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ABSTRACT

Neural networks have emerged to be the most appropriate method for tackling the classification problem for hyperspectral
images (HIS). Convolutional neural networks (CNNs), being the current state-of-art for various classification tasks, have
some limitations in the context of HSI. These CNN models are very susceptible to overfitting because of 1) lack of
availability of training samples, 2) large number of parameters to fine-tune. Furthermore, the learning rates used by CNN
must be small to avoid vanishing gradients, and thus the gradient descent takes small steps to converge and slows down
the model runtime. To overcome these drawbacks, a novel quaternion based hyperspectral image classification network
(QHIC Net) is proposed in this paper. The QHIC Net can model both the local dependencies between the spectral channels
of a single-pixel and the global structural relationship describing the edges or shapes formed by a group of pixels, making
it suitable for HSI datasets that are small and diverse. Experimental results on three HSI datasets demonstrate that the Q-
HIC Net performs on par with the traditional CNN based methods for HSI Classification with a far fewer number of
parameters.
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1. INTRODUCTION

Hyperspectral imaging (HSI) is one of the import techniques in remote sensing and plays an essential role in delivering a
rich information source for numerous applications. It collects the electromagnetic spectrum data of wavelengths ranging
from visible to near-infrared and is characterized into hundreds of continuous narrow observation bands. In HSIs, each
pixel can be denoted as a high-dimensional vector consisting of spectral reflectance values of a specific wavelength.
Analysis of these images is of very high importance in many applications such as urban development [1, 2], land change
monitoring[3, 4], resource management [5], and precision agriculture [6, 7]. HSI classification, the method of assigning
each pixel to a class based on the spectral characteristics, is one of the most sought after research in the remote sensing ad
hyperspectral community [8].

To analyze the hyperspectral images, various classification techniques have been researched in the past. The early studies
explored the role of spectral signatures for classification purposes and proposed many one-dimensional spectral-wise
classification techniques. Some of them include decision trees [9], random forest [10], and support vector machines (SVM)
[11]. In random forest method, several decision trees are generated in the training phase and the output class of each
hyperspectral pixel is obtained by the integrated predictions of each decision tree. SVM based approaches, in contrast,
have achieved significant results due to their ability to work with high dimensional data with limited training samples.
SVM maps the data to high-dimensional feature space and seeks for a hyperplane that can separate the data samples.
Additionally, there are some extensions of SVM which have better discriminatory abilities [12, 13]. However, both SVM
and random forest-based approaches are considered shallow learning. They are severely limited in their capabilities to
handle high dimensional and densely nonlinear data such as the hyperspectral images [14].

Furthermore, logistics regression [15], dynamic subspace [16] methods and techniques such as principal component
analysis (PCA) [17, 18], independent component analysis (ICA) [19], and linear discriminant analysis (LDA) [20] which
are based on designing effective feature extraction and dimensionality reduction have also been proposed. However, the
classification accuracy of these pixel-wise classifiers is unsatisfactory as they are not considering the spatial context. To
alleviate these issues, many spectral-spatial feature-based classification methods [21, 22] that incorporate spatial contextual
information to the pixel-based classifiers have been proposed and have been reported to help improve the classification
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accuracies. Additionally, sparse representation methods such as [23, 24], which are based on the observation that
hyperspectral pixels can be represented by a linear combination of a few common pixels from the same class, have also
been proposed. Although these spectral-spatial methods have had some success in obtaining good performance, they are
limited in their performance due to their inability to generalize and scale, lack of adaptation to varying context, and the
need for human expertise to tailor the parameters. Moreover, the handcrafted features and the shallow-based features that
are detected by these methods are task specific and may not be enough to discriminate subtle inter- and intra-class
variations.

