Pattern Recognition 113 (2021) 107759

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Joint direct estimation of 3D geometry and 3D motion using spatio n

temporal gradients

Check for
updates

Francisco Barranco®*, Cornelia Fermiiller®, Yiannis Aloimonos®, Eduardo Ros?

aDept. of Computer Architecture and Technology, CITIC, University of Granada, Spain
b Dept. of Computer Science, UMIACS, University of Maryland, College Park, MD, USA

ARTICLE INFO

Article history:

Received 13 May 2018

Revised 14 November 2020
Accepted 23 November 2020
Available online 28 November 2020

Keywords:

3D motion

Egomotion

Structure from motion
Normal flow

ABSTRACT

Conventional image-motion based methods for structure from motion first compute optical flow, then
solve for the 3D motion parameters based on the epipolar constraint, and finally recover the 3D geom-
etry of the scene. However, errors in optical flow due to regularization can lead to large errors in 3D
motion and structure. This paper investigates whether performance and consistency can be improved by
avoiding optical flow estimation in the early stages of the structure-from-motion pipeline, and it proposes
a new direct method based on image gradients (normal flow) only. Our main idea lies in a reformulation
of the positive-depth constraint — the basis for estimating egomotion from normal flow - as a contin-
uous piecewise differentiable function, which allows the use of well-known minimization techniques to
solve for 3D motion. The 3D motion estimate is then refined and structure estimated adding a regulariza-
tion based on depth. Experimental comparisons on standard synthetic datasets and the real-world driving
benchmark dataset Kitti using three different optic flow algorithms show that the method achieves better
accuracy in all but one case. Furthermore, it outperforms existing normal flow based 3D motion estima-

tion techniques. Finally, the recovered 3D geometry is shown to be also very accurate.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of egomotion or self-motion estimation from a
moving monocular observer, after many years of research, is still
considered a difficult problem. Recently it has attracted renewed
attention in the Computer Vision community due to emerging ap-
plications in robotics, autonomous navigation and augmented real-
ity. Physically, the motion of the camera can be interpreted as the
linear combination of a 3D translation followed by a 3D rotation.
The instantaneous motion captured contains information about the
camera’s 3D motion and the 3D scene geometry. Egomotion esti-
mation amounts to computing five parameters: three for the 3D
rotation and two for the axis of the 3D translation, because with-
out additional information, there is an ambiguity between transla-
tional velocity and depth. Based on the 3D motion, the 3D relative
structure can be estimated.

The classic approach to estimating structure and motion em-
ploys three steps: first, the full dense optical flow between succes-
sive frames is estimated; second, the 3D translation and 3D rota-
tion are recovered using the optical flow, possibly making assump-
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tions about the camera motion and the scene; third, the 3D geom-
etry up to the scaling factor is estimated [1-4]. Instead of dense
flow, a sparse set of feature correspondences is often used, as is
common in standard visual odometry and SLAM methods [5-7].
However, recent SLAM formulations [8] do not estimate 3D mo-
tion through constraints independent of depth, but estimate 3D
motion and depth combined by minimizing photometric/geometric
distance that explain image patch matches. The focus of this paper
is on the evaluation of depth independent constraints.

The main constraint to estimate 3D motion from video indepen-
dent of structure, is the epipolar constraint. However, it requires as
input optical flow or correspondences. One problem is that optical
flow cannot be estimated accurately. Most top optical flow tech-
niques are based on the work of Horn and Schunck [9]. The key
assumption is that the change of the intensity over a small time
interval remains constant. Since this only provides one equation
and flow fields are two-dimensional, additional constraints on the
flow field are enforced assuming a smooth variation of the field
spatially in local neighborhoods [10-12]. These assumptions cause
the optical flow to be imprecise at object contours, where there are
occlusions or when the motion is large. Motion fields do not vary
smoothly close to object boundaries, occlusions cause mismatches,
and large motions violate the assumption of local intensity con-
stancy.
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Another motion constraint, independent of structure, is the
depth positivity constraint [13-17] also referred to as cheirality
constraint [18]. The scene has to be in front of the camera, and
thus the depth has to be positive. This constraint can be used di-
rectly from "measurable image quantities”, i.e. the spatial and tem-
poral image intensity gradients, or normal flow, in so-called direct
methods. The positivity constraint is the only constraint applica-
ble to normal flow without making assumptions on scene depth or
shape. Although, it can also be applied to optical flow. It has not
been popular, because there has not been a formulation allowing
to implement the depth positivity inequality in an efficient way.
This work proposes such a formulation of depth positivity, borrow-
ing from current machine-learning models. On its basis then a new
direct method for estimation of 3D motion and structure is pro-
posed.

The main contributions of this paper are: 1) a new formula-
tion of the depth positivity constraint that allows for efficient min-
imization using a negative ReLu function; 2) a new direct method
for egomotion and 3D structure estimation from normal flow only,
that starts with estimating 3D motion from the depth positivity
constraint, then uses a regularization to obtain depth, and finally
refines both estimates; 3) a comparison of the method to a num-
ber of studies using optical flow and to other direct approaches us-
ing normal flow on a number of datasets including real-world se-
quences, which show that the method outperforms previous meth-
ods using different error metrics.

