
PRGFlow: Unified SWAP-aware deep global optical
flow for aerial robot navigation

Nitin J. Sanket,✉ Chahat Deep Singh,
Cornelia Fermüller, and Yiannis Aloimonos
Perception and Robotics Group, University of Maryland, College Park
✉Email: nitin@umiacs.umd.edu

Global optical flow estimation is the foundation stone for obtaining
odometry which is used to enable aerial robot navigation. However,
such a method has to be of low latency and high robustness whilst also
respecting the size, weight, area and power (SWAP) constraints of the
robot. A combination of cameras coupled with inertial measurement
units (IMUs) has proven to be the best combination in order to obtain
such low latency odometry on resource-constrained aerial robots.
Recently, deep learning approaches for visual inertial fusion have
gained momentum due to their high accuracy and robustness. However,
an equally noteworthy benefit for robotics of these techniques are their
inherent scalability (adaptation to different sized aerial robots) and
unification (same method works on different sized aerial robots). To this
end, we present a deep learning approach called PRGFlow for obtaining
global optical flow and then loosely fuse it with an IMU for full 6-DoF
(Degrees of Freedom) relative pose estimation (which is then integrated
to obtain odometry). The network is evaluated on the MSCOCO dataset
and the dead-reckoned odometry on multiple real-flight trajectories
without any fine-tuning or re-training. A detailed benchmark comparing
different network architectures and loss functions to enable scalability
is also presented. It is shown that the method outperforms classical
feature matching methods by 2× under noisy data. The supplementary
material and code can be found at http://prg.cs.umd.edu/PRGFlow.

Introduction: A fundamental competence of aerial robots [1] is to esti-
mate ego-motion or odometry before any control strategy is employed
[2]. Different sensor combinations have been used previously to aid the
odometry estimation with LIDAR based approaches topping the accu-
racy charts [3]. However such approaches cannot be used on smaller
aerial robots due to their size, weight, area and power (SWAP) con-
straints (Figure 1). Such small aerial robots are generally preferred
due to safety, agility and usability as swarms [4]. In the last decade,
imaging sensors have struck the right balance considering accuracy
and general sensor utility by utilising classical feature matching algo-
rithms [5]. However, visual data is dense and requires a lot of computa-
tion, which creates challenges for low-latency applications. To this end,
sensor fusion experts proposed to use IMUs along with imaging sen-
sors, because IMUs are lightweight and are generally available on aerial
robots [6, 7].

In the last five years, deep learning based approaches for visual in-
ertial fusion have gained momentum [8]. convolutional neural networks
(CNNs) that regress relative camera pose (called Pose networks) from a
pair of images show that they can provide accuracy results comparable to
those of classical VO algorithms but lack generalisation across datasets
[9]. Such generalisation performance is however better observed in net-
works which produce outputs based on image pixel similarities such as
optical flow [10]. Furthermore, a critical issue with deep networks for
odometry/flow estimation is that to have the same accuracy as classical
approaches they are generally computationally heavy leading to larger
latency. However, leveraging hardware acceleration and better parallelis-
able architectures can mitigate this problem.

In this work, we present a method for global optical flow estimation
(translational velocities) using deep learning called PRGFlow targeted
towards a down/up-facing camera. We then couple this information with
an altimeter source and an inertial measurement units (IMUs) to obtain
the full 6-DoF (degrees of freedom) pose for aerial robot navigation.

A summary of our contributions are: (1) A deep learning approach
to estimate odometry using visual, inertial and altimeter data. (2) A
comprehensive benchmark of different network architectures, hardware
architectures and loss functions. (3) Extensive real-flight experiments
using PRGFlow without any fine-tuning or re-training to demonstrate
the robustness of our method.

