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a b s t r a c t 

Conventional image-motion based methods for structure from motion first compute optical flow, then 

solve for the 3D motion parameters based on the epipolar constraint, and finally recover the 3D geom- 

etry of the scene. However, errors in optical flow due to regularization can lead to large errors in 3D 

motion and structure. This paper investigates whether performance and consistency can be improved by 

avoiding optical flow estimation in the early stages of the structure-from-motion pipeline, and it proposes 

a new direct method based on image gradients (normal flow) only. Our main idea lies in a reformulation 

of the positive-depth constraint – the basis for estimating egomotion from normal flow – as a contin- 

uous piecewise differentiable function, which allows the use of well-known minimization techniques to 

solve for 3D motion. The 3D motion estimate is then refined and structure estimated adding a regulariza- 

tion based on depth. Experimental comparisons on standard synthetic datasets and the real-world driving 

benchmark dataset Kitti using three different optic flow algorithms show that the method achieves better 

accuracy in all but one case. Furthermore, it outperforms existing normal flow based 3D motion estima- 

tion techniques. Finally, the recovered 3D geometry is shown to be also very accurate. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The problem of egomotion or self-motion estimation from a 

oving monocular observer, after many years of research, is still 

onsidered a difficult problem. Recently it has attracted renewed 

ttention in the Computer Vision community due to emerging ap- 

lications in robotics, autonomous navigation and augmented real- 

ty. Physically, the motion of the camera can be interpreted as the 

inear combination of a 3D translation followed by a 3D rotation. 

he instantaneous motion captured contains information about the 

amera’s 3D motion and the 3D scene geometry. Egomotion esti- 

ation amounts to computing five parameters: three for the 3D 

otation and two for the axis of the 3D translation, because with- 

ut additional information, there is an ambiguity between transla- 

ional velocity and depth. Based on the 3D motion, the 3D relative 

tructure can be estimated. 

The classic approach to estimating structure and motion em- 

loys three steps: first, the full dense optical flow between succes- 

ive frames is estimated; second, the 3D translation and 3D rota- 

ion are recovered using the optical flow, possibly making assump- 
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ions about the camera motion and the scene; third, the 3D geom- 

try up to the scaling factor is estimated [1–4] . Instead of dense 

ow, a sparse set of feature correspondences is often used, as is 

ommon in standard visual odometry and SLAM methods [5–7] . 

owever, recent SLAM formulations [8] do not estimate 3D mo- 

ion through constraints independent of depth, but estimate 3D 

otion and depth combined by minimizing photometric/geometric 

istance that explain image patch matches. The focus of this paper 

s on the evaluation of depth independent constraints. 

The main constraint to estimate 3D motion from video indepen- 

ent of structure, is the epipolar constraint. However, it requires as 

nput optical flow or correspondences. One problem is that optical 

ow cannot be estimated accurately. Most top optical flow tech- 

iques are based on the work of Horn and Schunck [9] . The key 

ssumption is that the change of the intensity over a small time 

nterval remains constant. Since this only provides one equation 

nd flow fields are two-dimensional, additional constraints on the 

ow field are enforced assuming a smooth variation of the field 

patially in local neighborhoods [10–12] . These assumptions cause 

he optical flow to be imprecise at object contours, where there are 

cclusions or when the motion is large. Motion fields do not vary 

moothly close to object boundaries, occlusions cause mismatches, 

nd large motions violate the assumption of local intensity con- 

tancy. 

https://doi.org/10.1016/j.patcog.2020.107759
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107759&domain=pdf
mailto:fbarranco@ugr.es
https://doi.org/10.1016/j.patcog.2020.107759
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Another motion constraint, independent of structure, is the 

epth positivity constraint [13–17] also referred to as cheirality 

onstraint [18] . The scene has to be in front of the camera, and

hus the depth has to be positive. This constraint can be used di- 

ectly from ”measurable image quantities”, i.e. the spatial and tem- 

oral image intensity gradients, or normal flow, in so-called direct 

ethods. The positivity constraint is the only constraint applica- 

le to normal flow without making assumptions on scene depth or 

hape. Although, it can also be applied to optical flow. It has not 

een popular, because there has not been a formulation allowing 

o implement the depth positivity inequality in an efficient way. 

his work proposes such a formulation of depth positivity, borrow- 

ng from current machine-learning models. On its basis then a new 

irect method for estimation of 3D motion and structure is pro- 

osed. 

The main contributions of this paper are: 1) a new formula- 

ion of the depth positivity constraint that allows for efficient min- 

mization using a negative ReLu function; 2) a new direct method 

or egomotion and 3D structure estimation from normal flow only, 

hat starts with estimating 3D motion from the depth positivity 

onstraint, then uses a regularization to obtain depth, and finally 

efines both estimates; 3) a comparison of the method to a num- 

er of studies using optical flow and to other direct approaches us- 

ng normal flow on a number of datasets including real-world se- 

uences, which show that the method outperforms previous meth- 

ds using different error metrics. 

. Related methods 

Longuet-Higgins in his seminal work presented the constraints 

or computing egomotion from image measurements [19] . Classic 

pproaches that use optical flow model the 3D rigid displacement 

etween frames with instantaneous 3D velocity [20] . Bruss and 

orn [21] used the weighted bilinear constraint and solved for the 

gomotion using a least-squares optimization. Kanatani [22] pro- 

osed a method based on the differential epipolar constraints that 

ccounts and corrects for the bias in the translational velocity. 

odern optimal methods compute more accurate solutions at the 

xpense of nonlinear objective functions and the risk of falling 

nto local minima [3] . Zhang [4] considered a two-step iterative 

pproach that estimates the translation separately from the rota- 

ion, using numerical Gauss-Newton approximation. Pauwels and 

an Halle [3] proposed a method that integrates depth cues into 

he minimization of the squared-distance image reprojection er- 

or. This method improved previous works by reducing the risk of 

alling into local minima. Instead of using random initializations or 

nitializations from classical linear method solutions, the authors 

sed a weighting strategy to change the complexity at each iter- 

tion, making the algorithm more robust. Raudies and Neumann 

1,2] also used a polynomial solution for the bilinear constraint 

mploying auxiliary variables (as done in [22] ) for a more efficient 

ethod of linear complexity; it applies RANSAC to reduce the im- 

act of noise as well. For a complete review on 3D motion estima- 

ion methods see [2] . 

