end of the protocol execution, is the final
leader sequence, LedSeq (rmax)- Then similar to a single chain, we
can define the following properties on the leader sequence.

DEFINITION 6.4 (LEADER SEQUENCE COMMON PREFIX). The leader
sequence common prefix property with parameter fisc, €N states that
for a fixed difficulty level d, let R; be the first round in which a proposer
block covering d was received by all honest players, then it holds that

LedSeqy(r) =LedSeqy(rmax) Vr 2 Ry+1scp- (2)

DEFINITION 6.5 (LEADER SEQUENCE QUALITY). The leader sequence
property is defined for two parameters fsq €N and u€R. Let C be a
proposer chain held by any honest party at round r and let D be the
difficulty range covered by all blocks in C with timestamps in the last
{iq rounds. The leader sequence quality property states that leader
blocks mined by honest players cover at least y fraction of D.

Our goal is to generate a robust transaction ledger that satisfies
persistence and liveness as defined in [11, 27].

DEFINITION 6.6 (FROM [11, 27]). A protocol Il maintains a robust
public transaction ledger if it organizes the ledger as a blockchain of
transactions and it satisfies the following two properties:

o (Persistence) Consider the confirmed ledger L1 on any node uq
at any round r1, and the confirmed ledger Ly on any node uy
at any round ry (hereuy (r1) may or may not equaluy (r2)). If
ri+A<ry, then Ly is a prefix of Ly.

Proof Sketch
Lemma B.4
My
Good rounds for
non-pivot chains

e

My
Lemma 6.13 Lemma 6.14

Good rounds for |
the pivot chain

M,

Lemma B.6 Lemma B.7

Common prefix for
non-pivot chains

| ﬁ

Common prefix for Chain quality
voter chains for voter chains

Chain quality for
non-pivot chains

Common prefix for Chain quality of the
the pivot chain pivot chain

Common prefix for
the proposer chain

Chain quality of the
proposer chain

I

M;
Lemma 6.16 Lemma 6.15

L
Leader Sequence eader Sequence

Common Prefix
Quality Property Property

Figure 9: Proof sketch for Prism. M1, M2 and M3 are crucial
in proving these properties for the leader sequence.

o (Liveness) Parameterized byu €R, if a transaction tx is received
by all honest nodes for more thanu rounds, then all honest nodes
will contain tx in the same place in the confirmed ledger.

6.2 Proof Sketch

Since there is a pivot chain in all three protocols (by M 1), the first step
of our analysis is to prove some desired properties (including chain
growth, common prefix, and chain quality) of the pivot chain. As the
pivot chain just follows the difficulty adjustment rule as in Bitcoin,
we can directly borrow results from a beautiful paper [13]. The key
step is to show that by adopting the heaviest pivot chain, honest
nodes are always mining with “reasonable” block difficulties (this is
formally defined as Good round/chain in Section 6.3). We state all the
useful lemmas and summarize the proof from [13] in Appendix B.
The key technical challenge involves analyzing the properties
of the non-pivot chains. Unlike in a pivot chain where all blocks in
an epoch will have the same block difficulty, the block difficulties
may experience sudden changes in non-pivot chains. This presents
a significant barrier to surmount in our analysis, and differs from
previous work in this area. Recall that M1 ensures that an honest
party chooses the target of the next block in a non-pivot chain from
the tip of the heaviest pivot chain in its view. Hence, the targets
used by an honest party for the non-pivot chains are also reasonable.
Then how about the non-pivot-chain blocks mined by the adversary?
As discussed in Section 3, allowing the miners to choose arbitrary
mining difficulty in a non-pivot chain is risky. So we use the mono-
tonicity condition M2 to ensure that non-pivot-chain blocks also
have “reasonable” block difficulties even if the adversary mines them.
Then we prove that any two heaviest non-pivot chains cannot
diverge for too long to prove the common prefix property. We do
this by considering two non-pivot chains C; and Cy (in one of the
non-pivot block tree) that diverge for too long and consider the last
common honest block B of C; and C3. M2 ensures that the blocks
arriving after B should refer to a pivot-chain block with monoton-
ically non-decreasing chain difficulty than the one referred by B. We
also argue that the chain difficulty intervals covered by uniquely
successful honest blocks (defined as honest blocks that are mined
more than A rounds apart) in chains C; and C; do not overlap similar
to the analysis for the common prefix in [13]. To make C; and Cz

diverge, the adversary has to accumulate an enormous total difficulty
compared to uniquely successful honest blocks.

When the number of adversarial queries is high in the chains C;
and C; after the block B, we bound the difficulty accumulated by the
adversary via concentration. When it is low, the variance is high; we
prove this by dividing the problem into 5 cases. Since the adversary
cannot contribute an enormous total difficulty compared to uniquely
successful honest blocks in one of the heaviest chains, the chain
quality property also holds. The full proof can be found in Section 6.4.

The last step of our proof is using the desired proprieties on each
individual chain to show the security of the full parallel-chain proto-
col. Since each parallel-chain protocol has its own way of forming the
transaction ledger, the proof also has to differ. By properly turning
the concept of block level to block’s chain difficulty (M3), we make
sure that our proof works out for all three protocols. We complete
the proof of persistence and liveness for Prism in Section 6.5 (and
the flowchart of the proof sketch can be found in Figure 9), while the
proof for OHIE can be found in Appendix D of the full version [25].In
addition, we define and prove block reward fairness of FruitChains
under a variable mining setting in Appendix E of [25].

6.3 Definitions
meN number of voter/parallel chains in Prism/OHIE
nr number of honest parties mining in round r

t number of corrupted parties mining in round r

1 advantage of honest parties (¢, < (1-8)n, for all r)

A network delay in rounds

K security parameter; length of the hash function output

®eN thelength of an epoch in number of blocks

7>1 the dampening filter (Definition 6.7)

(y,s) restrictions on the fluctuation of the number of
parties across rounds (Definition 2.1)

f expected mining rate in number of blocks per round

€ quality of concentration of random variables

A related to the properties of the protocol

? minimum number of rounds for concentration bounds

rmax total number of rounds in the execution

Table 1: The parameters used in our analysis.

Let T,A,® and n denote the target of a block, duration of an epoch,
epoch length and number of honest parties respectfully. Through-
out the analysis, the block difficulty of a block with target T is set
to be 1/T. The chain difficulty of a chain is equal to the sum of all
block difficulties that comprise the chain. The following is the target
recalculation function for the pivot chain which is the same function
used in Bitcoin.

DEFINITION 6.7 (FROM [11]). Consider a pivot chain ofv blocks with
timestamps (r1...ry). For fixed constants k,t,®,nq the initial number
of participants, Ty the initial target, the target calculation function
T :Z* —» R is defined as

T(0)=To,
1 . 1
;T lfﬁ’rg < ?T
T (r1..rp)=4 T if—n('}‘?A) To>1T
%Tg otherwise

where n(T,A)=2%®/TA, withA=rey —rey—o, T=T (r1...rer—1), and
' =d|0/P].

We now define a notion of “good” properties such as good round
and good chain. These properties will bound the targets used by the
honest parties, which will help us prove chain quality and common
prefix.

DEFINITION 6.8 (GOOD ROUND, FROM [13]). Let T and T de-
note the minimum and the maximum targets the n, honest parties are
querying the oracle for in round r. Round r is good if f | 2y* < pn, T™"
and pn, T < (1+8)y%f.

DEFINITION 6.9 (GOOD CHAIN, FROM [13]). Roundr is a target-
recalculation point of a pivot chain C, if C has a block with timestamp
r and height a multiple of ®. A target-recalculation point r is good if
the target T of the next block satisfies f /2y < pn, T < (1+8)yf. A pivot
chain C is good if all its target-recalculation points are good.

We will use the superscript P to denote the variables, blocks,
chains and sets corresponding to the pivot chain/tree and i to denote
the ones of the " non-pivot chain/tree.

At any round r of an execution, the adversary may keep chains in
private that have the potential to be adopted by an honest party (be-
cause the private chains are heavier than the heaviest chain adopted
by the honest party). So, we expand our chains of interest beyond
the chains that belong to an honest party. For every non-pivot tree
and the pivot tree, we define a set of valid chains SF’ and Sf [13] that
include the chains that belong to or have the potential to be adopted
by an honest party.

