
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Quaternion based neural network for
hyperspectral image classification

Rao, Shishir Paramathma, Panetta, Karen, Agaian, Sos

Shishir Paramathma Rao, Karen Panetta, Sos Agaian, "Quaternion based
neural network for hyperspectral image classification," Proc. SPIE 11399,
Mobile Multimedia/Image Processing, Security, and Applications 2020,
113990S (26 May 2020); doi: 10.1117/12.2558808

Event: SPIE Defense + Commercial Sensing, 2020, Online Only

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 02 Dec 2021  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Quaternion Based Neural Network for Hyperspectral Image 
Classification 

 
Shishir Paramathma Rao*a, Karen Panettaa, Sos Agaianb 

aDepartment of Electrical and Computer Engineering, Tufts University, Medford, MA, USA 02155; 
bDistinguish professor of Computer Science, The City University of New York, New York City, NY, 

USA 10017 

ABSTRACT   

Neural networks have emerged to be the most appropriate method for tackling the classification problem for hyperspectral 
images (HIS). Convolutional neural networks (CNNs), being the current state-of-art for various classification tasks, have 
some limitations in the context of HSI. These CNN models are very susceptible to overfitting because of 1) lack of 
availability of training samples, 2) large number of parameters to fine-tune. Furthermore, the learning rates used by CNN 
must be small to avoid vanishing gradients, and thus the gradient descent takes small steps to converge and slows down 
the model runtime. To overcome these drawbacks, a novel quaternion based hyperspectral image classification network 
(QHIC Net) is proposed in this paper. The QHIC Net can model both the local dependencies between the spectral channels 
of a single-pixel and the global structural relationship describing the edges or shapes formed by a group of pixels, making 
it suitable for HSI datasets that are small and diverse. Experimental results on three HSI datasets demonstrate that the Q-
HIC Net performs on par with the traditional CNN based methods for HSI Classification with a far fewer number of 
parameters.   
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1. INTRODUCTION  
Hyperspectral imaging (HSI) is one of the import techniques in remote sensing and plays an essential role in delivering a 
rich information source for numerous applications. It collects the electromagnetic spectrum data of wavelengths ranging 
from visible to near-infrared and is characterized into hundreds of continuous narrow observation bands. In HSIs, each 
pixel can be denoted as a high-dimensional vector consisting of spectral reflectance values of a specific wavelength. 
Analysis of these images is of very high importance in many applications such as urban development [1, 2], land change 
monitoring[3, 4], resource management [5], and precision agriculture [6, 7]. HSI classification, the method of assigning 
each pixel to a class based on the spectral characteristics, is one of the most sought after research in the remote sensing ad 
hyperspectral community [8].  

To analyze the hyperspectral images, various classification techniques have been researched in the past. The early studies 
explored the role of spectral signatures for classification purposes and proposed many one-dimensional spectral-wise 
classification techniques. Some of them include decision trees [9], random forest [10], and support vector machines (SVM) 
[11]. In random forest method, several decision trees are generated in the training phase and the output class of each 
hyperspectral pixel is obtained by the integrated predictions of each decision tree. SVM based approaches, in contrast, 
have achieved significant results due to their ability to work with high dimensional data with limited training samples. 
SVM maps the data to high-dimensional feature space and seeks for a hyperplane that can separate the data samples. 
Additionally, there are some extensions of SVM which have better discriminatory abilities [12, 13]. However, both SVM 
and random forest-based approaches are considered shallow learning. They are severely limited in their capabilities to 
handle high dimensional and densely nonlinear data such as the hyperspectral images [14].  

Furthermore, logistics regression [15], dynamic subspace [16] methods and techniques such as principal component 
analysis (PCA) [17, 18], independent component analysis (ICA) [19], and linear discriminant analysis (LDA) [20] which 
are based on designing effective feature extraction and dimensionality reduction have also been proposed. However, the 
classification accuracy of these pixel-wise classifiers is unsatisfactory as they are not considering the spatial context. To 
alleviate these issues, many spectral-spatial feature-based classification methods [21, 22] that incorporate spatial contextual 
information to the pixel-based classifiers have been proposed and have been reported to help improve the classification 
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accuracies. Additionally, sparse representation methods such as [23, 24], which are based on the observation that 
hyperspectral pixels can be represented by a linear combination of a few common pixels from the same class, have also 
been proposed. Although these spectral-spatial methods have had some success in obtaining good performance, they are 
limited in their performance due to their inability to generalize and scale, lack of adaptation to varying context, and the 
need for human expertise to tailor the parameters. Moreover, the handcrafted features and the shallow-based features that 
are detected by these methods are task specific and may not be enough to discriminate subtle inter- and intra-class 
variations. 