Fig. 1 Size comparison of various components used on quadrotors. (a) Snap-
dragon Flight, (b) PixFalcon, (c) 120 mm quadrotor platform with NanoPi
Neo Core 2, (d) MYNT EYE stereo camera, (e) Google Coral USB accel-
erator, (f) Sipeed Maix Bit, (g) PX4Flow, (h) 210 mm quadrotor platform
with Coral Dev board, (i) 360 mm quadrotor platform with Intel Up board,
(j) 500 mm quadrotor platform with NVIDIA® JetsonTM TX2. Note that all
components shown are to relative scale. All the images in this paper are best
viewed in color on a computer screen at a zoom of 200%

PRGFLOW framework: To compute global optical flow, we first model
the relative pose transformation as a function of image matching as ex-
plained next. Let xt , xt+1 be the homogeneous point correspondences in
image frames at t and t + 1 respectively. Now, the transformation be-
tween the two image frames can be expressed as xt+1 = Ht+1

t xt , where
Ht+1

t represents the non-singular 3 × 3 transformation matrix between
the two frames. In general, Ht+1

t is a non-linear function of the 3D ro-
tation matrix Rt+1

t and 3D translation vector Tt+1
t . However, for certain

scene structuresHt+1
t simplifies to a linear function. Such a scenario hap-

pens when: 1. Real-world area is planar or near-planar, 2. Focal length
is large. This scenario is also called homography where Ht+1

t is called
the homography matrix. From Ht+1

t , we can recover a finite number of
{Rt+1

t ,Tt+1
t } solutions. However, in a practical scenario, this decom-

position is noisy as the errors in Rt+1
t and Tt+1

t are coupled which is
highly undesirable.

Complementary sensors help mitigate this problem. IMUs, which are
readily available on aerial robots, can provide accurate angle measure-
ments within a small interval. We compute the rotation estimates from
a Magdwick filter [11] on IMU data to rotation compensate (stabilise in
roll, pitch and yaw) the input images similar to [10, 12]. Once the ro-
tation has been recovered (removed) using the IMU, the problem of es-
timating ego-motion reduces to finding Tt+1

t (2D translation and zoom)
which is global optical flow and scale. This is because, Ht+1

t can be de-
composed into simpler transformations such as in-plane rotation (yaw),
zoom (scale), translation and out-of-plane rotations (pitch + roll) which
renders it to be decomposed toRt+1

t and Tt+1
t using multiple information

sources. We call this rotation-compensated transformation as pseudo-
similarity since it is one DoF less than the similarity transformation
(2D translation, zoom and yaw). We present a deep CNN for estimat-
ing pseudo-similarity which we call PRGFlow (PRG stands for our lab’s
name). Mathematically, the pseudo-similarity transformation is given in
Equation (1), where W , H , s, tx and ty depict the image width, image
height, scale, X -translation and Y -translation respectively.

xt+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

W

2
0

W

2

0
H

2

H

2

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣
1 + s 0 tx

0 1 + s ty

0 0 1

⎤
⎥⎦ xt (1)

To obtain better performance, we utilise the inverse compositional
spatial transformer networks (IC-STN) [13]. IC-STN proposed the con-
cept of utilising multiple blocks to predict the final transformation. Each
block predicts an incremental transformation over the previous block.
The final predicted transformation is obtained by combining (by matrix
multiplication) the outputs of all blocks. Such a conceptualisation al-
lows to break down the transformation into simpler ones, for e.g. one
can break down pseudo-similarity (PS) into translation (T) and scale
(S) transformations. In particular, we extend the work in [13] to support
pseudo-similarity and different warp types.