We will be dealing with random variables to quantify the diffi-
culty accumulated by the honest parties and the adversary in our
analysis. At round r, define the real random variable DY equal to
the sum of the difficulties of all pivot-chain blocks computed by
honest parties. Also, define Y} to equal the maximum difficulty
among all pivot-chain blocks computed by honest parties, and QF
to equal Y¥ when DF =0 for all < u < r+A and 0 otherwise. We
call an honest block uniquely successful if it is mined at round r
such that Q, > 0. Similarly define D, Y? and Q for the i-th non-
pivot chain (1 <i < min Prismand 1 <i < m—1 in OHIE). For a
set of rounds S, we define DY () =3, csDX,0P(5) = 3,5 OF and
D (8)= 3¢5 DLQH(S) = Xy 5 0L forall i

Regarding the adversary, for a set of J adversarial queries to the
oracle, let T(J) be target associated with the first query in J. Define
the real random variable AT (J), as the sum of difficulties of all the
adversarial blocks created during queries in J with difficulty less
than r/T(J). For all i, define A!(J) as the sum of difficulties of all
the adversarial blocks created during queries in J with difficulty
less than b (J) = maxjejsup{Aj. _A;"—l |Ej-1 = Ej-1}, a function
associated with the set of queries J (defined according to Theorem
8.1in [8]). Af is the difficulty of the pivot-chain block with difficulty

at most 7/T(J) obtained at the jth query of J. A;. is the difficulty of

the block obtained at jt# query of J for non-pivot chain i.

Let & denote the entire execution and let &, be the execution just
before round r+1. To obtain meaningful concentration of our ran-
dom variables, we should be considering a sufficiently long sequence
of at least

4(1+3¢)
2 f[1-(1+8)y2 f1A+
consecutive rounds.

We require ® the duration of an epoch to be large enough in order
to obtain meaningful security bounds:

D> 4(1+8)y> f(£+3A) /. (4

= maX{A,T}ySA (3)

In order for the proofs for the security analysis to work, the pa-
rameters of the protocol should satisfy the following conditions:

[1-(1+6)y* f1A 2 1-¢,8e <5 <1. (5)

Note that Equations (4) and (5) can always be satisfied by setting
® to be large enough and f to be small enough. Also note that (4)
and (5) are not tight bounds on the parameters and are just sufficient
conditions for the analysis to work.

We now define what a typical execution, which will help us bound
the random variables in our analysis.

DEFINITION 6.10 (TyPIcAL EXECUTION). Forany setS of at least
¢ consecutive good rounds, any set of] consecutive adversarial queries
anda(J)= 2(%+ %)A/T(]), an execution E is typical if

(1-0)[1-(1+8)y*f1%pn(5) < Q" () < DY (5) < (1+e)pn(S).
AT(J) <plJI+max{eplJl.ra(])},
. ; 1 1
A <plil+max{epl]Lb (DA +5))
whereb! ()= maxjejsup{Ai. _A5'—1 |Ej—1=Ej-1}.
We now show that a typical execution is a high-probability event.

THEOREM 6.11. For an execution & of rmax rounds, in a (y,s)-
respecting environment, the probability of the event ‘E not typical” is
bounded by O(rZ)e .

The proof for Theorem 6.11 can be found in Appendix C.1

6.4 Non-pivot chain properties

Pivot chain behaves similar to the Bitcoin chain and its properties
can be found in Appendix B
Next we prove some desired properties for the non-pivot chains.

LEMMA 6.12 (CHAIN GROWTH FOR NON-PIVOT CHAIN, FROM [13]).
Suppose that at round u of an execution E, an honest party broad-
casts a i-th non-pivot chain of difficulty d. Then, by round v, every
honest party receives a chain of difficulty at least d + Q*(S), where
S={r:u+A<r<uv-A}.

The proof of Lemma 6.12 is identical to Lemma B.3.

At round r, to mine on a non-pivot chain block, an honest party
picks a target from the tip of a pivot chain in S7 which has good
targets at round r because of Lemma B.4. So, as a consequence of
M1, all the targets used by the honest parties on a non-pivot chain
also satisfies f/2y? < pn, T, < f(1+6)y>.

LEMMA 6.13 (COMMON PREFIX FOR NON-PIVOT CHAINS). For a typ-
ical execution in a (y,2(1+8)y?®/ f)-respecting environment, each
non-pivot chain satisfies the common-prefix property with parameter
lep=0+2A.

Difficulty level
_—
round round round

ro r—20 —4A T
Leader
blocks

%—)

Sy
L - J
S1
o Honest leader blocks

s Adversarial leader blocks

Figure 10: The leader blocks at each difficulty level in the
proposer tree.

The proof of Lemma 6.13 is in Appendix C

LEMMA 6.14 (CHAIN QUALITY FOR NON-PIVOT CHAINS). For a typ-
ical execution in a (y,2(1+08)y?®/ f)-respecting environment, each
non-pivot chain satisfies the chain-quality property with parameter
leq=€+2A and p=5-3e.

The proof of Lemma 6.14 is in Appendix C.3.

6.5 Persistence and Liveness of Prism

LEMMA 6.15 (LEADER SEQUENCE COMMON PREFIX). For a typical
execution in a (y,2(1+8)y?®/ f)-respecting environment, the leader
sequence satisfies the leader-sequence-common-prefix property with
parameter fiscp =2¢+4A.

LEMMA 6.16 (LEADER SEQUENCE QUALITY). For a typical execution
ina(y,2(1+8)y*®/ f)-respecting environment, the leader sequence sat-
isfies the leader-sequence-quality property with parameter fisq =€+2A
and p=48-3¢.

The proofs of Lemma 6.15 and Lemma 6.16 are in Appendix C.4.

THEOREM 6.17 (PERSISTENCE AND LIVENESS OF Prism). Fora typ-

ical execution in a (y,2(1+8)y*®/ f)-respecting environment, Prism
4(1+e)y? (£+2A)

satisfies persistence and liveness with parameter u= REETIEEsE

PRrROOF. By our definition, the persistence of Prism is equivalent to
the leader sequence common prefix property proved in Lemma 6.15.

We next prove the liveness property. Suppose a transaction tx is
received by all honest nodes before or at round ry. Let r > ro+u be
current time and we shall prove that tx is contained in the permanent
leader sequence of all honest nodes at round r. As shown in Figure
10, let S; ={ro, **,r}, So={r—2¢—4A,---,r}, and J be the adversarial
queries in Sy. By Lemma 6.15, for a difficulty level d, if d is covered
by an honest block mined in S1\ 52, then the block covering d will
be permanent in the leader sequence at round r. We know that the
difficulty level grows at least QP (S1) > (1 — £)%pn,u/y in S;. By
Lemma 6.16, we have that among the chain growth in Sy, different
difficulty levels with size at least (§—3¢) (1—¢)2pn,u/y is covered by
honest leader blocks (which may not be permanent at round r). On
the other hand, the proposer blocks that are not permanent (mined
in Sz) cover different difficulty levels with size at most

DP(S2)+AF (85) <2DF (Sy) <2(1+¢)pyn, (20+4A)
=4(1+¢)pyn,(£+2A7).

Hence at least one honest proposer block B mined after ry is per-
manent in the leader sequence at round r. Since either B or some
proposer block referred by B will contain tx, in both case we can
conclude the proof.

O

7 EVALUATION

In our evaluation, we answer the following questions.

o Is the proposed scheme effective in matching the mining dif-
ficulty and the miner hash power?

o Doestheblockchain forking rate remainlow under our scheme,
even with changing miner hash power?

e Does our scheme ensure that non-pivot chains adopt the dif-
ficulty of pivot chains, even with presence of the adversary?

¢ Does our scheme cause major computation and communica-
tion overhead when applied?

7.1 Experimental Setup

Simulator. To evaluate our scheme, we build a mining simulator
for parallel-chain protocols in Golang. The simulator uses a round-
by-round model with an adjustable round interval. In each round,
blocks are mined on each of the parallel chains, and the number of
blocks mined is determined by drawing from independent Poisson
random variables with mean set to the product of the round interval
and the per-chain mining rate. Miners receive newly-mined blocks
after an adjustable network latency.

Simulated protocol. Our simulator does not consider the inter-
pretation of the chains, such as transaction confirmation, ledger
formation, etc. We only simulate the mining process. As a result,
our evaluation is not tied to any particular protocol. Meanwhile, it
is meaningful broadly to all PoW parallel-chain protocols, because
they share this mining process.