Recently, deep learning has been used increasingly for big data analysis and has achieved enormous success in a variety 
of computer vision tasks such as object detection [25], face recognition [26], image classification [27], image segmentation 
[28]. Based on these promising results, there have been increasing efforts to use them for HSI classification. When 
compared to the handcrafted feature learning methods, deep learning techniques can automatically extract informative 
features through a set of hierarchical layers, with each layer extracting different features. Specifically, the earlier layers 
extract primitive features while the deeper layer extract more complex and abstract features that are robust to the nonlinear 
input data. There have been many one-dimensional deep learning architectures such as stacked auto-encoders [29, 30], 
restricted Boltzmann machine (RBM), and its extension deep belief network (DBN) [31], recurrent neural network [32] 
proposed in the literature. These networks equipped with fully connected layers have an undesirable consequence of having 
to train a large number of parameters with a limited number of available labeled training samples for remote sensing HSI 
image classification [14, 33]. Further, these one-dimensional vector-based feature alignment networks also lead to loss of 
structural information since they do not consider the spatial correlation existing between the neighboring pixels. 

Very recently, deep learning-based methods for spectral-spatial classification has been proposed. A 3D convolutional 
neural network (CNN) with L2 regularization for deep feature extraction and classification was proposed in [34]. To 
overcome the sub-optimal performance due to limited number of training samples, residual learning with deeper and wider 
networks for HSI was introduced in [35]. A self-improving CNN model, which combines the fractional-order Darwinian 
particle swarm optimization algorithm with CNN, for optimally selecting the best set of bands to train the CNN has been 
proposed in [36]. Further, a deep learning method that combines the traditional 3D convolution to join spectral-spatial 
information processing and 1D convolution for spectral signature processing have been introduced in [37]. While these 
networks achieve good results, they still face some challenges such as 1) heavy models: the remarkable results achieved 
by deep learning methods is due to the use of deeper and wider models which require a large number of parameters to learn 
the complicated representations of the data [38] and require a large amount of labeled data; 2) high-dimensional data: it 
becomes difficult to effectively learn the low level to the highest level semantic interpretations/features. Even though 
CNNs have traditionally been used for this purpose, the problem still remains very challenging [37]. 

Focusing of the challenges mentioned above, a novel quaternion hyperspectral image classification network (QHIC Net), 
which represents the hyperspectral data in the quaternion domain, is proposed. This establishes a new paradigm for 
hyperspectral data processing by offering a convenient way to capture both the local and the global spectral-spatial 
dependencies. Specifically, this neural network architecture enables learning of a) the internal correlations between the 
multiple components of the multidimensional spectral signatures utilizing the quaternion algebra, and b) the global 
dependencies that describe the contextual connections between the entities using the network architecture. The proposed 
method also reduces the number of parameters required to learn the high dimensional data representations. The main 
contributions of the paper are summarized below. 

1) A new paradigm for processing hyperspectral image data utilizing quaternions has been provided. 

2) The network, utilizing quaternion algebra, can exploit the interrelationships between the spectral bands of the 
hyperspectral data along with spatiospectral processing. 

3) The proposed work is one of the first attempts to successfully utilize quaternion algebra specifically for deep 
learning-based hyperspectral image classification.  

The rest of the paper is organized as follows. Section 2 presents the background of the quaternion theory and quaternion 
neural networks. Section 3 describes the application of the quaternion theory for hyperspectral data and the proposed QHIC 
network. In section 4, the network setup, experimental results, and comparison with other approaches are provided. Finally, 
Section 5 summarizes the contributions of this work and discusses future directions. 
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2. BACKGROUND 
A quaternion is a hypercomplex number, which is an extension of the real and complex domain and was first described by 
Hamilton in 1843. Mathematically, a quaternion Q in the four-dimensional domain of H can be represented as: 

𝑄𝑄 = 𝑟𝑟1 + 𝑥𝑥𝒊𝒊 + 𝑦𝑦𝒋𝒋 + 𝑧𝑧𝒌𝒌, 𝑟𝑟, 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ R, (1) 

