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a b s t r a c t 

Acquiring a new language requires individuals to simultaneously and gradually learn linguistic attributes on multiple levels. Here, we investigated how this learning 

process changes the neural encoding of natural speech by assessing the encoding of the linguistic feature hierarchy in second-language listeners. Electroencephalogra- 

phy (EEG) signals were recorded from native Mandarin speakers with varied English proficiency and from native English speakers while they listened to audio-stories 

in English. We measured the temporal response functions (TRFs) for acoustic, phonemic, phonotactic, and semantic features in individual participants and found 

a main effect of proficiency on linguistic encoding. This effect of second-language proficiency was particularly prominent on the neural encoding of phonemes, 

showing stronger encoding of “new ” phonemic contrasts (i.e., English contrasts that do not exist in Mandarin) with increasing proficiency. Overall, we found that the 

nonnative listeners with higher proficiency levels had a linguistic feature representation more similar to that of native listeners, which enabled the accurate decoding 

of language proficiency. This result advances our understanding of the cortical processing of linguistic information in second-language learners and provides an 

objective measure of language proficiency. 
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. Introduction 

Learning a second language (L2) via instruction is a time-consuming

nd challenging process. Adult learners rarely attain native-like L2 pro-

ciency and instead carry-over features of their native languages (L1)

o their L2 ( Hartshorne et al., 2018 ; Kotz, 2009 ; Kuhl, 2011 ), which

an have a major impact on their social lives ( DeJesus et al., 2017 ;

ev-Ari and Keysar, 2010 ; Mayo et al., 1997 ). Despite a considerable

mount of literature, there remains considerable uncertainty regarding

he precise neural changes that underpin the increased L2 proficiency

hat develops during the learning process ( Bohn and Munro, 2007 ;

arsden et al., 2013 ; Perani and Abutalebi, 2005 ). Studies involving

emodynamic measurements (e.g., fMRI) have provided us with pre-

ise insights into the sources of the cortical activations corresponding

o L1 and L2 processing while substantially neglecting the rich tem-

oral dynamics of speech. This limitation is a likely cause of the ap-

arent inconsistency between studies showing cortical activation for L1

nd L2 processing in the same areas ( Chee et al., 1999 ; Nakada et al.,

001 ; Perani and Abutalebi, 2005 ; Tan et al., 2003 ; Yokoyama et al.,

006 ) or in both shared and distinct areas ( Chee et al., 2001 ; Kim et al.,

997 ; Xu et al., 2017 ; Xue et al., 2004 ). Studies based on electrical neu-
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al recordings, such as electro and magneto-encephalography (EEG and

EG respectively), provide a different view of this issue, showing de-

ayed lexico-semantic processing for the less proficient L2 compared to

hat for L1 ( Hahne, 2001 ; Phillips et al., 2006 ). More recently, stud-

es with both high temporal and spatial detail (based on multimodal

maging approaches) suggested that acquiring a language may involve

he recruitment of cortical areas that are not necessary once fluency is

chieved ( Leonard et al., 2010 ). 

To elucidate the neural mechanisms that underlie L2 perception, it is

rucial to assess the effect of proficiency on objective neural measures

hat capture the multifaceted cortical encoding of language. This is a

omplex task, especially because speech perception involves the analysis

f various acoustic and linguistic features, a process that is thought to en-

age a hierarchical neural network composed of various interconnected

ortical regions ( Hickok and Poeppel, 2007 ). Distinct stages of process-

ng have been shown to be affected differently by proficiency, with some

f the stages becoming more those observed for the native language

han other stages in proficient L2 users. Part of the evidence comes

rom EEG and MEG research, which showed the effect of proficiency

t the levels of phonemes ( White et al., 2012 ), syntax ( Hanna et al.,

016 ; Weber-Fox and Neville, 1996 ), and semantics ( Ojima et al., 2005 ).

hese studies measured the changes in well-known event-related po-
sgarani). 
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ential (ERP) components, such as the MMN, N400, and P600. These

pproaches, however, use unnatural speech stimuli (e.g., isolated syl-

ables or violative speech sentences) that do not fully and realistically

ctivate the specialized speech cortex ( Overath et al., 2015 ; Van Petten

nd Kutas, 1990 ; Zinszer et al., 2015 ). In addition, these approaches

onsider various levels of speech perception independently and in iso-

ation. Language learning, on the other hand, involves the simultane-

us acquisition of novel phonetic contrasts ( Chomsky and Halle, 1968 ;

adefoged and Johnson, 2014 ), new syllabic structures (phonotactics)

 Trubetzkoy, 1969 ), and new words. A more complete view of the neu-

al basis of language learning therefore requires a joint study of mul-

iple levels of the linguistic hierarchy to advance our understanding

f L2 perception by informing us of the precise effect of proficiency

n the cortical processing strategies that underpin sound and language

erception ( Federmeier, 2007 ; Huettig and Mani, 2015 ; Kuperberg and

aeger, 2016 ). 

Previous efforts in using naturalistic speech stimuli to study lan-

uage proficiency showed a modulation of EEG phase synchroniza-

ion while listening to naturalistic speech at both the subcortical (FFR;

rizman et al., 2015 ; Omote et al., 2017 ) and cortical levels (gamma

EG synchrony; Reiterer et al., 2011 , 2009 ). Specifically, stronger syn-

hrony between EEG channels was shown for low-proficiency users

 Reiterer et al., 2011 ), which is in line with theories, such as the cor-
ical efficiency theory , positing that less experienced listeners require
tronger cortical engagement ( Reiterer et al., 2011 ; Zhang et al., 2005 ).

owever, that work could not isolate neural signatures at particular lin-

uistic stages. Recent studies have successfully isolated neural signa-

ures of various linguistic levels based on speech-EEG synchrony (cor-

ical tracking; Obleser and Kayser, 2019 ) from a single electrophysio-

ogical recording. Such measures were derived based on low-frequency

ortical responses to natural speech from audiobooks ( Brodbeck et al.,

018a ; Di Liberto et al., 2015 ; Khalighinejad et al., 2017 ) and cartoons

 Di Liberto et al., 2018b ; Jessen et al., 2019 ), which were recorded non-

nvasively from both children and adults. Here, we adopted the same

ramework to investigate how proficiency shapes hierarchical cortical

ncoding in L2 subjects and how hierarchical encoding differs from

1 subjects. Our analysis focused on speech processing at the levels of

ound acoustics ( Ahissar et al., 2001 ; Lalor and Foxe, 2010 ), phonemes

 Di Liberto et al., 2015 ; Khalighinejad et al., 2017 ), phonotactics (statis-

ics on phoneme sequences Brodbeck et al., 2018a ; Di Liberto et al.,

019 ), and semantics ( Broderick et al., 2018 ; Hagoort and Brown, 2000 ;

utas and Federmeier, 2011 ). We hypothesized that the neural encod-

ng of all three levels of linguistic properties would be modulated by

2 proficiency, becoming more native-like without fully converging

 Han, 2004 ; Selinker, 1972 ). A different progression of this learning

ffect was expected for distinct linguistic levels. Specifically, we pre-

icted that phoneme and phonotactic responses, which benefit from but

o not require sentence comprehension, would show a continuous pro-

ression starting from the earliest stages of learning, partly as a form of

mplicit learning ( Conway et al., 2010 ). Furthermore, even when two

poken languages are very different, there is some level of phonologi-

al and phonotactic overlap. As such, we predicted that phoneme and

honotactic responses would emerge even with listeners who do not

nderstand English due to the encoding of the same or similar infor-

ation in their native language. Semantic-level encoding is different in

his regard. Specifically, whereas semantic encoding was hypothesized

o increase with proficiency ( McLaughlin et al., 2004 ), we predicted a

ost prominent change from no encoding to strong encoding at an inter-

ediate level of proficiency as the comprehension of a few words facil-

tates the understanding of neighboring words (e.g., semantic priming;

ellenbach et al., 2000 ; Osterhout and Holcomb, 1995 ); thus, constitut-

ng a turning point beyond which comprehension increases drastically. 

To shed light on the neural mechanisms underlying the encoding of

inguistic features, the present study combines objective neural indices

f acoustic and linguistic processing to assess the differences between

2 subjects with varying proficiency levels during a task requiring the
2 
ndividual to listen to natural speech. We expected hierarchical linguis-

ic encoding in L2 participants to change with proficiency. While the

resent study primarily investigates the effect of proficiency within the

2 group, we also evaluated our results in the context of the previous

iterature on L1 listeners ( Brodbeck et al., 2018a ; Broderick et al., 2018 ;

i Liberto et al., 2015 ; Khalighinejad et al., 2017 ); this evaluation was

onducted with respect to the hypothesis that neural linguistic encoding

s more similar to that of L1 listeners in nonnative listeners with higher

roficiency than to that of those with lower proficiency. 

. Materials and methods 

.1. Participants 

Fifty-one healthy subjects (twenty-four were male, all were aged be-

ween 18 and 60 years, median age = 24 and mean age = 27.5; forty-

ight were right-handed) who learned English as a second language (or

hat did not speak English) and were native Standard Chinese (Man-

arin) speakers participated in the EEG experiment ( L2 group ). L2 par-
icipants were asked to take a standardized 20-minute test of receptive

kills in American English before the experiment. According to the re-

ults of this assessment, each participant was assigned to one of six pro-

ciency groups according to the Common European Framework of Ref-

rence for Languages framework (CEFR): A1, A2, B1, B2, C1, C2 (from

ow to high proficiency). A, B, and C levels indicate basic, independent ,
nd proficient users, respectively. The A1 group included participants
ith very little or no English understanding. The recruitment of par-

icipants continued until 17 participants were identified for each A, B,

nd C group (Supplementary Figure 1B). Two subjects were excluded

ecause of issues with their EEG recordings (data could not be synchro-

ized because of missing trigger signals). 

We also analyzed EEG data from twenty-two native English speak-

rs (twelve were male, all were between 18 and 45 years, twenty were

ight-handed; L1 group ), originally collected for a previous study with
he same experimental setup and location ( Khalighinejad et al., 2017 ),

ho listened to the same continuous English speech stimuli presented to

he L2 group in the present experiment. All subjects (in both L2 and L1

roups) reported having normal hearing and had no history of neurolog-

cal disorders. All subjects provided written informed consent and were

aid for their participation. The Institutional Review Board of Columbia

niversity at Morningside Campus approved all procedures. 

.2. Stimuli and behavioral tasks 

EEG data were collected in a sound-proof, electrically shielded booth

n dim light conditions. Participants listened to short stories from a chil-

ren’s story book (Hank the Cowdog), narrated in English by two native

peakers (1 male) while minimizing motor movements and maintaining

isual fixation on a crosshair at the center of the screen. All participants

istened to identical auditory stimuli. The stories continued naturally

etween trials, with an alternation between the male and the female

arrators to minimize speaker-specific effects. Stimuli were presented

t a sampling rate of 44,100 Hz, monophonically, and at a fixed com-

ortable volume from one loudspeaker in front of the participant. Each

ession consisted of 20 experimental blocks (3 minutes each), and short

reaks were planned every 4 blocks. Participants were asked to focus

heir attention on speech material from seven audio-stories that were

resented in a random order. Engagement with the speech material was

ssessed by means of behavioral tasks. During speech listening, L2 par-

icipants were asked to perform a phrase-repetition detection task. The

etection of repeated sounds has been successfully used in many stud-

es using nonspeech and nonsense speech sounds. Here, the last two

o four words were repeated immediately after the end of some of the

entences (1-5 per block). Given that our target was monitoring atten-

ion, a finger-tip clicker was used to count the repetitions so that they
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ould be engaged in detection not counting, which would instead re-

uire additional memory resources and, potentially, reduce their en-

agement in the main listening task. Furthermore, L2 participants were

sked three questions at the end of each block ( Supplementary Fig. 1 ).

irst , participants were shown a list of eight words and asked to iden-
ify, among those, 3-5 words that occurred with high frequency in the

peech sentence. Second , we asked whether the last sentence of the block
as spoken by a male or female speaker. Third , participants were asked
o report the count associated with the phrase-repetition detection task

t the end of each block. EEG data corresponding to the phrase rep-

tition were excluded from the analysis to remove contamination due

o motor action. To assess attention in L1 participants, three questions

bout the content of the story were asked after each block. All L1 partic-

pants were attentive and could all answer at least 60% of the questions

orrectly. 

.3. EEG recordings and preprocessing 

EEG recordings were performed using a g.HIamp biosignal amplifier

Guger Technologies) with 62 active electrodes mounted on an elastic

ap (10–20 enhanced montage). EEG signals were recorded at a sam-

ling rate of 2 kHz. An external frontal electrode (AFz) was used as the

round, and the average of two earlobe electrodes was used as a refer-

nce. EEG data were filtered online using a high-pass Butterworth filter

ith a 0.01 Hz cutoff frequency to remove DC drift. Channel impedances

ere kept below 20 k Ω throughout the recording. 

Neural data were analyzed offline using MATLAB software (Math-

orks Inc.). EEG signals were digitally filtered between 1 and 15 Hz

sing a Butterworth zero-phase filter (order 2 + 2 and implemented with

he function filtfilt ), and downsampled to 50 Hz (similar to relevant pre-
ious work, e.g., Broderick et al., 2018 ; Di Liberto et al., 2015 ). EEG

hannels with a variance exceeding three times that of the surrounding

hannels were replaced by an estimate calculated using spherical spline

nterpolation. 