Recently, deep learning has been used increasingly for big data analysis and has achieved enormous success in a variety
of computer vision tasks such as object detection [25], face recognition [26], image classification [27], image segmentation
[28]. Based on these promising results, there have been increasing efforts to use them for HSI classification. When
compared to the handcrafted feature learning methods, deep learning techniques can automatically extract informative
features through a set of hierarchical layers, with each layer extracting different features. Specifically, the earlier layers
extract primitive features while the deeper layer extract more complex and abstract features that are robust to the nonlinear
input data. There have been many one-dimensional deep learning architectures such as stacked auto-encoders [29, 30],
restricted Boltzmann machine (RBM), and its extension deep belief network (DBN) [31], recurrent neural network [32]
proposed in the literature. These networks equipped with fully connected layers have an undesirable consequence of having
to train a large number of parameters with a limited number of available labeled training samples for remote sensing HSI
image classification [14, 33]. Further, these one-dimensional vector-based feature alignment networks also lead to loss of
structural information since they do not consider the spatial correlation existing between the neighboring pixels.

Very recently, deep learning-based methods for spectral-spatial classification has been proposed. A 3D convolutional
neural network (CNN) with L2 regularization for deep feature extraction and classification was proposed in [34]. To
overcome the sub-optimal performance due to limited number of training samples, residual learning with deeper and wider
networks for HSI was introduced in [35]. A self-improving CNN model, which combines the fractional-order Darwinian
particle swarm optimization algorithm with CNN, for optimally selecting the best set of bands to train the CNN has been
proposed in [36]. Further, a deep learning method that combines the traditional 3D convolution to join spectral-spatial
information processing and 1D convolution for spectral signature processing have been introduced in [37]. While these
networks achieve good results, they still face some challenges such as 1) heavy models: the remarkable results achieved
by deep learning methods is due to the use of deeper and wider models which require a large number of parameters to learn
the complicated representations of the data [38] and require a large amount of labeled data; 2) high-dimensional data: it
becomes difficult to effectively learn the low level to the highest level semantic interpretations/features. Even though
CNNs have traditionally been used for this purpose, the problem still remains very challenging [37].

Focusing of the challenges mentioned above, a novel quaternion hyperspectral image classification network (QHIC Net),
which represents the hyperspectral data in the quaternion domain, is proposed. This establishes a new paradigm for
hyperspectral data processing by offering a convenient way to capture both the local and the global spectral-spatial
dependencies. Specifically, this neural network architecture enables learning of a) the internal correlations between the
multiple components of the multidimensional spectral signatures utilizing the quaternion algebra, and b) the global
dependencies that describe the contextual connections between the entities using the network architecture. The proposed
method also reduces the number of parameters required to learn the high dimensional data representations. The main
contributions of the paper are summarized below.

1) A new paradigm for processing hyperspectral image data utilizing quaternions has been provided.

2) The network, utilizing quaternion algebra, can exploit the interrelationships between the spectral bands of the
hyperspectral data along with spatiospectral processing.

3) The proposed work is one of the first attempts to successfully utilize quaternion algebra specifically for deep
learning-based hyperspectral image classification.

The rest of the paper is organized as follows. Section 2 presents the background of the quaternion theory and quaternion
neural networks. Section 3 describes the application of the quaternion theory for hyperspectral data and the proposed QHIC
network. In section 4, the network setup, experimental results, and comparison with other approaches are provided. Finally,
Section 5 summarizes the contributions of this work and discusses future directions.
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2. BACKGROUND

A quaternion is a hypercomplex number, which is an extension of the real and complex domain and was first described by
Hamilton in 1843. Mathematically, a quaternion Q in the four-dimensional domain of H can be represented as:

Q=rl+xi+yj+zk r,x,y,2z €R, (1)
R stands for real value domain, and thus r, x, y, and z are all real numbers. 1, i, j, and k are the quaternion unit vectors. In
a quaternion Q, 7 is the real part (Re(Q)) while xi + yj + zk is the imaginary part with i* = j2 = k? = ijk = —1.If

r = 0, then Q is called a pure quaternion. Similar to the real and complex numbers, a series of operations can be defined
for quaternions:

e Addition or subtraction: Q; + Q, = (1p £ 1) + (3 £ x,)i+ (Y1 + ¥2)j + (21  z,)k. 2)
e Scalar multiplication: AQ = Ar + Axi + Ayj + Azk. 3)
e Conjugation: Q* = r1 — xi — yj — zk. 4)
e Norm: Q| = \/QQ* = 12 + %+ j2 + k2. )

e  Quaternion multiplication:
Q18Q; = (n1y — x1X; = Y1Y2 — Z172) + (1X + X175 + Y125, — 21,)1 (6)
+(ry, —x12; + )11 + 21%5)f + (N2, + X1y — Y1Xp + 2110k
The proposed QHIC network will utilize these operations. Quaternion convolution can be obtained by extending the
quaternion multiplication or Hamilton product criteria. Unlike the real-valued multiplication, it is to be noted that,
quaternion space multiplication is not commutative, implying Q@ ®Q, #* Q,®Q;.
2.1 Quaternion convolution

The quaternion convolution O = W * I, as described in [39], can be obtained by convolving the quaternion weight matrix

with the input vector. This is equivalent to the Hamilton product of the quaternion weight W = W,. + W,i + W, j + W}k,
with the input quaternion I = I, + I,i + I,j + I,k and is defined as follows:

Wsl= W sl —WyxL—W, I, —W,*I,)+
(W % L + Wy s L — W, + I, + W, + 1)i +
(W I+ Wy % L+ W, % L, — Wy * 1,)j + (7
(Mlz*lr_Wy*IX+WX*1y+VVT*IZ)k’

and can be represented in the matrix form as follows:

W, W, W, -W I
WxWr_WzWy*Ix Ox

ﬁ
IS

w, w, w, -w, | |L|” |9 ®)
w, _Wy W, W L 0,

As seen in eq (7) & (8), Hamilton product allows a quaternion neural network to exploit the interrelationship between the
features of the quaternion. Notice that the result of the quaternion convolution, as stated in eq (8), produces a unique linear
combination of all the axes for the result of a single axis. This is the resultant of the Hamilton product, which forces each
axis of the kernel (weight matrix) to interact with each axis of the quaternion hyperspectral image. This strategy helps in
learning complicated features while suppressing the degrees of freedom of the model's training parameter. It can be seen
that the degree of freedom of the weight matrix Wis 4, while the real-valued neural network would have a parametrization
of 4 x 4 =16, which leads to a 4-fold saving. Furthermore, the quaternion convolution can be viewed as the result of adding
and subtracting four ordinary convolutions. This significantly simplifies the quaternion convolution operation and can be
easily implemented as neural network architecture. The weight initialization recommendations given in [39] are followed
for the proposed network in this paper.
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3. QUATERNION HYPERSPECTRAL IMAGE CLASSIFICATION NETWORK

This section defines the ways in which hyperspectral data can be represented as a quaternion and its interpretations, the
internal hyperspectral quaternion representations, and the neural network architecture.

3.1 Hyperspectral quaternion representation

The proposed QHIC network utilizes the quaternion extension of the real-valued hyperspectral data along with the real-
valued matrices to perform quaternion operations. To achieve this, the first step is to convert the hyperspectral input data
to the quaternion domain. In the traditional color image case, each of the three channels is associated with the three
imaginary axes of the quaternion space and having either zeros or the gray levels related to the real axis. Similarly, in the
hyperspectral case, the total number of bands or the depth of the hyperspectral data cube can be divided into four groups,
and each group can be associated with each of the axes of the quaternion domain. In case the total number of bands is not
divisible by 4, it is padded with additional zero-bands. Conceptually, the hyperspectral data split is very similar to the color
image quaternion extension, with an exception in the number of channels per group. This is illustrated in Figure 1, where,
in the color image instance, each group (Red, Green, Blue) has a single response (channel), ignoring the cross-talk from
the neighboring group. In contrast, in the hyperspectral instance, each group has multiple responses (channel). Another
approach for representing the hyperspectral data in the quaternion space is visualized in Figure 1 (c). This approach
combines unrelated wavelengths into a single group. In other words, all the blue color bands will be combined into a single
group associated with the real axis. In this particular illustration, this would combine 300 nm, 480 nm, and 730 nm in a
single group. In contrast, the approach modeled in Figure 1 (b), related wavelengths are grouped, and it follows the physical
representations of a hyperspectral image and helps in extracting the interrelationships between these physically related
groups. The approach illustrated in Figure 1 (b) is used in this paper.