R stands for real value domain, and thus 𝑟𝑟, 𝑥𝑥,𝑦𝑦, and 𝑧𝑧 are all real numbers. 1, 𝒊𝒊, 𝒋𝒋, and 𝒌𝒌 are the quaternion unit vectors. In 
a quaternion Q, 𝑟𝑟 is the real part (Re(Q)) while 𝑥𝑥𝒊𝒊 + 𝑦𝑦𝒋𝒋 + 𝑧𝑧𝒌𝒌 is the imaginary part with 𝒊𝒊2 =  𝒋𝒋2 =  𝒌𝒌2 = 𝒊𝒊𝒊𝒊𝒊𝒊 =  −1. If 
𝑟𝑟 = 0, then Q is called a pure quaternion. Similar to the real and complex numbers, a series of operations can be defined 
for quaternions: 

• Addition or subtraction: 𝑄𝑄1 ± 𝑄𝑄2 = (𝑟𝑟1 ± 𝑟𝑟2) + (𝑥𝑥1 ± 𝑥𝑥2)𝒊𝒊 + (𝑦𝑦1 ± 𝑦𝑦2)𝒋𝒋 + (𝑧𝑧1 ± 𝑧𝑧2)𝒌𝒌. (2) 

• Scalar multiplication: 𝜆𝜆𝜆𝜆 =  𝜆𝜆𝜆𝜆 + 𝜆𝜆𝜆𝜆𝒊𝒊 + 𝜆𝜆𝜆𝜆𝒋𝒋 + 𝜆𝜆𝜆𝜆𝒌𝒌. (3) 

• Conjugation: 𝑄𝑄∗ =  𝑟𝑟1 − 𝑥𝑥𝒊𝒊 − 𝑦𝑦𝒋𝒋 − 𝑧𝑧𝒌𝒌. (4) 

• Norm: |𝑄𝑄| =  �𝑄𝑄𝑄𝑄∗ =  �𝑟𝑟2 + 𝑖𝑖2 + 𝑗𝑗2 + 𝑘𝑘2. (5) 

• Quaternion multiplication:  
𝑄𝑄1⨂𝑄𝑄2 = (𝑟𝑟1𝑟𝑟2 − 𝑥𝑥1𝑥𝑥2 − 𝑦𝑦1𝑦𝑦2 − 𝑧𝑧1𝑧𝑧2) + (𝑟𝑟1𝑥𝑥2 + 𝑥𝑥1𝑟𝑟2 + 𝑦𝑦1𝑧𝑧2 − 𝑧𝑧1𝑦𝑦2)𝒊𝒊 
                                                    +(𝑟𝑟1𝑦𝑦2 − 𝑥𝑥1𝑧𝑧2 + 𝑦𝑦1𝑟𝑟2 + 𝑧𝑧1𝑥𝑥2)𝒋𝒋 + (𝑟𝑟1𝑧𝑧2 + 𝑥𝑥1𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 + 𝑧𝑧1𝑟𝑟2)𝒌𝒌 

 
(6) 

The proposed QHIC network will utilize these operations. Quaternion convolution can be obtained by extending the 
quaternion multiplication or Hamilton product criteria. Unlike the real-valued multiplication, it is to be noted that, 
quaternion space multiplication is not commutative, implying 𝑄𝑄1⨂𝑄𝑄2 ≠ 𝑄𝑄2⨂𝑄𝑄1. 
2.1 Quaternion convolution 

The quaternion convolution 𝑂𝑂 = 𝑊𝑊 ∗ 𝐼𝐼, as described in [39], can be obtained by convolving the quaternion weight matrix 
with the input vector. This is equivalent to the Hamilton product of the quaternion weight 𝑊𝑊 = 𝑊𝑊𝑟𝑟 + 𝑊𝑊𝑥𝑥𝒊𝒊 + 𝑊𝑊𝑦𝑦𝒋𝒋 + 𝑊𝑊𝑧𝑧𝒌𝒌, 
with the input quaternion 𝐼𝐼 = 𝐼𝐼𝑟𝑟 + 𝐼𝐼𝑥𝑥𝒊𝒊 + 𝐼𝐼𝑦𝑦𝒋𝒋 + 𝐼𝐼𝑧𝑧𝒌𝒌 and is defined as follows: 