There are 1 pivot chain and 1000 non-pivot chains. We simulate
PoW mining on each of the chains at the same mining rate f. Each
pivot-chain block contains its timestamp, difficulty, and parent. Each
non-pivot-chain block also contains all these fields, plus a reference
to a pivot-chain block (M1). We simulate two parties of miners: hon-
est and adversary. Honest miners follow the general methodology
described in section 1 by always referring to the best block in the
pivot chain. They enforce the rules M1, M2 by rejecting any non-
compliant block . We design different adversarial miners to simulate
attacks, and we provide more details later in Section 7.3.
Parameters. The round interval and the network latency are set to
2 seconds according to data collected in large-scale experiments of
Prism [26]. The target mining rate f is set to 0.1 block per second
per chain according to [26]. The epoch length @ is set to 2016 blocks,
and the dampening filter 7 is set to 4 according to Bitcoin . We replay
the historical Bitcoin mining power data [1] during the simulation.

7.2 Adaptation to Changing Miner Power

The main purpose of our scheme is to ensure the mining difficulty
adapts to changing mining power. To show that, we simulate our
scheme while varying the mining power according to the histori-
cal Bitcoin miner hash rate trace from Jan 2, 2019 to Feb 20, 2020.
Figure 14 shows that even though the miner hash power has tripled
during the simulated period, the mining difficulty of every chain

' All ho‘nesl '
30% Adversary

0

NoM2 —
Our scheme

Freq. of difficulty change (per second)

-0.1

0
04 10 T T
Our scheme z
0351 Fixed difficulty —— Stk
L ’ E
. Al z
2 L a .
£ 025 MJWWP“‘ %u 2102
2 o2r d L “
Z : MM\FUWJ =
= Uy 5103 L
ERNOE v s
0.1 £
005 glotr
h =]
0 { 05 . 1
1/2/2019 2/20/2020 0o 10 20

Time
Figure 11: Forking rate of all parallel

chains in two simulations, one using our
scheme and one using fixed difficulty.

30

40

Delay of difficulty update (s)
Figure 12: Frequency histogram of the

delay where non-pivot chains update
their difficulty to follow that of the pivot

50 60 70 80 1/2/2019 2/20/2020

Time
Figure 13: Frequency of difficulty change
on a non-pivot chain where 30% of miner
power is adversarial.

chain. Note the y-axis is log scale.

3 3
- g
B 25 25 &
8 S
_g £
5 2 g
z =
< b}
2z 15 15 2
3 I
£ 2
a 1 1 =2
Hash rate s
Difficulty m—
05 05
1/2/12019 2/20/2020

Time

Figure 14: Miner hash power and mining difficulty of each
chain when simulating our scheme over the historical Bitcoin
miner power trace. Difficulty is plotted as a region to show
the max and min difficulty across all chains. Both metrics
are normalized over their initial values.

keeps tracking the miner hash power very closely. Also, at any point
in time, the max and min difficulty of all chains are very close. This
demonstrates that the mining difficulty of all chains are always
closely coupled, and no single chain experiences unstable difficulty
or vulnerability.

As mentioned in Section 1, support for variable miner power is
crucial to keeping the blockchain secure. If the miner hash power
increases while the mining difficulty stays the same, the forking rate
will increase due to decreased block inter-arrival time. To show our
scheme is effective in keeping the blockchain secure, we compare the
forking rate of two simulations: one using our scheme and one using
afixed mining difficulty. We use the same Bitcoin mining power data
as in the previous experiment, and Figure 11 shows the results. Here,
we report the forking rate as the ratio of the number of blocks not
on the longest chain, to the number of blocks on the longest chain.
If a fixed difficulty is used, the forking rate quickly increases as the
miner power increases, to almost tripling towards the end of the
simulation. In comparison, our scheme keeps the forking rate low
across all parallel chains for the whole simulation. This is because
the mining difficulty and the miner hash power are closely matched
under our scheme, so the block mining rate stays at a safe level.

7.3 Difficulty Update on Non-pivot Chains

One major challenge in designing our scheme is to ensure non-pivot
chains adopt the pivot chain difficulty quickly after a new epoch
begins, and we achieve it with the M2 (Monotonicity, cf. Section 1).
To show that adversarial miners cannot delay this process, we sim-
ulate our scheme where 30% of miners are adversarial. Adversarial
miners do not voluntarily refer to the latest block on the pivot chain
after a new epoch begins, but rather try to stay in the previous epoch

(and mining difficulty) for as long as possible. We also simulate an
all-honest scenario for comparison. We measure how soon non-pivot
chains adopt new difficulty by tracking the delay from the last block
of the previous epoch on the pivot chain to the first block of the new
epoch of the non-pivot chain. Figure 12 shows the results. In either
scenario, the difficulty of non-pivot chains is updated within 1-5
block intervals (0-50 seconds in real time). Although adversarial
presence does delay the update of difficulty, the delay is not signifi-
cant. This demonstrates that our mechanism ensures in-time update
of non-pivot-chain difficulty.

We demonstrate that M2 is essential to ensuring the mining diffi-
culty does not vary too frequently on non-pivot chains. We compare
two simulations where 30% of miner power is adversarial. In one
case, we apply our full scheme. In the other case, we disable M2
so that the adversary is free to choose whatever block on the pivot
chain to refer when mining non-pivot chain blocks. Specifically,
the adversary always tries to mine blocks with the lowest difficulty
possible by referring to the genesis pivot-chain block. We focus on
one non-pivot chain, and track the frequency of difficulty change.
Difficulty change is defined as a block on the longest chain having
different difficulty than its parent. Figure 13 shows the results. Under
our scheme, non-pivot chain difficulty does not change for most of
the time, and only changes swiftly at the beginning of new epochs,
so the curve for our scheme stays close to zero. On the contrary, if
we disable M2, the difficulty oscillates violently, as frequently as 0.2
times per second on average. This shows that our design is essential
to maintain stable mining difficulty of non-pivot chains.

7.4 Analysis of Overhead

Finally, we analyze and show that our schemes will cause minimal
overhead when implemented on existing parallel-chain protocols.

Communication and storage. Every block on the non-pivot chains
needs to refer to a block on the pivot chain (M1), which takes the size
of a hash (usually 32 bytes). This is a very small overhead compared
to the size of the blockchain. For example, in Prism, the size of a voter
(non-pivot-chain) block is 534 bytes [26]. The pivot-chain reference
constitutes to an increase of 6% in communication and storage cost
for voter blocks. Notice that voter blocks themselves only make up
for 0.21% of the size of the Prism blockchain [26], so the overhead of
pivot-chain referencing is negligible, regardless of the parameters.

Computation. Our scheme changes the mining and the transaction
confirmation process of parallel chain protocols. For mining, notice

Table 2: Confirmation overhead vs epoch length @

[10 100 1000 2016
Overhead || 0.43% | 0.07% | 0.11% | 0.12%

that the pivot chain follows the same difficulty adjustment rule as
Bitcoin, which is proven practical by its real-world deployment. Min-
ing on non-pivot chains uses the same difficulty as the pivot chain,
so there is no additional bookkeeping.

For transaction confirmation, we use Prism as a concrete example
(note that no computation overhead exists in transaction confirma-
tion for OHIE and FruitChains). Under static difficulty, Prism selects
aleader for every level of the proposer tree. With M3, we partition
the proposer tree into real-valued difficulty intervals such that no
interval is partially occupied by any proposer block. We need to
select a leader for each of such intervals (section 3.3). To determine
the overhead, we need to answer: how many more intervals are there
compared to levels?

We simulate the mining process of Prism with 1000 voter chains,
epoch length ®=2016 blocks, target mining rate f =0.1 block per
second, and found the number of intervals is only 0.12% more than
the number of levels. That is, our scheme incurs a confirmation over-
head of 0.12%. This is expected, because only forks that happen at
the beginning of an epoch will lead to extra intervals, and such a
fork rarely exists with ®=2016 and f =0.1. Decreasing ® may cause
the overhead to increase because there are more epochs and it is
more likely to fork at the beginning of an epoch. Table 2 plots the
confirmation overhead for different ®; we see that even at ®=10, the
overhead is smaller than 1%.