On the other hand, many methods are feature-based. During 

he last years in the context of autonomous navigation, most 3D 

otion approaches proposed are SLAM methods. The most recent 

ork from Engel et al. [8] presented a real-time method for visual 

dometry that jointly estimates egomotion and geometry with- 

ut using a smoothing prior, but by sampling a set of locations 

hroughout the sequence. The same authors developed LSD-SLAM 

23] , which uses a photometric error measure and a geometric 

moothing prior to solve the optimization on a full dense optical 

ow field throughout consecutive frames. Mur-Artal et al. [6] pre- 

ented an open-source framework that allows for odometry es- 

imation, using a geometric distance measure without geometric 
2 
rior. Ranftl et al. [24] proposed a monocular depth estimation ap- 

roach that jointly solves for egomotion using a full dense regu- 

arized optical flow field assuming its smoothness. Finally, Forster 

t al. [7] also described a probabilistic hybrid approach for semi- 

irect visual odometry for UAVs, that uses a formulation based on 

 geometric prior for the initialization but avoids its use in the sub- 

equent model optimization. 

Several works in the literature have studied direct methods that 

se normal flow avoiding optical flow estimation. Aloimonos and 

rown [25] studied the case of rotation, Horn and Weldon [13] , 

eghadaripour and Horn [14] and Sinclair et al. [26] proposed nor- 

al flow based methods for translation and studied the robust- 

ess, and Carlsson [15] studied constraints on scene structure for 

nique 3D motion estimation. Fermüller and Aloimonos developed 

ethods [17,27] for the general case, that formulate 3D motion es- 

imation as a pattern recognition problem. Subsets of normal flow 

ectors define global patterns in the image plane whose location 

ncodes the egomotion parameters. Finally, Brodsky et al. [28] es- 

imated 3D motion from normal flow assuming planar patches, 

nd Ji and Fermüller based on this method proposed a solution 

29] that combines the estimated motion fields from consecutive 

rames using a constraints on the inverse depth for regular image 

atches and for segmented regions. 

More recently, Hui and Chung [30] used a binocular sequence 

ut computed monocular motion with normal flows and then esti- 

ated depth from the stereo system without explicitly computing 

orrespondences. They optimized for the 3D motion using the so- 

alled Apparent Flow Direction (AFD) and Apparent Flow Magni- 

ude (AFM) constraints. The first constraint, AFD, is a relaxation of 

he positive depth constraint. The second constraint, AFM, affects 

he motion magnitude and only uses the normal flows orthogo- 

al to the translational component. The same authors in [31] pre- 

ented a more comprehensive evaluation and compared their re- 

ults with optical flow methods. In [32] the authors described a 

wo-step method that first estimates the 3D motion using only the 

ormal flow vectors orthogonal to the translational motion com- 

onent. Next the method solves for the rotation discarding the so- 

utions that lie out of the half-plane consistent with the normal 

ow estimates, defined by the first step. In [33] the same authors 

tilize k-means clustering to group the flow vectors that support 

he same FOE candidate. Next, the rotational parameters are esti- 

ated using RANSAC and finally, a confirmation strategy based on 

he half-plane constraint helps finding potential solutions. Finally, 

sing the same normal flow constraints, other works extract the 

D structure from the scene [30,34] . 

. Egomotion estimation from normal flow 

Let us first rephrase the egomotion problem definition as fol- 

ows: recover the 3D trajectory and pose of a monocular observer 

ndergoing a rigid motion in a stationary environment. Assuming 

hat the coordinate system of the camera is centered in the prin- 

ipal point and f is the focal length, the 3D velocity v of a point 

 is defined as v = −t − w × x , where t = (t x , t y , t z ) T is the velocity

f translation, w = (w x , w y , w z ) T is the velocity of rotation, and ×
epresents the cross product. Then, the motion field u ( x ) = (u, v ) T 
t location x = (x, y ) T is related to the 3D velocities [35] as 

 ( x ) = 

1 

Z( x ) 
A ( x ) t + B ( x ) w (1) 

ith 

 ( x ) = 

[
− f 0 x 
0 − f y 

]
, 

 ( x ) = 

[ 
xy 
f 

(
− x 2 

f 
− f 

)
y (

y 2 

f 
+ f 

)
− xy 

f 
−x 

] 

(2) 
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here the motion is expressed as the sum of the rotational com- 

onent B ( x ) w , and the translational component 1 
Z( x ) 

A ( x ) t , which

lso depends on the depth of the scene Z. Due to this dependency 

here are five parameters to be estimated, namely the translational 

elocity axis (t x /t z , t y /t z ) 
T and the rotational velocity (w x , w y , w z ) 

T .

.1. Normal flow 

To estimate motion fields, we use the so-called optical flow con- 

traint (see [9] ), which assumes that the intensity I at a point re- 

ains constant over a short time interval δt . Approximating the 

mage brightness function with a first order Taylor expansion, we 

btain ( Eq. (3) ) 

 = I(x, y, t) − I(x + uδt, y + v δt, t + δt) ≈ I x u + I y v + I t , (3)

here I x , I y , I t are the partial derivatives of the brightness, and

 = (u, v ) is the image motion. Eq. (3) provides one constraint and

efines the flow component parallel to the gradient. To obtain a 

econd component, additional assumptions, such as smoothness of 

he flow or a parametric model in the image coordinates are as- 

umed. 