2. Related methods

Longuet-Higgins in his seminal work presented the constraints
for computing egomotion from image measurements [19]. Classic
approaches that use optical flow model the 3D rigid displacement
between frames with instantaneous 3D velocity [20]. Bruss and
Horn [21] used the weighted bilinear constraint and solved for the
egomotion using a least-squares optimization. Kanatani [22] pro-
posed a method based on the differential epipolar constraints that
accounts and corrects for the bias in the translational velocity.
Modern optimal methods compute more accurate solutions at the
expense of nonlinear objective functions and the risk of falling
into local minima [3]. Zhang [4] considered a two-step iterative
approach that estimates the translation separately from the rota-
tion, using numerical Gauss-Newton approximation. Pauwels and
van Halle [3] proposed a method that integrates depth cues into
the minimization of the squared-distance image reprojection er-
ror. This method improved previous works by reducing the risk of
falling into local minima. Instead of using random initializations or
initializations from classical linear method solutions, the authors
used a weighting strategy to change the complexity at each iter-
ation, making the algorithm more robust. Raudies and Neumann
[1,2] also used a polynomial solution for the bilinear constraint
employing auxiliary variables (as done in [22]) for a more efficient
method of linear complexity; it applies RANSAC to reduce the im-
pact of noise as well. For a complete review on 3D motion estima-
tion methods see [2].

On the other hand, many methods are feature-based. During
the last years in the context of autonomous navigation, most 3D
motion approaches proposed are SLAM methods. The most recent
work from Engel et al. [8] presented a real-time method for visual
odometry that jointly estimates egomotion and geometry with-
out using a smoothing prior, but by sampling a set of locations
throughout the sequence. The same authors developed LSD-SLAM
[23], which uses a photometric error measure and a geometric
smoothing prior to solve the optimization on a full dense optical
flow field throughout consecutive frames. Mur-Artal et al. [6] pre-
sented an open-source framework that allows for odometry es-
timation, using a geometric distance measure without geometric
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prior. Ranftl et al. [24] proposed a monocular depth estimation ap-
proach that jointly solves for egomotion using a full dense regu-
larized optical flow field assuming its smoothness. Finally, Forster
et al. [7] also described a probabilistic hybrid approach for semi-
direct visual odometry for UAVs, that uses a formulation based on
a geometric prior for the initialization but avoids its use in the sub-
sequent model optimization.

Several works in the literature have studied direct methods that
use normal flow avoiding optical flow estimation. Aloimonos and
Brown [25] studied the case of rotation, Horn and Weldon [13],
Neghadaripour and Horn [14] and Sinclair et al. [26] proposed nor-
mal flow based methods for translation and studied the robust-
ness, and Carlsson [15] studied constraints on scene structure for
unique 3D motion estimation. Fermiiller and Aloimonos developed
methods [17,27] for the general case, that formulate 3D motion es-
timation as a pattern recognition problem. Subsets of normal flow
vectors define global patterns in the image plane whose location
encodes the egomotion parameters. Finally, Brodsky et al. [28] es-
timated 3D motion from normal flow assuming planar patches,
and Ji and Fermiiller based on this method proposed a solution
[29] that combines the estimated motion fields from consecutive
frames using a constraints on the inverse depth for regular image
patches and for segmented regions.

More recently, Hui and Chung [30] used a binocular sequence
but computed monocular motion with normal flows and then esti-
mated depth from the stereo system without explicitly computing
correspondences. They optimized for the 3D motion using the so-
called Apparent Flow Direction (AFD) and Apparent Flow Magni-
tude (AFM) constraints. The first constraint, AFD, is a relaxation of
the positive depth constraint. The second constraint, AFM, affects
the motion magnitude and only uses the normal flows orthogo-
nal to the translational component. The same authors in [31] pre-
sented a more comprehensive evaluation and compared their re-
sults with optical flow methods. In [32] the authors described a
two-step method that first estimates the 3D motion using only the
normal flow vectors orthogonal to the translational motion com-
ponent. Next the method solves for the rotation discarding the so-
lutions that lie out of the half-plane consistent with the normal
flow estimates, defined by the first step. In [33] the same authors
utilize k-means clustering to group the flow vectors that support
the same FOE candidate. Next, the rotational parameters are esti-
mated using RANSAC and finally, a confirmation strategy based on
the half-plane constraint helps finding potential solutions. Finally,
using the same normal flow constraints, other works extract the
3D structure from the scene [30,34].

3. Egomotion estimation from normal flow

Let us first rephrase the egomotion problem definition as fol-
lows: recover the 3D trajectory and pose of a monocular observer
undergoing a rigid motion in a stationary environment. Assuming
that the coordinate system of the camera is centered in the prin-
cipal point and f is the focal length, the 3D velocity v of a point
X is defined as v = —t —w x X, where t = (&, ty, t,)T is the velocity
of translation, w = (wy, wy,wZ)T is the velocity of rotation, and x
represents the cross product. Then, the motion field u(x) = (u, v)T
at location x = (x, y)T is related to the 3D velocities [35] as

u(x) = % AX) t+BX) W (1)
with
AX) = [_of % ;]



F. Barranco, C. Fermiiller, Y. Aloimonos et al.

where the motion is expressed as the sum of the rotational com-
ponent B(x)w, and the translational component ﬁf\(x)t, which
also depends on the depth of the scene Z. Due to this dependency
there are five parameters to be estimated, namely the translational

velocity axis (tx/tz, ty/t;)T and the rotational velocity (wy, wy, w;)T.