8 DISCUSSION

We presented a general methodology by which any parallel chain
protocol can be converted from the fixed difficulty to the variable dif-
ficulty setting. We also proved the safety, liveness, and performance
of the proposed scheme using novel proof method that analyzes the
coupling between the pivot and non-pivot chains. There are several
open directions of research. 1) In our design methodology, we pro-
posed using a single chain as a pivot chain to set the difficulty target
for all blocks. However, if we can use the information (for example,
inter-block arrival times) from all the chains together to determine
the difficulty target, we can get much better statistical averaging.
This can lead to protocols which can adapt to much more aggressive
mining power variation than is possible with a single-chain protocol.
Such a protocol needs to be designed with care since it leads to strong
coupling across all the chains. In particular, every chain needs to
know the state of all other chains in order to check the correctness
of the difficulty target. Since other chains can have forking in the
meanwhile, it may lead to unintended complex interactions. 2) We
analyzed various protocols under the variable difficulty setting. One
new protocol, called Ledger-combiners [10] uses parallel-chains for
robustly combining multiple ledgers as well as for achieving low
latency. Analyzing that protocol in the variable difficulty setting is
an interesting direction for future work.

9 ACKNOWLEDGEMENTS

This research is supported in part by a gift from IOHK Inc., an Army
Research Office grant W911NF1810332 and by the National Science
Foundation under grants CCF 17-05007 and CCF 19-00636.

REFERENCES

[1] Blockchain charts - total hash rate. https://www.blockchain.com/charts/hash-rate.

[2] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic
availability. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 913-930, 2018.

3] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.
Prism: Deconstructing the blockchain to approach physical limits. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pages 585-602, 2019.

[4] Lear Bahack. Theoretical bitcoin attacks with less than half of the computational
power (draft). arXiv preprint arXiv:1312.7013, 2013.

[5] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A Kroll,
and Edward W Felten. Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies. In 2015 IEEE symposium on security and privacy, pages 104-121.
IEEE, 2015.

[6] T-H.Hubert Chan, Naomi Ephraim, Antonio Marcedone, Andrew Morgan, Rafael
Pass, and Elaine Shi. Blockchain with varying number of players. Cryptology
ePrint Archive, Report 2020/677, 2020. https://eprint.iacr.org/2020/677.

[7] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Giin Sirer, et al. On scaling
decentralized blockchains. In International conference on financial cryptography
and data security, pages 106—125. Springer, 2016.

[8] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the
analysis of randomized algorithms. Cambridge University Press, 2009.

[9] Ittay Eyal, Adem Efe Gencer, Emin Giin Sirer, and Robbert Van Renesse. Bitcoin-ng:
A scalable blockchain protocol. In 13th {USENIX} symposium on networked
systems design and implementation ({NSDI} 16), pages 45-59, 2016.

[10] Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ledger

combiners for fast settlement. In Theory of Cryptography Conference, pages

322-352. Springer, 2020.

Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:

Analysis and applications. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, pages 281-310. Springer, 2015.

Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol

with chains of variable difficulty. In Annual International Cryptology Conference,

pages 291-323. Springer, 2017.

[13] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. Full analysis of nakamoto
consensus in bounded-delay networks. Cryptology ePrint Archive, Report
2020/277, 2020. https://eprint.iacr.org/2020/277.

[14] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings

of the 26th Symposium on Operating Systems Principles, pages 51-68, 2017.

Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew Yao. Scaling

nakamoto consensus to thousands of transactions per second. arXiv preprint

arXiv:1805.03870, 2018.

Songze Liand David Tse. Taiji: Longest chain availability with bft fast confirmation.

arXiv preprint arXiv:2011.11097, 2020.

[17] David Mazieres. The stellar consensus protocol: A federated model for

internet-level consensus. Stellar Development Foundation, 2015.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical

report, 2008.

Kevin Alarcon Negy, Peter R Rizun, and Emin Giin Sirer. Selfish mining

re-examined. In International Conference on Financial Cryptography and Data

Security, pages 61-78. Springer, 2020.

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol

in asynchronous networks. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, pages 643-673. Springer, 2017.

Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the

ACM Symposium on Principles of Distributed Computing, pages 315-324, 2017.

Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the

permissionless model. In 31st International Symposium on Distributed Computing

(DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

David Schwartz, Noah Youngs, Arthur Britto, et al. The ripple protocol consensus

algorithm. Ripple Labs Inc White Paper, 2014.

Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in

bitcoin. In International Conference on Financial Cryptography and Data Security,

pages 507-527. Springer, 2015.

Xuechao Wang, Viswa Virinchi Muppirala, Lei Yang, Sreeram Kannan, and

Pramod Viswanath. Securing parallel-chain protocols under variable mining

power. arXiv preprint arXiv:2105.02927, 2021.

Lei Yang, Vivek Bagaria, Gerui Wang, Mohammad Alizadeh, David Tse, Giulia

Fanti, and Pramod Viswanath. Prism: Scaling bitcoin by 10,000 x. arXiv preprint

arXiv:1909.11261, 2019.

Haifeng Yu, Ivica Nikoli¢, Ruomu Hou, and Prateek Saxena. Ohie: Blockchain

scaling made simple. In 2020 IEEE Symposium on Security and Privacy (SP), pages

90-105. IEEE, 2020.

[11

[12

=
&

[16

(18

[19

[20

)
=

[22

[23

[24

[25

IS
S

[27

https://www.blockchain.com/charts/hash-rate
https://eprint.iacr.org/2020/677
https://eprint.iacr.org/2020/277

APPENDIX
A THE DIFFICULTY RAISING ATTACK

Bitcoin set its target recalculation using a “dampening filter”-like
adjustment (as defined in Definition 6.7). It turns out that this design
is surprisingly foresighted. If we make a relaxation of the adjustment
mechanism by removing the dampening filter, then it is subject to
an attack called difficulty raising attack firstly discovered in [4]. At
a high level, in this attack the adversary mines private blocks with
timestamps in rapid succession, and induce one block with arbitrar-
ily high difficulty in the private chain; via an anti-concentration
argument, a sudden adversarial advance that can break agreement
amongst honest parties cannot be ruled out. In this appendix, we
describe this attack in detail and explain why having a “dampening
filter” in the target recalculation function could resolve it.
A simple attack. As a prelim, we first look at a simple attack if
the protocol lets miners to choose their own difficulty and use the
heaviest chain rule. At a first glance, this rule appears kosher - the
heaviest chain rule seems to afford no advantage to any miner to
manipulate their difficulty. However, this lack of advantage only
holds in expectation, and the variance created by extremely diffi-
cult adversarial blocks can thwart a confirmation rule that confirms
deeply-embedded blocks, no matter how deep, with non-negligible
probability. We give a simple calculation here. For simplicity, we
using the difficulty defined in the genesis block as the difficulty unit
and the expected inter-block time (10 minutes in Bitcoin) as the time
unit. Let n be number of honest queries to the hash function per unit
time and ¢ be the number of adversarial queries per unit time. Then
we know that to mine a block with unit difficulty, each query solves
the PoW puzzle with probability 1/n. We further assume that n and ¢
don’t change over time and the network delay among honest nodes is
zero. Note that these assumptions only make the adversary weaker.
The goal of the adversary is to double-spend a coin by mining a
heavier chain than the public honest chain from the genesis.
Suppose honest miners are adopting the initial mining difficulty as
defined in the genesis block, hence on average it take k units of time
to mine a honest chain with k blocks. To mine a heavier chain, the
adversary only needs to mine one block which has difficulty k (See
Figure 15 for illustration), within k unit of time. The adversarial can
make tk queries in k units of time, and each query succeeds with prob-
ability 1/nk. Hence the success probability of this attack would be

1
P(attack succeeds)=1—(1— —k)tk ~1-et/m,
n

since n and t are large in PoW mining. Note that the success probabil-
ity is a constant independent of k, therefore any k-deep confirmation
rule will fail.

Difficulty raising attack. However, even if we adopts a epoch
based difficulty adjustment rule as in Bitcoin (but without the “damp-
ening filter”), there is still a difficulty raising attack. We using the
difficulty of the first epoch (defined in the genesis block) as the diffi-
culty unit and the expected inter-block time (10 minutes in Bitcoin)
as the time unit. Let ® be the length of an epoch in number of blocks
(2016 in Bitcoin). And we define n and ¢ the same as above.