Direct methods do not require computing the two-dimensional 

ptical flow, but instead use directly the image gradients as input 

 Eq. (3) ). For a geometric interpretation, we consider the projection 

f the optical flow on the gradient direction, called the normal flow , 

hich amounts to: 

 n ( x ) = 

−I t ( x ) 

‖ ∇I( x ) ‖ 

2 
∇I( x ) (4) 

here ∇ I = (I x , I y ) is the intensity spatial gradient. Given the gra-

ient direction as a unitary vector n = (n x , n y ) , the normal flow

peed amounts to | u n ( x ) | = n ( x ) · u ( x ) where · represents the in-
er product (see also [17] ). From now on, we use u n ( x ) instead of

 u n ( x ) | in order to simplify the notation. Considering the normal 

ow instead of the optical flow, we obtain from ( Eq. (1) ) by multi-

lying both sides with n = (n x , n y ) : 

 n ( x ) = 

1 

Z( x ) 
n ( x ) · A ( x ) t + n ( x ) · B ( x ) w (5) 

.2. Constraints for the objective function 

The 3D motion parameters and the depth are estimated using 

arious optimization constraints. A first approximation minimizes 

he squared distances with respect to the model as in ( Eq. (6) ) 

rgmin t , w 

N ∑ 

i =1 

∥∥∥u ( x i ) −
1 

Z i 
A ( x i ) t − B ( x i ) w 

∥∥∥
2 

, (6) 

here x i is a position of the image (x i , y i ) , and N is the total num-

er of flow estimates of the image. Thus, the system has N con- 

traints where we have N depth unknowns Z i and the parameters 

or t and w . 

The classic approach removes the depth from ( Eq. (6) ), obtain- 

ng the so-called epipolar constraint [21] . It can be written in the 

orm: 

rgmin t , w 

N ∑ 

i =1 

∥∥( u ( x i ) − B ( x i ) w ) 
T · ( A ( x i ) t ) ⊥ 

∥∥
2 
, (7) 

here ( A ( x i ) t ) ⊥ denotes that the vector is orthogonal to the vec- 
or A ( x i ) t . This constraint is also referred in the literature simply

s the bilinear constraint, as it is linear in the translation, or the 

otation. Optimizing this unweighted bilinear constraint introduces 

 statistical bias [36] . This is avoided with a slightly modified ver- 

ion, that includes a weighing factor (for example, with ρ = 1 ) 

rg min t , w 

N ∑ 

i =1 

∥∥∥∥( u ( x i ) − B ( x i ) w ) 
T · ( A ( x i ) t ) ⊥ 

( ‖ A ( x i ) t ‖ ) 
ρ

∥∥∥∥
2 

. (8) 
3 
Many methods solve the bilinear constraint or its weighted 

ariations (e.g. ( Eq. (8) )) in a 2-step approach: they first search for 

ither the rotation or the translation and then solve for the other 

ne. Other formulations, similar to the use of the essential matrix 

n the discrete case, solve first for intermediate parameters that 

ncode both rotation and translation [37] . 

Another approach is to employ a scene model [38,39] . In 

29,40] solutions were proposed that assume 3D planar piece-wise 

epth. Let us assume P patches where P � N; if all points (x k , y k )

n the image patch p lie on the same plane �p then: 

p = αp 
x k 
f 

+ βp 
y k 
f 

+ γp = 

1 

Z k 
, (9) 

here v p = (αp , βp , γp ) stands for the plane vector and f is the 

ocal length. 

As mentioned before, in order to compute the 3D motion and 

elative depth, only the axis of the translational motion is required. 

he equation can be rewritten using C k = ‖ t ‖ ( Z k ) −1 to denote the 

caled inverse depth, and ˜ t = t / ‖ t ‖ to denote the translation axis. 
ue to this change, instead of optimizing for plane parameters v p , 

e optimize for ˜ v p = ‖ t ‖ (αp , βp , γp ) . We then obtain an overde- 

ermined system with N equations for a total number of 3 ∗ P + 5 

nknowns. Denoting individual patches as p i , each with K p i image 

otion measurements, we have: 

rg min ˜ t , w , ̃ v p i 

P ∑ 

j=1 

K p i ∑ 

k =1 

∥∥u ( x k ) − �p i ( ̃ v p i , x k ) A ( x k ) ̃ t − B ( x k ) w 

∥∥
2 
. (10) 

We can apply the same approach to normal flow. If our mea- 

urements are the normal flow speeds u n ( x k ) = n ( x k ) · u ( x k ) , we

btain from Eq. (10) 

rg min ˜ t , w , ̃ v p i 

P ∑ 

j=1 

K p i ∑ 

k =1 

∥∥u n ( x k ) − n ( x k ) · �p i ( ̃ v p i , x k ) A ( x k ) ̃ t − n ( x k ) 

·B ( x k ) w ‖ 2 . (11) 

e have implemented for comparison a version of this method 

hat uses regular patches to partition the image. One could first 

egment the scene to obtain the patches, which however as shown 

n [29] does not lead to significant accuracy improvement for the 

D motion estimation. 

The above constraints require assumptions on the local smooth- 

ess of image motion, either for computing optical flow that is 

sed in the epipolar constraint or indirectly in the assumption of 

lanar scene patches. However, there is another weaker constraint, 

hat can be used with normal flow only, thus avoiding these as- 

umptions. This is the so-called positive depth constraint. Since the 

cene in view is in front of the camera, its depth is positive, i.e. 