k j i r i i k
Blue (%reen Réd

Response
Response
Response

300 400 500 600 700 800 300 00 500 600 700 800 300 400 500 600 700 800
Wavelength (nm) Wavelength (nm) Wavelength (nm)

(2) (b) (©)

Figure 1: Visualization of color camera (a) and hyperspectral camera (b & c) wavelength split for quaternion representation.

The proposed QHIC network is the quaternion extension of the real-valued hyperspectral image classification network
defined in [37]. In the quaternion convolution layer (for both 3D and 1D), all the parameters are quaternions, including
inputs, outputs, and weights. The quaternion convolution algebra as defined in eq (7) and eq (8) will be utilized and
consequently, the input vector of size N will have to be divided into four parts following the method illustrated in Figure
1 (b). The first part will correspond to 7, the second part will correspond to xi, the third to yj, and the fouth to zk, and the
quaternion will be defined as Q = r1 + xi + yj + zk.

3.2 A general overview of the architecture

A joint spatiospectral model that can not only merge the spatial information with the spectral signature but can also exploit
the inter-band correlation of the hyperspectral data is presented in this paper. The proposed architecture uses a 3-D
quaternion-based convolution that simultaneously processes the spatial and spectral data to make maximum utilization of
the rich information present in the hyperspectral data with low parameter cost. To perform 3D convolutions, each pixel of
the quaternion domain hyperspectral image will be associated with an n x n spatial neighborhood and f'spectral bands such
that f < total number of bands/4, to account for the quaternion split. Thus, each pixel can be considered as a volume
defined by n x n x f. An illustrative example of the 3D quaternion convolution is provided in Figure 2. As seen in the
illustration, a 3 x 3 x 3 quaternion 3D kernel is used for convolution. Notice that each axis of the volumetric kernel (r, i, j, k-
axes) interact with each axis of the input volumetric quaternion image data. Such an approach of reusing the filters in a
unique combination for each axis is the core idea of learning the interrelationships between these axes.
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An overview of the QHIC network architecture is presented in Figure 3. To have an efficient and deep representation of
the input hyperspectral image, various blocks of convolutional layers are stacked on top of each other. To start with, a set
of 3D quaternion convolutional layers are used to handle the volumetric input data. These layers encompass 3D quaternion
kernels that perform quaternion convolution on the height, width, and the depth axis of the input. This stack of 3D layers
is followed by a set of 1D quaternion convolutional layers that focus on the spectral content discarding the spatial
neighborhood. This is followed by an average pooling and fully connected layer and ends with a softmax classifier. In
effect, the architecture produces 3D features that are gradually transitioned to the 1D feature. To reduce from 3D volume
to 1D vectors, careful considerations of kernel strides and paddings are utilized. Stride represents the consecutive positions
of the convolutional kernel and padding is used to ensure that the boundary conditions are handled to make sure that the

Heatwemaps

Heaturemaps ="

T feature maps

(a) (b)

Figure 2: Visualization of (a) 3D quaternion convolution for hyperspectral data and (b) a quaternion 3D kernel of size 3 x 3 x 3.

convolution output retains the size of the input. Each layer [ of the 3D quaternion convolution is characterized by k; number
of quaternion kernels of size (m; x m; x f;), where m; < n and f; < f. These convolutional layers serve the dual purpose
of acting as the spatiospectral 3D quaternion convolution with stride one and serving as the pooling layer with stride > 2.
Further, a combination of removal of padding along the spatial dimension, dilation, and stride leads the way to
progressively reduce the data dimension and transitions to the 1D vector. This is fed to the 1D quaternion convolutional
layers, each with p; kernels. Finally, the output 1D vectors are fed to a fully connected layer, which ends with a softmax
classifier. The output of the classifier is equal to the number of target classes. An example of the proposed QHIC network

architecture is illustrated in Figure 4, where f = 104, n =5, f; = 3 or 2, and m; = 3 or 1. Strides are alternated between
1 and 2 to create the pooling effect after every convolution.