Note that the adversary can put any timestamp in its private
blocks, so the difficulty of the second epoch in its private chain can be
arbitrary value as long as the adversary completes the first epoch. Let
Bwith difficulty X be the first block of the second epoch in the private

difficulty 1

difficulty k
Figure 15: A simple attack if allowing miners to choose their
own difficulty. The adversary mines one block which is as

difficult as k honest blocks.

difficulty 1

‘ & blocks \ I

difficulty X > & > 1

Figure 16: The difficulty raising attack. The adversary raises
the difficulty to extremely high in the second epoch by
faking timestamps.

chain (that is each query solves the PoW puzzle with probability
1/nX), then B has chain difficulty ®+X. See Figure 16 for illustration.
To mine an honest chain with chain difficulty ®+X, on average it
takes ®+X time. On the other hand, it takes on average n®/t time
for the adversary to complete the first epoch in its private chain.
Therefore, to succeed in this attack, the adversary needs to mine the
block B within ®+X —n®/t time, which happens with probability:

1
P(attack succeeds) =1—(1— —) (2+X-n®/0)t
nX
1 Xt—(n—t)®
=1-(1-—
(1-—=)
~1 _et/n’

if X > ®>> 1. Note that the success probability is independent of the
length of the public longest chain, hence any k-deep confirmation
rule will fail.

However, Bitcoin is saved by the dampening filter in the target
recalculation function. As in Definition 6.7, the difficulty can be in-
creased by a factor of at most 7 between two consecutive epochs (r=4
in Bitcoin). Then we shall analyze the difficulty raising attack under
the same assumptions made above. Since the epoch size > 1, the
time for the adversary to complete one epoch or mine @ blocks with
the same difficulty will satisfy the concentration bound of binomial
random variables. Hence if the adversary always rises the difficulty
by 7 in each epoch, then it takes on average % '{;& ' ® time for the
adversary to complete £ epochs in its private chain, and the public
honest chain will on average have difficulty %Zf;ol '@ during this
time. Since the private chain has chain difficulty Zf;& 7'®, the gap
of chain difficulties between the public honest chain and the private

chain will be

£

=1
.

-1

=1
n g (-
(;—1);r¢>—<t D

Each block of the (£ + 1)-th epoch in the private chain will have
difficulty 7¢, hence the adversary still needs to mine approximately
t(";_tl) ® blocks in order to catch up the honest chain. As ®>> 1, the
time for the adversary to catch up is still controlled by the concen-
tration bound, and the success probability of this attack will be at
most e~?(®)_ By setting ® large enough, the difficulty raising attack
can be ruled out.

While this specific attack could in principle be thwarted, to have
security guarantee we still need to consider all possible attacks in
the presence of a full-blown adversary. A full and beautiful analysis
of Bitcoin rule is provided in [13] and we shall give a proof sketch
in Appendix B.

B BITCOIN
BACKBONE PROPERTIES REVISITED

We will briefly revisit the analysis in [13] because the pivot chain is
identical to the Bitcoin chain.

We will additionally define a stale chain and accuracy related to
timestamps of the blocks.

DEeFINITION B.1 (FROM [13]). A block created at round u is accurate
is it has a timestamp v such that |[u—v| <€+2A. A chain is accurate if
all its blocks are accurate. A chain is stale if for some u > £+2A it does
not contain a honest block with timestamp v >u—{—2A.

Recall that we define S? as the set of pivot chains that belong to
or have the potential to be adopted by an honest party at round r in
Section 6.3. Now we define a series of useful predicates with respect
to SY.

DEFINITION B.2 (FROM [13]). Foraroundr,
GoodRounds(r) := “All roundsu <r are good.”
GoodChains(r) := “For all roundsu <r, every chain in S is good.”
NoStaleChains(r) := “For all rounds u <r, there is no stale chain in
Sk
Accurate(r) := “For all rounds u < r, all chains in Slf are accu-
rate.”
Duration(r):= “For all rounds u <r and durationA of an epoch of any

chain inSII;, W% SAS2(1+5))/2%.”

The following lemma provides a lower bound on the progress of
the honest parties, which holds irrespective of any adversary.

LEMMA B.3 (CHAIN GROWTH FOR PIVOT CHAIN, FROM [13]). Sup-
pose that at round u of an execution E, an honest party broadcasts a
pivot chain of difficulty d. Then, by round v, every honest party receives
a chain of difficulty at least d+QF (S), where S={r:u+A<r<v—A}.

In order to prove properties like common prefix and chain quality
for the pivot chain, we need all rounds in a typical execution to be
good.

LEMMA B.4 (ALL ROUNDS IN A TYPICAL EXECUTION ARE GOOD, THEO-
REM 2FROM [13]). Consider a typical execution in a (y,2y% (1+8)®/ f)-
respecting environment. If the protocol is initiated such that the first

Proof Sketch

NoStaleChains(r) H GoodRounds(r — 1) % GoodRounds(r) ‘

o T T "] Good rounds for
_— o ~— /] proposer blocks
‘ /
/
‘ A (r) ‘ Duration(r) GoodChains(r) /

Good protocol |/
initialization
GoodChains(r — 1)

Figure 17: An induction argument to prove that all rounds in
a typical execution are good.

round it good, and all the conditions 3, 4 and 5 are satisfied, then all
rounds are good.

ProoF. The elaborate proof can be found in [13] and we summa-
rize it as follows.

We will use an induction argument. In a (y,s)-respecting environ-
ment, s > 2(1+8)y?m/ f covers at least the first epoch. It is easy to
see that if the initial target is good, the rounds in the first epoch are
good, and the first target recalculation point is good. We will prove
that the subsequent rounds and target recalculation points are good
using an induction argument shown in Figure 17. The predicates are
defined as follows.

We prove NoStaleChains(r) from GoodRounds(r—1) using typ-
icality bounds, showing that the adversary cannot accumulate more
difficulty than the lower bound of the minimum chain growth, QF.
Let w be the timestamp of the last honest block on the stale chain.
SetU={u:w<u<r},S={u:w+A<u<r—A}and J be the adversar-
ial queries in U. We will first consider the case where the chain has
more than one target recalculation point. In this case we divide J into
sub-queries J; such that each subset covers at least m/2 blocks and
has exactly one target recalculation point in it. In this case, we have
AP () = 5, AP (i) < 2 (1+£)plJi = (1+)plJ|. We arrive at a con-
tradiction by showing (1+¢)p|J| is lower than QP (8)’s lower bound.
In case of at most one target recalculation point, if A(J) < (1+¢&)pl|J|
applies, the argument from the previous case applies. If A(J) < (1+
1/€)(1/3+1/e)At/T(J), we prove that the lower bound of QP (S) con-
sidering only the first / rounds will cover (1+1/¢)(1/3+1/e)At/T(J).
Accurate(r) follows from NoStaleChains(r).

We then prove the bound on duration by contradiction, assuming
that the previous target recalculation point is good using property
GoodChains(r —1). The lower bound is contradicted by showing
that even if the adversary and honest party join forces, they can’t

1

produce e blocks in less than 22872 % The upper bound is con-

tradicted by showing that the lower bound of QF produces at least
e blocks in 2(1+8)y? % rounds. To prove GoodChains(r), we prove
that the next target-recalculation point is good. This is proved again,
using a contradiction for both the bounds of a good target recalcu-
lation point. Finally, we use Duration(r), GoodChains(r) and the
(y,2(1 + 8)y?m/ f)-respecting environment assumption to prove
GoodRounds(r).]

The following lemma from [13] is useful to prove common prefix
and chain quality of the pivot chain.

LEmMA B.5 (LEMMA 2(c) FROM [13]). Consider a typical execution
in a (y,s)-respecting environment. Let S = {r :u <r < v} be a set of
rounds with at least £ rounds and] be the set of adversary queries in
U={r:u—A<r<uv+A}.Ifw is a good round such that |w—r| <s for
anyreS, then AP (J) < (1-5+3¢)QF (5)

The following properties of the pivot chain are from [13].

LEmMA B.6 (COMMON PREFIX FOR PIVOT CHAIN). For a typical exe-
cution in a (y,2(1+8)y>®/ f)-respecting environment, the pivot chain
satisfies the common-prefix property with parameter fep ={+2A.

LEMMA B.7 (CHAIN QUALITY FOR PIVOT CHAIN). For a typical exe-
cution in a (y,2(1+8)y?®/ f)-respecting environment, the pivot chain
satisfies the chain-quality property with parameter {cq = £+2A and
p=0-3¢.