 > 0 . From ( Eq. (5) ), subtracting the rotational component, we can

erive that the derotated normal flow and the translational flow 

eed to have same sign for Z to be positive. Thus 

 u n ( x ) − n ( x ) · B ( x ) w ) ·
(
n ( x ) · A ( x ) ̃ t 

)
> 0 . (12) 

This constraint can be optimized with a voting function that 

ounts the number of negative depth values, as discussed in the 

tability analysis in [41] . One can search for the ˜ t and w with the 

mallest number of normal flow values that make ( Eq. (12) ) nega- 

ive. This minimization can be expressed as 

rg min ˜ t , w 

N ∑ 

i =1 

V( x i , ̃  t , w ) with (13) 

( x , ̃  t , w ) 

= 

{
0 if ( u n ( x ) − n ( x ) · B ( x ) w ) ·

(
n ( x ) · A ( x ) ̃ t 

)
> 0 

1 if ( u n ( x ) − n ( x ) · B ( x ) w ) ·
(
n ( x ) · A ( x ) ̃ t 

)
< 0 

(14) 



F. Barranco, C. Fermüller, Y. Aloimonos et al. Pattern Recognition 113 (2021) 107759 

m

v

t

d

v  

b

V

t

s

b

c

m

t

c

b

a

t

c  

I

a

a

w

t

d

p

t

t

e

4

m

v

m

t

t

s

s

s

i

4

i

W

f

p

a

w

H

w

G∑
t

m

m

t

H  

t

w

c

H

w

w

s

t  

T

t

v

t

f

2

F

r

t

g

d

c

(

i  

s

(

p

a

o

t

n

m

t

g

a

t

n

a

4

S

t

An algorithmic solution, which only uses the sign of the nor- 

al flow was given in [42] . By considering subsets of normal flow 

alues in selected directions, the axis of translation and axis of ro- 

ation can be derived using a pattern matching approach in lower 

imensional spaces. However, the proposed constraint – a relaxed 

ersion of the voting function in ( Eq. (14) ) – is weaker and if used

y itself can only provide bounds for the solution. 

 r ( x , ̃  t , w ) 

= 

{ 

1 if u n ( x ) > 0 , n ( x ) · B ( x ) w < 0 , n ( x ) · A ( x ) ̃ t < 0 

1 if u n ( x ) < 0 , n ( x ) · B ( x ) w > 0 , n ( x ) · A ( x ) ̃ t > 0 
0 otherwise 

(15) 

There are variations that ease the computation by removing ei- 

her the rotational or translational motion from the previous con- 

traint. The first variation considers that the rotational motion can 

e computed accurately using inertial sensors (see [43] ). In this 

ase, the rotational motion component is substracted from the nor- 

al flow speed, and one has to solve the minimization only for 

he translation. In practice, an additional step of sensor fusion to 

ombine the inertial and visual data is required for this solution, 

ecause the sensors have different noise models and rates. 

The second variation heavily simplifies the minimization. Given 

 translation, this constraint only considers the normal flow vec- 

ors orthogonal to the translational motion component. For these 

omponents the translational motion term is zero, i,e. A ( x ) ̃ t · n = 0 .

n this case, one searches for the translational axis ˜ t , and for each 

xis solves an optimization in the rotational motion as 

rg min w 

M ∑ 

j=1 

∥∥u n ( x j ) − n ( x j ) · B ( x j ) w 

∥∥, (16) 

here M is the number of points x j with normal flows orthogonal 

o the translation motion components and thus M ≤ N. The main 

rawback here is that the number of points with translational flow 

erpendicular to the gradient can be much smaller than N, and 

hus the estimation becomes less accurate. Some works combined 

his with additional constraints to achieve a solution for the gen- 

ral motion case [31] . 

. Our direct approach using normal flow 

The method proceeds in three steps: First, based on a new for- 

ulation of the depth positivity constraint that leads to a con- 

ex optimization, 3D motion is estimated using an interior point 

ethod. The solution is found by first searching for the transla- 

ion axis, and then optimizing successively for the rotation and 

he translation. Second, using the estimate for the egomotion, 3D 

tructure is computed and a regularization is imposed on the 

tructure using an inpainting technique. Thirdly, the egomotion and 

tructure are iteratively refined. A convergence threshold stops the 

terative process. 

.1. Egomotion estimation using normal flow 

Let us denote the left hand side of the positive depth constraint 

n ( Eq. (12) ) as f ( ̃ t , w , x ) = ( u n ( x ) − n ( x ) · B ( x ) w ) ·
(
n ( x ) · A ( x ) ̃ t 

)
. 

e then model the inequality in ( Eq. (12) ) using the negative ReLu 

unction, which we denote as H, and reformulate the optimization 

roblem in ( Eq. (13) ) as 

rg min ˜ t , w 

N ∑ 

i =1 

H( f ( ̃ t , w , x i ) (17) 

here 

(x ) = 

{
−x if x ≤ 0 
0 otherwise 

(18) 
4 
To solve for the 3D motion, we iteratively solve for ˜ t and 

 . The method starts by searching for the translation axis. 

iven a candidate translation, we optimize the objective function 
 N 
i =1 H( f ( ̃ t , w , x i )) to solve for the rotation w . With this rotation, 

he translation is re-estimated substituting in ( Eq. (17) ) to obtain a 

ore accurate solution for the translation axis. 

In our implementation, we optimize with an interior point 

ethod, and thus we only need to provide the objective func- 

ion and its gradient. However H(x ) is not strong convex since 

 
′′ (x ) = 0 , and thus it cannot be used in Newton-type optimiza-

ion methods. Since the gradient H 
′ (x ) has a singular point at 0, 

e use the following smooth approximation, as is common in ma- 

hine learning: 

 
′ (x ) = 

{ −1 if x ≤ −ε
−1 / 2 if − ε < x < ε
0 otherwise 

(19) 

here the gradient is defined as 

∂ 
∑ N 

i =1 H( f ( ̃ t , w , x i )) 

∂ w 

= 

N ∑ 

i =1 

H 
′ ( f ( ̃ t , w , x i ) · f ′ ( ̃ t , w , x i )) (20) 

ith 

f ′ ( ̃ t , w , x ) = 

(
n ( x ) A ( x ) ̃ t 

)
·
(
B ( x ) T 

(
−n ( x ) T 

))
. (21) 

In our implementation, we use the interior-point method de- 

cribed in [44] and reformulated in [45] to solve the optimiza- 

ion. For the initialization we use w = [0 , 0 , 0] T and ˜ t = [0 , 0] T .

he stopping criteria is based on the tolerance between consecu- 

ive steps (set to 1e −15 ) and the tolerance on the change of the 

alue of the objective function between consecutive steps (also set 

o 1e −15 ). 

