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ABSTRACT

Acquiring a new language requires individuals to simultaneously and gradually learn linguistic attributes on multiple levels. Here, we investigated how this learning
process changes the neural encoding of natural speech by assessing the encoding of the linguistic feature hierarchy in second-language listeners. Electroencephalogra-
phy (EEG) signals were recorded from native Mandarin speakers with varied English proficiency and from native English speakers while they listened to audio-stories
in English. We measured the temporal response functions (TRFs) for acoustic, phonemic, phonotactic, and semantic features in individual participants and found
a main effect of proficiency on linguistic encoding. This effect of second-language proficiency was particularly prominent on the neural encoding of phonemes,
showing stronger encoding of “new” phonemic contrasts (i.e., English contrasts that do not exist in Mandarin) with increasing proficiency. Overall, we found that the
nonnative listeners with higher proficiency levels had a linguistic feature representation more similar to that of native listeners, which enabled the accurate decoding
of language proficiency. This result advances our understanding of the cortical processing of linguistic information in second-language learners and provides an

objective measure of language proficiency.

1. Introduction

Learning a second language (L2) via instruction is a time-consuming
and challenging process. Adult learners rarely attain native-like L2 pro-
ficiency and instead carry-over features of their native languages (L1)
to their L2 (Hartshorne et al., 2018; Kotz, 2009; Kuhl, 2011), which
can have a major impact on their social lives (DeJesus et al., 2017;
Lev-Ari and Keysar, 2010; Mayo et al., 1997). Despite a considerable
amount of literature, there remains considerable uncertainty regarding
the precise neural changes that underpin the increased L2 proficiency
that develops during the learning process (Bohn and Munro, 2007;
Marsden et al., 2013; Perani and Abutalebi, 2005). Studies involving
hemodynamic measurements (e.g., fMRI) have provided us with pre-
cise insights into the sources of the cortical activations corresponding
to L1 and L2 processing while substantially neglecting the rich tem-
poral dynamics of speech. This limitation is a likely cause of the ap-
parent inconsistency between studies showing cortical activation for L1
and L2 processing in the same areas (Chee et al., 1999; Nakada et al.,
2001; Perani and Abutalebi, 2005; Tan et al., 2003; Yokoyama et al.,
2006) or in both shared and distinct areas (Chee et al., 2001; Kim et al.,
1997; Xu et al., 2017; Xue et al., 2004). Studies based on electrical neu-
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ral recordings, such as electro and magneto-encephalography (EEG and
MEG respectively), provide a different view of this issue, showing de-
layed lexico-semantic processing for the less proficient L2 compared to
that for L1 (Hahne, 2001; Phillips et al., 2006). More recently, stud-
ies with both high temporal and spatial detail (based on multimodal
imaging approaches) suggested that acquiring a language may involve
the recruitment of cortical areas that are not necessary once fluency is
achieved (Leonard et al., 2010).

To elucidate the neural mechanisms that underlie L2 perception, it is
crucial to assess the effect of proficiency on objective neural measures
that capture the multifaceted cortical encoding of language. This is a
complex task, especially because speech perception involves the analysis
of various acoustic and linguistic features, a process that is thought to en-
gage a hierarchical neural network composed of various interconnected
cortical regions (Hickok and Poeppel, 2007). Distinct stages of process-
ing have been shown to be affected differently by proficiency, with some
of the stages becoming more those observed for the native language
than other stages in proficient L2 users. Part of the evidence comes
from EEG and MEG research, which showed the effect of proficiency
at the levels of phonemes (White et al., 2012), syntax (Hanna et al.,
2016; Weber-Fox and Neville, 1996), and semantics (Ojima et al., 2005).
These studies measured the changes in well-known event-related po-
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tential (ERP) components, such as the MMN, N400, and P600. These
approaches, however, use unnatural speech stimuli (e.g., isolated syl-
lables or violative speech sentences) that do not fully and realistically
activate the specialized speech cortex (Overath et al., 2015; Van Petten
and Kutas, 1990; Zinszer et al., 2015). In addition, these approaches
consider various levels of speech perception independently and in iso-
lation. Language learning, on the other hand, involves the simultane-
ous acquisition of novel phonetic contrasts (Chomsky and Halle, 1968;
Ladefoged and Johnson, 2014), new syllabic structures (phonotactics)
(Trubetzkoy, 1969), and new words. A more complete view of the neu-
ral basis of language learning therefore requires a joint study of mul-
tiple levels of the linguistic hierarchy to advance our understanding
of L2 perception by informing us of the precise effect of proficiency
on the cortical processing strategies that underpin sound and language
perception (Federmeier, 2007; Huettig and Mani, 2015; Kuperberg and
Jaeger, 2016).