N layers of
P 1D filters

M layers of K 3D filters

O layers
S of FC

=
I [
e

- -

il

Output class
probabilities
Input3D Input ;7—'
data cube quate‘r.nmn K 1D vector P 1D vector
split outputs outputs

Figure 3: Overview of the Quaternion Hyperspectral Image Classification architecture.

The architecture utilizes the Adam optimizer with weight decay was selected for this use case after testing various other
optimizers. ReLU activations, along with a 0.5 probability dropout on the output of the 1D quaternion convolution layer
with quaternion weights initialization as specified in [39] was used. The learning rate was initially set to 0.001 to rapidly

search for the local minimum and used the reduce learning rate on plateau scheduler to adjust the learning rate during
training.
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Figure 4: Example illustration of the evolution of feature shapes of each layer.

4. EXPERIMENTS AND ANALYSIS

In this section, the experiments conducted on various hyperspectral datasets using the proposed QHIC network are
presented and compared with other state-of-the-art approaches.

4.1 Datasets

Experiments are conducted on the Pavia University, Pavia center datasets, which were acquired by the reflective optics
system imaging spectrometer (ROSIS) sensor and the Indian Pines dataset which are collected by the airborne
visible/infrared imaging spectrometer (AVIRIS) sensor and the images are as shown in Figure 5. The Pavia University
dataset comprises of the data captured over the Engineering School at the University of Pavia and presents nine classes,
including water, trees, asphalt, self-blocking bricks, bitumen, tiles, shadows, meadows, and bare soil. The image resolution
is 610 x 340 pixels with a spatial resolution of 1.3 meters per pixel. The image consists of 103 spectral bands ranging from
430 to 860 nm. The Pavia Center data comprises of 102 spectral band datasets with 1096 x 1096 pixels and a spatial
resolution of 1.3 meters per pixel. This dataset also consists of nine classes, including asphalt, meadows, gravel, trees,
painted metal sheets, bare soil, bitumen, self-blocking bricks, and shadows. The Indian pines dataset was acquired over
the Indian Pines agricultural site in northwestern Indiana. It comprises of 220 spectral bands ranging from 400 to 2500 nm,
of which 20 spectral bands cover the regions of water absorption and have not been considered for the experiments. The
image consists of 145 x 145 pixels with a spatial resolution of 20 meters per pixel. It has 16 different classes, including
alfalfa, corn-no-till, corn-min, corn, grass-pasture, grass-trees, grass-pasture-mowed, hay-windrowed, oats, soybean-no-
till, soybean-min-till, soybean-clean, wheat, woods, building-grass-trees, stone-steel-towers.

(a) (b)

Figure 5: Hyperspectral dataset. (a) Pavia University, (b) Pavia Center, (c) Indian Pines

4.2 Different architectures

After conducting extensive sets of experiments, it was found that doubling the number of filters after every 3D pooling
layer and doubling the filters for the first 1D convolution layer gave the best results. Figure 6 shows the overall architecture
with the variations in the depth of the network, where a convolution layer with stride as one is denoted by QConv and
convolution layer with stride as two is denoted by QPool and the number of filters per layer is shown in [num filters]. The
schemes a-d represent variations in network depth with 4, 6, and two 8 layers deep network and are as detailed below.
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Figure 6: 3D quaternion convolution architecture overview.
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Four-layer network (a): This network is inspired by the real-valued network described in [37] and is created by
two 3D layers and two 1D layers along with FC layer and softmax. The two layers in both the 3D and 1D instance
are alternate between convolution layers with stride as 1 and 2, respectively, to play the role of conv layer and
pooling layer.