3.1. Normal flow

To estimate motion fields, we use the so-called optical flow con-
straint (see [9]), which assumes that the intensity I at a point re-
mains constant over a short time interval §t. Approximating the
image brightness function with a first order Taylor expansion, we
obtain (Eq. (3))

0=1I(xy.t)—I(x+udt, y+vét, t+8t) ~Lu+Lv+1, 3)

where Iy, Iy, I are the partial derivatives of the brightness, and
u = (u,v) is the image motion. Eq. (3) provides one constraint and
defines the flow component parallel to the gradient. To obtain a
second component, additional assumptions, such as smoothness of
the flow or a parametric model in the image coordinates are as-
sumed.

Direct methods do not require computing the two-dimensional
optical flow, but instead use directly the image gradients as input
(Eq. (3)). For a geometric interpretation, we consider the projection
of the optical flow on the gradient direction, called the normal flow,
which amounts to:

—It (X)
VI |?
where VI = (Iy,Iy) is the intensity spatial gradient. Given the gra-
dient direction as a unitary vector n = (nx, ny), the normal flow
speed amounts to |uy(X)| = n(x) - u(x) where - represents the in-
ner product (see also [17]). From now on, we use uy(X) instead of
|up(x)| in order to simplify the notation. Considering the normal
flow instead of the optical flow, we obtain from (Eq. (1)) by multi-
plying both sides with n = (ny, ny) :

1

Un(X) = mn(x) -AX)t+n(x) - B(x)w (3)

up (X) =

VI(x) (4)

3.2. Constraints for the objective function

The 3D motion parameters and the depth are estimated using
various optimization constraints. A first approximation minimizes
the squared distances with respect to the model as in (Eq. (6))

N
argmin (" [ux) - %A(x,-)t—B(xi)wHZ, (6)
i=1

where X; is a position of the image (x;,y;), and N is the total num-
ber of flow estimates of the image. Thus, the system has N con-
straints where we have N depth unknowns Z; and the parameters
for t and w.

The classic approach removes the depth from (Eq. (6)), obtain-
ing the so-called epipolar constraint [21]. It can be written in the
form:

N
argmin ¢ Y [ (u(x) - Bx)W)" - (AL, |- (7)
i=1

where (A(x;)t), denotes that the vector is orthogonal to the vec-
tor A(x;)t. This constraint is also referred in the literature simply
as the bilinear constraint, as it is linear in the translation, or the
rotation. Optimizing this unweighted bilinear constraint introduces
a statistical bias [36]. This is avoided with a slightly modified ver-
sion, that includes a weighing factor (for example, with p = 1)

N
argmin ¢w Z AX)E) |

) —Bxpw)" - oSl
2| (H0a) = BOOW) - aGel 7

(8)

2
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Many methods solve the bilinear constraint or its weighted
variations (e.g. (Eq. (8))) in a 2-step approach: they first search for
either the rotation or the translation and then solve for the other
one. Other formulations, similar to the use of the essential matrix
in the discrete case, solve first for intermediate parameters that
encode both rotation and translation [37].

Another approach is to employ a scene model [38,39]. In
[29,40] solutions were proposed that assume 3D planar piece-wise
depth. Let us assume P patches where P « N; if all points (x,yy)
in the image patch p lie on the same plane I', then:

1
Zk '
where vp = (ap, Bp. ¥p) stands for the plane vector and f is the
focal length.

As mentioned before, in order to compute the 3D motion and
relative depth, only the axis of the translational motion is required.
The equation can be rewritten using G, = ||t|| (Zk)’1 to denote the
scaled inverse depth, and t = t/||t|| to denote the translation axis.
Due to this change, instead of optimizing for plane parameters v,
we optimize for V, = ||t||(c«p, Bp. ¥p). We then obtain an overde-
termined system with N equations for a total number of 3xP+5
unknowns. Denoting individual patches as p;, each with K}, image
motion measurements, we have:

rp:a,,i;+ﬂ,,y7k+yp= 9)

Kp,

P
argmin g5, > [0Xe) = T, (¥p, X)AX)E - Bx)w||,.(10)
j=1 k=1

We can apply the same approach to normal flow. If our mea-
surements are the normal flow speeds u,(x;) = n(x) - u(x;), we
obtain from Eq. (10)

P Ky

argmin g, 33 [|un () — 1) - Tp, (U, X)AXE - 1)
j=1k=1

B(x)W[l,. (1)

We have implemented for comparison a version of this method
that uses regular patches to partition the image. One could first
segment the scene to obtain the patches, which however as shown
in [29] does not lead to significant accuracy improvement for the
3D motion estimation.

The above constraints require assumptions on the local smooth-
ness of image motion, either for computing optical flow that is
used in the epipolar constraint or indirectly in the assumption of
planar scene patches. However, there is another weaker constraint,
that can be used with normal flow only, thus avoiding these as-
sumptions. This is the so-called positive depth constraint. Since the
scene in view is in front of the camera, its depth is positive, i.e.
Z > 0. From (Eq. (5)), subtracting the rotational component, we can
derive that the derotated normal flow and the translational flow
need to have same sign for Z to be positive. Thus

(un (X) = 0(X) - BO)W) - (n(x) - AX)E) > 0. (12)

This constraint can be optimized with a voting function that
counts the number of negative depth values, as discussed in the
stability analysis in [41]. One can search for the t and w with the
smallest number of normal flow values that make (Eq. (12)) nega-
tive. This minimization can be expressed as