𝑊𝑊 ∗ 𝐼𝐼 = �𝑊𝑊𝑟𝑟 ∗ 𝐼𝐼𝑟𝑟 −𝑊𝑊𝑥𝑥 ∗ 𝐼𝐼𝑥𝑥 −𝑊𝑊𝑦𝑦 ∗ 𝐼𝐼𝑦𝑦 −𝑊𝑊𝑧𝑧 ∗ 𝐼𝐼𝑧𝑧� + 
                 �𝑊𝑊𝑥𝑥 ∗ 𝐼𝐼𝑟𝑟 + 𝑊𝑊𝑟𝑟 ∗ 𝐼𝐼𝑥𝑥 −𝑊𝑊𝑧𝑧 ∗ 𝐼𝐼𝑦𝑦 + 𝑊𝑊𝑦𝑦 ∗ 𝐼𝐼𝑧𝑧�𝒊𝒊 + 
                  �𝑊𝑊𝑦𝑦 ∗ 𝐼𝐼𝑟𝑟 + 𝑊𝑊𝑧𝑧 ∗ 𝐼𝐼𝑥𝑥 + 𝑊𝑊𝑟𝑟 ∗ 𝐼𝐼𝑦𝑦 −𝑊𝑊𝑥𝑥 ∗ 𝐼𝐼𝑧𝑧�𝒋𝒋 + 
                   �𝑊𝑊𝑧𝑧 ∗ 𝐼𝐼𝑟𝑟 −𝑊𝑊𝑦𝑦 ∗ 𝐼𝐼𝑥𝑥 + 𝑊𝑊𝑥𝑥 ∗ 𝐼𝐼𝑦𝑦 + 𝑊𝑊𝑟𝑟 ∗ 𝐼𝐼𝑧𝑧�𝒌𝒌, 

and can be represented in the matrix form as follows: 

(7) 

⎣
⎢
⎢
⎡𝑊𝑊𝑟𝑟 −𝑊𝑊𝑥𝑥 −𝑊𝑊𝑦𝑦 −𝑊𝑊𝑧𝑧

𝑊𝑊𝑥𝑥 𝑊𝑊𝑟𝑟 −𝑊𝑊𝑧𝑧 𝑊𝑊𝑦𝑦
𝑊𝑊𝑦𝑦
𝑊𝑊𝑧𝑧

𝑊𝑊𝑧𝑧
−𝑊𝑊𝑦𝑦

𝑊𝑊𝑟𝑟 −𝑊𝑊𝑥𝑥
𝑊𝑊𝑥𝑥 𝑊𝑊𝑟𝑟 ⎦

⎥
⎥
⎤
∗  �

𝐼𝐼𝑟𝑟
𝐼𝐼𝑥𝑥
𝐼𝐼𝑦𝑦
𝐼𝐼𝑧𝑧

� =  �

𝑂𝑂𝑟𝑟
𝑂𝑂𝑥𝑥
𝑂𝑂𝑦𝑦
𝑂𝑂𝑧𝑧

� (8) 

As seen in eq (7) & (8), Hamilton product allows a quaternion neural network to exploit the interrelationship between the 
features of the quaternion. Notice that the result of the quaternion convolution, as stated in eq (8), produces a unique linear 
combination of all the axes for the result of a single axis. This is the resultant of the Hamilton product, which forces each 
axis of the kernel (weight matrix) to interact with each axis of the quaternion hyperspectral image. This strategy helps in 
learning complicated features while suppressing the degrees of freedom of the model's training parameter. It can be seen 
that the degree of freedom of the weight matrix 𝑊𝑊is 4, while the real-valued neural network would have a parametrization 
of 4 x 4 = 16, which leads to a 4-fold saving. Furthermore, the quaternion convolution can be viewed as the result of adding 
and subtracting four ordinary convolutions. This significantly simplifies the quaternion convolution operation and can be 
easily implemented as neural network architecture. The weight initialization recommendations given in [39] are followed 
for the proposed network in this paper. 
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3. QUATERNION HYPERSPECTRAL IMAGE CLASSIFICATION NETWORK 
This section defines the ways in which hyperspectral data can be represented as a quaternion and its interpretations, the 
internal hyperspectral quaternion representations, and the neural network architecture. 