614 ELECTRONICS LETTERS August 2021 Vol. 57 No. 16 wileyonlinelibrary.com/iet-el

https://orcid.org/0000-0001-9681-7602
https://orcid.org/0000-0002-9972-5559
https://orcid.org/0000-0003-2044-2386
https://orcid.org/0000-0002-8152-4281
http://prg.cs.umd.edu/PRGFlow
http://wileyonlinelibrary.com/iet-el

Table 1. Performance metric variation with different hardware

VanillaNet ResNet SqueezeNet MobileNet ShuffleNet
S L S L S L S L S L

Frames Pper Ssecond (FPS) ↑
Intel® Up Board 10.30 3.52 7.96 2.60 9.14 0.69 7.61 3.90 1.30 –
Google CoralDev 1000.00 874.00 1111.00 720.00 312.00 27.64 909.00 666.00 – –
Google CoralUSB 714.28 870.00 625.00 847.00 285.03 24.17 900.90 769.23 – –
NanoPi 40.87 16.39 30.85 10.78 28.31 2.43 38.70 15.96 29.79 4.77
BananaPi 31.67 12.46 24.00 8.67 22.26 2.34 29.87 12.79 24.62 4.40
NVIDIA® JetsonTM TX2 232.30 123.71 197.02 27.07 224.39 135.91 231.79 135.75 143.16 35.63
i9-PC 920.81 520.26 768.45 385.40 831.06 130.83 655.53 384.08 518.30 172.55
TitanXp-PC 556.71 645.18 936.61 436.94 978.04 238.60 940.94 411.83 803.69 289.44
CoralUSB+NanoPi 125.16 130.32 140.79 223.71 – – 145.60 236.43 – –
i7-Laptop 301.36 155.12 224.07 123.08 264.74 35.39 230.13 136.97 – –
1070-Laptop 980.35 566.72 798.57 528.83 932.25 406.36 823.65 494.38 – –
GOPS ↓ 0.12 0.37 0.15 0.51 0.08 4.22 0.11 0.30 0.07 1.09
MParams ↓ 0.20 2.07 0.20 2.11 0.14 3.14 0.21 2.06 0.19 2.08
Acc. (%) ↑ 70.64 81.70 84.40 88.10 77.10 79.80 45.00 63.30 40.40 40.40
Acc./(MParams×103) ↑ 0.35 0.04 0.42 0.04 0.57 0.03 0.22 0.03 0.21 0.02
Acc./(GOP×103) ↑ 0.59 0.22 0.56 0.17 0.96 0.02 0.42 0.21 0.61 0.04
Accuracy×FPS/103 ↑
Intel® Up Board 0.73 0.29 0.67 0.23 0.70 0.05 0.34 0.25 0.05 –
Google CoralDev 69.70 70.53 92.77 63.43 23.74 2.18 38.36 40.96 – –
Google CoralUSB 49.79 70.21 52.19 74.62 21.69 1.91 38.02 47.31 – –
NanoPi 2.85 1.32 2.58 0.95 2.15 0.19 1.63 0.98 – –
BananaPi 2.21 1.01 2.00 0.76 1.69 0.18 1.26 0.79 – –
NVIDIA® JetsonTM TX2 16.41 10.11 16.63 2.38 17.30 10.85 10.43 8.59 5.78 1.44
i9-PC 65.05 42.51 64.86 33.95 64.07 10.44 29.50 24.31 20.94 6.97
TitanXp-PC 39.33 52.71 79.05 38.49 75.41 19.04 42.34 26.07 32.47 11.69
CoralUSB+NanoPi 8.72 10.52 11.76 19.71 – – 6.14 14.54 – –
i7-Laptop 21.29 12.67 18.91 10.84 20.41 2.82 10.36 8.67 – –
1070-Laptop 68.33 45.73 66.68 46.59 70.94 32.06 34.76 30.40 – –

First , second and third best result. See supplementary material for a detailed description of the hardware modules.