N
argmin g, > V(X L w) with (13)
i=1

V(x, t,w)
_ {0 if (1 (X) — n(x) - BE)W) - (n(x) - AX)) > 0
1

if (un (X) — n(X) - B)W) - (n(x) - AX)) <0 (14)
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An algorithmic solution, which only uses the sign of the nor-
mal flow was given in [42]. By considering subsets of normal flow
values in selected directions, the axis of translation and axis of ro-
tation can be derived using a pattern matching approach in lower
dimensional spaces. However, the proposed constraint - a relaxed
version of the voting function in (Eq. (14)) - is weaker and if used
by itself can only provide bounds for the solution.

v (x, €, w)
1 ifu,(x) >0, nxX)-BX)w <0, nx)-AX)t <0

=11 ifu,(x) <0, nx)-Bx)w>0, nx)-AX)t>0 (15)
0 otherwise

There are variations that ease the computation by removing ei-
ther the rotational or translational motion from the previous con-
straint. The first variation considers that the rotational motion can
be computed accurately using inertial sensors (see [43]). In this
case, the rotational motion component is substracted from the nor-
mal flow speed, and one has to solve the minimization only for
the translation. In practice, an additional step of sensor fusion to
combine the inertial and visual data is required for this solution,
because the sensors have different noise models and rates.

The second variation heavily simplifies the minimization. Given
a translation, this constraint only considers the normal flow vec-
tors orthogonal to the translational motion component. For these
components the translational motion term is zero, i,e. A(X)t-n = 0.
In this case, one searches for the translational axis t, and for each
axis solves an optimization in the rotational motion as

M
argmin wy ||un(xj) —n(x;) - B(x;)w “’ (16)
j=1

where M is the number of points X; with normal flows orthogonal
to the translation motion components and thus M < N. The main
drawback here is that the number of points with translational flow
perpendicular to the gradient can be much smaller than N, and
thus the estimation becomes less accurate. Some works combined
this with additional constraints to achieve a solution for the gen-
eral motion case [31].

4. Our direct approach using normal flow

The method proceeds in three steps: First, based on a new for-
mulation of the depth positivity constraint that leads to a con-
vex optimization, 3D motion is estimated using an interior point
method. The solution is found by first searching for the transla-
tion axis, and then optimizing successively for the rotation and
the translation. Second, using the estimate for the egomotion, 3D
structure is computed and a regularization is imposed on the
structure using an inpainting technique. Thirdly, the egomotion and
structure are iteratively refined. A convergence threshold stops the
iterative process.

4.1. Egomotion estimation using normal flow

Let us denote the left hand side of the positive depth constraint
in (Eq. (12)) as f(t,w,X) = (up(X) — n(x) - BX)W) - (n(x) -A(x)f).
We then model the inequality in (Eq. (12)) using the negative ReLu
function, which we denote as #, and reformulate the optimization
problem in (Eq. (13)) as

N
argmin ¢, > " H(f(E w.x;) (17)
i1
where
—x ifx<0

otherwise (18)

H(X) = {0
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To solve for the 3D motion, we iteratively solve for t and
w. The method starts by searching for the translation axis.
Given a candidate translation, we optimize the objective function
Zf’zl H(f(t,w,X;)) to solve for the rotation w. With this rotation,
the translation is re-estimated substituting in (Eq. (17)) to obtain a
more accurate solution for the translation axis.

In our implementation, we optimize with an interior point
method, and thus we only need to provide the objective func-
tion and its gradient. However #(x) is not strong convex since
H"(x) =0, and thus it cannot be used in Newton-type optimiza-
tion methods. Since the gradient #’(x) has a singular point at 0,
we use the following smooth approximation, as is common in ma-
chine learning:

-1 if x<—¢
Hx)={-1/2 if —e<x<e¢ (19)
0 otherwise

where the gradient is defined as

N z ‘ N
DL IO WI) _ S g (e wox) S Ewx))  (20)

i=1

with
f&w.x) = (nx)AX)T) - (B®)' (-nx)")). (21)

In our implementation, we use the interior-point method de-
scribed in [44] and reformulated in [45] to solve the optimiza-
tion. For the initialization we use w=1[0, 0, 0]" and =0, 0]".
The stopping criteria is based on the tolerance between consecu-
tive steps (set to 1e—15) and the tolerance on the change of the
value of the objective function between consecutive steps (also set
to 1e—15).

Next, we visualize the behavior of the different minimization
functions. Fig. 1 shows the residuals of the optimization in the
2D subspace of translation directions on the surface of the sphere.
For this illustrative example, we chose a random 3D motion and
randomly generated depth values. For each possible translation,
the residual is computed by solving for the optimal rotation. The
ground-truth is marked with a red dot and the results from the
different optimizations are marked with smaller dots in different
colors.

Sphere a shows the optimization for the bilinear constraint in
(Eq. (8)). Sphere b shows the optimization of the constraint assum-
ing planar patches as in (Eq. (10)). Finally, sphere ¢ shows the re-
sults for the optimization using the positive depth constraint as in
(Eq. (12)).

Sphere b shows a smaller region of low-valued residuals com-
pared to the other two, but the optimization is done for the motion
and planar shape parameters of all patches used. A small number
of patches violates the initial hypothesis that assumes all points in
the patch to lie on the same plane, and more patches increase the
number of unknowns, increasing also the complexity of the mini-
mization. The surfaces due to the the epipolar constraint in a and
the depth positive constraint ¢ show a similar minimum error re-
gion, although Sphere ¢ has a smoother surface, and in this case,
a smaller error between the computed solution and the ground-
truth. However, for all the residuals shown here, the optical and
normal flow values are the ground-truth, while real applications
are affected by noise.