.4. Speech features 

In the present study, we measured the coupling between EEG data

nd various properties of speech stimuli. These properties were ex-

racted from the stimulus data based on previous research. First, we

efined a set of descriptors summarizing low-level acoustic properties of
he music stimuli. Specifically, a time-frequency representation of the

peech sounds was calculated using a model of the peripheral audi-

ory system ( Chi et al., 2005 ) consisting of three stages: (1) a cochlear

lter bank with 128 asymmetric filters equally spaced on a logarith-

ic axis, (2) a hair cell stage consisting of a low-pass filter and a non-

inear compression function, and (3) a lateral inhibitory network con-

isting of a first-order derivative along the spectral axis. Finally, the

nvelope was estimated for each frequency band, resulting in a two-

imensional representation simulating the pattern of activity on the au-

itory nerve ( Wang and Shamma, 1994 ) (the relevant MATLAB code is

vailable at https://isr.umd.edu/Labs/NSL/Software.htm ). This acoustic
pectrogram ( S ) was then resampled to 16 bands ( Di Liberto et al., 2015 ;

esenfants et al., 2019 ). A broadband envelope descriptor ( E ) was also
btained by averaging all envelopes across the frequency dimension. Fi-

ally, the halfway rectified first derivative of the broadband envelope ( E’ )
as used as an additional descriptor, which was shown to contribute to

peech-EEG mapping and was used here to regress out the most acoustic-

elated responses as much as possible ( Daube et al., 2019 ). 

Additional speech descriptors were defined to capture neural signa-

ures of higher-order speech processing. The speech material was seg-

ented into time-aligned sequences of phonemes using the Penn Pho-

etics Lab Forced Aligner Toolkit ( Yuan and Liberman, 2008 ). Then,

he phoneme alignments were manually corrected using Praat software

 Boersma and Weenink, 2009 ). Phoneme onset times were then encoded
n an appropriate univariate descriptor ( Pon ), in which ones indicated
3 
nsets and all other time samples were labeled with zeros. An additional

escriptor was also defined to distinguish between vowels and conso-
ants ( Pvc ). Specifically, this regressor consisted of two vectors, simi-
ar to Pon , but labeling either vowels or consonants only. While Pon

as shown to improve speech-neural mapping compared to when only

coustic features were used to describe the stimulus ( Brodbeck et al.,

018a , but see Daube et al., 2019 ), additional information on phoneme

ategories remained that contributed to that mapping ( Di Liberto et al.,

015 ; Mesgarani et al., 2014 ). This information was encoded in a

9-dimensional descriptor indicating the phonetic articulatory features
orresponding to each phoneme ( Phn ). Features indicated whether a

honeme was voiced, unvoiced, sonorant, syllabic, consonantal, approx-

mant, plosive, strident, labial, coronal, anterior, dorsal, nasal, fricative,

bstruent, front (vowel), back, high, or low ( Chomsky and Halle, 1968 ;

adefoged and Johnson, 2014 ; Supplementary Table 2 ). The Phn de-

criptor encoded this categorical information as step functions, with

teps corresponding to the starting and ending time points for each

honeme. Note that a step function includes information on the dura-

ion of a phoneme, thus including information about its identity, since

ertain phonemes are longer than others on average. For this reason, we

urposely did not include that information in Pon , which describes only

he timing of the phoneme onsets and not the phoneme categories. 

Next, we encoded phonotactic probability information in an appro-
riate two-dimensional vector ( Pt ) ( Brodbeck et al., 2018a ; Di Liberto

t al., 2019 ). In a given language, certain phoneme sequences are more

ikely to be valid speech tokens than others. The likelihood of a phoneme

equence p1...n being a valid speech token can be estimated with statis-

ical models based on language-specific rules. Here, probabilities were

erived by means of the BLICK computational model ( Hayes and Wil-

on, 2008 ), which estimates the probability of a phoneme sequence be-

onging to the English language. This model is based on a combination

f explicit theoretical rules from traditional phonology and a MaxEnt

rammar ( Goldwater and Johnson, 2003 ), which find optimal weights

or such constraints to best match the phonotactic intuition of native

peakers. The phonotactic probability was derived for all phoneme sub-

equences within a word (ph 1.. k , 1 ≤ k ≤ n , where n is the word length)
nd used to modulate the magnitude of a phoneme onset vector ( Pt 1 ).

he calculation proceeds in several steps ( Hayes and Wilson, 2008 ).

irst, the score ( h ) of a phonological representation 𝑥 = 𝑝 ℎ 1 ..𝑘 is cal-

ulated as ℎ ( 𝑥 ) = 

𝑚 ∑

𝑖 =1 
𝑤 𝑖 ∗ 𝐶 𝑖 ( 𝑥 ) , where m is the number of phonotactic

onstraints, w i is the weight of the i 
th constraint, and C i ( x ) is the number

f times x violates that constraint. Second, the MaxEnt value ( P ∗ ) is cal-
ulated as 𝑃 ∗ ( 𝑥 ) = exp ( − ℎ ( 𝑥 ) ) . Finally, the probability of x is calculated
s 𝑃 ( 𝑥 ) = 𝑃 ∗ (x)∕ 

∑

𝑦 ∈Ω
𝑃 ∗ (y) , where Ω represents all possible values of

. A second vector was produced to encode the change in phonotactic

robability due to the addition of a phoneme (ph 1... k - ph 1... k-1 , 2 ≤ k ≤
 ) ( Pt 2 ). 

Finally, a semantic dissimilarity descriptor was calculated for con-

ent words using word2vec ( Baroni et al., 2014 ; Mikolov et al., 2013 ), a

tate-of-the-art algorithm consisting of a neural network for the predic-

ion of a word given the surrounding context. In this specific applica-

ion, a sliding window of 11 words was used; in this window, the central

ord was the output, and the surrounding 10 words were the input. This

pproach is based on the “distributional hypothesis ” that words with

imilar meanings occur in similar contexts; this method uses an artifi-

ial neural network approach to capture this phenomenon. This network

as a 400-dimension hidden layer that is fully connected to both input

nd output. For our purposes, the weights of this layer were the fea-

ures used to describe each word in this 400-dimensional space, thus

apturing the co-occurrence of a content word with all others. In this

pace, words that share similar meanings have a closer proximity. The

emantic dissimilarity indices were calculated by subtracting the Pear-

on’s correlation between a feature vector for a word and the average

eature vector across all previous words in that particular sentence from

https://isr.umd.edu/Labs/NSL/Software.htm
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Fig. 1. Investigating the hierarchical cortical encoding of language with the temporal response function (TRF) analysis framework. (A) Multichannel EEG signals 

were recorded as participants listened to audio stories. Participants were asked to press a clicker counter when they detected a one-back phrase repetition (2–4 

words), which occurred 1–5 times per experimental block. At the end of each block, participants were asked to report the number of repetitions, to identify words 

that were spoken during the block from a list of eight and to indicate the gender of the speaker. (B) Results for the word comprehension and the 1-back detection task. 

Significant group differences (ANOVA, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001) were measured for the ‘word comprehension’ score that positively correlated with proficiency. No 

significant effects emerged for ‘one-back tasks’ and ‘gender identification’ as they were independent from the proficiency levels. The gender identification result was 

not reported, as accuracy was larger than 95% for all participants. (C) Acoustic and linguistic information were extracted from the stimulus and encapsulated into 

data vectors and matrices. Multivariate linear regression was used to identify a linear fit that optimally predicted the EEG signal from features at multiple linguistic 

levels (EXT). The same procedure was also run on a more compact set of descriptors (ALL), which differed in that Sgr and Phn were replaced by Env (broadband 

envelope instead of a 16-band spectrogram) and Pvc (indicator variables for only vowels and consonants rather than for a 19-dimensional set of phonetic features), 

respectively. (D) Envelope TRF weights (TRF Env ) averaged across all EEG channels at peristimulus time latencies from 0 to 600 ms. TRF Env was part of a model 

that was fit by including features at all other levels of interest (ALL). Thick lines indicate weights that were significantly different from zero across all subjects of a 

group (p < 0.05, Wilcoxon signed rank test, FDR corrected). Significant effects of group emerged on the peak-to-peak amplitude of the N1-P2 TRF complex (one-way 

ANOVA, p = 0.03). No significant effect of group emerged at any individual time latency (point-by-point one-way ANOVA, p > 0.05). (E) Topographies of the TRF 
weights across channels for two selected time latencies. 
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 (the first word in a sentence was instead correlated with the average

eature vector for all words in the previous sentence). Thus, if a word

s unlikely to co-occur with the other words in the sentence, it should

ot correlate with the context, resulting in a higher semantic dissimi-

arity value. The semantic dissimilarity vector ( Sem ) marks the onset of

ontent words with their semantic dissimilarity index. 

.5. Computational model and data analysis 

A single input event at time t 0 affects the neural signals for a cer-
ain time window [ t 1 , t 1 + t win ], with t 1 ≥ 0 and t win > 0. Temporal re-

ponse functions (TRFs) were fit to describe the speech-EEG mapping

ithin that latency window for each EEG channel (TRF; Ding et al.,

014 ; Lalor et al., 2009 ). We did this by means of a regularized linear

egression ( Crosse et al., 2016 ) that estimates a filter that allows us to op-

imally predict the neural response from the stimulus features (forward

odel; Fig. 1 C ). The input of the regression also included time-shifted

ersions of the stimulus features so that the various time lags in the la-

ency window of interest were all simultaneously considered. Therefore,

he regression weights reflect the relative importance between time la-

encies in the stimulus-EEG mapping and were studied here to infer the

emporal dynamics of the speech responses (see Figs. 1 and 2 ). Here, a

ime-lag window of 0–600 ms was used to fit the TRF models, which was

onsidered to contain most of the EEG responses to the speech of inter-
4 
st. Specifically, neural processing of the acoustic and linguistic features

f interest was expected to emerge after the speech sound was presented

 t 1 > 0), whereas the component of interest with the longest latency,

he semantic dissimilarity TRF, was expected to be mostly complete by

 latency of 600 ms ( Broderick et al., 2018 ). The reliability of the TRF

odels was assessed using a leave-one-out cross-validation procedure

across trials), which quantified the EEG prediction correlation (Pear-

on’s r ) on unseen data while controlling for overfitting. The TRF model
alculation included a Tikhonov regularization, which involves the tun-

ng of a regularization parameter ( 𝜆) that was conducted by means of an

xhaustive search of a logarithmic parameter space from 0.01 to 10 10 on

he training fold of each cross-validation iteration ( Crosse et al., 2016 ).

ote that the correlation values were calculated with the noisy EEG sig-

al; therefore, the r -scores could be highly significant even though they
ave low absolute values ( r ~ 0.1 for sensor-space low-frequency EEG;

aube et al., 2019 ; Di Liberto et al., 2015 ; Lesenfants et al., 2019 ). 

Stimulus descriptors at the levels of acoustics, phonemes, phonotac-

ics, and semantics were combined in a single TRF model fit procedure.

his strategy was adopted with the goal of discerning EEG responses at

ifferent processing stages. For example, a TRF derived with Pt alone

ould reflect EEG responses to both phonotactics and the acoustic enve-

ope Env , as the two vectors are correlated. A TRF based on the com-

ination of Pt and Env would instead discern their respective EEG con-

ributions; hence, the weights for Pt will reflect responses that are most
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Fig. 2. Effect of proficiency on L2 phoneme encoding. (A) Phoneme distance maps (PDMs) based on the TRF Ph weights at electrode Cz and peristimulus time latencies 

from 0 to 600 ms. Blue and red colors indicate phonemes for L1 and L2 participants, respectively. (B) Distance between L1 and L2 phonemes for each language 

proficiency group. A significant effect of proficiency was measured on the L1-L2 phoneme distance (one-way ANOVA, F(1.4, 54.1) = 22.8, p = 1.6 ∗ 10 − 8 ). Error bars 
indicate the SE of the mean across phonemes. (C) Distance between phoneme pairs for each proficiency level. The left panel shows results for contrasts existing in 

English but not in Standard Chinese; in these contrasts, we expected increasing discriminability with proficiency due to learning. The right panel shows distances 

for contrasts that exist both in English and Standard Chinese; in these contrasts, we did not expect a learning effect. Values were divided by the distance for L1 

participants. Gray lines indicate the mean across all selected phonemic contrasts. (For interpretation of the references to color in the text, the reader is referred to 

the web version of this article.) 
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elevant to phonotactics, whereas the responses that are more related to

nv than to Pt will become less prominent in TRF Pt . Though this sep-

ration is straightforward for independent features, it is certainly not

traightforward for this experiment. In fact, this operation is expected

o strengthen the representation of the neural encoding of features of

nterest and not to achieve perfect separation; perfect separation could

e attained when working with independent features, which is certainly

ot the case here. 