C PROOFFOR SECTION 6

C.1 Proof for typical execution

The following concentration bound on a martingale is helpful to
bound the probability of a not typical execution.

THEOREM C.1 (FROM [13]). Let (X1,X32,...) be a martingale with re-
spective the sequence (Y1,Y2,...), ifan event G implies Xy —Xj._; <b and
V= rvar[Xg —Xp_1|Y1,....Ye—1] <o, then for non-negativen and t

2
T

P(Xp—-Xo>tG) < e w5
And for the proof of Theorem 6.11

Proor. The proof for 0P (5),DP(S) and AP (J) can be found in
[13] and the same proof follows for Q¥ (S) and D¥(S). We will prove it
for AL(J). For each j € J, let Aj be the difficulty of the block obtained
with the ji# query as long as the target was at least 1/b'(J). Define

Xo=0,

Xie=) Aj=) EBIAjIE1LkelI],
jelk] Jjelk]

which is a martingale with respect to the sequence -1,/ € J. For

the above martingale, for all k € [|]|], we have Xj —Xj_; < b(J),

using the definition of b(J) and var[X — Xj_;] < pb*(J) and

E[Aj|&Ej-1] < p. We will apply Theorem C.1 with t =max{ep|J|,

bI(DA(2+3)} > b ())A(2+3) andw=b'(J)p|]] to obtain

t -2
Pr[) Aj>pl|J|+t] <exp{—— y<e™
;, ’ 26/())(5+1)

]

LEmMA C.2 (PROPOSITION 2 FROM [13]). Ina (y,s)-respecting envi-
ronment, let U be a set of at most s consecutive rounds and S CU then,
foranyne{n,:reU} we have

n _n(S)

—<——<yn,

vy ISl
yIU\S|

n(U) < (1+ 5

n(S).

C.2 Proofof Lemma 6.13

By the definition of typical execution, we have the following lemma
that will be useful in the proof.

Lemma C.3. Under a typical execution, for the set of rounds S with
|S| > ¢, let QP (S) correspond to the pivot tree and Q' (S) correspond to
any non-pivot tree then, Q*(S) > 0P (S)(1-¢)[1- (1+5)y2f]A/(1+
£).

Proor. This follows from the definition of typicality, we use the
following inequalities

(1+e)pn(8) > QP (9),
Q(8)> (1-¢) [1- (1+)y* 12 pn(S).
[m]

The following proposition will be useful in the proof of non-pivot
chain’s common prefix.

ProposITION 1. Inatypical execution, we have the following bound

AY(J)<(1+e)pl)]
forpll| > 204 (L4 1),

i —_e2)(E i
2b (])A(%+l)< (1-€°)(5+1)e® bi(])

e’ 8y (148)(1+43¢) T

AL()) < (1+¢) ,

forplJ|< w (% + %), the second inequality follows from the bound
ont.

For the proof of Lemma 6.13

ProoF. Consider the i” non-pivot chain, suppose common prefix
fails for two chains C; and C; held by honest players at rounds r; <rp
respectively, that is, 3B € CIFHZA, s.t. B¢ Cy. It is not hard to see that
in such a case there was a round r <r; and two honest held chains
Cand C’ in Sﬁ, such that Be CI+22 but B¢ C’. Then we know B
is a descendant of head(CNC’), and hence head(CNC’) € C+2A,
Therefore, the timestamp of head(CNC’) is less than r—£—2A.

Let v < r — £ — 2A be the timestamp of head(CNC’) and w < v
be the timestamp of the last honest block B;l on (C N C’). Let
Ul={u:w<u<r),S={u:w+A<u<r-A}andlet J' be
the adversarial queries in rounds U’. Let Sf w_p e the collection of
pivot chains heavier than at least one chain in S,,_A. And for j€J i
let S}J’ w_p be the collection of pivot chains heavier than at least
one chain in S,,_a. Due to condition M2, all the difficulties of the
blocks in C or C’ that come after Bé are extending wa—A‘ We have
b:bi(]) =max ;i sup{Aj. —A;_l |Ej-1 =Ej_1}:maxje]isup{A§.—
Al 18j-1 = Ej-1} = max;eji sup{diff (C'B*)|C* € Sj-a} =
SUPCPeS, {diff (C” B*)}. The last equality applies because, for
jeJt, Sjw-n S Srw-n. Let C* € S, be the chain for which
diff (C*B*) =b. In case such C* doesn’t exist, there exists a sequence
of chains Cj, such that diff (C;,B*) approaches b in limit. Let the
block Bﬁ be the last honest block on C* with timestamp x.

We claim that if r > £+ 2A +w, then A’ (J%) < (1+8+3¢)Q!(S%).

The proof is as follows. When p|Ji| > %1 (% + %) the concentration

Proposer block-tree ith voter block-tree Proposer block-tree ith voter block-tree

G . G G G
chain difficulty
at a particular round

proposer-parent link Chain " B} roundx
difficulty —)
- Block
w<x
w>Xx

round w.__
P

B} round x BP

P

. difficulty b o difficulty b

round r 4 c

round r

Figure 18: Common Prefix Proof (Left): w <x, (Right): w>x

bound A!(J#) < (1+€)p|]i| applies. We have n(U%) < n(Si)(1+y|U\
SI/IS]) < (1+£%/2)n(S) and

ALY < (1+6) (1-8)pn(U?) < (1+¢) (1+£2/2) (1-8) pn(S?)
<(1-8+€)pn(S?) < (1-6+3)Q*(SY)

We will prove this when p|Ji| < %(%+%)

Case 1 | C* has at most one target-recalculation point after Bl}:
andw<x<r= f/2y’r< %nxp

Case 2 | C* has at least two target-recalculation point after B1;
andw<x<r

Case3 | x<w,|lw—x|>y?(1+8)®/f—£—2A

Case4 | x <w,|w—x|<y?(1+8)®/f —£—2A, and C* has at most
one target-recalculation point after B£

Case5 | x <w,|Jw—x| <y?(1+8)®/f —£—2A, and C* has at least
two target-recalculation point after Bi

Cases 1, 2 are shown in left and cases 3,4,5 in right of Figure 18.
Case 1: The last honest block BE in the chain C* has a timestamp
x > w. We will look at the case when C* has at most one target
recalculation point after BI; . In this case the difficulty b satisfies

_f

27 < nxp since the difficulty can raise by at most a factor of 7

and considering the first £ rounds in S?, we have n(S) > 2 ¢ Using
typicality we have, p|J| < (1-8+¢2/2)pn(S) and
tb 1-2¢)fth 1 1
e(1-20)pn(s') > e(1-20 22 > BN > i),
T €

ALY <p|]|+2b/1(;+§) <(1-6+&)pn(Sh) < (1-6+36)Q*(S))

Case 2: The last honest block Bi in the chain C* has a timestamp
x >w. We will look at the case when C* has more than one target re-
calculation point after Bi .Let U be the set of rounds {u:x <u<r},
SP be the set of rounds {u:x+A<u<r—A} and J¥ be the queries
made by the adversary for the proposer chain in U?. In this case
difficulty accumulated by the adversary in J¥ queries is at least %@.

Using typicality, we have p|J*| > and using honest party’s

177
(1-8) (1+£2/2) *

r(l+s)

advantage we have n(S?) > n(s¥) >

(1-5+3e)p|J7|

igai 2,1A
(1—5+3E)Q (S)>(l—€)[1—(1+5))/ f] (1_5)(1+€2/2)

>b7q>2Ai(]i).

The last inequality implies from Proposition 1.

Case 3: Consider the case when x <w and |[w—x|>s/2—¢—2A. Let
S"={u:x+A<u<w-A}, U’ ={u:x <u<r}and J¥ be the set
of adversarial queries for the proposal tree in the rounds U. The
difficulty accumulated in the chain C* in J queries is more than
that of the chain growth in §’.

AP(]P) > ChainGrowthP(S’) > QP(SI).