4.2. Refining positive depth constraint

In order to refine the egomotion solution proposed in
Section 4.1, we use the 3D structure from the translational mo-
tion. A second step is added estimating first the 3D structure as



F. Barranco, C. Fermiiller, Y. Aloimonos et al.

0.004818

0.004134

i > 1
0.8
08+ 0.003450
0.6 0.6
0.4
0.4 {0.002766
o5 0.2
N
™ % 0.
{0.002082
0.2l -0.2
Y -0.4.
044 0.001398
0.6 -0.6
-0.8 -0.8
0.000713
al 1 .
’ )
0.5 .
> . °
° <
o5y

o

2.993¢-05 Lo

x 05 <
a1

Pattern Recognition 113 (2021) 107759

27867.4

1158.25

253105

0.8 869.453
227536
0.6
0.4
1201967 0.2 {580.661
N
o
17639.8 22
-0.4 291.869
0.6
150829
-0.8
st -l ) 1 Ws.07ms
05
05 ;
. <0
°
o5y

12526

x 08 <)
a1

Fig. 1. Illustrative example of residual error surfaces for a randomly generated 3D motion, shown in the 2D subspace mapped onto a sphere surface that represents the
translation direction. From left to right, top row: a) bilinear constraint from (Eq. (8)), b) epipolar constraint assuming planar patches in (Eq. (10)), ¢) positive depth constraint
with normal flow vectors in (Eq. (12)). The ground-truth is marked with a red dot and the estimated solution with a colored smaller dot.

follows
AT - nx)
X) — B(X)W - n(x)

where C is the structure and represents the inverse depth up to a
factor. Here t represents the translation axis and W the rotational
velocity estimated with the previous method. After that, a regular-
ization process is performed on the structure using the inpainting
method in [46]. This method has been designed for reconstructing
parts of depth maps that are lost e.g. when using infrared-based
Kinect sensors. In our case, the estimation is sparse since normal
flow is only computed at locations of large image gradients such
as at edges or object contours. The inpainting method reconstructs
the depth at smooth surfaces while regularizing the estimates at
object contours. It uses a second-order smoothness assumption as
is common in natural images (see [47]). However, this assumption
is violated close to object contours due to the depth discontinu-
ities.

After the depth regularization, a simpler least-squared mini-
mization can be performed to obtain refined motion estimates op-
timizing

Cx) =ZX)/|It]| = 0 (22)

N
argmin gy, Y ||un(X;) — (CXDAX)T - B(X))W) - n(X;) ||2 (23)
i=1

In our approach, these two steps are iteratively repeated further
refining the solutions for the 3D motion and the 3D structure. The
stopping criterion here is the sum of differences of the 3D struc-
ture between consecutive estimates, for each point (convergence
threshold).

5. Experiments

This section presents: 1) an evaluation of our direct method us-
ing different metrics on various datasets, 2) a comparison of our
direct approach with methods that use optical flow and with other
direct methods that use normal flow, and 3) an evaluation of our
method recovery of 3D structure.

We evaluate the ego-motion estimation on the following four
datasets:

1. The Artificial dataset contains 5000 random sequences of im-
ages of size 150 x 150 with a field of view (FOV) of 30°, and
an image plane of dimension 0.01 x 0.01 meters. The rotational
velocity is up to 20° per frame, the translational velocity is up
to 3 meters per frame, and the maximum virtual depth of the
scene is 10 meters.

2. The Yosemite sequence [48] has images of size 316 x 252, and
is a simulation of a fly-through the Yosemite Valley with di-

vergent motion and translational motion in the clouds. How-
ever, the clouds, as is common, have been masked out. The
translation is t = [0, 0.17,0.98]7 with a speed of 34.8 pixels per
frame, the rotational motion is w = [0.0133,0.0931, 0.0162]" in
degrees per frame, and the FOV is 40°.

3. The Fountain sequence [49] is a synthetic sequence with im-
ages of size 320 x 240 of a curvilinear motion featuring a pa-
tio sequence surrounded by columns and a central fountain.
The ground-truth optical flow, 3D pose, 3D velocity, and depth
are provided. The translation is t = [—0.2578, 0.0872, 0.9622]"
with a speed of 2.5 pixels per frame, the rotational motion is
w = [—0.125,0.20, —0.125]7 degrees per frame, and the FOV is
40°.

4. The Kitti dataset [50] for visual odometry is a popular set of
22 driving sequences of stereo road scenes. These are long nat-
ural scenes with different trajectory directions and speeds. To
the best of our knowledge, our study is the first to evaluate a
direct 3D motion estimation method on such a complex real-
world dataset. We have used 11 of the sequences for which the
ground-truth is provided: the total number of frames is more
than 22500. Since there is very large inter-frame displacement
up to 50 pixels, making it impossible to estimate accurate in-
tensity gradient, we interpolate frames to reduce the maximum
displacement to 3 to 5 pixels.

A preprocessing stage is performed when using our direct
method for all datasets. We use a 5 x 5 Gaussian filter with o =
1.05. For the normal flow estimation, we use a 2D derivative fil-
ter with kernel fT s« f with f=[-1, 9, —45, 0, 45, -9, 1]/60
for the spatial derivatives, and kernel [-1, 1]/2 for the temporal
derivative.