Here, individual-subject TRFs were fitted by combining Env, Env’,

vc, Pon, Pt , and Sem (stimulus descriptor ALL ). We also fit TRF models

ith an extended stimulus descriptor ( EXT ) including Sgr, Env’, Phn,

on, Pt , and Sem , which provided us with a higher level of detail on

pectrotemporal and phonological speech features at the cost of higher

imensionality (see Supplementary Figs. 2 and 3 ). The combined stim-

lus descriptor had 40 dimensions, which had to be multiplied by the

umber of time lags (30 when the sampling frequency was 50 Hz) to

btain the dimensionality of the TRF input. For this reason, we con-

ucted all analyses on the reduced stimulus set ALL , whereas the EXT

escriptor was used to assess spectrotemporal and phoneme TRFs. As

ata collection was conducted so that the three proficiency groups A,

, and C were balanced and sufficiently large to derive the TRFs of in-

erest, all TRF analyses were conducted according to this 3-way group-

ng of the L2 participants. The subsequent decoding analysis was con-
5 
ucted instead by taking into consideration the more detailed 6-way

rouping (A1, A2, B1, B2, C1, and C2), as regression decoding (see the

roficiency-level decoding subsection) focused on individual-subject de-
oding rather than between-group analyses;, furthermore, it tolerates

mall imbalances across groups. 

The TRF weights constitute good features to study the spatiotemporal

elationship between a stimulus feature and the neural signal. The TRF

eights represent the impulse response of the estimated linear system,

nd as such, their values at a given latency t 1 correspond to a positive
r negative deflection of the EEG electrical signal t 1 ms after hearing an
mpulse sound at time zero. As such, TRFs can be interpreted similarly

o ERPs, as they are both defined in a channel x latency domain, with

he advantage that they can describe the EEG response to a continuous

timulus. For ERPs, prior knowledge and hypotheses can be used to re-

trict the channel and latency space to investigate, thus simplifying the

nalysis. Here, the TRF analyses for Env, Pt, and Sem were especially

ocused on five midline electrodes [Oz, Pz, Cz, Fz, and Fpz] and to the

atency window [0, 600] ms. The five electrodes were chosen based on

rior studies indicating that the TRFs of interest would emerge as com-

onents centered on the vertical midline, whereas the latency window

as chosen as it was sufficient to capture the components of interest for

nv, Phn, Pt, and Sem ( Brodbeck et al., 2018a ; Broderick et al., 2018 ;

i Liberto et al., 2019 , 2015). 
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Another difference between TRFs and ERPs is that TRFs can be multi-

ariate, thus describing the impulse responses for different contributors

o the EEG signal. The study of a multivariate speech descriptor, such

s Phn , could benefit from the derivation of indices that summarize the

mpact of those multiple dimensions into single values. One solution was

o use the EEG prediction correlation values to quantify the goodness of

t for a multivariate TRF model. Here, we considered the relative en-

ancement in EEG prediction correlation when Phn was included in the

odel (using the ALL feature-set), thus allowing us to discern the rela-

ive contribution of phonetic features to the neural signal. This isolated

ndex of phoneme-level processing was previously shown to correlate

ith psychometric measures of phonological skills ( Di Liberto et al.,

018b ). 

Further analyses were conducted by using a generic modeling ap-

roach ( Di Liberto and Lalor, 2017 ). Specifically, one generic TRF model

as derived for groups A, B, C, and L1 by averaging the regression

eights from all subjects within the group. Then, EEG data from each

eft-out subject (whose data were not included in the generic models)

ere predicted with the four models. The four prediction correlations

ere used as indicators of how similar the EEG signal from a subject

as to the one expected for each of the four groups, providing us with

 simple classifier. 

.6. Phoneme distance maps (PDMs) 

We sought to study the effect of proficiency on phonological per-

eption by projecting TRF Phn onto a space in which distance represents

he perceptual discriminability between pairs of phonemes. The regres-

ion weights for TRF Phn were represented in a 19-dimensional space of

honetic features. Each phoneme could be described as a particular lin-

ar combination of phonetic features. This allowed for the derivation

f a linear transformation matrix describing the linear mapping from

honetic features to phonemes, which we used to rotate TRF Phn to the

honeme domain ( Supplementary Fig. 3 ). Then, a classical multidi-

ensional scaling (MDS) was used to project the TRF Phn (phonemes

ere considered as objects and time latencies were considered as di-

ensions) onto a multidimensional space for each proficiency group,

n which distances represented the discriminability of particular pho-

etic contrasts in the EEG signal. The result for each L2 proficiency

roup was then mapped to the average L1-MDS space by means of a

rocrustes analysis (MATLAB function procrustes) . This analysis allowed
s to project the L2 phoneme maps for different proficiency levels to a

ommon multidimensional space where they could be compared quan-

itatively; we call these maps phoneme distance maps ( PDMs) . 

.7. Proficiency-level decoding 

Support vector regression (SVR) with a radial basis function kernel

as used to decode the proficiency level of L2 participants. The output of

he regression was the proficiency level, a continuous variable. As such,

he decoding output was a decimal number, even though proficiency lev-

ls in the training data could have only six possible values corresponding

o A1, A2, B1, B2, C1, and C2. The input of the SVR was the concate-

ation of 26 features derived from the TRF analysis described in the

revious section. All features were continuous variables. The neural en-

oding of acoustic and linguistic features could be assessed based on the

odel weights or on the EEG prediction correlation values ( Crosse et al.,

016 ), and the latter could be calculated with subject-specific models or

eneric models (averaged across multiple participants; Di Liberto and

alor, 2017 ). Here, the 26 features were selected according to previous

tudies with L1 participants ( Brodbeck et al., 2018a ; Broderick et al.,

018 ; Di Liberto et al., 2019 , 2015 ) as they capture the main TRF com-

onents in the model weights (9 features), subject-specific EEG predic-

ion correlations (5 features), and generic models EEG prediction corre-

ations (12 features; see also Di Liberto and Lalor, 2017 ). 
6 
Each feature had multiple dimensions, such as EEG electrodes and

ime latencies. A multilinear principal component analysis (MPCA) was

erformed to summarize each of them with a single vector. Specifically,

iven the TRF weights for all electrodes and latencies for a particular fea-

ure (e.g., envelope), MPCA was performed, and the first component was

etained (see Supplementary Table 1 for details on the explained vari-

nce for each feature). This operation was performed for the TRFs cor-

esponding to envelope, phoneme onsets, phonetic features, phonotac-

ics, and semantic dissimilarities, resulting in five distinct vectors. Based

n previous TRF studies and our initial hypotheses, we complemented

he result of this lossy compression by adding distinctive features that

ummarized specific aspects of interest of the TRFs. For speech acous-

ics, we included information on the power spectrum of the TRF (the

EG responsiveness to 16 logarithmically spaced sound frequencies) by

ollapsing the weights in TRF ALL corresponding to Sgr values across the

ime-latency dimension. MPCA was then conducted on the resulting val-

es to quantify this spectral feature with a single value per subject. For

honotactics and semantic dissimilarity, the strength of the main TRF

omponents was summarized by averaging the regression weights over

elected time windows and electrodes where they were strongest in the

urrent data (80–140 and 300–700 for Pt and 300–700 for Sem at Fz,

z, and Oz, respectively). 

Additional features were based on the EEG prediction correlations

alculated by training and testing TRF models on each participant sepa-

ately (with leave-one-out cross-validation across recording blocks; see

revious section). This procedure provided us with a correlation score

or each electrode, which was then summarized with a single value by

erforming MPCA and retaining the first component. This procedure

rovided us with four features for EEG predictions based on Env, Phn,

t, Sem . Note that, different from the TRF weight features, these EEG

rediction correlations were calculated for each feature separately. A

fth feature was derived by measuring the increase in EEG prediction

orrelations when Phn was included or was not in the stimulus set to-

ether with Env’ and Sgr ( PhnEnv’Sgr-Env’Sgr ). This subtraction was

onsidered to constitute an isolated measure of phoneme-level process-

ng ( Di Liberto et al., 2018b , 2015 ). The decoding result did not change

hen using PhnEnv’Sgr-Phn Shu Env’Sgr instead, where Phn Shu is a ran-

om phoneme vector. Finally, EEG signals from a subject were also pre-

icted with TRF models fit on all other subjects, grouped in A, B, C , and

1 , with the rationale that the EEG data from a given subject should

e best predicted by TRF models from subjects of the same group. This

pproach, which has been referred to as average modeling or generic

odeling ( Di Liberto and Lalor, 2017 ; Jessen et al., 2019 ), provided

ach subject with a score for each group and for each feature of inter-

st. Here, we selected Env, PhnEnv’Sgr-Env’Sgr , and Sem . MPCA was

hen used for dimensionality reduction for the other features, providing

s with twelve features (4 groups and 3 predicting features). 

SVR was used to decode the L2 proficiency level, for the binary clas-

ification L1 versus L2 data, or for the binary classification L1 versus

-level L2 data with leave-one-out cross-validation. A backward elimi-

ation procedure was used to identify the optimal set of features that

inimize the mean squared error (MSE) of the decoded proficiency lev-

ls. Specifically, starting from a set containing all the features, the re-

ressor whose exclusion produced the larger decrease in MSE was re-

oved at each step. This procedure continued as long as there was at

east 5% improvement in the MSE score (please see Supplementary Ta-

le 1 for a full list of features and information on the selected feature

or the L2 decoding and on L1 vs. L2 classification procedures). 

.8. Statistical analysis 

Statistical analyses were performed using Wilcoxon tests for pair-

ise comparisons. Correction for multiple comparisons was applied

here necessary via the false discovery rate (FDR) approach. Three-

ay ANOVA was used to assess the effect of proficiency on the TRF

eights with latency and electrode as additional fixed factors. One-
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ay ANOVA was used when testing the significance of an effect over

ultiple ( > 2) groups when comparisons did not involve multiple la-

encies and electrodes. The values reported use the convention F ( df,
f error ). Greenhouse-Geisser correction was applied when the assump-
ion of sphericity was not met (as indicated by a significant Mauchly’s

est result). FDR-corrected Wilcoxon tests were used after ANOVA for

ost hoc comparisons. 

. Results 

EEG signals were recorded as participants listened to audio stories.

he experiment involved behavioral tasks to monitor engagement with

he speech material ( Fig. 1 B and Supplementary Fig. 1). As expected,

he word comprehension score increased significantly with proficiency

ANOVA, F (1.8, 44.3) = 24.1; p = 5.4 ∗ 10 − 8 , post hoc comparisons:

 A-vs-B = 0.003, p B-vs-C = 0.084, p A-vs-C < 0.001). However, all subjects

ere able to perform the gender identification and one-back tasks with

imilar accuracy across proficiency levels, suggesting a comparable de-

ree of engagement among participants across groups ( gender identifica-
ion task : ANOVA, F (1.4, 34.7) = 0.1, p = 0.90; one-back task : ANOVA,
 (1.9, 45.9) = 1.1; p = 0.34). 

.1. Hierarchical cortical encoding of nonnative speech 

To investigate the low- versus higher-level brain processing of

peech, we fit forward TRF models to assess the coupling between the

ow-frequency cortical signals (1–15 Hz) and progressively more ab-

tract properties of the linguistic input. The combination of multiple

peech features in a single multivariate model allowed us, for the first

ime, to assess the hierarchical processing of L2 speech from a single

EG recording session based on natural speech. The stimulus descrip-

or included Env, Env’, Pon, Pvc, Pt, and Sem (ALL; see Methods). This

ombination of features allowed us to capture and discern EEG vari-

nce corresponding to various hierarchical stages while using a low-

imensional descriptor (8 dimensions). We also fit TRF models with an

xtended stimulus descriptor (EXT) that included Sgr, Env’, Pon, Phn,

t, and Sem, which provided us with a higher level of detail in the spec-

rotemporal and phonological processing of speech. However, this in-

reased dimensionality of the model (40 dimensions) makes fitting the

odel more challenging. Leave-one-out cross-validation indicated that

he resulting TRF models could reliably predict the EEG signal for all

ubjects ( r ALL > r ALL_SHUFFLE and r EXT > r EXT_SHUFFLE , p < 0.01, permu-

ation test in which input sentences were randomly shuffled, N = 100;

EG prediction correlations were averaged across all electrodes). 

Model weights corresponding to the Env descriptor (TRF Env , a sub-

et of TRF ALL ) showed significant effects of proficiency (three-way ANOVA
ith latency, electrodes, and proficiency as factors, F (2,6670) = 8.65,

 = 1.7 ∗ 10 − 4 ), latency ( F (28,6670) = 90.22, p < 10 − 100 ) and elec-

rode ( F (4,6670) = 3.25, p < 0.011) with a significant proficiency ∗ latency
nteraction ( F (56,6670) = 4.61, p = 4.1 ∗ 10 − 27 ) and latency ∗ electrode

nteraction ( F (112,6670) = 10.60, p < 10 − 100 ) but no significant

roficiency ∗ electrode interaction ( F (8,6670) = 0.69, p = 0.71). Fig. 1 D,

 shows the model weights corresponding to the Env descriptor (part of

RF ALL ) after averaging across all electrodes and all subjects within each

roficiency group (A, B, C, and L1). TRFs for the four groups appeared

emporally synchronized, which was expected for cortical responses to

ow-level acoustics. While proficiency effects emerged on the TRF Env 
agnitude did not survive correction for multiple comparisons at in-

ividual time-latencies (point-by-point one-way ANOVA with FDR cor-

ection), significant effects of group emerged on the peak-to-peak am-

litude of the N1-P2 TRF complex when considering the average TRF

cross all electrodes (one-way ANOVA, p = 0.03) as well as on indi-

idual electrodes (one-way ANOVA with FDR correction, p < 0.05 on

1/64 electrodes). We also tested whether the envelope response in L2

articipants became more similar to that of native speakers with profi-

iency. To do so, we measured the Pearson’s correlation scores between
7 
he TRF Env for each L2 subject and the average TRF Env weights across all

1 participants. This measure of similarity between L1 and L2 subjects

id not show any significant difference between the A, B, and C groups

 p > 0.05). 