Dataset, training and testing details: We train and test all our networks
on the MS-COCO dataset [14] using the train2014 and test2014

splits for training and testing respectively to predict the warp param-

eters: h̃ = [
s̃ t̃x t̃y

]T
. During training, we obtain a random crop of

size 300 × 300 px. which is then warped using pseudo-similarity to
generate synthetic data using a random warp parameter in the range
γ1 = ± [

0.25 0.20 0.20
]
(unless specified otherwise). Then the center

128 × 128 px. patches are extracted (to avoid boundary effects) and
are stacked to obtain an input shape of 128 × 128 × 2Nc (Nc is the
number of channels in each patch). Our networks were trained in Python
2.7 using TensorFlow1.14 on a desktop computer (See supplementary
for details) running Ubuntu 18.04. We trained all our networks with a
mini-batch-size of 32 using the ADAM optimiser for 100 epochs with
early termination if we detect over-fitting on the validation set.

We tested our trained networks (trained only using in-domain range
of data) using two different configurations: (1) In-domain and (2)
Out-of-domain. In the in-domain testing (not to be confused with in-
training dataset), we warped images from the test2014 split of the
MS-COCO dataset using a random warp parameter in range γ1 =
± [

0.25 0.20 0.20
]
(same warp range as training). This was used for

evaluation as described in evaluation metrics section. To comment on
the generalisation of the approach, we also tested it on out-of-domain
warps, i.e. twice the warp range it was originally trained on, denoted
by γ2 = ± [

0.50 0.40 0.40
]
. This test was constructed to highlight the

generalisability vs. speciality of the network configuration.

Network architectures: We use five network architectures inspired
by previous works: VanillaNet [15], ResNet [16], ShuffleNet [17],
MobileNet [18], and SqueezeNet [19]. Each network is composed of
various blocks for predicting incremental transformation as explained
previously. The output of each block is used as an incremental warp as
proposed in [13]. For each of these blocks, we use the same name as the
network, for e.g. VanillaNet has VanillaNet blocks. We use the following
shorthand to denote the architecture. VanillaNeta denotes VanillaNet
with a number of VanillaNet blocks. We modify the networks from
their original papers in the following manner: we remove max-pooling
blocks and replace them with stride in the previous convolutional block.
Instead of varying sub-sampling rates (rates at which strides change
with respect to depth of the network), we keep it fixed to the same value

at every layer. For ease of understanding, more details can be found in
the supplementary material. We also test two different sizes of networks,
i.e. large (model size ≈ 8.3 MB) and small (model size ≈ 0.83 MB).
Here, the model sizes are computed for storing float32 values for each
neuron weight.

Loss functions: The trivial way to learn the warp parameters is to use
a supervised loss (since the labels are “free” as the data is synthetically
generated on the fly). The loss function Ls used in the supervised case
is an l2 distance between predicted parameters h̃ and ideal parameters
ĥ [10].

We also study the unsupervised losses which are generally compli-
cated since they are under-constrained compared to the ones in super-
vised approaches. Here, we study different unsupervised loss functions
whose form is given by:

Lus = argmin
h̃

E
[D{W(P1, h̃

)
,P2

} + λiRi

]
(2)

whereW is a generic differentiable warp function which can take on dif-
ferent mathematical formulations based on its second argument (model
parameters), andD represents a distance measuring image similarity be-
tween the image frames. Finally, λi (chosen by cross-validation) and Ri

represent the ith Lagrange multiplier and it’s corresponding regularisa-
tion function respectively. We experiment with different D and R func-
tions described next. DL1 represents the generic l1 photometric loss [20]
commonly used for traditional images, DChab represents the Chabonnier
loss [21] commonly used for optical flow estimation, DSSIM represents
the loss based on Structure Similarity [22] commonly used for learning
ego-motion and depth from traditional image sequences andDRobust rep-
resents the robust loss function presented in [23]. These functions can
also be used as metric functions or regularisers and can take any generic
input such as the raw image or a function of the image. We experiment
with different inputs such as the raw RGB image, grayscale image, high-
pass filtered image and image cornerness score (denoted by I, G, Z (I)
and C(I) respectively). We use the following shorthand for represent-
ing loss functions: DSSIM(I) + 5.0DL1(Z (I)) represents a loss function
with SSIM on raw RGB images as the metric function and photomet-
ric l1 on high-pass filtered images as the regularisation function with a
Lagrange multiplier of 5.0.