For the evaluation of 3D motion estimation we use two error
metrics: the average angular error (AAE) which is defined as the
average angular distance between the ground-truth u and the es-
timated motion vector i as

N .
AAE = %Zarccos (u(x,)u(x») (24)

— lacx) [ lux;) ||

and the EPE, which is the average euclidean distance between the
ground-truth and the estimated motion vector, defined as

N
EPE = > [u(x) ~ (x| (25)
i=1

Since we are estimating only the translation direction, we eval-
uate the AAE and EPE for rotation, but only the AAE for translation.
For the Kitti dataset we do not provide the rotational AAE, because
the rotational direction varies largely making it difficult to inter-
pret this error.
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Fig. 2. Error plots for 3D motion estimation estimated using our proposed method. The first row shows the translation AAE and rotation AAE and EPE for the Artificial,
Yosemite, and Fountain datasets. The second row shows the translation AAE and the rotation EPE for the Kitti dataset, averaging over all frames and sequences. For the
artificial dataset, the normal flow is estimated in a random direction using the ground-truth; for the other datasets, the normal flow is computed using the spatio-temporal
gradients. The blue and yellow bars show the error when using only the refined positive depth constraint, and after normalizing with the 3D structure reconstruction. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We also use two error metrics to evaluate the estimated struc-
ture: the mean absolute error (MAE), defined as the average ab-
solute difference between the estimated 3D structure (times the
translational speed) d and the disparity ground-truth d

1 5
MAE = N;Ia!(xi) —d(x))l. (26)

and the PoBP, defined as the percentage of points with a MAE
greater than 1 (see [51]). This error gives a measure of the accu-
racy of the recovered structure at object contours.

5.1. Our direct approach for 3D motion estimation

The plots in Fig. 2 illustrate the results of 3D motion estimation
discussed in Section 4 for a) the depth-independent minimization
using the depth positivity constraint, and b) after inclusion of the
refinement step based on the depth map. The first row shows the
translational AAE and the rotational AAE and EPE for the Artificial,
Yosemite, and Fountain datasets. After the 3D reconstruction, the
error is reduced substantially for all datasets. For the Kitti dataset,
the average error reduction is 10% to 15% for the translational AAE.
The rotational EPE increases, but this increase is negligible for the
given driving scenario, where the rotation is very small.

Fig. 3 shows for the Kitti benchmark the estimated paths pro-
jected on the X-Z plane. For the scale, we used the ground-truth
translation speed. For each case, we show the trajectories for all
the methods and the ground-truth. Most estimated trajectories are
very similar to the ground-truth, and particularly after 3D recon-
struction there is very high accuracy. However, for Sequence 5 only
the refined solution reaches a successful trajectory. This could be
due to the small translational motion with respect to the rotational

motion. Note the span of the X axis of less than 1 m compared
to the hundreds of meters in all other sequences. Moreover, for
Sequence 6 and 8, all estimations deviate in the beginning, and
the accumulated error prevents a recovery of the accurate ground-
truth position. Errors are carried from points with large black solid
regions as in crossroads, and also shadows produced by buildings
and trees (illumination changes severely impact the accuracy of
image-based and normal flow based methods).

5.2. Comparison with methods that use optical flow and direct
methods

Table 1 summarizes the comparison to several works in the lit-
erature using both normal flow and optical flow. The first rows
show the error for three optical flow based methods: Raudies [2],
Bruss [21], and Kanatani [22]. The optical flow is computed using
three different methods: Brox [10], Sun [12], and Vogel [11].

The optical flow method of a) Sun [12], which ranked top 1
in 2014, is a variation of Horn and Schunck [9]. It uses a non-
local smoothness regularization term based on median filtering, in-
cludes boundary and occlusion prediction to preserve motion, and
uses an asymmetric hierarchical pyramid strategy to improve large
motion estimations. b) The method of Vogel [11] is a variational
method that uses Total Generalized Variation (TGV) regularization
with a data term based on Census Transform with convex opti-
mization (CSAD). ¢) The Brox [10] method targets specifically large
displacements and is well suited for the Kitti dataset, where the
inter-frame displacements reach up to 50 pixels.

The three selected optical-flow based methods for 3D motion
estimation have been introduced in Section 1. These three meth-
ods showed the best performance and consistency in our exhaus-
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Fig. 3. Estimated paths projected onto the X-Z plane computed using our proposed method for the 11 sequences of the Kitti dataset. Results for Sequence 6 and 8 show
more distortion but, in general, the trajectories are successfully recovered, and the method that normalizes the estimation through the reconstruction of the 3D geometry of

the scene achieves the best results.

tive comparison in the lab. They have been included to facilitate a
comparison with direct approaches and seeking completeness for
future comparisons.

The parameters used in the optical flow estimation are given in
Table 2. No parameters are given for the optical flow method of
Brox[10], since the authors provide a library to execute their im-
plementation. We use the original values used in the authors’ im-
plementation for the parameters not listed in the Table. The ego-
motion estimation methods also use the default parameters in the

implementations provided by the authors. The error values for the
direct methods are obtained from the cited publications. For the
method of Sun [12], preprocessing with a 5 x 5 Gaussian filter with
o = 1.5 was used.