Although envelope TRFs have proven to be robust and have

ontributed to the study of various aspects of auditory perception

 Bednar and Lalor, 2020 ; Crosse et al., 2015 ; Hausfeld et al., 2018 ;

’Sullivan et al., 2014 ), we also modeled the low-level auditory re-

ponses by considering the acoustic spectrogram (Sgr), which was

hown to be a better predictor of the EEG signal ( Daube et al., 2019 ;

i Liberto et al., 2015 ). However, observing TRF Sgr (part of TRF EXT ) for

ifferent auditory frequency bands did not lead to new clear-cut insights

n this case; thus, the rest of the manuscript focuses on the envelope TRF

esults. 

.2. Effect of proficiency on the cortical encoding of phonemes in L2 
isteners 

Phonetic feature information was represented by the categorical de-

criptor Phn , which marked the occurrence of a phoneme with a rect-

ngular pulse for each corresponding phonetic feature (see Methods )

 Di Liberto et al., 2015 ). TRFs were fit for each subject by combining

he Phn descriptor with all others in the EXT feature set. The weights

orresponding to the descriptor of interest, TRF Phn , were extracted from

RF EXT . In this case, the other descriptors served as nuisance regres-

ors, meaning that they reduced the impact of acoustic-, phonotactic-

nd semantic-level responses on TRF Phn . The effect of proficiency was

ssessed in L2 participants by measuring the change in TRF Phn between

roficiency levels A, B, and C. PDMs were derived based on an MDS anal-

sis that projected the TRF Phn weights onto a multidimensional space,

ith distances representing the discriminability of particular phonetic

ontrasts in the EEG signal ( Fig. 2 A; see Methods – Phoneme distance

aps ). The effect of proficiency on the PDMs was studied by measur-

ng the distance between L1 and L2 maps ( Fig. 2 B ) and by measuring

he change in the pairwise phoneme distance within L2 maps ( Fig. 2 C

nd Supplementary Fig. 4 ). Fig. 2 B shows the average L1-L2 distance

cross all phonemes for each L2 participant, with blue and red fonts indi-

ating phonemes for L1 and L2 participants, respectively. Shorter L1-L2

istances were measured in the PDMs for increasing L2 proficiency lev-

ls ( Fig. 2 B : ANOVA, F (1.4, 54.1) = 22.8; p = 1.6 ∗ 10 − 8 ), indicating an

ffect of proficiency on the TRF Phn , with a progressive convergence of

he PDM to that for native listeners. 

Unknown phonemes have been shown to be perceived by L2 speak-

rs as the closest existing phonemic neighbor in their L1, thus presenting

hallenges in discrimination ( Flege, 1988 ; Guion et al., 2000 ). To test

hether phonetic contrasts that do not exist in Standard Chinese (the na-

ive language of L2 subjects) became more discriminable in the EEG data

ith increasing proficiency, we measured the distance between pairs of

honemes in PDM space for each proficiency group. As TRF ph was pre-

iously shown to be particularly sensitive to contrasts between conso-

ants but not between vowels ( Di Liberto et al., 2018a , 2015 ), phonemic

iscriminability was assessed for all pairs of consonants in the English

honemic inventory. We expected discriminability to increase with pro-

ciency when considering phonemic contrasts that exist in English but

ot in Standard Chinese, thus reflecting the improved discrimination

kills of L2 listeners. Our data were sensitive to this learning process, as

e measured significant effects of L2 proficiency on the discriminabil-

ty of phoneme pairs that do not exist in Standard Chinese (ANOVA:

 (1.6, 150.3) = 3.8, p = 0.024; Supplementary Fig. 4 ) and for pairs in

hich only one phoneme exists in Chinese (ANOVA: F (1.4, 245.8) = 4.4,

 = 0.013), whereas no significant effects were measured for contrasts

hat exist in Chinese and, as such, L2 participants were sensitive to indi-

iduals without any knowledge of the English language (ANOVA F (1.26,
0.9) = 0.9, p = 0.39). Figs. 2 C shows this result for selected phonetic

ontrasts that are of particular importance for correct English compre-

ension as they occur in minimal pairs (words differentiated by only
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Fig. 3. Effect of proficiency on the EEG responses to phonotactic and semantic dissimilarity regressors. (A) Model weights of the phonotactic TRF for three selected 

midline EEG channels at peristimulus time latencies from 0 to 600 ms. The results for distinct participant groups are color-coded. Thick lines indicate weights that 

were significantly different from zero across all subjects of a group (p < 0.05, Wilcoxon signed rank test, FDR corrected). Horizontal black lines indicate a significant 

effect of group proficiency on the TRF weights (point-by-point one-way ANOVA with FDR correction, p < 0.05). (B) Topographies of the phonotactic TRF weights 

for five selected time latencies. (C) Cosine distance of the phonotactic TRF for individual L2 participants with the average L1 TRF. The distance was calculated based 

on all electrodes and time latencies. (D) Model weights of the semantic dissimilarity TRF for selected EEG channels. (E) Topographies of the semantic dissimilarity 

TRF weights for five selected time latencies. (F) Cosine distance of the phonotactic TRF for individual L2 participants with an average L1 TRF. 
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ne phoneme, e.g., “bat ” /bæt/, “pat ” /pæt/). The Fig. shows six se-

ected English-only contrasts (T vs. TH, D vs. DH, V vs. W, Z vs. DH, B

s. P, and Z vs. S), all of which exhibit increased discriminability when

omparing the A and C proficiency-level groups, and six selected phone-

ic contrasts belonging to both English and Standard Chinese languages

F vs. P, L vs. F, W vs. F, N vs. NG, M vs. N, and L vs. NG), which did

ot show any consistent change with proficiency. In this case, distance

alues for each phoneme pair were normalized based on the L1 map for

isualization. 

.3. Proficiency modulates phonotactic responses at both short and long 
atencies 

TRF weights corresponding to the phonotactic descriptor (TRF Pt ,

 subset of TRF ALL ) showed significant effects of latency (three-

ay ANOVA, F (28,6670) = 34.58, p < 10 − 100 ) and electrode

 F (4,6670) = 7.83, p < 2.7 ∗ 10 − 6 ), a significant proficiency ∗ latency inter-
ction ( F (56,6670) = 2.75, p = 6.6 ∗ 10 − 11 ) and latency ∗ electrode inter-

ction ( F (112,6670) = 3.66, p = 3.9 ∗ 10 − 34 ), but no effect of proficiency
 F (2,6670) = 2.44, p = 0.087) and no significant proficiency ∗ electrode

nteraction ( F (8,6670) = 0.25, p = 0.98). Fig. 3 A compares the cor-

esponding TRF weights (part of TRF ALL ) between proficiency groups

t three scalp locations of interest. Qualitatively different TRF pat-

erns emerged between groups, with an early positive component (~40

s) that emerged consistently for all groups, an expected longer la-

ency component (300-500 ms) that was less pronounced for L2 sub-

ects than for L1 subjects but was significant for L2 with high and

edium proficiency, and an unexpected earlier component (~120 ms)

hat emerged consistently only for all L2 groups but not the L1 group

FDR-corrected Wilcoxon test). The same latencies showed significant

ffects of proficiency group, which were measured as a point-by-point

ne-way ANOVA ( p < 0.05, FDR corrected; Fig. 3 A reports the signifi-

ance of that test, and its effect size is reported in Supplementary Fig.

 ). The topographical patterns in Fig. 3 B further clarify that this effect

f proficiency was distributed across most scalp areas, but especially in

entro-frontal scalp areas at 120 ms, whereas the effect at a latency of
8 
pproximately 360 ms showed centro-parietal patterns. We also studied

he effect of proficiency on the cortical encoding of speech by assess-

ng whether the TRF of L2 participants became more similar to that

or L1 participants with proficiency. This distance was calculated with

 cosine metric over all electrodes and over time latencies of the TRF

imultaneously between each L2 participant and the average of all L1

ubjects. The analysis did not indicate a significant effect of proficiency,

.e., there was no significant difference between the A, B, and C groups

 Fig. 3 C : one-way ANOVA, F (1.4, 33.2) = 2.0; p = 0.14), suggesting that

he effects of proficiency on L2 TRF should be studied for individual TRF

omponents. 

.4. Stronger and earlier cortical responses to semantic dissimilarity with 
roficiency 

A similar analysis was conducted based on semantic dissimilarity

ather than on phonotactic scores. Specifically, content words were de-

cribed according to a 400-dimensional feature space that was identi-

ed based on word co-occurrence (word2vec algorithm; Mikolov et al.,

013 ). Then, semantic dissimilarity was quantified as the distance of a
ord with the preceding semantic context, thus resulting in a vector

arking the onset of all content words with these distance values (see

ethods ) ( Broderick et al., 2018 ). Model weights corresponding to the

emantic dissimilarity descriptor (TRF Sem , a subset of TRF ALL ) showed

ignificant effects of proficiency (three-way ANOVA, F (2,6670) = 14.9,

 = 3.4 ∗ 10 − 7 ) and latency ( F (28,6670) = 38.50, p < 10 − 100 ), no sig-

ificant effect of electrode ( F (4,6670) = 0.22, p = 0.924), a signifi-
ant proficiency ∗ latency interaction ( F (56,6670) = 2.87, p = 7.1 ∗ 10 − 12 )

nd latency ∗ electrode interaction ( F (112,6670) = 2.51, p = 4.5 ∗ 10 − 16 ),

nd no significant proficiency ∗ electrode interaction ( F (8,6670) = 1.28,

 = 0.24). Fig. 3 D shows TRF Sem for three selected scalp channels. The

verage TRF Sem for L1 participants was consistent with the results shown

y Broderick and colleagues ( Broderick et al., 2018 ), with a negative

omponent peaking at peristimulus latencies of 340-380 ms. Similar TRF

atterns emerged for the L2 C-level participants, whose average TRF Sem 
alues showed a negative component at comparable time latencies, with
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Fig. 4. Accurate decoding of L2 proficiency from EEG data. (A) A multilinear principal component analysis (MPCA) was performed on the TRF weights corresponding 

to speech descriptors at all linguistic levels of interest. The first MPCA component was retained for the TRFs corresponding to Env, Phn, Pt, and Sem. The combination 

of these four features was predictive of L2 proficiency (r = 0.68), with significant effects for all features that were not due to group differences in age or attention. 
(B) A support-vector regression analysis shows that EEG data accurately predicted the L2 proficiency level at the individual subject level (r = 0.83, MSE = 1.14). (C) 
Classification accuracy for L1 versus L2 and L1 versus C-level L2. The red dotted lines indicate the baseline classification levels, which were calculated as the 95 th 

percentile of a distribution of classification accuracies derived after randomly shuffling the output class labels (N = 100). (For interpretation of the references to 
color in the text, the reader is referred to the web version of this article.) 
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eak latencies between 340 and 440 ms (depending on the EEG chan-

el). As expected, we observed significant effects of proficiency group

ver central and posterior scalp areas, which were measured as a point-

y-point one-way ANOVA ( p < 0.05, FDR corrected; Fig. 3 D reports the

ignificance of that test, and its effect size is reported in Supplementary

ig. 5 ). Interestingly, an unexpected significant bilateral centro-frontal

egativity (BCN) peaking between 440 and 520 ms appeared in all L2

ubjects but not in L1 subjects. 

The latency of these negative components was assessed at an

ndividual-subject level for the electrodes Oz, Pz, Cz, Fz, and Fpz by

dentifying the latency between 300 and 600 ms where the TRF has the

argest negative magnitude. We found a significant effect of proficiency

n trough latency (two-way ANOVA, F (3,312) = 4.22, p = 0.006). Fur-

hermore, this effect was found to correspond to a negative correlation

etween peak latency and proficiency, which was strongest at the Cz

ocation (Spearman’s correlation 𝜌 = -0.37, p = 0.003). As for phono-

actics (see previous section), we also assessed the cosine distance be-

ween the TRF of each L2 participant and the average TRF across all L1

articipants, taking into consideration all TRF latencies and electrodes

imultaneously. In this case, this distance showed a significant effect

f proficiency ( Fig. 3 F : one-way ANOVA across the three proficiency

evels, F (1.83, 42.1) = 3.7; p = 0.033), indicating a robust progressive

2-to-L1 convergence for semantic dissimilarity TRFs with proficiency. 