3.1 Hyperspectral quaternion representation 

The proposed QHIC network utilizes the quaternion extension of the real-valued hyperspectral data along with the real-
valued matrices to perform quaternion operations. To achieve this, the first step is to convert the hyperspectral input data 
to the quaternion domain. In the traditional color image case, each of the three channels is associated with the three 
imaginary axes of the quaternion space and having either zeros or the gray levels related to the real axis. Similarly, in the 
hyperspectral case, the total number of bands or the depth of the hyperspectral data cube can be divided into four groups, 
and each group can be associated with each of the axes of the quaternion domain. In case the total number of bands is not 
divisible by 4, it is padded with additional zero-bands. Conceptually, the hyperspectral data split is very similar to the color 
image quaternion extension, with an exception in the number of channels per group. This is illustrated in Figure 1, where, 
in the color image instance, each group (Red, Green, Blue) has a single response (channel), ignoring the cross-talk from 
the neighboring group. In contrast, in the hyperspectral instance, each group has multiple responses (channel). Another 
approach for representing the hyperspectral data in the quaternion space is visualized in Figure 1 (c). This approach 
combines unrelated wavelengths into a single group. In other words, all the blue color bands will be combined into a single 
group associated with the real axis. In this particular illustration, this would combine 300 nm, 480 nm, and 730 nm in a 
single group. In contrast, the approach modeled in Figure 1 (b), related wavelengths are grouped, and it follows the physical 
representations of a hyperspectral image and helps in extracting the interrelationships between these physically related 
groups. The approach illustrated in Figure 1 (b) is used in this paper.  

   
(a)  (b)  (c) 

Figure 1: Visualization of color camera (a) and hyperspectral camera (b & c) wavelength split for quaternion representation. 

The proposed QHIC network is the quaternion extension of the real-valued hyperspectral image classification network 
defined in [37]. In the quaternion convolution layer (for both 3D and 1D), all the parameters are quaternions, including 
inputs, outputs, and weights. The quaternion convolution algebra as defined in eq (7) and eq (8) will be utilized and 
consequently, the input vector of size N will have to be divided into four parts following the method illustrated in Figure 
1 (b). The first part will correspond to 𝑟𝑟, the second part will correspond to 𝑥𝑥𝒊𝒊, the third to 𝑦𝑦𝒋𝒋, and the fouth to 𝑧𝑧𝒌𝒌, and the 
quaternion will be defined as 𝑄𝑄 = 𝑟𝑟1 + 𝑥𝑥𝒊𝒊 + 𝑦𝑦𝒋𝒋 + 𝑧𝑧𝒌𝒌.  

3.2 A general overview of the architecture 

A joint spatiospectral model that can not only merge the spatial information with the spectral signature but can also exploit 
the inter-band correlation of the hyperspectral data is presented in this paper. The proposed architecture uses a 3-D 
quaternion-based convolution that simultaneously processes the spatial and spectral data to make maximum utilization of 
the rich information present in the hyperspectral data with low parameter cost. To perform 3D convolutions, each pixel of 
the quaternion domain hyperspectral image will be associated with an 𝑛𝑛 x 𝑛𝑛 spatial neighborhood and 𝑓𝑓spectral bands such 
that 𝑓𝑓 ≤ total number of bands/4, to account for the quaternion split. Thus, each pixel can be considered as a volume 
defined by 𝑛𝑛 x 𝑛𝑛 x 𝑓𝑓. An illustrative example of the 3D quaternion convolution is provided in Figure 2. As seen in the 
illustration, a 3 x 3 x 3 quaternion 3D kernel is used for convolution. Notice that each axis of the volumetric kernel (𝑟𝑟, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘- 
axes) interact with each axis of the input volumetric quaternion image data. Such an approach of reusing the filters in a 
unique combination for each axis is the core idea of learning the interrelationships between these axes. 
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An overview of the QHIC network architecture is presented in Figure 3. To have an efficient and deep representation of 
the input hyperspectral image, various blocks of convolutional layers are stacked on top of each other. To start with, a set 
of 3D quaternion convolutional layers are used to handle the volumetric input data. These layers encompass 3D quaternion 
kernels that perform quaternion convolution on the height, width, and the depth axis of the input. This stack of 3D layers 
is followed by a set of 1D quaternion convolutional layers that focus on the spectral content discarding the spatial 
neighborhood. This is followed by an average pooling and fully connected layer and ends with a softmax classifier. In 
effect, the architecture produces 3D features that are gradually transitioned to the 1D feature. To reduce from 3D volume 
to 1D vectors, careful considerations of kernel strides and paddings are utilized. Stride represents the consecutive positions 
of the convolutional kernel and padding is used to ensure that the boundary conditions are handled to make sure that the  