Six-layer network (b): To test the performance of deeper architectures, a six-layer network was created with four
3D layers and two 1D layers. The duality of conv/pool layers is applied sequentially to the network, and the
number of filters is doubled after every 3D pooling layer and at the beginning of the 1D layer.

Eight-layer network (c and d): To estimate whether the addition of more spatiospectral 3D layers or the addition
of more spatially localized and spectrally dominant 1D layers will improve the performance of the system, two
eight-layer networks were developed. In the first network, four 3D layers and four 1D layers were used. Similarly,
in the second network, six 3D layers and two 1D layers were used. In both the networks, the filter size is doubled
after every 3D pooling layer, and at the beginning of the 1D layer and the dual conv/pool layer scheme is

maintained.

Additionally, to estimate the tradeoff between deeper vs. wider networks, each of the above-mentioned network schemes
(a-d) is tested with 8, 12, and 16 as the initial number of filters. This study will help in understanding the selection of the

number of filters or the width with respect to the network depth to maximize accuracy and minimize cost.

4.3 Experiments and results

Table 1: Accuracy level of the four-layer architecture (network a)

Spatial Initial number | Number of parameters | Pavia Pavia Center | Indian Pines
neighborhood | of filters [Pavia, Indian Pines] University

3x3 8 1794, 1913 64.750 % 93.664 % 52.202%
5x5 8 1794, 1913 69.227 % 95.007 % 47.603%
7x7 8 1794, 1913 59.799 % 94.450 % 45.002%
3x3 12 3682, 3857 76.142 % 96.980 % 50.138%
5x5 12 3682, 3857 73.950% 96.569 % 57.777%
7x7 12 3682, 3857 74.292% 96.435 % 50.642%
3x3 16 6234, 6465 74.545% 97.250 % 54.266%
5x5 16 6234, 6465 76.529% 97.660 % 51.406%
7x7 16 6234, 6465 76.329% 96.336 % 52.869%

Proc. of SPIE Vol. 11399 113990S-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 02 Dec 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use




Experiments were conducted on the above mentioned 4-, 6-, 8-layer architectures. All tests were executed on an octa-core
Intel 19-9900k CPU laptop with Nvidia RTX 2080 GPU. The results presented from the proposed architectures were
obtained using the PyTorch library [40]. For fair comparisons, Pavia University and Pavia Center have been trained with
5% of data and 30% of data for Indian pines. Also, since the number of channels in the input datasets varies for the Pavia
dataset and Indian Pines dataset, the number of parameters varies slightly and is indicated the tables given below.

Table 2: Accuracy level of the six-layer architecture (network b)

Spatial Initial number | Number of parameters | Pavia Pavia Center | Indian Pines
neighborhood | of filters [Pavia, Indian Pines] University

3x3 8 2658, 2889 76.307% 97.489% 64.733%
5x5 8 2658, 2889 78.541% 97.309% 66.699%
3x3 12 5482, 5825 78.487% 97.707% 62.084%
5x5 12 5482, 5825 77.939% 97.396% 62.051%
3x3 16 9306, 9761 76.575% 97.893% 81.212%
5x5 16 9306, 9761 76.888% 97.833% 80.546%

Table 3: Accuracy level of the eight-layer architecture (network c)

Spatial Initial number | Number of parameters | Pavia Pavia Center | Indian Pines
neighborhood | of filters [Pavia, Indian Pines] University

3x3 8 5346, 5577 75.709% 97.567% 68.747%
5x5 8 5346, 5577 80.121% 97.753% 87.096%
3x3 12 11434, 11777 81.420% 97.780% 87.177%
5x5 12 11434, 11777 83.568% 97.680% 90.834%
3x3 16 19802, 20257 69.216% 97.959% 84.690%
5x5 16 19802, 20257 85.694% 98.313% 87.551%

Table 4: Accuracy level of the eight-layer architecture (network d)

Spatial Initial number | Number of parameters | Pavia Pavia Center | Indian Pines
neighborhood | of filters [Pavia, Indian Pines] University