Next, we visualize the behavior of the different minimization 

unctions. Fig. 1 shows the residuals of the optimization in the 

D subspace of translation directions on the surface of the sphere. 

or this illustrative example, we chose a random 3D motion and 

andomly generated depth values. For each possible translation, 

he residual is computed by solving for the optimal rotation. The 

round-truth is marked with a red dot and the results from the 

ifferent optimizations are marked with smaller dots in different 

olors. 

Sphere a shows the optimization for the bilinear constraint in 

 Eq. (8) ). Sphere b shows the optimization of the constraint assum- 

ng planar patches as in ( Eq. (10) ). Finally, sphere c shows the re-

ults for the optimization using the positive depth constraint as in 

 Eq. (12) ). 

Sphere b shows a smaller region of low-valued residuals com- 

ared to the other two, but the optimization is done for the motion 

nd planar shape parameters of all patches used. A small number 

f patches violates the initial hypothesis that assumes all points in 

he patch to lie on the same plane, and more patches increase the 

umber of unknowns, increasing also the complexity of the mini- 

ization. The surfaces due to the the epipolar constraint in a and 

he depth positive constraint c show a similar minimum error re- 

ion, although Sphere c has a smoother surface, and in this case, 

 smaller error between the computed solution and the ground- 

ruth. However, for all the residuals shown here, the optical and 

ormal flow values are the ground-truth, while real applications 

re affected by noise. 

.2. Refining positive depth constraint 

In order to refine the egomotion solution proposed in 

ection 4.1 , we use the 3D structure from the translational mo- 

ion. A second step is added estimating first the 3D structure as 
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Fig. 1. Illustrative example of residual error surfaces for a randomly generated 3D motion, shown in the 2D subspace mapped onto a sphere surface that represents the 

translation direction. From left to right, top row: a) bilinear constraint from ( Eq. (8) ), b) epipolar constraint assuming planar patches in ( Eq. (10) ), c) positive depth constraint 

with normal flow vectors in ( Eq. (12) ). The ground-truth is marked with a red dot and the estimated solution with a colored smaller dot. 
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( x ) = Z( x ) / ‖ t ‖ = 

A ( x ) ̂ t · n ( x ) 

u n ( x ) − B ( x ) ̂  w · n ( x ) 
(22) 

here C is the structure and represents the inverse depth up to a 

actor. Here ˆ t represents the translation axis and ˆ w the rotational 

elocity estimated with the previous method. After that, a regular- 

zation process is performed on the structure using the inpainting 

ethod in [46] . This method has been designed for reconstructing 

arts of depth maps that are lost e.g. when using infrared-based 

inect sensors. In our case, the estimation is sparse since normal 

ow is only computed at locations of large image gradients such 

s at edges or object contours. The inpainting method reconstructs 

he depth at smooth surfaces while regularizing the estimates at 

bject contours. It uses a second-order smoothness assumption as 

s common in natural images (see [47] ). However, this assumption 

s violated close to object contours due to the depth discontinu- 

ties. 

After the depth regularization, a simpler least-squared mini- 

ization can be performed to obtain refined motion estimates op- 

imizing 

rg min ˜ t , w 

N ∑ 

i =1 

∥∥u n ( x i ) − (
C( x i ) A ( x i ) ̃ t − B ( x i ) w 

)
· n ( x i ) 

∥∥
2 
. (23) 

In our approach, these two steps are iteratively repeated further 

efining the solutions for the 3D motion and the 3D structure. The 

topping criterion here is the sum of differences of the 3D struc- 

ure between consecutive estimates, for each point (convergence 

hreshold). 

. Experiments 

This section presents: 1) an evaluation of our direct method us- 

ng different metrics on various datasets, 2) a comparison of our 

irect approach with methods that use optical flow and with other 

irect methods that use normal flow, and 3) an evaluation of our 

ethod recovery of 3D structure. 

We evaluate the ego-motion estimation on the following four 

atasets: 

1. The Artificial dataset contains 50 0 0 random sequences of im- 

ages of size 150 × 150 with a field of view (FOV) of 30 ◦, and
an image plane of dimension 0 . 01 × 0 . 01 meters. The rotational

velocity is up to 20 ◦ per frame, the translational velocity is up 

to 3 meters per frame, and the maximum virtual depth of the 

scene is 10 meters. 

2. The Yosemite sequence [48] has images of size 316 × 252 , and 

is a simulation of a fly-through the Yosemite Valley with di- 
5 
vergent motion and translational motion in the clouds. How- 

ever, the clouds, as is common, have been masked out. The 

translation is t = [0 , 0 . 17 , 0 . 98] T with a speed of 34.8 pixels per

frame, the rotational motion is w = [0 . 0133 , 0 . 0931 , 0 . 0162] T in

degrees per frame, and the FOV is 40 ◦. 
3. The Fountain sequence [49] is a synthetic sequence with im- 

ages of size 320 × 240 of a curvilinear motion featuring a pa- 

tio sequence surrounded by columns and a central fountain. 

The ground-truth optical flow, 3D pose, 3D velocity, and depth 

are provided. The translation is t = [ −0 . 2578 , 0 . 0872 , 0 . 9622] T 

with a speed of 2.5 pixels per frame, the rotational motion is 

w = [ −0 . 125 , 0 . 20 , −0 . 125] T degrees per frame, and the FOV is

40 ◦. 
4. The Kitti dataset [50] for visual odometry is a popular set of 

22 driving sequences of stereo road scenes. These are long nat- 

ural scenes with different trajectory directions and speeds. To 

the best of our knowledge, our study is the first to evaluate a 

direct 3D motion estimation method on such a complex real- 

world dataset. We have used 11 of the sequences for which the 

ground-truth is provided: the total number of frames is more 

than 22500. Since there is very large inter-frame displacement 

up to 50 pixels, making it impossible to estimate accurate in- 

tensity gradient, we interpolate frames to reduce the maximum 

displacement to 3 to 5 pixels. 