2
w, we have || > (1+8) (1—¢)y?®/ f. Considering
the first s/2 — ¢ rounds in UF \ U? | if Tx is the target used by the

honest party in round x, then n‘(;l) >

Since s=

and Tynxp > Using

257
these, we have
Q°(8")> (1-)[1-(1+8)y*f1 pn(S")
P
> (1+8) (1= L2 Tx o (1 5y (103
(1+9)(1-0 L 2 (148)(1-00' >

Note that starting with target Ty, if C* has at most one target recalcu—
lation point after B , then the accumulated difficulty is at least 2

2y ‘r >
which is a smaller quantity than = 2T v .If the chain has more than one
target recalculation pomt then the accumulated difficulty is at least
m?Z b which is larger than Hence the accumulated difficulty will

<I>b

be at least 5 7 in any case.
U lp(1+e)> A7 (J7) 2 Q7 (5"),
AP0
We have n(S!)+n(S’) > % and

P
Q"(S")+Q"<s')><1—e)[1—<1+5)y2f1A%,
(1+¢)
(1-e)[1-(1+8)y2f1A
DS €. S—
(1-e)[1-(1+8)y2f1A
Combining both we have,
((1=)[1-(1+8)y*f1%)2 = (1+)(1-8) (1+£%/2)
(1-e)[1-(1+8)y? 1A (1-8) (1+¢2/2)

Q'(8") <0 (8

Q (8" > plJ*|

and then
(1-5+3¢)Q'(SH)

(8(1+€2/2) (1+¢€)%—6¢) b
5" (1-)[1-(1+6)y2f1A (1+£2/2) 2y T

>(1+3—)

>AN(Jh),

Where the last inequality follows from the condition § > 8.

Case 4: Consider the case the last honest block in the chain con-
taining B’s proposer parent has a timestamp x < w and |w—x| <
s/2—¢—2A and C* has at most one target recalculation point after

Bf:. Let " :={u:x+A <u < w-A}. The difficulty accumulated C*

in JP queries is more than that of the chain growth in S”. Consid-
ering just first £ rounds in S*, we have n(S*) > £ny /y and b satisfies

2)/f—21_ < %nxp. Using these bounds and Lemma B.3, we have

pnyth S e(1-2¢)feb

1-2 St 1-2
e(1-2¢)pn(S') > e(1-2¢) b 2

1 1

ALY <p|]|+2b/1(§+%) <(1-6+¢)pn(Sh) < (1-6+36)Q'(S)

Case 5: Consider the case the last honest block in the chain con-
taining B’s proposer parent has a timestamp x < w and |w — x| <
s/2—€—2A.Let S’ :={u:x+A <u < w-A}. The difficulty accumu-
lated by C* in JP queries is more than that of the chain growth in §’.
We will consider the case C* has more than one target recalculation
point after Bi . The adversary accumulates more than %CD difficulty

in]J p queries and similar to Case 4, we have
P p(+e)> AP () 202,
T

AP(JP) =P (s"),
i ’ |.]P|
St N>— 2 1
n(S)+n(S)> 05 Tty

and
ipaiy ., Aigar 2 A plIF|
Q' (8H+0Q'(S") > (1-e)[1-(1+8)y“f] m,
(1+¢)
(1-e)[1-(1+8)y2f1A
(1+e)* P

“Ton-ropr]
Combining both we have
(1=8) [1-(1+8)y* F1%)2 = (1+£)*(1-8) (1+62 /2)

(1-)[1-(1+8)y2f1A(1-6) (1+¢2/2)

0'(s") <0 (s")

Q(sh) > plJF|

5

and then
(1-5+3)Q"(S")
£ (8(1+€%/2) (1+€)%—6¢)Db
1-6" (1-e¥)[1-(1+8)y2f12 (1+€2/2)r
>AN(J"),
The last inequality follows from the condition § > 8¢.

We also claim that, if r—w > £+2A, then 20* (§}) < DY (U} + AL (JY),
whichleads to a contradiction as D! (U?) < (1+5¢) Q% (S) and A} (J%) <
(1-8+3¢)QH(SH).

Towards proving the claim above, associate with each r € S such
that QX > 0 an arbitrary honest block that is computed at round r
for difficulty QZ. Let B be the set of these blocks and note that their
difficulties sum to Q¥(S). Then consider a block B € B extending a
chain C* and let d =diff (C*B). If d < diff (CNC’) (note that u <v in
this case and head(CNC’) is adversarial), let By be the blockin CNC”’
containing d. Such a block clearly exists and has a timestamp greater
than u. Furthermore, By ¢ B, since By was an adversarial block. If
d > diff(CNC’), note that there is a unique B € B such that d € B.
Since B cannot simultaneously be on chain C and C’, thereisa By ¢ B

>(1+43

either on C or on C’ that contains d. Hence there exists a set of blocks
B’ computed in U such that BNB’=and {d€B:Be B} C{de€B:Be
B’}. Because each block in B’ contributes either to D! (U)—Q(S)
or to Ai(J), we have Q¥ (S%) < DYH(U}) - Q! (S)+AL(JP).

O

C.3 Chain Quality of Non-pivot Chains

Proor oF LEMMa 6.14. Without loss of generality, we focus on
the first non-pivot chain. Let B; denote the i-th block of C and con-
sider K consecutive blocks By, +-,B in C with timestamp in Sg. Define
Kj as the least number of consecutive blocks By, -+,B,y that include
the K given ones (i.e., ¥’ < u and v < v’) and have the properties
(1) that the block B, was mined by an honest party at some round
r1 or is the genesis block in case such block does not exist, and (2)
that there exists a round ry such that the chain ending at block B,y is
adopted by some honest node at round ry. Let d” be the total difficulty
of these K’ blocks. Define U = {ry,---,ro}, S={r1 +A,---,r,—A}, and
J the adversarial queries in U associated with the K’ blocks. Then
we have |S| = |U| - 2A > |So| — 2A > £. Then following the same
argument from Lemma 6.13, we have Al (J) < (1-5+3¢)Q(S). Let
x denote the total difficulty of all the blocks from honest parties that
are included in the K blocks and—towards a contradiction—assume
x < pd < pd’. In a typical execution, all the K’ blocks have been
mined in U. But then we have the following contradiction

AN())zd x> (1-p)d" = (1-p) Q' (5) = (1-6+3£)Q" ().

Therefore, we can conclude the proof. O

C.4 Common Prefix
and Chain Quality of the Leader Sequence

ProOF OF LEMMA 6.15. Let r > R;+2¢+4A be the current round.
For 1<i<m,let C; be the heaviest voter chain i in an honest node
u’s view at round r. By the common prefix property in Lemma 6.13,
blocks in Ci[t’+2A remain unchanged until rmax. In addition, by the
chain quality property in Lemma 6.14, we know that for 1 <i<m,
there exists at least one honest block B; on chain C; whose timestamp
is in the interval (r—2¢—4A,r—£—2A),i.e., B; is on the chain Cl.rHZA.
As B; is an honest block mined after Ry, B; or an ancestor of B; must
have voted for the difficulty level d. Therefore the leader sequence
remains unchanged up to difficulty level d until ryax. O

PROOF OF LEMMA 6.16. Let r be the current round, C be the pro-
poser chain held by honest player P, and d = diff (C). Let interval
D = (d’,d] be the difficulty range covered by all blocks in C with
timestamp in last £+2A rounds. Define:

d* = max(d~ <d’ s.t the honest players mined
the first proposer block covering d~)

Let r* be the round in which the first proposer block covering d* was
mined. r* =0 and d* =0 if such proposer block does not exists. Define
U={r*,r}, S={r*+A,--,r—A}, and J the adversarial queries in U.
Then we have |S|=|U|-2A > ¢. From the definition of d* we have
the following two observations:

(1) Alldifficultiesin (d*,d’] are covered by atleast one adversarial
proposer block.

(2) All the proposer blocks covering (d*,d] are mined in the
interval U because there are no proposer blocks covering d*
before round r* and hence no player can mine a proposer block
covering a difficulty level greater than d* before round r*.

Let Ly, be the size of difficulty range covered by honest leader

blocks in the range (d’,d] and say

Ly <p(d-d') < p(d—d"). ©)
Let L}’l be the size of difficulty range covered by honest leader blocks
in the range (d*,d’]. The adversarial leader blocks have covered
difficulty ranges with size d—d" L, —L; in the interval U. From our
first observation, we know that adversarial proposer blocks in the
difficulty range [d*,d"] which are not leader blocks cover difficulty
ranges with size at least L/, and from our second observation, these
proposer blocks are mined in the interval U.