The next rows show methods that use normal flow for esti-
mating egomotion. Although, other methods exist in the litera-
ture [17,40,52], we only included methods which have been evalu-
ated on modern datasets. Hui et al. [30] compute 3D motion from
monocular normal flows and then estimate depth from a stereo
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Table 1
Translation AAE, Rotation AAE and EPE (°/frame).
Yosemite Fountain Kitti 00 -10
Trans. AAE Rot. AAE Rot. EPE  Trans. AAE Rot. AAE Rot. EPE Trans. AAE Rot. EPE
Raudies [1] using Brox [10] 2.4453 20.9280 0.0338 1.6380 1.4605 0.0102 14.7759 0.4300
Bruss [21] using Brox [10] 1.5285 28.5546 0.0126 1.1601 3.0578 0.0028 13.8722 0.3690
Kanatani [22] using Brox [10] 2.1252 13.8169 0.0182 1.4726 1.6544 0.0071 14.5035 0.4781
Raudies [1] using Sun [12] 2.2446 19.1784 0.0340 0.5120 0.5881 0.0026 14.0957 0.4504
Bruss [21] using Sun [12] 1.3245 26.7049 0.0125 1.0248 2.0480 0.0034 13.4256 0.3689
Kanatani [22] using Sun [12] 1.9742 10.8016 0.0122 0.4012 0.5607 0.0035 13.8342 0.4928
Raudies [1] using Vogel [11] 0.8085 21.5764 0.0109 0.7657 0.7893 0.0059 13.6363 0.4338
Bruss [21] using Vogel [11] 1.2289 26.4552 0.0122 1.5791 3.4248 0.0030 12.5186 0.1214
Kanatani [22] using Vogel [11] 0.7866 19.7755 0.0089 0.6864 1.0900 0.0041 13.4672 0.6690
Hui [30] N/A N/A N/A 2.497 3.907 N/A N/A N/A
Yuan [32] N/A N/A N/A 1.251 N/A 0.0699 N/A N/A
Hui [31] 1.619 N/A 0.0282 2.371 N/A 0.0220 N/A N/A
Yuan [33] 0.8803 N/A 0.0685 1.1866 N/A 0.050 N/A N/A
Ji [29] 0.9589 5.4261 0.0054 1.4043 1.9327 0.0022 2.4923 0.0803
Our approach: positive depth 0.8436 4.9055 0.3799 1.2054 1.3528 0.2138 1.8225 0.0613
Our approach: depth reconstructed  0.3640 5.7749 0.3789 0.4074 0.5615 0.2139 1.5340 0.3545
Table 2
Parameter set values.
Vogel [11] Sun [12]
Parameter Value Description Parameter Value Description
cEps 1.25/255  Threshold for Ternary Census  max_iters 3 Maximum number of iterations
lambda 12.333 Strength of data term gnc_iters 2 Iterations for GNC (graduated non-convexity) formulation
warps 3 Number of warping steps texture true Do texture decomposition
pyramid_factor 0.9 Scale in image pyramid median_filter_size 5x5 Post-median filtering size
innerlts 10 Number of inner iterations area_hsz 7 Half-window size for the weighted median filter
ring 2 Size of the patch for CENSUS sigma_i 7 Half-window size for robust affine transformation
dataTerm 1 1 for CENSUS interpolation_method  bi-cubic  Bicubic interpolation
doTV 0 0 for total variation (TV)
stt 0.5 Structure texture preprocessing
startResolution 16 Minimum image size in pyramid
medFilt 1 Post-warp median filter

system without explicitly computing correspondences. They use
two constraints: the AFD, which is a relaxation of the constraint in
(Eq. (15)) where a voting mechanism punishes the estimates that
result in negative depth (different signs for the translational and
rotational components). To make the constraint more robust, sev-
eral re-projections from one camera on the other are also consid-
ered. The second constraint, called AFM, affects the motion magni-
tude, and is similar to the constraint in (Eq. (16)), that uses normal
flows orthogonal to the translational component. In [31] the same
authors propose a new solution based on the AFD constraint.

The method of Yuan et al. [32] first estimates the 3D motion
using the constraint in (Eq. (16)), selecting the normal flow vec-
tors orthogonal to the translational motion component. Then, they
solve for the rotation with a more robust strategy, removing only
solutions that do not lie in the half-plane consistent with the nor-
mal flow estimates. In Yuan et al. [33] authors present an updated
version that relies on clustering for selecting the flows that satisfy
the earlier described constraint and adding a step using RANSAC
to refine the final estimations. We also have re-implemented the
patch-based method for a single normal flow field described in
[29]. This method, partitions the image into regular patches, and
models the scene of each patch with a plane. We note that this
planar constraint increases the number of parameters to be esti-
mated.

Referring to Table 1, our approaches outperform all normal flow
based methods for all cases (cases for which results are not re-
ported in the literature are marked as N/A). Our method also
outperforms all optical flow based methods, but the method of
Kanatani [22] using the optical flow from Sun [12] on the the
Fountain sequence. The results of our method may be further im-

proved with an additional refinement step of the rotation after re-
fining the translation, but at the cost of increased computation. We
note the high accuracy of the method in [29], specifically for the
rotational velocity. Let us emphasize the high performance of our
method on the Kitti dataset, which is a real-world driving scenario
in contrast to all other synthetic datasets previously used in the
evaluation of direct 3D motion estimation methods.

Finally, let us point out that the normal flow is estimated using
the spatial and temporal image derivatives. We set a threshold of
0.125 on the spatial gradient, with the images normalized between
[0, 1]. This gradient was chosen empirically to maintain a sparsity
below 10% of the full image resolution.