A preprocessing stage is performed when using our direct 

ethod for all datasets. We use a 5 × 5 Gaussian filter with σ = 

 . 05 . For the normal flow estimation, we use a 2D derivative fil-

er with kernel f T ∗ f with f = [ −1 , 9 , −45 , 0 , 45 , −9 , 1] / 60

or the spatial derivatives, and kernel [ −1 , 1] / 2 for the temporal

erivative. 

For the evaluation of 3D motion estimation we use two error 

etrics: the average angular error (AAE) which is defined as the 

verage angular distance between the ground-truth u and the es- 

imated motion vector ˆ u as 

AE = 

1 

N 

N ∑ 

i =1 

arccos 

(
ˆ u ( x i ) 

t u ( x i ) 

‖ ̂  u ( x i ) ‖ ‖ u ( x i ) ‖ 

)
, (24) 

nd the EPE, which is the average euclidean distance between the 

round-truth and the estimated motion vector, defined as 

P E = 

1 

N 

N ∑ 

i =1 

‖ u ( x i ) − ˆ u ( x i ) ‖ . (25) 

Since we are estimating only the translation direction, we eval- 

ate the AAE and EPE for rotation, but only the AAE for translation. 

or the Kitti dataset we do not provide the rotational AAE, because 

he rotational direction varies largely making it difficult to inter- 

ret this error. 
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Fig. 2. Error plots for 3D motion estimation estimated using our proposed method. The first row shows the translation AAE and rotation AAE and EPE for the Artificial, 

Yosemite, and Fountain datasets. The second row shows the translation AAE and the rotation EPE for the Kitti dataset, averaging over all frames and sequences. For the 

artificial dataset, the normal flow is estimated in a random direction using the ground-truth; for the other datasets, the normal flow is computed using the spatio-temporal 

gradients. The blue and yellow bars show the error when using only the refined positive depth constraint, and after normalizing with the 3D structure reconstruction. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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We also use two error metrics to evaluate the estimated struc- 

ure: the mean absolute error (MAE), defined as the average ab- 

olute difference between the estimated 3D structure (times the 

ranslational speed) ˆ d and the disparity ground-truth d

AE = 

1 

N 

N ∑ 

i =1 

| d( x i ) − ˆ d ( x i ) | , (26) 

nd the PoBP, defined as the percentage of points with a MAE 

reater than 1 (see [51] ). This error gives a measure of the accu-

acy of the recovered structure at object contours. 

.1. Our direct approach for 3D motion estimation 

The plots in Fig. 2 illustrate the results of 3D motion estimation 

iscussed in Section 4 for a) the depth-independent minimization 

sing the depth positivity constraint, and b) after inclusion of the 

efinement step based on the depth map. The first row shows the 

ranslational AAE and the rotational AAE and EPE for the Artificial, 

osemite, and Fountain datasets. After the 3D reconstruction, the 

rror is reduced substantially for all datasets. For the Kitti dataset, 

he average error reduction is 10% to 15% for the translational AAE. 

he rotational EPE increases, but this increase is negligible for the 

iven driving scenario, where the rotation is very small. 

Fig. 3 shows for the Kitti benchmark the estimated paths pro- 

ected on the X-Z plane. For the scale, we used the ground-truth 

ranslation speed. For each case, we show the trajectories for all 

he methods and the ground-truth. Most estimated trajectories are 

ery similar to the ground-truth, and particularly after 3D recon- 

truction there is very high accuracy. However, for Sequence 5 only 

he refined solution reaches a successful trajectory. This could be 

ue to the small translational motion with respect to the rotational 
6 
otion. Note the span of the X axis of less than 1 m compared 

o the hundreds of meters in all other sequences. Moreover, for 

equence 6 and 8, all estimations deviate in the beginning, and 

he accumulated error prevents a recovery of the accurate ground- 

ruth position. Errors are carried from points with large black solid 

egions as in crossroads, and also shadows produced by buildings 

nd trees (illumination changes severely impact the accuracy of 

mage-based and normal flow based methods). 

.2. Comparison with methods that use optical flow and direct 

ethods 

Table 1 summarizes the comparison to several works in the lit- 

rature using both normal flow and optical flow. The first rows 

how the error for three optical flow based methods: Raudies [2] , 

russ [21] , and Kanatani [22] . The optical flow is computed using 

hree different methods: Brox [10] , Sun [12] , and Vogel [11] . 

The optical flow method of a) Sun [12] , which ranked top 1 

n 2014, is a variation of Horn and Schunck [9] . It uses a non-

ocal smoothness regularization term based on median filtering, in- 

ludes boundary and occlusion prediction to preserve motion, and 

ses an asymmetric hierarchical pyramid strategy to improve large 

otion estimations. b) The method of Vogel [11] is a variational 

ethod that uses Total Generalized Variation (TGV) regularization 

ith a data term based on Census Transform with convex opti- 

ization (CSAD). c) The Brox [10] method targets specifically large 

isplacements and is well suited for the Kitti dataset, where the 

nter-frame displacements reach up to 50 pixels. 

The three selected optical-flow based methods for 3D motion 

stimation have been introduced in Section 1 . These three meth- 

ds showed the best performance and consistency in our exhaus- 
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Fig. 3. Estimated paths projected onto the X-Z plane computed using our proposed method for the 11 sequences of the Kitti dataset. Results for Sequence 6 and 8 show 

more distortion but, in general, the trajectories are successfully recovered, and the method that normalizes the estimation through the reconstruction of the 3D geometry of 

the scene achieves the best results. 
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ive comparison in the lab. They have been included to facilitate a 

omparison with direct approaches and seeking completeness for 

uture comparisons. 

The parameters used in the optical flow estimation are given in 

able 2 . No parameters are given for the optical flow method of 

rox [10] , since the authors provide a library to execute their im- 

lementation. We use the original values used in the authors’ im- 

lementation for the parameters not listed in the Table. The ego- 

otion estimation methods also use the default parameters in the 
7 
mplementations provided by the authors. The error values for the 

irect methods are obtained from the cited publications. For the 

ethod of Sun [12] , preprocessing with a 5 × 5 Gaussian filter with 

= 1 . 5 was used. 