Previous efforts in using naturalistic speech stimuli to study lan-
guage proficiency showed a modulation of EEG phase synchroniza-
tion while listening to naturalistic speech at both the subcortical (FFR;
Krizman et al., 2015; Omote et al., 2017) and cortical levels (gamma
EEG synchrony; Reiterer et al., 2011, 2009). Specifically, stronger syn-
chrony between EEG channels was shown for low-proficiency users
(Reiterer et al., 2011), which is in line with theories, such as the cor-
tical efficiency theory, positing that less experienced listeners require
stronger cortical engagement (Reiterer et al., 2011; Zhang et al., 2005).
However, that work could not isolate neural signatures at particular lin-
guistic stages. Recent studies have successfully isolated neural signa-
tures of various linguistic levels based on speech-EEG synchrony (cor-
tical tracking; Obleser and Kayser, 2019) from a single electrophysio-
logical recording. Such measures were derived based on low-frequency
cortical responses to natural speech from audiobooks (Brodbeck et al.,
2018a; Di Liberto et al., 2015; Khalighinejad et al., 2017) and cartoons
(Di Liberto et al., 2018b; Jessen et al., 2019), which were recorded non-
invasively from both children and adults. Here, we adopted the same
framework to investigate how proficiency shapes hierarchical cortical
encoding in L2 subjects and how hierarchical encoding differs from
L1 subjects. Our analysis focused on speech processing at the levels of
sound acoustics (Ahissar et al., 2001; Lalor and Foxe, 2010), phonemes
(Di Liberto et al., 2015; Khalighinejad et al., 2017), phonotactics (statis-
tics on phoneme sequences Brodbeck et al., 2018a; Di Liberto et al.,
2019), and semantics (Broderick et al., 2018; Hagoort and Brown, 2000;
Kutas and Federmeier, 2011). We hypothesized that the neural encod-
ing of all three levels of linguistic properties would be modulated by
L2 proficiency, becoming more native-like without fully converging
(Han, 2004; Selinker, 1972). A different progression of this learning
effect was expected for distinct linguistic levels. Specifically, we pre-
dicted that phoneme and phonotactic responses, which benefit from but
do not require sentence comprehension, would show a continuous pro-
gression starting from the earliest stages of learning, partly as a form of
implicit learning (Conway et al., 2010). Furthermore, even when two
spoken languages are very different, there is some level of phonologi-
cal and phonotactic overlap. As such, we predicted that phoneme and
phonotactic responses would emerge even with listeners who do not
understand English due to the encoding of the same or similar infor-
mation in their native language. Semantic-level encoding is different in
this regard. Specifically, whereas semantic encoding was hypothesized
to increase with proficiency (McLaughlin et al., 2004), we predicted a
most prominent change from no encoding to strong encoding at an inter-
mediate level of proficiency as the comprehension of a few words facil-
itates the understanding of neighboring words (e.g., semantic priming;
Kellenbach et al., 2000; Osterhout and Holcomb, 1995); thus, constitut-
ing a turning point beyond which comprehension increases drastically.

To shed light on the neural mechanisms underlying the encoding of
linguistic features, the present study combines objective neural indices
of acoustic and linguistic processing to assess the differences between
L2 subjects with varying proficiency levels during a task requiring the

Neurolmage 227 (2021) 117586

individual to listen to natural speech. We expected hierarchical linguis-
tic encoding in L2 participants to change with proficiency. While the
present study primarily investigates the effect of proficiency within the
L2 group, we also evaluated our results in the context of the previous
literature on L1 listeners (Brodbeck et al., 2018a; Broderick et al., 2018;
Di Liberto et al., 2015; Khalighinejad et al., 2017); this evaluation was
conducted with respect to the hypothesis that neural linguistic encoding
is more similar to that of L1 listeners in nonnative listeners with higher
proficiency than to that of those with lower proficiency.