3x3 8 10018, 10473 79.582% 98.448% 84.105%
5x5 8 10018, 10473 87.486% 97.130% 73.980%
3x3 12 21706, 22385 77.867% 97.773% 76.418%
5x5 12 21706, 22385 89.464% 98.270% 86.413%
3x3 16 37850, 38753 89.267% 98.426% 86.348%
5x5 16 37850, 38753 89.594% 98.469% 91.971%

The four-layer architecture results have been presented in Table /. The initial number of filters refer to the number of
output filters for the first quaternion convolution. The number of filters for the following stages can be easily inferred by
following "filter size is doubled after every 3D pooling layer and at the beginning 1D layer". The spatial neighborhood
size is an essential factor to be determined and is highly dependent on the data. As seen in this table for some dataset, a
spatial neighborhood of 3 x 3 works well, while for others, 5 x 5 works well. In general, 7 x 7 was found to be an expanded
area and did not yield very impressive results. Similarly, tables 2-4 gives the accuracy levels for the various network
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architectures (b-d). As seen in these tables, the deeper network gives better results than the shallower ones; however, they
have higher parametric cost. Also, comparing network ¢ and network d, the addition of the 3D quaternion convolutional
layer adds more value than adding a 1D layer. To decrease the parametric cost of deeper network architectures, 1 x 1 x 3
pool layers along with a fewer number of filters were employed, and the results have been tabulated in Table 5.

Table 5: Accuracy levels of the squeezed architectures (network a-d)

network | Spatial Initial number | Number of parameters | Pavia Pavia Center | Indian Pines
neighborhood | of filters [Pavia, Indian Pines] University

a 5x5 12 870, 961 72.346% 96.486% 55.713%
5x5 16 1218, 1337 74.336% 96.884% 51.081%

b 3x3 12 2654, 2745 75.404% 97.091% 65.887%
3x3 16 3658, 3777 76.324% 97.843% 61.498%

c 5x5 12 4202, 4293 79.073% 98.256% 83.732%
5x5 16 6362, 6481 79.902% 98.161% 78.807%

d 5x5 16 7570, 7689 82.697% 98.321% 83.927%

Table 6: Comparison with state-of-the-art methods

network | Spatial Initial number | Number of parameters | Pavia Pavia Indian Pines
neighborhood | of filters University Center

d 5x5 16 37850 89.594% - -

d 5x5 16 7570 - 98.321%

d 5x5 16 38753 - - 91.971%

b* 5x5 12 5482 95.111% - -

b* 5x5 8 2658 - 98.111% -

[35] - - 610600 96.73% 98.88% 93.61

[41] - - 81408 92.56% - -

[42] - - - 92.99 +£2.02% | - 86.621+2.36%

[43] - - 29890 94.57% 98.52%

[14] - - - - - 85.76%

[37] 5x5 - 6862 97.2% - -

[37] 3x3 - 3681 - 98.9% -

*indicates that 10% of the total available samples were used for training.

Finally, comparisons with other state-of-the-art networks have been tabulated in 7able 6. As seen in the table, the proposed
QHIC network is producing results on par with other methods, and it utilizes far fewer parameters. The initial hypotheses
that the network is robust to the amount of data available for training have been proved incorrect. As seen in the table,
when training with 5% of data, the results for Pavia University and Indian Pines will not give very high accuracy. However,
when the training data is increased to 10%, the accuracy increases sharply. This is indicative that the models need to be
more robust to produce highly accurate results.
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5. CONCLUSION

Hyperspectral image classification requires careful consideration of both spatial and spectral components. The proposed
QHIC network, with its ability to process volumetric data and the ability to extract the correlation between the spectral
bands helps in accurately classifying with a very low parametric cost. One of the primary concerns now is to further the
research into the use of quaternions for hyperspectral data and enhance the created models to be more robust to the
shortcomings of the training data. As future work, the preliminary quaternion network introduced in this work can be
extended to other network architectures like Residual and Dense networks and explore the possibility of extending the
quaternion hyperspectral space to tackle other issues such as hyperspectral band selection, unmixing, target and anomaly
detection, and super-resolution.
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