The next rows show methods that use normal flow for esti- 

ating egomotion. Although, other methods exist in the litera- 

ure [17,40,52] , we only included methods which have been evalu- 

ted on modern datasets. Hui et al. [30] compute 3D motion from 

onocular normal flows and then estimate depth from a stereo 



F. Barranco, C. Fermüller, Y. Aloimonos et al. Pattern Recognition 113 (2021) 107759 

Table 1 

Translation AAE, Rotation AAE and EPE ( ◦/frame). 

Yosemite Fountain Kitti 00 -10 

Trans. AAE Rot. AAE Rot. EPE Trans. AAE Rot. AAE Rot. EPE Trans. AAE Rot. EPE 

Raudies [1] using Brox [10] 2.4453 20.9280 0.0338 1.6380 1.4605 0.0102 14.7759 0.4300 

Bruss [21] using Brox [10] 1.5285 28.5546 0.0126 1.1601 3.0578 0.0028 13.8722 0.3690 

Kanatani [22] using Brox [10] 2.1252 13.8169 0.0182 1.4726 1.6544 0.0071 14.5035 0.4781 

Raudies [1] using Sun [12] 2.2446 19.1784 0.0340 0.5120 0.5881 0.0026 14.0957 0.4504 

Bruss [21] using Sun [12] 1.3245 26.7049 0.0125 1.0248 2.0480 0.0034 13.4256 0.3689 

Kanatani [22] using Sun [12] 1.9742 10.8016 0.0122 0.4012 0.5607 0.0035 13.8342 0.4928 

Raudies [1] using Vogel [11] 0.8085 21.5764 0.0109 0.7657 0.7893 0.0059 13.6363 0.4338 

Bruss [21] using Vogel [11] 1.2289 26.4552 0.0122 1.5791 3.4248 0.0030 12.5186 0.1214 

Kanatani [22] using Vogel [11] 0.7866 19.7755 0.0089 0.6864 1.0900 0.0041 13.4672 0.6690 

Hui [30] N/A N/A N/A 2.497 3.907 N/A N/A N/A 

Yuan [32] N/A N/A N/A 1.251 N/A 0.0699 N/A N/A 

Hui [31] 1.619 N/A 0.0282 2.371 N/A 0.0220 N/A N/A 

Yuan [33] 0.8803 N/A 0.0685 1.1866 N/A 0.050 N/A N/A 

Ji [29] 0.9589 5.4261 0.0054 1.4043 1.9327 0.0022 2.4923 0.0803 

Our approach: positive depth 0.8436 4.9055 0.3799 1.2054 1.3528 0.2138 1.8225 0.0613 

Our approach: depth reconstructed 0.3640 5.7749 0.3789 0.4074 0.5615 0.2139 1.5340 0.3545 

Table 2 

Parameter set values. 

Vogel [11] Sun [12] 

Parameter Value Description Parameter Value Description 

cEps 1.25/255 Threshold for Ternary Census max_iters 3 Maximum number of iterations 

lambda 12.333 Strength of data term gnc_iters 2 Iterations for GNC (graduated non-convexity) formulation 

warps 3 Number of warping steps texture true Do texture decomposition 

pyramid_factor 0.9 Scale in image pyramid median_filter_size 5 × 5 Post-median filtering size 

innerIts 10 Number of inner iterations area_hsz 7 Half-window size for the weighted median filter 

ring 2 Size of the patch for CENSUS sigma_i 7 Half-window size for robust affine transformation 

dataTerm 1 1 for CENSUS interpolation_method bi-cubic Bicubic interpolation 

doTV 0 0 for total variation (TV) 

stt 0.5 Structure texture preprocessing 

startResolution 16 Minimum image size in pyramid 

medFilt 1 Post-warp median filter 
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ystem without explicitly computing correspondences. They use 

wo constraints: the AFD, which is a relaxation of the constraint in 

 Eq. (15) ) where a voting mechanism punishes the estimates that 

esult in negative depth (different signs for the translational and 

otational components). To make the constraint more robust, sev- 

ral re-projections from one camera on the other are also consid- 

red. The second constraint, called AFM, affects the motion magni- 

ude, and is similar to the constraint in ( Eq. (16) ), that uses normal

ows orthogonal to the translational component. In [31] the same 

uthors propose a new solution based on the AFD constraint. 

The method of Yuan et al. [32] first estimates the 3D motion 

sing the constraint in ( Eq. (16) ), selecting the normal flow vec- 

ors orthogonal to the translational motion component. Then, they 

olve for the rotation with a more robust strategy, removing only 

olutions that do not lie in the half-plane consistent with the nor- 

al flow estimates. In Yuan et al. [33] authors present an updated 

ersion that relies on clustering for selecting the flows that satisfy 

he earlier described constraint and adding a step using RANSAC 

o refine the final estimations. We also have re-implemented the 

atch-based method for a single normal flow field described in 

29] . This method, partitions the image into regular patches, and 

odels the scene of each patch with a plane. We note that this 

lanar constraint increases the number of parameters to be esti- 

ated. 

Referring to Table 1 , our approaches outperform all normal flow 

ased methods for all cases (cases for which results are not re- 

orted in the literature are marked as N/A). Our method also 

utperforms all optical flow based methods, but the method of 

anatani [22] using the optical flow from Sun [12] on the the 

ountain sequence. The results of our method may be further im- 

o

8 
roved with an additional refinement step of the rotation after re- 

ning the translation, but at the cost of increased computation. We 

ote the high accuracy of the method in [29] , specifically for the 

otational velocity. Let us emphasize the high performance of our 

ethod on the Kitti dataset, which is a real-world driving scenario 

n contrast to all other synthetic datasets previously used in the 

valuation of direct 3D motion estimation methods. 