ELECTRONICS LETTERS August 2021 Vol. 57 No. 16 wileyonlinelibrary.com/iet-el 615

http://wileyonlinelibrary.com/iet-el

Evaluation metrics: The scale and translation error in px. are given as:

Escale = M

(√
0.5(W 2 + H 2)|̃s − ŝ|

)
;

Etrans = M

(
0.5

(√(
W

(
t̃x − t̂x

))2 + (
H

(
t̃y − t̂y

))2))
(3)

Here, M denotes the median value (we choose the median value over
the mean to reject outlier samples with low texture). We also convert
errors to percentage accuracy as follows:

A = (1 − ((Escale + Etrans)/(Iscale + Itrans))) × 100% (4)

Here, Iscale and Itrans denote the identity errors (error when the predic-
tion values are zero) for scale and translation respectively. For a detailed
description of the computing platforms used, refer to the supplemen-
tary material.

Experimental results and discussion: Table 1 provides a benchmark tab-
ulation of all the networks on various performance metrics and com-
puting platforms. All the networks include both Small (denoted as
S and has 0.83 MB model size) and Large (denoted as L and has
8.3 MB model size) configurations trained using supervised l2 loss func-
tion. Up board, TX2, PC and Laptop use the original Float32 model;
NanoPi and BananaPi use the Int8-TFLite post-quantisation optimised
model and finally CoralDev, CoralUSB and CoralUSB+NanoPi use
the Int8-EdgeTPU post-quantisation optimised model since they gave
us the best performance. An important factor to realise is that using
Int8-EdgeTPU post-quantisation optimisation to run on either the Coral
Dev board or the Coral USB accelerator can provide significant speed-
ups of up to 52× compared to the original Float32 model without sig-
nificant loss in accuracy.

Table 2(a) shows the results for different warp combinations where
we use the following shorthand: PS×1 means that we have one pseudo-
similarity block, T and S denote translation and scale blocks respectively.
We can observe that as the number of warping blocks increases, the per-
formance reaches a maximum and then deteriorates. This is because the
number of neurons per warp block directly affects the performance. In-
creasing the number of warp blocks without increasing model size hurts
accuracy as the number of neurons per warp block become small. Next,
we study the performance of different network architectures. The results
for large and small models can be found in Table 2(b, c) respectively.
One can clearly observe that ResNet gives the best performance for both
small and large networks and should be the choice when designing for
maximum accuracy without any regard to the number of parameters or
amount of OPS (operations). However, if one has to prioritise maximis-
ing accuracy whilst minimising number of parameters, then SqueezeNet
and ResNet would be the choice for smaller and larger networks respec-
tively. Another trend to observe is that we need 10× more parameters for
a 19% increase in accuracy. Lastly, if one has to prioritise in maximis-
ing accuracy whilst minimising the number of OPS, then SqueezeNet
and MobileNet would be the choice for smaller and larger networks re-
spectively. Clearly, the most optimal architecture in-terms of accuracy,
number of parameters and OPS is SqueezeNet for smaller networks and
ResNet for larger networks. To gather more insight of what data input
is well suited for pseudo-similarity estimation, we explore training and
testing on the following inputs: (a) RGB image, (b) grayscale image, (c)
high pass filtered image (Table 2(d)). Surprisingly, training on RGB im-
ages and evaluating on RGB images gives worse performance in the test-
ing both for in-domain (γ1) and out-of-domain (γ2) ranges as compared
to testing on grayscale data. We speculate that this is due to conflict-
ing information in multiple channels. Another surprising observation is
that training and/or testing on high-pass filtered images results in large
errors, which is contrary to the classical approaches. We speculate that
this is because CNNs rely on “staticity” of the image pixels (image pixels
change slowly and are generally smooth).