convolution output retains the size of the input. Each layer 𝑙𝑙 of the 3D quaternion convolution is characterized by 𝑘𝑘𝑙𝑙 number 
of quaternion kernels of size (𝑚𝑚𝑙𝑙 x 𝑚𝑚𝑙𝑙 x 𝑓𝑓𝑙𝑙), where 𝑚𝑚𝑙𝑙 ≤ 𝑛𝑛 and 𝑓𝑓𝑙𝑙 ≤ 𝑓𝑓. These convolutional layers serve the dual purpose 
of acting as the spatiospectral 3D quaternion convolution with stride one and serving as the pooling layer with stride ≥ 2. 
Further, a combination of removal of padding along the spatial dimension, dilation, and stride leads the way to 
progressively reduce the data dimension and transitions to the 1D vector. This is fed to the 1D quaternion convolutional 
layers, each with 𝑝𝑝𝑙𝑙 kernels. Finally, the output 1D vectors are fed to a fully connected layer, which ends with a softmax 
classifier. The output of the classifier is equal to the number of target classes. An example of the proposed QHIC network 
architecture is illustrated in Figure 4, where 𝑓𝑓 = 104, 𝑛𝑛 = 5, 𝑓𝑓𝑙𝑙 = 3 or 2, and 𝑚𝑚𝑙𝑙 = 3 or 1. Strides are alternated between 
1 and 2 to create the pooling effect after every convolution. 

 
Figure 3: Overview of the Quaternion Hyperspectral Image Classification architecture. 

The architecture utilizes the Adam optimizer with weight decay was selected for this use case after testing various other 
optimizers. ReLU activations, along with a 0.5 probability dropout on the output of the 1D quaternion convolution layer 
with quaternion weights initialization as specified in [39] was used. The learning rate was initially set to 0.001 to rapidly 
search for the local minimum and used the reduce learning rate on plateau scheduler to adjust the learning rate during 
training. 

 

 

(a) (b) 
Figure 2: Visualization of (a) 3D quaternion convolution for hyperspectral data and (b) a quaternion 3D kernel of size 3 x 3 x 3.  
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Figure 4: Example illustration of the evolution of feature shapes of each layer. 

4. EXPERIMENTS AND ANALYSIS 
In this section, the experiments conducted on various hyperspectral datasets using the proposed QHIC network are 
presented and compared with other state-of-the-art approaches. 

4.1 Datasets 

Experiments are conducted on the Pavia University, Pavia center datasets, which were acquired by the reflective optics 
system imaging spectrometer (ROSIS) sensor and the Indian Pines dataset which are collected by the airborne 
visible/infrared imaging spectrometer (AVIRIS) sensor and the images are as shown in Figure 5. The Pavia University 
dataset comprises of the data captured over the Engineering School at the University of Pavia and presents nine classes, 
including water, trees, asphalt, self-blocking bricks, bitumen, tiles, shadows, meadows, and bare soil. The image resolution 
is 610 x 340 pixels with a spatial resolution of 1.3 meters per pixel. The image consists of 103 spectral bands ranging from 
430 to 860 nm. The Pavia Center data comprises of 102 spectral band datasets with 1096 x 1096 pixels and a spatial 
resolution of 1.3 meters per pixel. This dataset also consists of nine classes, including asphalt, meadows, gravel, trees, 
painted metal sheets, bare soil, bitumen, self-blocking bricks, and shadows. The Indian pines dataset was acquired over 
the Indian Pines agricultural site in northwestern Indiana. It comprises of 220 spectral bands ranging from 400 to 2500 nm, 
of which 20 spectral bands cover the regions of water absorption and have not been considered for the experiments. The 
image consists of 145 x 145 pixels with a spatial resolution of 20 meters per pixel. It has 16 different classes, including 
alfalfa, corn-no-till, corn-min, corn, grass-pasture, grass-trees, grass-pasture-mowed, hay-windrowed, oats, soybean-no-
till, soybean-min-till, soybean-clean, wheat, woods, building-grass-trees, stone-steel-towers. 

   
(a) (b) (c) 

Figure 5: Hyperspectral dataset. (a) Pavia University, (b) Pavia Center, (c) Indian Pines 

4.2 Different architectures 

After conducting extensive sets of experiments, it was found that doubling the number of filters after every 3D pooling 
layer and doubling the filters for the first 1D convolution layer gave the best results. Figure 6 shows the overall architecture 
with the variations in the depth of the network, where a convolution layer with stride as one is denoted by QConv and 
convolution layer with stride as two is denoted by QPool and the number of filters per layer is shown in [num filters]. The 
schemes a-d represent variations in network depth with 4, 6, and two 8 layers deep network and are as detailed below. 
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Figure 6: 3D quaternion convolution architecture overview. 