.5. Decoding language proficiency 

Our results indicate that language proficiency modulates cortical re-

ponses at various linguistic processing levels. Given this relation, we

xamined the extent to which the proficiency of a subject could be pre-

icted from the combined effects of different linguistic features. First,

ultilinear principal component analyses (MPCAs) were conducted on

he TRF weights corresponding to Env, Phn, Pt, and Sem separately, and

he first component was retained for each of them. In doing so, infor-

ation spacing along three dimensions (EEG channels, time latencies,

nd stimulus features, e.g., phonetic features) was compressed into a

ingle value for each participant. A linear regression model was then fit

o predict L2 proficiency (L1 subjects were excluded from this analy-

is) based on the four aforementioned TRF features. Fig. 4 A shows the

ffect of each regressor on the model fit (coefficient estimate and stan-
9 
ard error), with an overall regression correlation r = 0.68. Note that

e are interested in the absolute value of the effect of each TRF feature,

s the sign is arbitrary due to the MPCA step. Significant effects were

easured for each of the four features, and this was true also when the

age’ information and the ‘one-back repetition detection’ score (which

as a measure of the attentional engagement to the experiment) were

ncluded in the regression fit. This result confirmed that the main effect

f proficiency was not due to attention or age. 

A similar decoding approach was then used to assess whether and

ow robustly L2 proficiency could be decoded based on EEG indices of

anguage processing. A set of 26 features was identified to describe the

ffects of L2 proficiency on the TRFs most comprehensively. Features

ere based either on the TRF weights (as in Fig. 4 A), on the EEG pre-

iction correlations based on subject-specific TRF models, or on EEG

rediction correlations for each subject when using average TRF mod-

ls that were fit for the other subjects in A, B, C, and L1 groups sep-

rately (generic modeling approach; G.M. Di Liberto and Lalor, 2017 ;

essen et al., 2019 ) (see Methods for a detailed list of features). Each

f the 26 feature vectors had multiple dimensions (e.g., electrodes and

ime latency). For this reason, as described above, MPCA was used to

educe those vectors to one-dimensional regressors. Support vector ma-

hine (SVM) regression was used to decode L2 proficiency based on such

egressors. A backward elimination procedure identified a reduced set

f features (Supplementary Table 1) whose combination produced op-

imal L2 proficiency decoding scores, with MSE = 1.14 and Pearson’s

orrelation r = 0.83, p = 3 ∗ 10 − 13 ( Fig. 4 B). Another way to quantify the

uality of the proficiency decoding is to assess the A- vs. C-level classifi-

ation by placing a simple threshold on the prediction values (a value of

.5, which cuts the prediction space in half). This binary classification

ould identify A- vs. C-level participants with 91% accuracy. 

Further analyses were conducted to assess the effect of “nativeness ”

n the EEG responses to speech. Specifically, differences in language

rocessing between L1 and L2 subjects may be in part driven by a fun-

amental distinction between native and nonnative language processing

hat is not due to proficiency per se but rather due to differences in the
1 and L2 processing networks ( Cao et al., 2013 ; Morgan-Short et al.,

012 ). In fact, the TRF results in Figs. 1-3 indicated that higher profi-

iency levels do not always lead to EEG responses that are equivalent

o those of native speakers. Specifically, though there was some level of
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1-L2 convergence for phoneme-level TRFs, this phenomenon was less

ronounced for phonotactic and semantic dissimilarity responses, with

arked differences between L1 and C-level L2 (e.g., the latency of the

egative component at ~120 ms in TRF Pt ). Here, we attempted to disen-

angle those differences from the effect of L2 proficiency by conducting

n SVM binary classification analysis for L1 versus L2 participants. This

rocedure used the same 26 features and backward elimination strategy

s in the previous regression analysis. First, an L1 versus L2 classification

ccuracy of 87% was obtained when all 71 subjects were included in the

nalysis, with a baseline classification accuracy of 70% (95 th percentile

f a distribution of classification accuracy values when L1-L2 labels were

andomly shuffled – 100 shuffles). To reduce the contribution of profi-

iency to the classification result, the same analysis was performed on

1 and C-level L2 participants only. In this case, a classification accuracy

f 73% was measured, with a baseline of 66%, thus suggesting that the

EG responses to continuous speech reflect both the influence of L2 pro-

ciency and nativeness. Nevertheless, it is important to highlight that

his result emerged in a small cohort of L1 and L2 participants. Further-

ore, different behavioral tasks were used for L1 and L2 participants,

s the L2 group included subjects who could not understand the speech.

s such, further work with a more specific design and a larger sample

ize is needed to confirm this result. 

. Discussion 

The human brain responds differently when listening to a second-

anguage compared to the responses when listening to native speech

 Hanna et al., 2016 ; Ojima et al., 2005 ; White et al., 2012 ). Typi-

ally, lower listening performance is noted in the former that varies

etween individuals and can be quantified with standardized language

ests. Despite the general consensus for the cognitive, social, and eco-

omic advantages that come with high L2 proficiency, the neural un-

erpinnings of second-language perception and learning remain unclear

 Chang, 2019 ; Flege, 1995 ). One reason that this issue remains unre-

olved is methodological. Experimental evidence derived from direct

eural measures is minimal and often limited to single linguistic prop-

rties ( Brandmeyer et al., 2013 ; Khachatryan et al., 2016 ; Kimppa et al.,

019 ; Mueller, 2005 ; Osterhout et al., 2008 ), thus offering only a partial

iew of this complex brain mechanism. The present study established a

ethodological framework to provide a more comprehensive examina-

ion of the language processing system in naturalistic conditions. We iso-

ated neural indices of speech perception at multiple processing stages

rom EEG responses to natural speech, revealing marked effects of L2

roficiency that were robust at the individual subject level. Overall, the

esults confirmed our hypothesis that the cortical encoding of speech in

2 listeners changes with proficiency and that EEG responses to natural

peech are sensitive to its change for distinct linguistic properties, even

t the level of individual phonemic contrasts. 

Previous studies that investigated L2 perception in naturalistic

aradigms focused on the relationship between neural activity and the

coustic envelope and found stronger coupling in L2 subjects than L1

ubjects ( Song and Iverson, 2018 ). That EEG result, which was found us-

ng a selective attention listening task in a multitalker scenario, pointed

o a link between increased listening effort and stronger cortical tracking

f the speech envelope. However, it remains unclear which of the lin-

uistic and nonlinguistic properties of speech correlated with the acous-

ic envelope results in this increased cortical tracking. In fact, an in-

reased coupling between EEG data and the speech envelope could re-

ect increased encoding of acoustic features, stronger reliance on higher

rder processes, or even activation of distinct cortical areas. For exam-

le, recent work indicated that envelope tracking increases with age due

o a stronger engagement of higher order areas, thus reflecting a differ-

nce in processing strategy for older listeners ( Brodbeck et al., 2018b ;

resacco et al., 2019 ). Here, the shape of the envelope TRF significantly

ontributed to L2 proficiency decoding ( Fig. 4 ), even though the mod-

lation was not specific to any individual response component, which
10 
s in line with a link between acoustic-level encoding and effort. In-

erestingly, this result was obtained using a single-talker task with no

ompeting noise. Using this same approach with a more cognitively de-

anding task ( Hjortkjaer et al., 2018 ; O’Sullivan et al., 2014 ) could help

ease apart the effects of L2 proficiency and listening effort on the cor-

ical encoding of acoustic features. 

As we had hypothesized, the cortical encoding of phonemes changed

ith L2 proficiency, becoming progressively more similar to that of L1,

hich is in line with perceptual theories such as the expanded Native

anguage Magnet Theory (NML-e; Kuhl et al., 2008 ) and the Percep-

ual Assimilation Model (PAM-L2; Best and Tyler, 2007 ). A core prin-

iple of these theories is that adults perceive unfamiliar phonemes ac-

ording to some similarity to phonemes that are present in their exist-

ng (native) phonemic inventory. This existing inventory, or phoneme

ap, would explain the facility in detecting native sounds and the dif-

culty in detecting and discriminating new phonemes. Our data are in

ine with this view and provide important empirical evidence of such

n internal phonological map and of how it changes across various L2

roficiency levels. Our TRF analysis has discerned individual phonemic

ontrasts, showing that the cortical encoding of phonemes becomes pro-

ressively more sensitive to contrasts existing in English but not Stan-

ard Chinese ( Fig. 2 ). This work extends previous findings on the cor-

ical encoding of phonemes ( Daube et al., 2019 ; Di Liberto et al., 2015 ;

halighinejad et al., 2017 ) by demonstrating that EEG responses to nat-

ral speech show sensitivity to individual phoneme contrasts with re-

ponse patterns that become progressively more categorical with pro-

ciency. Furthermore, the aforementioned result goes beyond previous

ork ( Daube et al., 2019 ) by revealing a low-frequency EEG compo-

ent that could not be explained by simple acoustic features such as the

coustic envelope, the derivative of the envelope, and spectrogram at-

ributes. Our results are in line with the majority of the theories on L2

erception, which suggest the impact of a subject’s L1 on L2 phonolog-

cal encoding. Specifically, Fig. 2 A indicates that the native language

onstitutes a “starting point ” for phonological encoding of L2 sounds in

2 learners, which then changes with experience and converges toward

he encoding for L1 listeners. 

Reproducing this work on participants with other native languages

ould provide us with detailed insights into the effect of the native lan-

uage on phoneme encoding in high-proficiency L2 learners. In fact, the

anguages of interest in the present study were English and Mandarin,

ith profound differences involving all the hierarchical levels investi-

ated. Indeed, we expect languages with higher overlap in, for example,

he phonological inventory to show a strong effect of proficiency on the

roperties that have to be learned and a weaker effect on phonologi-

al processing. Further studies with larger sample sizes could use this

pproach to study the effect of different learning methodologies on L2

erception at different stages of learning. Finally, additional data with

 balanced design, in which subjects listen to both their native language

nd a nonnative language, could reveal whether and how learning a

articular L2 influences the cortical processing of the native language

 Chang and Mishler, 2012 ; Zinszer et al., 2015 ), as was postulated by the

idirectional cross-linguistic influence principle in the Speech Learning

odel (SLM; Flege, 1987 ). 

Proficiency was also shown to shape language encoding at the

honotactic level, with TRFs in L2 subjects progressively converging

oward L1 TRFs. Our results indicate two effects of phonotactics. First,

e measured a TRF component peak at speech EEG latencies of approx-

mately 300-450 ms, which we had hypothesized as it was measured

n a previous EEG study by our group ( Di Liberto et al., 2019 ), with

ore negative responses for higher proficiency levels ( Fig. 3 A ). Sec-

nd, an effect at shorter latencies of approximately 120 ms, in which a

egative component that was not present for L1 participants emerged

or L2 participants. Interestingly, a component reflecting phonotactics

as previously measured at that speech-neural signal latency using MEG

 Brodbeck et al., 2018a ) but not using EEG. Our finding provides a new

ink between the EEG and MEG literature by clarifying that phonotactic
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eatures modulate EEG responses at both shorter and longer latencies

nd that the effect at shorter latencies emerges for L2 learners but not

ative speakers. This discrepancy may be due to the difference in the

ype of signal recorded by EEG and MEG modalities. The larger values

or users with lower proficiency could reflect an effect of surprise on the

honeme sequences due to the use of an incorrect (or imperfect) model

f phonotactics. 

Semantic dissimilarity TRFs were previously shown to be character-

zed by a negative centro-parietal component at speech-EEG latencies of

pproximately 350-400 ms. This finding is in line with previous work on

he N400 ( Borovsky et al., 2012 ; Kutas and Federmeier, 2011 ; Kutas and

illyard, 1980 ), an event-related potential component that is modulated

y intelligibility and attention and that has the same spatiotemporal

haracteristics ( Broderick et al., 2018 ). Similarly, we expected strong

esponse negativity for users with higher language proficiency and no

esponse for people with no English proficiency at all (note that neg-

tive TRF values correspond to negative voltage values of the impulse

esponse of Sem). Consistent with this hypothesis, our results identi-

ed a posterior component with magnitude that increases with profi-

iency ( Fig. 3 D ). In addition, an unexpected centro-frontal component

rose at latencies of approximately 440-520 ms, which was negatively

orrelated with the latency of response rather than the magnitude of

he component. This bilateral centro-frontal negativity (BCN) emerged

ven for participants with no English understanding, thus reflecting neu-

al correlates time-locked to word onset but not semantics per se . This
omponent may instead be related to other processes, such as sentence

tructure processing, memory tasks, and the process of learning frequent

ords ( Chen et al., 2014 ; Coulson and Kutas, 2001 ; Manfredi et al.,

018 ; Wlotko and Federmeier, 2012 ). Further work is needed to clarify

hether that signal reflects, for example, the familiarity with particu-

ar words, or whether it is related to ERP components such as the left

nterior negativity (LAN), which was shown to reflect processing dif-

culties in morpho-syntax ( Meltzer and Braun, 2013 ; Steinhauer and

rury, 2012 ). 

Although both phonotactics and semantic level TRFs for L2 showed

ome level of convergence to L1, there was also a pronounced difference

etween L1 and C-level L2 participants, which was also reflected in the

ignificant L1 versus C classification result in Fig. 4 C. This effect may

eflect fundamental differences in the cortical mechanisms underlying

1 and L2 processing, rather than an effect of proficiency per se . This
ffect of nativeness that is somewhat different from the effect of profi-

iency is in line with the observation that a second language learned af-

er a certain critical (or sensitive) period usually leads to lower language

roficiency than that of a native speaker ( Bialystok and Hakuta, 1999 ;

artshorne et al., 2018 ; Purves et al., 2003 ). More data could provide

urther insights on this topic, for example, by comparing L1 monolin-

uals with bilinguals and multilinguals with a wide range of learning-

nsets for the English language. Our results show different progressions

or the L2-to-L1 convergence for distinct features. As we had hypoth-

sized, such differences may be explained by the particular language-

earning strategy adopted for distinct features. Further work targeting

ifferent second language learning strategies could contribute to reveal-

ng how strongly the linguistic encoding progression for distinct features

s related to the particular learning approach. Further research is also

eeded to better understand the effect of nativeness, e.g., by comparing

1 and high-proficiency L2 listeners using a semantic task that guaran-

ees the same level of comprehension for all participants. Such a task

ould not be employed in the present study, as the primary focus of this

tudy was the effect of proficiency across A- to C-level L2 participants,

hich, by design, presented variable levels of comprehension. 