From Table 2(e), we observe that the supervised network performs
better than most unsupervised networks on out-of-domain tests. This
hints that we need better loss functions for unsupervised methods
and better network architectures to take advantage of these unsuper-
vised losses.

Table 2. Pseudo-similarity estimation: A quantitative evaluation

Escale (px.)
↓

Etrans (px.)
↓

Network (warping) γ1 γ2 γ1 γ2

FLOPS
(G) ↓

MParams
↓

(a) Different warp combinations for VanillaNet
Identity 11.4 22.8 10.3 20.4 – –
VanillaNet1 (PS×1) 2.4 15.0 1.3 12.5 0.37 2.07
VanillaNet1 (PS×1)
DA*

4.1 17.7 2.3 14.2 0.37 2.07

VanillaNet2 (PS×2) 2.2 9.9 1.4 12.4 0.42 2.17
VanillaNet2 (S×1, T×1) 2.5 15.2 1.5 12.2 0.46 2.10
VanillaNet2 (T×1, S×1) 2.5 15.1 1.5 12.5 0.42 2.15
VanillaNet4 (PS×4) 2.3 11.9 1.5 14.9 0.42 2.15
VanillaNet4 (S×2, T×2) 2.6 15.4 1.6 12.6 0.46 2.08
VanillaNet4 (T×2, S×2) 2.0 8.5 1.5 12.5 0.46 2.08
VanillaNet4 (T×2, S×2)

γ2
†

2.7 2.8 4.6 7.2 0.46 2.08

(b) Different network architecture using T×2, S×2 warping block for large
model

VanillaNet4 1.9 6.4 1.5 12.4 0.46 2.08
ResNet4 1.7 15.1 0.9 10.1 0.59 2.12
SqueezeNet4 2.1 5.7 2.2 13.8 2.20 2.12
MobileNet4 4.0 14.2 1.6 12.0 0.41 2.04
ShuffleNet4 6.4 17.4 3.0 13.9 1.20 2.10
(c) Different network architecture using T×2, S×2 warping block for small

model
VanillaNet4 3.3 8.9 3.1 14.0 0.18 0.21
ResNet4 4.4 12.5 2.4 12.1 0.20 0.20
SqueezeNet4 2.4 5.6 4.0 14.9 0.19 0.20
MobileNet4 8.3 18.7 3.7 13.4 0.16 0.20
ShuffleNet4 8.3 17.6 4.6 15.7 0.13 0.21
(d) Different network inputs using T×2, S×2 warping block for large
VanillaNet4 model

Identity 11.4 22.8 10.3 20.4 – –
I (I) 1.9 6.4 1.5 12.4 0.46 2.08
G (I) 1.8 6.3 1.5 12.3 0.46 2.08
G (G) 2.7 14.1 1.6 12.7 0.46 2.08
Z (I) (Z (I)) 13.1 9.4 10.4 16.0 0.46 2.08
G (Z (I)) 11.8 20.7 9.8 19.8 0.46 2.08
I (Z (I)) 13.1 22.5 10.5 20.1 0.46 2.08
Z (I) (G) 8.5 19.8 4.1 17.6 0.46 2.08
Z (I) (I) 17.2 20.1 4.2 17.4 0.46 2.08
(e) Different loss functions using PS×1 warping block for large VanillaNet1
model

Identity 11.4 22.8 10.3 20.4 – –
Supervised Ls
(VanillaNet1)

2.4 15.0 1.3 12.5 0.37 2.07

DRobust(I, C(I))
(ResSqueezeNet1)

12.9 25.2 7.2 11.7 1.01 2.18

DSSIM(I)
(ResSqueezeNet1)

3.4 21.2 6.0 13.8 1.01 2.18

DSSIM(I) +
0.1DL1(C(I))
(ResSqueezeNet1)

2.0 16.1 6.2 14.6 1.01 2.18

DSSIM(I) +
0.1DL1(Z (I))
(ResSqueezeNet1)

2.7 16.6 6.4 13.6 1.01 2.18

DL1(DB(E)) [10] 5.4 17.7 3.7 16.5 4.92 3.6
DChab(DB(E)) [10] 5.1 17.1 3.4 16.7 4.92 3.6
Supervised DB(E) [10] 4.1 16.2 3.3 15.1 4.92 3.6
∗Trained and tested with Gaussian noise, hue+saturation shifts, brightness,
contrast and gamma changes.
†Trained with shifts of γ2.