5.3. 3D reconstruction from motion

In this section we evaluate the accuracy of our method’s 3D
geometry estimation by comparing to the disparity ground-truth
(subject to availability). To obtain the scale of the depth, we use
the provided ground-truth translational motion speed. Two met-
rics are used: 1) Mean Absolute Error (MAE), and 2) Percentage of
Bad Points (PoBP).

Table 3 shows the accuracy of the 3D structure using these two
error metrics, in addition to the density values which indicate the
sparseness of the estimation (common in sparse disparity estima-
tion works such as [53,54]). The first two columns provide the er-
rors for the dense estimate after applying the inpainting method.
The average error is below 0.4 m for the Fountain sequence (the
maximum depth here is 7-8 m) and below 0.8 m for the Kitti
dataset (with ranges up to 15-20 m). The third and fourth columns
list the errors for our sparse estimate (about 10 % of the image res-
olution) before applying the regularization. Comparing the results
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Table 3
3D structure error metrics: MAE and PoBP.
MAE dense  PoBP dense = MAE sparse  PoBP sparse density
Yosemite sequence [48]  NJ/A N/A N/A N/A 10.54%
Fountain sequence [49] 0.359 15.60% 0.520 9.24% (1.44%) 9.60%
Kitti dataset [50] 0.800 32.91% 1.468 16.40% (1.80%)  10.95%
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Fig. 4. (Left) Sparse estimated 3D structure and ground-truth depth (dark blue represents closer objects and yellow the furthest ones); (right) evolution along iterative
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legend, the reader is referred to the web version of this article.)
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in columns 1-4, we see that, because the inpainting helps recover-
ing smooth surfaces where no gradients are found, it reduces the
average absolute error. On the other hand, it negatively affects the
PoBP, since the reconstruction process propagates the error at ob-
ject contours due to the absence of values nearby. The values in
parenthesis provide the PoBP for the whole image, not only the
sparse estimate, which for both datasets is below 2%.

Fig. 4 illustrates the estimation of the 3D structure with ex-
amples from each sequence. The left and right image in row one,
and top and bottom image in all other rows show the sparse esti-
mated 3D structure and the sparse disparity ground-truth. The two
plots on the right show the evolution of the MAE (in blue on the
left axis) and the PoBP (in red on the right axis) along the refine-
ment process. The number of iterations of this process depends on
a convergence threshold that stops any further processing when
there is not enough change between consecutive refined estimates.
The first row shows frame 3 of the Fountain sequence, the sec-
ond row shows frame 3 of the Yosemite sequence, and the last
four rows show four frames from the Kitti dataset. As discussed
in Table 3, the regularization process for the reconstruction nega-
tively affects the PoBP, while it reduces the average MAE over all
pixels. In most cases each refinement step reduces the MAE, for
example 50% for sequence 5 of the Kitti dataset, while decreasing
the PoBP.

The following values were used in the implementation. In the
refinement of the egomotion using the 3D structure, the stopping
criterium is: 1) a convergence threshold of 0.2 for the sum of
differences between consecutive 3D structure estimates and 2) a
maximum of 10 iterations. In the inpainting method, the only pa-
rameter is a multiplicative factor for the gradient of the curve that
adjusts the smoothness; we set it to 0.01.

Regarding time performance, the bottleneck in our processing
is the search for the translation. We used a 4-GHz Intel Core i7
computer with 8 GB of RAM. For the Fountain sequence, the av-
erage running time for the whole computation is 97.6 s, where
84.1 s correspond to the search, 13.05 s to the refinement (includ-
ing three iterations until convergence), and the inpainting process
requires 1.4 s. After parallelizing the search using 8 threads, the
time for the search has been reduced to 13.04 s (and it is expected
to be further reduced when using a massively parallel hardware
such as a GPU). Comparing the time to optical flow based methods
using the same computer, we found the following: Sun’s method
[12] requires 61.56 s, Brox’s method [10] requires 5.95 s, and Vo-
gel’s method [11] 29.14 s. After that, the time for running the 3D
motion estimation methods is 0.76 s for Raudies’s [2]| and 0.73 s for
Kanatani's [22]. However, as mentioned before, these methods rely
on RANSAC for more refined estimations, and in this case Raudies’s
requires 97.81 s and Kanatani's about 200.81 s. Bearing in mind the
accuracy of our direct method, the time performance is very simi-
lar to the conventional optical flow based methods.

6. Conclusions

We have introduced a new formulation of the depth positiv-
ity constraint. On the basis of this constraint, we proposed a di-
rect method that allows for joint estimation of 3D motion and 3D
structure using as input image gradients. The complete method
consists of a non-linear optimization for the positive depth con-
straint using normal flow, followed by a refinement using a linear
optimization on the depth. We showed that our method obtains
higher accuracy in motion estimation than other direct methods,
and other optical flow based 3D motion estimation techniques. Fur-
thermore, the estimated 3D geometry of the scene was shown of
good quality.

Our results demonstrate that delaying the smoothness con-
straint, and estimating 3D motion globally in early stages of
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the structure-from-motion pipeline from minimal data, is a good
choice. Although we used the new depth positivity constraint with
normal flow, it also could be applied to optical flow. Thus our work
may inspire further approaches that include the positivity con-
straint into the 3D motion estimation. One possibility is to incor-
porate the constraint into a deep learning architecture for motion
and structure estimation [55,56].
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