Our analysis focused on just a few components of the speech pro-

essing hierarchy, namely, the acoustic, phonemic, phonotactic, and se-

antic levels. One powerful element of this framework is that it can be

xtended to other levels of processing without the need for additional

ata. In fact, the EEG responses to natural speech likely reflect many

ore components of interest than the ones targeted in this occasion;
11 
solating these components following the model presented in this study

ould give us insights into each newly added feature and its link with

roficiency, as well as provide us the chance to improve the accuracy

f our EEG-based L2 proficiency assessment. For these reasons, we be-

ieve that a wide collaborative effort under a common protocol of data

cquisition with EEG/MEG and natural stimuli could significantly and

uickly advance our understanding of the speech and language cortical

rocessing network (and could indeed extend to other questions of in-

erest). Such an initiative would allow for the extension of our findings

o other combinations of L1-L2 languages, as well as prompt the inves-

igation of questions that require larger sample sizes. One such question

oncerns the opportunity for decoding multiple robust objective indices

f proficiency from the same EEG recording. In fact, while the present in-

estigation focused on coarsely grouping subjects into A, B, and C levels,

uch proficiency levels summarize a number of skills (e.g., vocabulary

nd phonological skills) that can change between participants within the

ame proficiency group; this aspect could represent important objective

arkers of language proficiency. 

Understanding the neural underpinnings of second language per-

eption and learning becomes particularly relevant when we consider

hat there are more children throughout the world that have been ed-

cated via a second (or a later acquired) language rather than exclu-

ively via their L1 ( Tucker, 2001 ). Furthermore, there is evidence for

he perceptual advantage of bilinguals and multilinguals that is due

o cross-language transfer ( Chang, 2012 ; Chang and Mishler, 2012 ;

artushina and Frauenfelder, 2014 ), and particular combinations of lan-

uages may be better than others in the emergence of such a benefit.

urther work in this direction may provide us with tools to predict the

erceptual advantage that a particular second language would bring to

 person given their background; this work could constitute the basis

or a procedure that, for example, could inform us on which second

anguages should be encouraged in school for particular individuals. In-

eed, additional work is needed to assess the parameters, making this

ethodology applicable in particular cohorts of participants. While re-

ent work has partly answered this question, indicating that EEG indices

f acoustic-phonetic ( Di Liberto et al., 2018b ; Di Liberto and Lalor, 2017 ;

essen et al., 2019 ) and semantic-level ( Broderick et al., 2020 ) percep-

ion can be isolated with ~10 minutes of EEG data in infants, chil-

ren, and older participants, as well as in hearing-impaired individuals

 Decruy et al., 2020 ; Fuglsang et al., 2020 ), more work is needed to

valuate the reliability of the ensemble of EEG indices discussed in the

resent study. 

eclaration of Competing Interest 

None declared. 

uthor Contributions 

The study was conceived by J.N., N.M., and G.D.L.; the experiments

ere designed by J.N. and B.K. programmed the tasks; J.N. collected

he EEG data; G.D.L., N.M., J.N., J.Y. analyzed the data; G.D.L., J.N.,

.M. wrote the first draft of the manuscript; J.Y., B.K., and S.S. edited

he manuscript. 

ata sharing statement 

The analyses were conducted by using MATLAB code that can

e downloaded at http://audition.ens.fr/adc/NoiseTools/ , https://

ourceforge.net/projects/aespa/ , https://isr.umd.edu/Labs/NSL/

oftware.htm , and https://code.soundsoftware.ac.uk/projects/idyom-

roject . 

The custom code used for the feature selection and classification

ill be shared on the author’s lab websites http://diliberg.net/ and

ttp://naplab.ee.columbia.edu/ . The EEG dataset is available upon re-

uest. 

http://audition.ens.fr/adc/NoiseTools/
https://sourceforge.net/projects/aespa/
https://isr.umd.edu/Labs/NSL/Software.htm
https://code.soundsoftware.ac.uk/projects/idyom-project
http://diliberg.net/
http://naplab.ee.columbia.edu/


G.M.D. Liberto, J. Nie, J. Yeaton et al. NeuroImage 227 (2021) 117586 

F

 

M  

v  

b

A

 

t  

s  

e

S

 

t

R

A  

 

 

B  

 

 

 

B  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F  

 

G  

G  

 

 

H  

H  

 

H  

 

H  

 

H  

 

H  

 

H  

H  
unding sources 

This study and N.M., B.K., and J.N. were supported by the NIMH

H114166-01 grant. G.D.L. and S.S. were supported by an ERC Ad-

anced grant (Neume, Grant agreement ID: 787836 ). J.Y. was supported

y the ERC Advanced grant (POP-R, Grant agreement ID: 742141 ). 

cknowledgments 

The authors would like to thank Michael Broderick for his help with

he semantic dissimilarity analysis. The authors also thank Adam Sous-

ana and Ghislain de Labbey for their help with a pilot version of this

xperiment. 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi:10.1016/j.neuroimage.2020.117586 . 

eferences 

hissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., Mahncke, H., Merzenich, M.M.,

2001. Speech comprehension is correlated with temporal response patterns

recorded from auditory cortex. Proc. Natl. Acad. Sci. USA 98, 13367–13372.

doi: 10.2307/3057093 . 

aroni, M., Dinu, G., Kruszewski, G., 2014. Don’t count, predict! A systematic compar-

ison of context-counting vs. context-predicting semantic vectors. In: 52nd Annual

Meeting of the Association for Computational Linguistics, ACL 2014 - Proceedings

of the Conference. Association for Computational Linguistics (ACL), pp. 238–247.

doi: 10.3115/v1/p14-1023 . 

ednar, A., Lalor, E.C., 2020. Where is the cocktail party? Decoding locations of

attended and unattended moving sound sources using EEG. Neuroimage 205.

doi: 10.1016/j.neuroimage.2019.116283 . 

Best, C.T. , Tyler, M.D. , 2007. Nonnative and second-language speech perception: common-

alities and complementarities. In: Language Experience in Second Language Speech

Learning. Honor of James Emil Flege, pp. 13–34 . 

Bialystok, E., Hakuta, K., 1999. Confounded age: linguistic and cognitive factors in age

differences for second language acquisition. Lawrence Erlbaum Assoc. Publ. 161–181.

doi: 10.1017/S0272263101333053 . 

Boersma, P. , Weenink, D. , 2009. Praat: Doing Phonetics by Compu ter (Version 5.1.
05)[Computer program ] Retrieved May 1, 2009 . 

Bohn, O.-S. , Munro, M.J. , 2007. Language experience in second language speech

learning . in Honor of James Emil Flege, Language Learning and Language

Tea ching . 

Borovsky, A., Elman, J.L., Kutas, M., 2012. Once is enough: n400 indexes semantic inte-

gration of novel word meanings from a single exposure in context. Lang. Learn. Dev.

8, 278–302. doi: 10.1080/15475441.2011.614893 . 

Brandmeyer, A., Farquhar, J.D.R., McQueen, J.M., Desain, P.W.M., 2013. Decoding speech

perception by native and non-native speakers using single-trial electrophysiological

data. PLoS One 8. doi: 10.1371/journal.pone.0068261 . 

Brodbeck, C. , Hong, L.E. , Simon, J.Z. , 2018a. Rapid transformation from auditory to lin-

guistic representations of continuous speech. Curr. Biol. 28, 3976–3983 e5 . 

Brodbeck, C., Presacco, A., Anderson, S., Simon, J.Z., 2018b. Over-representation

of speech in older adults originates from early response in higher order au-

ditory cortex. Acta Acustica United Acustica. S. Hirzel Verlag GmbH 774–777.

doi: 10.3813/AAA.919221 . 

Broderick, M., Di Liberto, G., Anderson, A., Rofes, A., Lalor, E., 2020. Dissociable electro-
physiological measures of natural language processing reveal differences in speech com-
prehension strategy in healthy ageing . bioRxiv 2020.04.17.046201. https://doi.org/
10.1101/2020.04.17.046201 

Broderick, M.P., Anderson, A.J., Di Liberto, G.M., Crosse, M.J., Lalor, E.C., 2018. Electro-

physiological correlates of semantic dissimilarity reflect the comprehension of natural,

narrative speech. Curr. Biol. doi: 10.1016/j.cub.2018.01.080 . 

Cao, F., Tao, R., Liu, L., Perfetti, C.A., Booth, J.R., 2013. High proficiency in a sec-

ond language is characterized by greater involvement of the first language net-

work: evidence from Chinese learners of English. J. Cogn. Neurosci. 25, 1649–1663.

doi: 10.1162/jocn_a_00414 . 

Chang, C.B., 2019. The phonetics of second language learning and bilingualism. In: The

Routledge Handbook of Phonetics, pp. 427–447. doi: 10.4324/9780429056253-16 . 

Chang, C.B., 2012. Rapid and multifaceted effects of second-language learning on first-

language speech production. J. Phon. 40, 249–268. doi: 10.1016/j.wocn.2011.10.007 .

Chang, C.B., Mishler, A., 2012. Evidence for language transfer leading to a percep-

tual advantage for non-native listeners. J. Acoust. Soc. Am. 132, 2700–2710.

doi: 10.1121/1.4747615 . 

Chee, M.W.L., Hon, N., Lee, H.L., Soon, C.S., 2001. Relative language proficiency modu-

lates BOLD signal change when bilinguals perform semantic judgments. Neuroimage

13, 1155–1163. doi: 10.1006/nimg.2001.0781 . 

Chee, M.W.L., Tan, E.W.L., Thiel, T., 1999. Mandarin and English single word processing

studied with functional magnetic resonance imaging. J. Neurosci. 19, 3050–3056.

doi: 10.1523/jneurosci.19-08-03050.1999 . 
12 
Chen, Q., Ye, C., Liang, X., Cao, B., Lei, Y., Li, H., 2014. Automatic process-

ing of taxonomic and thematic relations in semantic priming - differentia-

tion by early N400 and late frontal negativity. Neuropsychologia 64, 54–62.

doi: 10.1016/j.neuropsychologia.2014.09.013 . 

Chi, T., Ru, P., Shamma, S.A., 2005. Multiresolution spectrotemporal analysis of complex

sounds. J. Acoust. Soc. Am. 118, 887–906. doi: 10.1121/1.1945807 . 

Chomsky, N. , Halle, M. , 1968. The Sound Patte rn of English . 

Conway, C.M., Bauernschmidt, A., Huang, S.S., Pisoni, D.B., 2010. Implicit statistical

learning in language processing: Word predictability is the key. Cognition 114, 356–

371. doi: 10.1016/j.cognition.2009.10.009 . 

Coulson, S., Kutas, M., 2001. Getting it: Human event-related brain response

to jokes in good and poor comprehenders. Neurosci. Lett. 316, 71–74.

doi: 10.1016/S0304-3940(01)02387-4 . 

Crosse, M.J. , Butler, J.S. , Lalor, E.C. , 2015. Congruent visual speech enhances cortical

entrainment to continuous auditory speech in noise-free conditions. J. Neurosci. 35,

14195 –1420 . 

Crosse, M.J., Di Liberto, G.M., Bednar, A., Lalor, E.C., 2016. The multivariate temporal

response function (mTRF) toolbox: a MATLAB toolbox for relating neural signals to

continuous stimuli. Front. Hum. Neurosci. 10. doi: 10.3389/fnhum.2016.00604 . 

Daube, C., Ince, R.A.A., Gross, J., 2019. Simple acoustic features can explain phoneme-

based predictions of cortical responses to speech. Curr. Biol. 29, 1924–1937.

doi: 10.1016/J.CUB.2019.04.067 , e9https://doi.org/. 

Decruy, L., Vanthornhout, J., Francart, T., 2020. Hearing impairment is associated

with enhanced neural tracking of the speech envelope. Hear. Res. 393, 107961.

doi: 10.1016/j.heares.2020.107961 . 

DeJesus, J.M., Hwang, H.G., Dautel, J.B., Kinzler, K.D., 2017. Bilingual children’s

social preferences hinge on accent. J. Exp. Child Psychol. 164, 178–191.

doi: 10.1016/j.jecp.2017.07.005 . 

Di Liberto, G.M., Crosse, M.J., Lalor, E.C., 2018a. Cortical measures of phoneme-

level speech encoding correlate with the perceived clarity of natural

speec h . Eneuro 5. doi: 10.1523/ENEURO.0084-18.2018 , ENEURO.0084-18.2018.

https://doi.org/. 