We also observed that under noise (changes to brightness, contrast,
hue, saturation, gamma and additive Gaussian noise), PRGFlow works
better than classical feature matching algorithms with about 2× accu-
racy. These results can be found in the supplementary material.

In the real-flight tests (see supplementary for details on data collec-
tion), we use the predictions h̃ (ResNet4 T×2, S×2 large model trained
using supervised l2 loss) which are obtained every four frames and in-
tegrated using dead-reckoning to obtain the final trajectory. The aver-
age RMSEate [24] for various trajectories shown in Figure 2 is less than
2% of trajectory length (even with severe noise) and is about 8× bet-
ter than PX4Flow [12] estimates. Avg. RMSEate in PRGFlow trajectory
estimates on noisy data is lower than that of PX4Flow estimates even
on noiseless data by 10%. An important point to note is that, in serve
noise, the scale estimates from classical approaches are generally close
to identity error.

616 ELECTRONICS LETTERS August 2021 Vol. 57 No. 16 wileyonlinelibrary.com/iet-el

http://wileyonlinelibrary.com/iet-el

Fig. 2 Comparison of trajectory obtained by dead-reckoning (red) our es-
timates with respect to the ground truth (blue) and PX4Flow (black) esti-
mates for quadrotor flight in various trajectory shapes (left to right): Circle,
Moon, Line, Figure8 and Square

Conclusion: We presented a method to estimate global optical flow on
an aerial robot using deep learning. This information is then combined
with an IMU and an altimeter to obtain full 6-DoF pose. We provided
comprehensive analysis of warping combinations, network architectures
and loss functions. We also benchmarked all our approaches on com-
monly used hardware with different SWAP constraints for speed and
accuracy. We hope this benchmark will serve as a reference manual
for researchers and practitioners alike for designing neural networks for
their specific applications. We also show extensive real-flight odome-
try (obtained by integrating the pose obtained) results, highlighting the
robustness of PRGFlow without any fine-tuning or re-training. Finally,
as a parting thought, utilising deep networks for estimating global opti-
cal flow on a noisy data would most likely lead to a more robust system.

Acknowledgments: The support of the Brin Family Foundation, the
Northrop Grumman Mission Systems University Research Program,
ONR under grant award N00014-17-1-2622 and National Science Foun-
dation under grant BCS 1824198 are gratefully acknowledged.

© 2021 The Authors. Electronics Letters published by John Wiley &
Sons Ltd on behalf of The Institution of Engineering and Technology

This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.
Received: 16 March 2021 doi: 10.1049/ell2.12274

References

1 Nitin, J. S., et al.: GapFlyt: Active vision based minimalist structure-
less gap detection for quadrotor flight. IEEE Robot. Automat. Lett. 3(4),
2799–2806 (2018)

2 Nathan, M., et al.: Collaborative mapping of an earthquake-damaged
building via ground and aerial robots. J. Field Robot. 29(5), 832–841
(2012)

3 Ji, Z., et al.: LOAM: Lidar odometry and mapping in real-time. In
Robot.: Sci. Syst. 2, 1–9 (2014)

4 Weinstein, A., et al.: VIO-Swarm: A swarm of 250g quadrotors. IEEE
RA-L Robot. Automat. Lett. 3(3), 1801–1807 (2018)

5 Morgan, Q., et al.: The open vision computer: An integrated sensing and
compute system for mobile robots. In: 2019 Int. Conf. Robot. Automat.
(ICRA), pp. 1834–1840. IEEE, Piscataway, NJ (2019)