1) Four-layer network (a): This network is inspired by the real-valued network described in [37] and is created by 
two 3D layers and two 1D layers along with FC layer and softmax. The two layers in both the 3D and 1D instance 
are alternate between convolution layers with stride as 1 and 2, respectively, to play the role of conv layer and 
pooling layer. 

2) Six-layer network (b): To test the performance of deeper architectures, a six-layer network was created with four 
3D layers and two 1D layers. The duality of conv/pool layers is applied sequentially to the network, and the 
number of filters is doubled after every 3D pooling layer and at the beginning of the 1D layer. 

3) Eight-layer network (c and d): To estimate whether the addition of more spatiospectral 3D layers or the addition 
of more spatially localized and spectrally dominant 1D layers will improve the performance of the system, two 
eight-layer networks were developed. In the first network, four 3D layers and four 1D layers were used. Similarly, 
in the second network, six 3D layers and two 1D layers were used. In both the networks, the filter size is doubled 
after every 3D pooling layer, and at the beginning of the 1D layer and the dual conv/pool layer scheme is 
maintained. 

Additionally, to estimate the tradeoff between deeper vs. wider networks, each of the above-mentioned network schemes 
(a-d) is tested with 8, 12, and 16 as the initial number of filters. This study will help in understanding the selection of the 
number of filters or the width with respect to the network depth to maximize accuracy and minimize cost. 

4.3 Experiments and results 

 
Table 1: Accuracy level of the four-layer architecture (network a) 

Spatial 
neighborhood 

Initial number 
of filters 

Number of parameters 
[Pavia, Indian Pines] 

Pavia 
University 

Pavia Center Indian Pines 

3 x 3 8 1794, 1913 64.750 % 93.664 %  52.202% 

5 x 5  8 1794, 1913 69.227 % 95.007 % 47.603% 

7 x 7 8 1794, 1913 59.799 % 94.450 % 45.002% 

3 x 3 12 3682, 3857 76.142 % 96.980 % 50.138% 

5 x 5  12 3682, 3857 73.950% 96.569 % 57.777% 

7 x 7 12 3682, 3857 74.292% 96.435 % 50.642% 

3 x 3 16 6234, 6465 74.545% 97.250 % 54.266% 

5 x 5  16 6234, 6465 76.529% 97.660 % 51.406% 

7 x 7 16 6234, 6465 76.329% 96.336 % 52.869% 
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Experiments were conducted on the above mentioned 4-, 6-, 8-layer architectures. All tests were executed on an octa-core 
Intel i9-9900k CPU laptop with Nvidia RTX 2080 GPU. The results presented from the proposed architectures were 
obtained using the PyTorch library [40]. For fair comparisons, Pavia University and Pavia Center have been trained with 
5% of data and 30% of data for Indian pines. Also, since the number of channels in the input datasets varies for the Pavia 
dataset and Indian Pines dataset, the number of parameters varies slightly and is indicated the tables given below. 

Table 2: Accuracy level of the six-layer architecture (network b) 

Spatial 
neighborhood 

Initial number 
of filters 

Number of parameters 
[Pavia, Indian Pines] 

Pavia 
University 

Pavia Center Indian Pines 

3 x 3 8 2658, 2889 76.307% 97.489% 64.733% 

5 x 5  8 2658, 2889 78.541% 97.309% 66.699% 

3 x 3 12 5482, 5825 78.487% 97.707% 62.084% 

5 x 5  12 5482, 5825 77.939% 97.396% 62.051% 

3 x 3 16 9306, 9761 76.575% 97.893% 81.212% 

5 x 5  16 9306, 9761 76.888% 97.833% 80.546% 

Table 3: Accuracy level of the eight-layer architecture (network c) 

Spatial 
neighborhood 

Initial number 
of filters 

Number of parameters 
[Pavia, Indian Pines] 

Pavia 
University 

Pavia Center Indian Pines 

3 x 3 8 5346, 5577 75.709% 97.567% 68.747% 

5 x 5  8 5346, 5577 80.121% 97.753% 87.096% 

3 x 3 12 11434, 11777 81.420% 97.780% 87.177% 

5 x 5  12 11434, 11777 83.568% 97.680% 90.834% 

3 x 3 16 19802, 20257 69.216% 97.959% 84.690% 

5 x 5  16 19802, 20257 85.694% 98.313% 87.551% 

Table 4: Accuracy level of the eight-layer architecture (network d) 

Spatial 
neighborhood 

Initial number 
of filters 

Number of parameters 
[Pavia, Indian Pines] 