Di Liberto, G.M., Lalor, E.C., 2017. Indexing cortical entrainment to natural speech at the

phonemic level: methodological considerations for applied research. Hear. Res. 348,

70–77. doi: 10.1016/j.heares.2017.02.015 . 

Di Liberto, G.M., O’Sullivan, J.A., Lalor, E.C., 2015. Low-frequency cortical

entrainment to speech reflects phoneme-level processing. Curr. Biol. 25.

doi: 10.1016/j.cub.2015.08.030 . 

Di Liberto, G.M., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D.,

Lalor, E.C., 2018b. Atypical cortical entrainment to speech in the right

hemisphere underpins phonemic deficits in dyslexia. Neuroimage 70–79.

doi: 10.1016/J.NEUROIMAGE.2018.03.072 , NIMG-17-29https://doi.org/. 

Di Liberto, G.M., Wong, D., Melnik, G.A., de Cheveigne, A., 2019. Low-frequency cortical

responses to natural speech reflect probabilistic phonotactics. Neuroimage 196, 237–

247. doi: 10.1016/j.neuroimage.2019.04.037 . 

Ding, N. , Chatterjee, M. , Simon, J.Z. , 2014. Robust cortical entrainment to the speech

envelope relies on the spectro-temporal fine structure. Neuroimage 88, 41–46 . 

Federmeier, K.D., 2007. Thinking ahead: the role and roots of prediction in language

comprehension. Psychophysiology doi: 10.1111/j.1469-8986.2007.00531.x . 

Flege, J.E., 1995. Second language speech learning: theory, findings, and prob-

lems. Speech Percept. Linguist. Exp. Issues Cross-Language Res. 233–277.

doi: 10.1111/j.1600-0404.1995.tb01710.x . 

Flege, J.E. , 1988. The production and perception of foreign language speech sounds. Hum.

Commun. Disord. Rev. 1988, 224–401 . 

Flege, J.E. , 1987. The production of “new ” and “similar ” phones in a foreign language:

evidence for the effect of equivalence classification. J. Phonetics 15, 47–65 . 

uglsang, S.A., Märcher-Rørsted, J., Dau, T., Hjortkjær, J., 2020. Effects of sensorineural

hearing loss on cortical synchronization to competing speech during selective atten-

tion. J. Neurosci. 40, 2562–2572. doi: 10.1523/JNEUROSCI.1936-19.2020 . 

oldwater, S. , Johnson, M. , 2003. Learning OT constraint rankings using a maximum

entropy model. Proc. Stock. Work. Var. within Optim. Theory 111–120 . 

uion, S.G., Flege, J.E., Akahane-Yamada, R., Pruitt, J.C., 2000. An investigation

of current models of second language speech perception: the case of Japanese

adults’ perception of English consonants. J. Acoust. Soc. Am. 107, 2711–2724.

doi: 10.1121/1.428657 . 

agoort, P., Brown, C.M., 2000. ERP effects of listening to speech: semantic ERP effects.

Neuropsychologia 38, 1518–1530. doi: 10.1016/S0028-3932(00)00052-X . 

ahne, A., 2001. What’s different in second-language processing? Evidence

from event-related brain potentials. J. Psycholinguist. Res. 30, 251–266.

doi: 10.1023/A:1010490917575 . 

an, Z.H., 2004. Fossilization in Adult Second Language Acqui

sition, Fossilization in Adult Second Language Acquisition

doi: 10.25264/2519-2558-2019-6(74)-150-153 . 

anna, J., Shtyrov, Y., Williams, J., Pulvermüller, F., 2016. Early neurophysiological

indices of second language morphosyntax learning. Neuropsychologia 82, 18–30.

doi: 10.1016/j.neuropsychologia.2016.01.001 . 

artshorne, J.K., Tenenbaum, J.B., Pinker, S., 2018. A critical period for second language

acquisition: evidence from 2/3 million english speakers. Cognition 177, 263–277.

doi: 10.1016/j.cognition.2018.04.007 . 

ausfeld, L., Riecke, L., Valente, G., Formisano, E., 2018. Cortical tracking of multiple

streams outside the focus of attention in naturalistic auditory scenes. Neuroimage

181, 617–626. doi: 10.1016/j.neuroimage.2018.07.052 . 

ayes, B., Wilson, C., 2008. A maximum entropy model of phonotactics and phonotactic

learning. Linguist. Inq. 39, 379–440. doi: 10.1162/ling.2008.39.3.379 . 

ickok, G., Poeppel, D., 2007. The cortical organization of speech processing. Nat. Rev

Neurosci. 8, 393–402. doi: 10.1038/nrn2113 . 

https://doi.org/10.13039/100000025
https://doi.org/10.13039/501100000781
https://doi.org/10.13039/501100000781
https://doi.org/10.1016/j.neuroimage.2020.117586
https://doi.org/10.2307/3057093
https://doi.org/10.3115/v1/p14-1023
https://doi.org/10.1016/j.neuroimage.2019.116283
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0004
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0004
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0004
https://doi.org/10.1017/S0272263101333053
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0006
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0006
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0006
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0007
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0007
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0007
https://doi.org/10.1080/15475441.2011.614893
https://doi.org/10.1371/journal.pone.0068261
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0010
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0010
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0010
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0010
https://doi.org/10.3813/AAA.919221
https://doi.org/10.1016/j.cub.2018.01.080
https://doi.org/10.1162/jocn_a_00414
https://doi.org/10.4324/9780429056253-16
https://doi.org/10.1016/j.wocn.2011.10.007
https://doi.org/10.1121/1.4747615
https://doi.org/10.1006/nimg.2001.0781
https://doi.org/10.1523/jneurosci.19-08-03050.1999
https://doi.org/10.1016/j.neuropsychologia.2014.09.013
https://doi.org/10.1121/1.1945807
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0022
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0022
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0022
https://doi.org/10.1016/j.cognition.2009.10.009
https://doi.org/10.1016/S0304-3940(01)02387-4
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0025
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0025
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0025
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0025
https://doi.org/10.3389/fnhum.2016.00604
https://doi.org/10.1016/J.CUB.2019.04.067
https://doi.org/10.1016/j.heares.2020.107961
https://doi.org/10.1016/j.jecp.2017.07.005
https://doi.org/10.1523/ENEURO.0084-18.2018
https://doi.org/10.1016/j.heares.2017.02.015
https://doi.org/10.1016/j.cub.2015.08.030
https://doi.org/10.1016/J.NEUROIMAGE.2018.03.072
https://doi.org/10.1016/j.neuroimage.2019.04.037
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0035
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0035
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0035
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0035
https://doi.org/10.1111/j.1469-8986.2007.00531.x
https://doi.org/10.1111/j.1600-0404.1995.tb01710.x
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0038
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0038
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0039
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0039
https://doi.org/10.1523/JNEUROSCI.1936-19.2020
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0041
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0041
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0041
https://doi.org/10.1121/1.428657
https://doi.org/10.1016/S0028-3932(00)00052-X
https://doi.org/10.1023/A:1010490917575
https://doi.org/10.25264/2519-2558-2019-6(74)-150-153
https://doi.org/10.1016/j.neuropsychologia.2016.01.001
https://doi.org/10.1016/j.cognition.2018.04.007
https://doi.org/10.1016/j.neuroimage.2018.07.052
https://doi.org/10.1162/ling.2008.39.3.379
https://doi.org/10.1038/nrn2113


G.M.D. Liberto, J. Nie, J. Yeaton et al. NeuroImage 227 (2021) 117586 

H  

 

H  

 

J  

 

K  

 

K  

 

K  

 

K  

 

K  

K  

 

K  

K  

 

K  

K  

 

 

K  

K  

 

K  

L

 

 

 

 

 

 

 

 

L  

 

 

 

 

M  

 

M  

 

M  

 

M  

 

 

M  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jortkjaer, J., Märcher-Rørsted, J., Fuglsang, S.A., Dau, T., 2018. Cortical oscillations

and entrainment in speech processing during working memory load. Eur. J. Neurosci.

doi: 10.1111/ejn.13855 . 

uettig, F., Mani, N., 2015. Language, Cognition and Neuroscience

Is prediction necessary to understand language? Probably not

doi: 10.1080/23273798.2015.1072223 . 

essen, S., Fiedler, L., Münte, T.F., Obleser, J., 2019. Quantifying the individual auditory

and visual brain response in 7-month-old infants watching a brief cartoon movie.

Neuroimage 202, 116060. doi: 10.1016/j.neuroimage.2019.116060 . 

artushina, N., Frauenfelder, U.H., 2014. On the effects of L2 perception and of individual

differences in L1 production on L2 pronunciation. Front. Psychol. 5. doi: 10.3389/fp-

syg.2014.01246 . 

ellenbach, M.L., Wijers, A.A., Mulder, G., 2000. Visual semantic features are activated

during the processing of concrete words: event-related potential evidence for percep-

tual semantic priming. Cogn. Brain Res. 10. doi: 10.1016/S0926-6410(00)00023-9 . 

hachatryan, E., Camarrone, F., Fias, W., Van Hulle, M.M., 2016. ERP response unveils

effect of second language manipulation on first language processing. PLoS One 11,

e0167194. doi: 10.1371/journal.pone.0167194 . 

halighinejad, B., Cruzatto da Silva, G., Mesgarani, N., 2017. Dynamic encoding of acous-

tic features in neural responses to continuous speech. J. Neurosci. doi: 10.1523/jneu-

rosci.2383-16.2017 . 

im, K.H.S., Relkin, N.R., Lee, K.M., Hirsch, J., 1997. Distinct cortical areas associated

with native and second languages. Nature 388, 171–174. doi: 10.1038/40623 . 

imppa, L., Shtyrov, Y., Hut, S.C.A., Hedlund, L., Leminen, M., Leminen, A., 2019.

Acquisition of L2 morphology by adult language learners. Cortex 116, 74–90.

doi: 10.1016/j.cortex.2019.01.012 . 

otz, S.A., 2009. A critical review of ERP and fMRI evidence on L2 syntactic processing.

Brain Lang 109, 68–74. doi: 10.1016/j.bandl.2008.06.002 . 

rizman, J., Slater, J., Skoe, E., Marian, V., Kraus, N., 2015. Neural processing of speech

in children is influenced by extent of bilingual experience. Neurosci. Lett. 585, 48–53.

doi: 10.1016/j.neulet.2014.11.011 . 

uhl, P.K., 2011. Early language learning and literacy: neuroscience implications for ed-

ucation. Mind, Brain, Educ. 5, 128–142. doi: 10.1111/j.1751-228X.2011.01121.x . 

uhl, P.K., Conboy, B.T., Coffey-Corina, S., Padden, D., Rivera-Gaxiola, M., Nel-

son, T., 2008. Phonetic learning as a pathway to language: new data and na-

tive language magnet theory expanded (NLM-e). Philos. Trans. R. Soc. B Biol. Sci.

doi: 10.1098/rstb.2007.2154 . 

uperberg, G.R., Jaeger, T.F., 2016. What do we mean by prediction in language compre-

hension? Lang. Cogn. Neurosci. 31, 32–59. doi: 10.1080/23273798.2015.1102299 . 

utas, M., Federmeier, K.D., 2011. Thirty years and counting: finding meaning in the

N400 component of the event-related brain potential (ERP). Annu. Rev. Psychol. 62,

621–647. doi: 10.1146/annurev.psych.093008.131123 . 

utas, M., Hillyard, S.A., 1980. Reading senseless sentences: brain potentials reflect se-

mantic incongruity. Science 207 (80), 203–205. doi: 10.1126/science.7350657 . 

adefoged, P. , Johnson, K. , 2014. A Course in Phonetics . 

Lalor, E.C., Foxe, J.J., 2010. Neural responses to uninterrupted natural speech can

be extracted with precise temporal resolution. Eur. J. Neurosci. 31, 189–193.

doi: 10.1111/j.1460-9568.2009.07055.x . 

Lalor, E.C., Power, A.J., Reilly, R.B., Foxe, J.J., 2009. Resolving precise temporal process-

ing properties of the auditory system using continuous stimuli. J. Neurophysiol. 102,

349–359. doi: 10.1152/jn.90896.2008 . 

Leonard, M.K., Brown, T.T., Travis, K.E., Gharapetian, L., Hagler, D.J., Dale, A.M., El-

man, J.L., Halgren, E., 2010. Spatiotemporal dynamics of bilingual word processing.

Neuroimage 49, 3286–3294. doi: 10.1016/j.neuroimage.2009.12.009 . 

Lesenfants, D., Vanthornhout, J., Verschueren, E., Francart, T., 2019. Data-driven spatial

filtering for improved measurement of cortical tracking of multiple representations of

speech. J. Neural Eng. doi: 10.1088/1741-2552/ab3c92 . 

ev-Ari, S., Keysar, B., 2010. Why Don’t we Believe Non-Native Speakers? The In-

fluence of Accent on Credibility doi: 10.1016/j.jesp.2010.05.025 . 

Manfredi, M., Cohn, N., De Araújo Andreoli, M., Boggio, P.S., 2018. Listening beyond

seeing: event-related potentials to audiovisual processing in visual narrative. Brain

Lang 185, 1–8. doi: 10.1016/j.bandl.2018.06.008 . 

Marsden, E., Mitchell, R., Myles, F., 2013. Second language learning theories. 