Finally, let us point out that the normal flow is estimated using 

he spatial and temporal image derivatives. We set a threshold of 

.125 on the spatial gradient, with the images normalized between 

0 , 1] . This gradient was chosen empirically to maintain a sparsity 

elow 10% of the full image resolution. 

.3. 3D reconstruction from motion 

In this section we evaluate the accuracy of our method’s 3D 

eometry estimation by comparing to the disparity ground-truth 

subject to availability). To obtain the scale of the depth, we use 

he provided ground-truth translational motion speed. Two met- 

ics are used: 1) Mean Absolute Error (MAE), and 2) Percentage of 

ad Points (PoBP). 

Table 3 shows the accuracy of the 3D structure using these two 

rror metrics, in addition to the density values which indicate the 

parseness of the estimation (common in sparse disparity estima- 

ion works such as [53,54] ). The first two columns provide the er- 

ors for the dense estimate after applying the inpainting method. 

he average error is below 0.4 m for the Fountain sequence (the 

aximum depth here is 7–8 m) and below 0.8 m for the Kitti 

ataset (with ranges up to 15–20 m). The third and fourth columns 

ist the errors for our sparse estimate (about 10 % of the image res- 

lution) before applying the regularization. Comparing the results 
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Table 3 

3D structure error metrics: MAE and PoBP. 

MAE dense PoBP dense MAE sparse PoBP sparse density 

Yosemite sequence [48] N/A N/A N/A N/A 10.54% 

Fountain sequence [49] 0.359 15.60% 0.520 9.24% (1.44%) 9.60% 

Kitti dataset [50] 0.800 32.91% 1.468 16.40% (1.80%) 10.95% 

Fig. 4. (Left) Sparse estimated 3D structure and ground-truth depth (dark blue represents closer objects and yellow the furthest ones); (right) evolution along iterative 

refinement of MAE (left in blue) and PoBP (right in red) for sparse and dense estimations. First row: frame 3 of Fountain sequence; remainder rows: (top) landscape image 

of estimated sparse depth and (bottom) sparse ground-truth for various example frames of the Kitti benchmark. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

9 
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n columns 1–4, we see that, because the inpainting helps recover- 

ng smooth surfaces where no gradients are found, it reduces the 

verage absolute error. On the other hand, it negatively affects the 

oBP, since the reconstruction process propagates the error at ob- 

ect contours due to the absence of values nearby. The values in 

arenthesis provide the PoBP for the whole image, not only the 

parse estimate, which for both datasets is below 2%. 

Fig. 4 illustrates the estimation of the 3D structure with ex- 

mples from each sequence. The left and right image in row one, 

nd top and bottom image in all other rows show the sparse esti- 

ated 3D structure and the sparse disparity ground-truth. The two 

lots on the right show the evolution of the MAE (in blue on the 

eft axis) and the PoBP (in red on the right axis) along the refine-

ent process. The number of iterations of this process depends on 

 convergence threshold that stops any further processing when 

here is not enough change between consecutive refined estimates. 

he first row shows frame 3 of the Fountain sequence, the sec- 

nd row shows frame 3 of the Yosemite sequence, and the last 

our rows show four frames from the Kitti dataset. As discussed 

n Table 3 , the regularization process for the reconstruction nega- 

ively affects the PoBP, while it reduces the average MAE over all 

ixels. In most cases each refinement step reduces the MAE, for 

xample 50% for sequence 5 of the Kitti dataset, while decreasing 

he PoBP. 

The following values were used in the implementation. In the 

efinement of the egomotion using the 3D structure, the stopping 

riterium is: 1) a convergence threshold of 0.2 for the sum of 

ifferences between consecutive 3D structure estimates and 2) a 

aximum of 10 iterations. In the inpainting method, the only pa- 

ameter is a multiplicative factor for the gradient of the curve that 

djusts the smoothness; we set it to 0.01. 

Regarding time performance, the bottleneck in our processing 

s the search for the translation. We used a 4-GHz Intel Core i7 

omputer with 8 GB of RAM. For the Fountain sequence, the av- 

rage running time for the whole computation is 97.6 s, where 

4.1 s correspond to the search, 13.05 s to the refinement (includ- 

ng three iterations until convergence), and the inpainting process 

equires 1.4 s. After parallelizing the search using 8 threads, the 

ime for the search has been reduced to 13.04 s (and it is expected 

o be further reduced when using a massively parallel hardware 

uch as a GPU). Comparing the time to optical flow based methods 

sing the same computer, we found the following: Sun’s method 

12] requires 61.56 s, Brox’s method [10] requires 5.95 s, and Vo- 

el’s method [11] 29.14 s. After that, the time for running the 3D 

otion estimation methods is 0.76 s for Raudies’s [2] and 0.73 s for 

anatani’s [22] . However, as mentioned before, these methods rely 

n RANSAC for more refined estimations, and in this case Raudies’s 

equires 97.81 s and Kanatani’s about 200.81 s. Bearing in mind the 

ccuracy of our direct method, the time performance is very simi- 

ar to the conventional optical flow based methods. 

. Conclusions 

We have introduced a new formulation of the depth positiv- 

ty constraint. On the basis of this constraint, we proposed a di- 

ect method that allows for joint estimation of 3D motion and 3D 

tructure using as input image gradients. The complete method 

onsists of a non-linear optimization for the positive depth con- 

traint using normal flow, followed by a refinement using a linear 

ptimization on the depth. We showed that our method obtains 

igher accuracy in motion estimation than other direct methods, 

nd other optical flow based 3D motion estimation techniques. Fur- 

hermore, the estimated 3D geometry of the scene was shown of 

ood quality. 

Our results demonstrate that delaying the smoothness con- 

traint, and estimating 3D motion globally in early stages of 
10 
he structure-from-motion pipeline from minimal data, is a good 

hoice. Although we used the new depth positivity constraint with 

ormal flow, it also could be applied to optical flow. Thus our work 

ay inspire further approaches that include the positivity con- 

traint into the 3D motion estimation. One possibility is to incor- 

orate the constraint into a deep learning architecture for motion 

nd structure estimation [55,56] . 
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