6 Anastasios, I. M., et al.: A multi-state constraint kalman filter for vision-
aided inertial navigation. In: Proc. 2007 IEEE Int. Conf. on Robotics and
Automation, pp. 3565–3572. IEEE, Piscataway, NJ (2007)

7 Michael, B., et al.: Robust visual inertial odometry using a direct EKF-
based approach. In: 2015 IEEE/RSJ int. conf. intell. robots syst. (IROS),
pp. 298–304. IEEE, Piscataway, NJ (2015)

8 Ronald, C., et al.: VINet: Visual-inertial odometry as a sequence-to-
sequence learning problem. arXiv:1701.08376 (2017)

9 Alex, K., et al.: Posenet: A convolutional network for real-time 6-dof
camera relocalization. In: Proc. IEEE Int. Conf. on Computer Vision,
pp. 2938–2946. IEEE, Piscataway, NJ (2015)

10 Nitin, J. S., et al.: Evdodgenet: Deep dynamic obstacle dodging with
event cameras. In 2020 IEEE Int. Conf. Robot. Automat. (ICRA),
pp. 10651–10657. IEEE, Piscataway, NJ (2020)

11 Sebastian, OH. M., et al.: Estimation of imu and marg orientation using
a gradient descent algorithm. In: 2011 IEEE Int. Conf. on Rehabilitation
Robotics, pp. 1–7. IEEE, Piscataway, NJ (2011)

12 Dominik, H., et al.: An open source and open hardware embedded metric
optical flow CMOS camera for indoor and outdoor applications. In: 2013
IEEE Int. Conf. Robot. Automation, pp. 1736–1741. IEEE, Piscataway,
NJ (2013)

13 Chen-Hsuan, L., et al.: Inverse compositional spatial transformer net-
works. In: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pp. 2568–2576. IEEE, Piscataway, NJ (2017)

14 Tsung-Yi, L., et al.: Microsoft COCO: Common objects in context.
In: European Conf. on Computer Vision, pp. 740–755. Springer, Berlin,
Heidelberg (2014)

15 Simonyan, K., Zisserman, A.: Very deep convolutional networks for
large-scale image recognition. arXiv:1409.1556 (2015)

16 Kaiming, H., et al.: Deep residual learning for image recognition.
In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
pp. 770–778. IEEE, Piscataway, NJ (2016)

17 Ningning, M., et al.: Shufflenet v2: Practical guidelines for efficient
cnn architecture design. In: Proc. European Conf. on Computer Vision
(ECCV), pp. 116–131. Springer, Berlin, Heidelberg (2018)

18 Andrew, G. H., et al.: Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. arXiv:1704.04861 (2017)

19 Forrest, N. I., et al.: Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and < 0.5 mb model size. arXiv:1602.07360 (2016)

20 Hang, Z., et al.: Loss functions for image restoration with neural net-
works. IEEE Trans. Comput. Imag., 3(1), 47–57, 2016.

21 Sun, D., et al.: A quantitative analysis of current practices in optical flow
estimation and the principles behind them. Int. J. Comput. Vis. 106(2),
115–137 (2014)

22 Zhou, W., et al.: Image quality assessment: from error visibility to struc-
tural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

23 Barron, J.: A general and adaptive robust loss function. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4326–4334. IEEE, Piscataway, NJ (2019)

24 Zichao, Z., et al.: A tutorial on quantitative trajectory evaluation for
visual (-inertial) odometry. In: 2018 IEEE/RSJ Int. Conf. Intell. Robots
and Syst. (IROS), pp. 7244–7251. IEEE, Piscataway, NJ (2018)

ELECTRONICS LETTERS August 2021 Vol. 57 No. 16 wileyonlinelibrary.com/iet-el 617

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-el