Mayo, L.H., Florentine, M., Buus, S., 1997. Age of second-language acquisition

and perception of speech in noise. J. Speech, Lang. Hear. Res. 40, 686–693.

doi: 10.1044/jslhr.4003.686 . 

cLaughlin, J., Osterhout, L., Kim, A., 2004. Neural correlates of second-language word

learning: minimal instruction produces rapid change. Nat. Neurosci. 7, 703–704.

doi: 10.1038/nn1264 . 

eltzer, J.A., Braun, A.R., 2013. P600-like positivity and left anterior negativity responses

are elicited by semantic reversibility in nonanomalous sentences. J. Neurolinguistics

26, 129–148. doi: 10.1016/j.jneuroling.2012.06.001 . 

esgarani, N., Cheung, C., Johnson, K., Chang, E.F., 2014. Phonetic feature encoding

in human superior temporal gyrus. Science 343 (80), 1006–1010. doi: 10.1126/sci-

ence.1245994 . 

ikolov, T. , Chen, K. , Corrado, G. , Dean, J. , 2013. Efficient estimation of word represen-

tations in vector space. In: 1st International Conference on Learning Representations,

ICLR 2013 - Workshop Track Proceedings. International Conference on Learning Rep-

resentations. ICLR . 

organ-Short, K., Finger, I., Grey, S., Ullman, M.T., 2012. Second language processing

shows increased native-like neural responses after months of no exposure. PLoS One

7, e32974. doi: 10.1371/journal.pone.0032974 . 

Mueller, J.L., 2005. Electrophysiological correlates of second language processing. Second

Lang. Res. 21, 152–174. doi: 10.1191/0267658305sr256oa . 

Nakada, T., Fujii, Y., Kwee, I.L., 2001. Brain strategies for reading in the sec-
13 
ond language are determined by the first language. Neurosci. Res. 40, 351–358.

doi: 10.1016/S0168-0102(01)00247-4 . 

O’Sullivan, J.A. , Power, A.J. , Mesgarani, N. , Rajaram, S. , Foxe, J.J. , Shinn-Cunning-

ham, B.G. , Slaney, M. , Shamma, S.A. , Lalor, E.C. , 2014. Attentional selection in a cock-

tail party environment can be decoded from single-trial EEG. Cereb. Cortex bht355 . 

Obleser, J., Kayser, C., 2019. Neural entrainment and attentional selection in the listening

brain. Trends Cogn. Sci. doi: 10.1016/j.tics.2019.08.004 . 

Ojima, S., Nakata, H., Kakigi, R., 2005. An ERP study of second language learn-

ing after childhood: effects of proficiency. J. Cogn. Neurosci. 17, 1212–1228.

doi: 10.1162/0898929055002436 . 

Omote, A., Jasmin, K., Tierney, A., 2017. Successful non-native speech perception is

linked to frequency following response phase consistency. Cortex 93, 146–154.

doi: 10.1016/j.cortex.2017.05.005 . 

Osterhout, L. , Holcomb, P. , 1995. Event - related potentials and language. Electrophysiol-

ogy Mind 171–187 . 

Osterhout, L., Poliakov, A., Inoue, K., McLaughlin, J., Valentine, G., Pitkanen, I., Frenck-

Mestre, C., Hirschensohn, J., 2008. Second-language learning and changes in the

brain. J. Neurolinguistics 21, 509–521. doi: 10.1016/j.jneuroling.2008.01.001 . 

Overath, T., McDermott, J.H., Zarate, J.M., Poeppel, D., 2015. The cortical analysis of

speech-specific temporal structure revealed by responses to sound quilts. Nat. Neu-

rosci. 18, 903–911. doi: 10.1038/nn.4021 . 

Perani, D., Abutalebi, J., 2005. The neural basis of first and second language processing.

Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2005.03.007 . 

Phillips, N.A., Klein, D., Mercier, J., de Boysson, C., 2006. ERP measures of auditory

word repetition and translation priming in bilinguals. Brain Res. 1125, 116–131.

doi: 10.1016/j.brainres.2006.10.002 . 

Presacco, A., Simon, J.Z., Anderson, S., 2019. Speech-in-noise representation in the

aging midbrain and cortex: effects of hearing loss. PLoS One 14, e0213899.

doi: 10.1371/journal.pone.0213899 . 

Purves, D. , Augustine, G.J. , Fitzpatrick, D. , Katz, L.C. , Anthony-Samuel, L. , McNa-

mara, J.O. , Williams, S.M. , 2003. Neuroscience, 2nd Ed. de boeck . 

Reiterer, S., Pereda, E., Bhattacharya, J., 2011. On a possible relationship between

linguistic expertise and EEG gamma band phase synchrony. Front. Psychol. 2.

doi: 10.3389/fpsyg.2011.00334 . 

Reiterer, S., Pereda, E., Bhattacharya, J., 2009. Measuring second language proficiency

with EEG synchronization: how functional cortical networks and hemispheric involve-

ment differ as a function of proficiency level in second language speakers. Second

Lang. Res. 25, 77–106. doi: 10.1177/0267658308098997 . 

Selinker, L., 1972. Interlanguage. IRAL - Int. Rev. Appl. Linguist. Lang. Teach. 10, 209–

232. doi: 10.1515/iral.1972.10.1-4.209 . 

Song, J., Iverson, P., 2018. Listening effort during speech perception enhances auditory

and lexical processing for non-native listeners and accents. Cognition 179, 163–170.

doi: 10.1016/j.cognition.2018.06.001 . 

Steinhauer, K., Drury, J.E., 2012. On the early left-anterior negativity (ELAN) in syntax

studies. Brain Lang. 120, 135–162. doi: 10.1016/j.bandl.2011.07.001 . 

Tan, L.H., Spinks, J.A., Feng, C.M., Siok, W.T., Perfetti, C.A., Xiong, J., Fox, P.T., Gao, J.H.,

2003. Neural systems of second language reading are shaped by native language.

Hum. Brain Mapp. 18, 158–166. doi: 10.1002/hbm.10089 . 

Trubetzkoy, N.S. , 1969. Principles of Phonology . 

Tucker, G.R. , 2001. A global perspective on bilingualism and bilingual education. Sociol-

ing. Essent. Readings 000, 464–471 . 

Van Petten, C., Kutas, M., 1990. Interactions between sentence context and

word frequencyinevent-related brainpotentials. Mem. Cognit. 18, 380–393.

doi: 10.3758/BF03197127 . 

Wang, K., Shamma, S., 1994. Self-normalization and noise-robustness in early

auditory representations. IEEE Trans. Speech Audio Process. 2, 421–435.

doi: 10.1109/89.294356 . 

Weber-Fox, C.M., Neville, H.J., 1996. Maturational constraints on functional specializa-

tions for language processing: ERP and behavioral evidence in bilingual speakers. J.

Cogn. Neurosci. 8, 231–256. doi: 10.1162/jocn.1996.8.3.231 . 

White, E.J., Genesee, F., Steinhauer, K., 2012. Brain responses before and after intensive

second language learning: proficiency based changes and first language background

effects in adult learners. PLoS One 7. doi: 10.1371/journal.pone.0052318 . 

Wlotko, E.W., Federmeier, K.D., 2012. So that’s what you meant! Event-related potentials

reveal multiple aspects of context use during construction of message-level meaning.

Neuroimage 62, 356–366. doi: 10.1016/j.neuroimage.2012.04.054 . 

Xu, M., Baldauf, D., Chang, C.Q., Desimone, R., Tan, L.H., 2017. Distinct distributed pat-

terns of neural activity are associated with two languages in the bilingual brain. Sci.

Adv. 3, e1603309. doi: 10.1126/sciadv.1603309 . 

Xue, G., Dong, Q., Jin, Z., Chen, C., 2004. Mapping of verbal working memory in

nonfluent Chinese-English bilinguals with functional MRI. Neuroimage 22, 1–10.

doi: 10.1016/j.neuroimage.2004.01.013 . 

Yokoyama, S., Okamoto, H., Miyamoto, T., Yoshimoto, K., Kim, J., Iwata, K., Jeong, H.,

Uchida, S., Ikuta, N., Sassa, Y., Nakamura, W., Horie, K., Sato, S., Kawashima, R.,

2006. Cortical activation in the processing of passive sentences in L1 and L2: an fMRI

study. Neuroimage 30, 570–579. doi: 10.1016/j.neuroimage.2005.09.066 . 

Yuan, J. , Liberman, M. , 2008. Speaker identification on the SCOTUS corpus. J. Acoust.

Soc. Am. 123, 3878 . 

Zhang, Y., Kuhl, P.K., Imada, T., Kotani, M., Tohkura, Y., 2005. Effects of language ex-

perience: neural commitment to language-specific auditory patterns. Neuroimage 26,

703–720. doi: 10.1016/j.neuroimage.2005.02.040 . 

Zinszer, B.D., Chen, P., Wu, H., Shu, H., Li, P., 2015. Second language experience mod-

ulates neural specialization for first language lexical tones. J. Neurolinguistics 33,

50–66. doi: 10.1016/j.jneuroling.2014.09.005 . 

https://doi.org/10.1111/ejn.13855
https://doi.org/10.1080/23273798.2015.1072223
https://doi.org/10.1016/j.neuroimage.2019.116060
https://doi.org/10.3389/fpsyg.2014.01246
https://doi.org/10.1016/S0926-6410(00)00023-9
https://doi.org/10.1371/journal.pone.0167194
https://doi.org/10.1523/jneurosci.2383-16.2017
https://doi.org/10.1038/40623
https://doi.org/10.1016/j.cortex.2019.01.012
https://doi.org/10.1016/j.bandl.2008.06.002
https://doi.org/10.1016/j.neulet.2014.11.011
https://doi.org/10.1111/j.1751-228X.2011.01121.x
https://doi.org/10.1098/rstb.2007.2154
https://doi.org/10.1080/23273798.2015.1102299
https://doi.org/10.1146/annurev.psych.093008.131123
https://doi.org/10.1126/science.7350657
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0067
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0067
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0067
https://doi.org/10.1111/j.1460-9568.2009.07055.x
https://doi.org/10.1152/jn.90896.2008
https://doi.org/10.1016/j.neuroimage.2009.12.009
https://doi.org/10.1088/1741-2552/ab3c92
https://doi.org/10.1016/j.jesp.2010.05.025
https://doi.org/10.1016/j.bandl.2018.06.008
https://doi.org/10.1044/jslhr.4003.686
https://doi.org/10.1038/nn1264
https://doi.org/10.1016/j.jneuroling.2012.06.001
https://doi.org/10.1126/science.1245994
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0079
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0079
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0079
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0079
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0079
https://doi.org/10.1371/journal.pone.0032974
https://doi.org/10.1191/0267658305sr256oa
https://doi.org/10.1016/S0168-0102(01)00247-4
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0083
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0083
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0083
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0083
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0083
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0083
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0083
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0083
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0083
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0083
https://doi.org/10.1016/j.tics.2019.08.004
https://doi.org/10.1162/0898929055002436
https://doi.org/10.1016/j.cortex.2017.05.005
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0087
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0087
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0087
https://doi.org/10.1016/j.jneuroling.2008.01.001
https://doi.org/10.1038/nn.4021
https://doi.org/10.1016/j.conb.2005.03.007
https://doi.org/10.1016/j.brainres.2006.10.002
https://doi.org/10.1371/journal.pone.0213899
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0093
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0093
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0093
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0093
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0093
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0093
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0093
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0093
https://doi.org/10.3389/fpsyg.2011.00334
https://doi.org/10.1177/0267658308098997
https://doi.org/10.1515/iral.1972.10.1-4.209
https://doi.org/10.1016/j.cognition.2018.06.001
https://doi.org/10.1016/j.bandl.2011.07.001
https://doi.org/10.1002/hbm.10089
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0100
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0100
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0101
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0101
https://doi.org/10.3758/BF03197127
https://doi.org/10.1109/89.294356
https://doi.org/10.1162/jocn.1996.8.3.231
https://doi.org/10.1371/journal.pone.0052318
https://doi.org/10.1016/j.neuroimage.2012.04.054
https://doi.org/10.1126/sciadv.1603309
https://doi.org/10.1016/j.neuroimage.2004.01.013
https://doi.org/10.1016/j.neuroimage.2005.09.066
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0110
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0110
http://refhub.elsevier.com/S1053-8119(20)31071-5/sbref0110
https://doi.org/10.1016/j.neuroimage.2005.02.040
https://doi.org/10.1016/j.jneuroling.2014.09.005

	Neural representation of linguistic feature hierarchy reflects second-language proficiency
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Stimuli and behavioral tasks
	2.3 EEG recordings and preprocessing
	2.4 Speech features
	2.5 Computational model and data analysis
	2.6 Phoneme distance maps (PDMs)
	2.7 Proficiency-level decoding
	2.8 Statistical analysis

	3 Results
	3.1 Hierarchical cortical encoding of nonnative speech
	3.2 Effect of proficiency on the cortical encoding of phonemes in L2 listeners
	3.3 Proficiency modulates phonotactic responses at both short and long latencies
	3.4 Stronger and earlier cortical responses to semantic dissimilarity with proficiency
	3.5 Decoding language proficiency

	4 Discussion
	Declaration of Competing Interest
	Author Contributions
	Data sharing statement
	Funding sources
	Acknowledgments
	Supplementary materials
	References