Therefore, we have the following bound on AP (J)
AP ()2 (d=d*~Ly-L})+L},
=d-d" -1y
(From Equation (6)) >d—d*—pu(d—d")
=(1-p)(d-d"). 7)

From the chain growth, we know that d—d* > QP (S) and combining
this with Equation (7) gives us

AP(D) > (1-p) 0P (8)=(1-8+3£) Q" (5), ®)

which contradicts Lemma B.5. m]

D PSEUDOCODE OF PRISM

Algorithm 1 Prism: Main

1:
2
3
4:
5:
6:
7
8

9:
10:
11:
12:

procedure MaIN()

INITIALIZE()
while True do
header,Ppf,Cpf = POWMINING()
// Block contains header, parent, content and merkle proofs
if header is a tx block then
block «— (header,txParent,txPool,Ppf,Cpf)
else if header is a prop block then
block «— (header,prpParent,unRfTxBkPool,Ppf.Cpf)
else if header is a block in voter blocktree i then
block «— (header,vtParent[i],votesOnPrpBks[i],Ppf,.Cpf)

BroaDcASTMESsAGE(block)

13: procedure INITIALIZE()

14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:

// Blockchain data structure C= (prpTree,vtTree)
prpTree «—genesisP
fori—1tomdo
vtTreeli] «genesisM_i
// Parent blocks to mine on
prpParent < genesisP
fori—1tomdo
otParent|i] «genesisM_i
// Block content
txPool «— ¢
unRfTxBkPool «— ¢
unRfPrpBkPool < ¢
fori—1tomdo
votesOnPrpBks(i) «— ¢

> Broadcast to peers
> All variables are global

> Proposer Blocktree
> Voter i blocktree
> Proposer block to mine on

> Voter tree i block to mine on

> Tx block content: Txs to add in tx bks
> Prop bk contentl: Unreferred tx bks
> Prop bk content2: Unreferred prp bks

> Voter tree i bk content

Algorithm 2 Prism: Mining

1: procedure POWMINING()

2 while True do

3 txParent < prpParent

4 // Assign content for all block types/trees

5: for i« 1tomdo vtContent|i]| < votesOnPrpBks|i]

6 txContent < txPool

7 prContent — (unRf TxBkPool,unRf PrpBkPool)

8: // Define parents and content Merkle trees

9: parentMT «—MerklTree(vt Parent,txParent,prpParent)

10: content MT «—MerklTree(vtContent,txContent,prContent)

11: nonce < RandomString(1%)

12: // Header is similar to Bitcoin

13: header « (parentMT.root, content MT .root, nonce)

14: if chainLength(prpParent) % e ==0 then

15: fp""’W — RECALCULATETARGET(f})

16: fv(—(fv*f[;’ew/ﬁ,)

17: ﬁ(—(ﬁ*f;ew/ﬁ,)

18: ﬁ «— fj"new

19: // Sortition into different block types/trees

20: if Hash(header) <mf;, then > Voter block mined
21: i« |Hash(header)/f, | and break > on tree i
22: else if mf, <Hash(header) <mf,+f; then

23: i«<—m+1 and break > Tx block mined
24: else if mf,+f; <Hash(header) <mfy+f; +f, then

25: i«<—m+2 and break > Prop block mined

// Return header along with Merkle proofs
26: return (header,parent MT .proof(i), content MT .proof{(i))

Algorithm 3 Prism: Block and Tx handling

1: procedure RECEIVEBLOCK(B) > Get block from peers
2 if B is a valid transaction block then
3 txPool.removeTxFrom(B)
4 unRfTxBkPool.append(B)
5: else if B is a valid block on i'h voter tree and VALIDVOTE(B,i) then
6: otTree[i].append(B) and vtTree[i].append(B.ancestors())
7 /] A vote is a range of difficulty along with the the corresponding proposer block
8 if B.chaindiff > vt Parent|i].chaindiff then
9: otParent|[i] < B and votesOnPrpBks(i).update(B)
10: else if B is a valid prop block then

11: if B.diff > prpParent.diff then

12: prpParent «—B

13: fori—1tomdo > Add vote on level £ on all m trees
14: votesOnPrpBks(i) [B.level] —B

15: else if B.level > prpParent level+1 then

16: // Miner doesnt have block at level prpParent level+1

17: REQUESTNETWORK(B.PARENT)

18: prpTree[B.level].append(B), unRfPrpBkPool.append(B)

19: unRfTxBkPool.removeTxBkRefsFrom(B)

20: unRfPrpBkPool.removePrpBkRefsFrom(B)

21: procedure RECEIVETX(tx)
22: if tx has valid signature then txPool.append(B)

Algorithm 4 Prism: Vote validation

1: procedure VALIDVOTE(B,i) > validate a vote
2: // voter block can’t vote for difficulty grater than its proposer parent

3 if B.vtContent[i].latestBlock.chaindiff > B.prpParent.chaindiff then

4 return False

5 if B.vtContent[i] has discontinuous votes then

6: return False

7: if B.vtContent[i].earliestBlock.parent.chaindiff > B.vtParent[i].chaindiff then

8 return False

9 // include the check where the difficulty ranges of the votes should end at proposal blocks

0

10: return True

Algorithm 5 Prism: Tx confirmation

1: procedure ISTXCONFIRMED(¢x)
2 ¢ > Array of set of proposer blocks
3 for ¢ < 1to prpTree.maxLevel do
4 votesNdepth «— ¢
5: foriin1tomdo
6 votesNdepth[i] < GETVOTENDEPTH (i,f)
7 if IsPropSetConfirmed(votesNdepth) then
8: I1[¢] « GetProposerSet(votesNdepth)
9: else break
10: // Ledger list decoding: Check if tx is confirmed in all ledgers
11: prpBksSeqs «TII[1]xII[2] X ---xII[£] > outer product
12: for prpBks in prpBksSeqs do
13: ledger = BUILDLEDGER(prpBks)
14: if tx is not confirmed in ledger then return False
return True > Return true if tx is confirmed in all ledgers

15: // Return the vote of voter blocktree i at level ¢ and depth of the vote
16: procedure GETVOTENDEPTH(i,d)

17: voterMC « vtTree[i].HeaviestChain()

18: for voterBk in voter MC do

19: for vote in voterBk.votes do

20: if d in vote.range then

21: // Depth is the difficulty of children bks of voter bk on main chain

22: return (vote.prpBk, voterBk.depth)

23: procedure BUILDLEDGER(propBlocks) > Input: list of prop blocks
24: ledger «[] > List of valid transactions
25: for prpBk in propBlocks do

26: ref PrpBks « prpBk.getReferredPrpBks()

27: // Get all directly and indirectly referred transaction blocks.

28: txBks « GetOrderedTxBks(prpBk,ref PrpBks)

29: for txBk in txBks do

30: txs « txBk.getTxs() > Txs are ordered in ¢xBk
31: for tx in txs do

32: // Check for double spends and duplicate txs

33: if tx is valid w.r.t to ledger then ledger.append(tx)

34: return ledger

35: // Return ordered list of confirmed transactions
36: procedure GETORDEREDCONFIRMEDTXS()

37: L—¢ > Ordered list of leader blocks
38: for prpBk in propBlocks do
39: g(p)=infy(d:GETLEADER(d) =p)

40: L—sort(p.key=g(p))
41: return BUILDLEDGER(L)

	Abstract
	1 Introduction
	2 Model
	3 Prism
	3.1 Fixed Difficulty Algorithm
	3.2 Natural Approaches Are Insecure
	3.3 Variable Difficulty Algorithm

	4 OHIE
	4.1 Fixed Difficulty Algorithm
	4.2 Variable Difficulty Algorithm

	5 FruitChains
	5.1 Fixed Difficulty Algorithm
	5.2 Variable Difficulty Algorithm

	6 Security Analysis
	6.1 Desired Security Properties
	6.2 Proof Sketch
	6.3 Definitions
	6.4 Non-pivot chain properties
	6.5 Persistence and Liveness of Prism

	7 Evaluation
	7.1 Experimental Setup
	7.2 Adaptation to Changing Miner Power
	7.3 Difficulty Update on Non-pivot Chains
	7.4 Analysis of Overhead

	8 Discussion
	9 Acknowledgements
	References
	A The Difficulty Raising Attack
	B Bitcoin Backbone Properties Revisited
	C Proof for Section 6
	C.1 Proof for typical execution
	C.2 Proof of Lemma 6.13
	C.3 Chain Quality of Non-pivot Chains
	C.4 Common Prefix and Chain Quality of the Leader Sequence

	D Pseudocode of Prism