Pavia 
University 

Pavia Center Indian Pines 

3 x 3 8 10018, 10473 79.582% 98.448% 84.105% 

5 x 5  8 10018, 10473 87.486% 97.130% 73.980% 

3 x 3 12 21706, 22385 77.867% 97.773% 76.418% 

5 x 5  12 21706, 22385 89.464% 98.270% 86.413% 

3 x 3 16 37850, 38753 89.267% 98.426% 86.348% 

5 x 5  16 37850, 38753 89.594% 98.469% 91.971% 

 

The four-layer architecture results have been presented in Table 1. The initial number of filters refer to the number of 
output filters for the first quaternion convolution. The number of filters for the following stages can be easily inferred by 
following "filter size is doubled after every 3D pooling layer and at the beginning 1D layer". The spatial neighborhood 
size is an essential factor to be determined and is highly dependent on the data. As seen in this table for some dataset, a 
spatial neighborhood of 3 x 3 works well, while for others, 5 x 5 works well. In general, 7 x 7 was found to be an expanded 
area and did not yield very impressive results. Similarly, tables 2-4 gives the accuracy levels for the various network 
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architectures (b-d). As seen in these tables, the deeper network gives better results than the shallower ones; however, they 
have higher parametric cost. Also, comparing network c and network d, the addition of the 3D quaternion convolutional 
layer adds more value than adding a 1D layer. To decrease the parametric cost of deeper network architectures, 1 x 1 x 3 
pool layers along with a fewer number of filters were employed, and the results have been tabulated in Table 5.  

Table 5: Accuracy levels of the squeezed architectures (network a-d) 

network Spatial 
neighborhood 

Initial number 
of filters  

Number of parameters 
[Pavia, Indian Pines] 

Pavia 
University 

Pavia Center Indian Pines 

a 5 x 5 12 870, 961 72.346% 96.486% 55.713% 

 5 x 5  16 1218, 1337 74.336% 96.884% 51.081% 

b 3 x 3 12 2654, 2745 75.404% 97.091% 65.887% 

 3 x 3 16 3658, 3777 76.324% 97.843% 61.498% 

c 5 x 5  12 4202, 4293 79.073% 98.256% 83.732% 

 5 x 5  16 6362, 6481 79.902% 98.161% 78.807% 

d 5 x 5  16 7570, 7689 82.697% 98.321% 83.927% 

Table 6: Comparison with state-of-the-art methods 

network Spatial 
neighborhood 

Initial number 
of filters  

Number of parameters  Pavia 
University 

Pavia 
Center 

Indian Pines 

d 5 x 5  16 37850 89.594% - - 

d 5 x 5  16 7570 - 98.321%  

d 5 x 5  16 38753 - - 91.971% 

b* 5 x 5 12 5482 95.111% - - 

b* 5 x 5 8 2658 - 98.111% - 

[35] - - 610600 96.73% 98.88% 93.61 

[41] - - 81408 92.56% - - 

[42] - - - 92.99 ± 2.02% - 86.62±2.36% 

[43] - - 29890 94.57% 98.52%  

[14] - - - - - 85.76% 

[37] 5 x 5 - 6862 97.2% - - 

[37] 3 x 3 - 3681 - 98.9% - 

*indicates that 10% of the total available samples were used for training. 

 

Finally, comparisons with other state-of-the-art networks have been tabulated in Table 6. As seen in the table, the proposed 
QHIC network is producing results on par with other methods, and it utilizes far fewer parameters. The initial hypotheses 
that the network is robust to the amount of data available for training have been proved incorrect. As seen in the table, 
when training with 5% of data, the results for Pavia University and Indian Pines will not give very high accuracy. However, 
when the training data is increased to 10%, the accuracy increases sharply. This is indicative that the models need to be 
more robust to produce highly accurate results.  
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5. CONCLUSION 
Hyperspectral image classification requires careful consideration of both spatial and spectral components. The proposed 
QHIC network, with its ability to process volumetric data and the ability to extract the correlation between the spectral 
bands helps in accurately classifying with a very low parametric cost. One of the primary concerns now is to further the 
research into the use of quaternions for hyperspectral data and enhance the created models to be more robust to the 
shortcomings of the training data. As future work, the preliminary quaternion network introduced in this work can be 
extended to other network architectures like Residual and Dense networks and explore the possibility of extending the 
quaternion hyperspectral space to tackle other issues such as hyperspectral band selection, unmixing, target and anomaly 
detection, and super-resolution.  
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