2. Materials and methods
2.1. Participants

Fifty-one healthy subjects (twenty-four were male, all were aged be-
tween 18 and 60 years, median age = 24 and mean age = 27.5; forty-
eight were right-handed) who learned English as a second language (or
that did not speak English) and were native Standard Chinese (Man-
darin) speakers participated in the EEG experiment (L2 group). L2 par-
ticipants were asked to take a standardized 20-minute test of receptive
skills in American English before the experiment. According to the re-
sults of this assessment, each participant was assigned to one of six pro-
ficiency groups according to the Common European Framework of Ref-
erence for Languages framework (CEFR): Al, A2, B1, B2, C1, C2 (from
low to high proficiency). A, B, and C levels indicate basic, independent,
and proficient users, respectively. The Al group included participants
with very little or no English understanding. The recruitment of par-
ticipants continued until 17 participants were identified for each A, B,
and C group (Supplementary Figure 1B). Two subjects were excluded
because of issues with their EEG recordings (data could not be synchro-
nized because of missing trigger signals).

We also analyzed EEG data from twenty-two native English speak-
ers (twelve were male, all were between 18 and 45 years, twenty were
right-handed; L1 group), originally collected for a previous study with
the same experimental setup and location (Khalighinejad et al., 2017),
who listened to the same continuous English speech stimuli presented to
the L2 group in the present experiment. All subjects (in both L2 and L1
groups) reported having normal hearing and had no history of neurolog-
ical disorders. All subjects provided written informed consent and were
paid for their participation. The Institutional Review Board of Columbia
University at Morningside Campus approved all procedures.

2.2. Stimuli and behavioral tasks

EEG data were collected in a sound-proof, electrically shielded booth
in dim light conditions. Participants listened to short stories from a chil-
dren’s story book (Hank the Cowdog), narrated in English by two native
speakers (1 male) while minimizing motor movements and maintaining
visual fixation on a crosshair at the center of the screen. All participants
listened to identical auditory stimuli. The stories continued naturally
between trials, with an alternation between the male and the female
narrators to minimize speaker-specific effects. Stimuli were presented
at a sampling rate of 44,100 Hz, monophonically, and at a fixed com-
fortable volume from one loudspeaker in front of the participant. Each
session consisted of 20 experimental blocks (3 minutes each), and short
breaks were planned every 4 blocks. Participants were asked to focus
their attention on speech material from seven audio-stories that were
presented in a random order. Engagement with the speech material was
assessed by means of behavioral tasks. During speech listening, L2 par-
ticipants were asked to perform a phrase-repetition detection task. The
detection of repeated sounds has been successfully used in many stud-
ies using nonspeech and nonsense speech sounds. Here, the last two
to four words were repeated immediately after the end of some of the
sentences (1-5 per block). Given that our target was monitoring atten-
tion, a finger-tip clicker was used to count the repetitions so that they
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would be engaged in detection not counting, which would instead re-
quire additional memory resources and, potentially, reduce their en-
gagement in the main listening task. Furthermore, L2 participants were
asked three questions at the end of each block (Supplementary Fig. 1).
First, participants were shown a list of eight words and asked to iden-
tify, among those, 3-5 words that occurred with high frequency in the
speech sentence. Second, we asked whether the last sentence of the block
was spoken by a male or female speaker. Third, participants were asked
to report the count associated with the phrase-repetition detection task
at the end of each block. EEG data corresponding to the phrase rep-
etition were excluded from the analysis to remove contamination due
to motor action. To assess attention in L1 participants, three questions
about the content of the story were asked after each block. All L1 partic-
ipants were attentive and could all answer at least 60% of the questions
correctly.

2.3. EEG recordings and preprocessing

EEG recordings were performed using a g.Hlamp biosignal amplifier
(Guger Technologies) with 62 active electrodes mounted on an elastic
cap (10-20 enhanced montage). EEG signals were recorded at a sam-
pling rate of 2 kHz. An external frontal electrode (AFz) was used as the
ground, and the average of two earlobe electrodes was used as a refer-
ence. EEG data were filtered online using a high-pass Butterworth filter
with a 0.01 Hz cutoff frequency to remove DC drift. Channel impedances
were kept below 20 kQ throughout the recording.

Neural data were analyzed offline using MATLAB software (Math-
Works Inc.). EEG signals were digitally filtered between 1 and 15 Hz
using a Butterworth zero-phase filter (order 2+2 and implemented with
the function filtfilt), and downsampled to 50 Hz (similar to relevant pre-
vious work, e.g., Broderick et al., 2018; Di Liberto et al., 2015). EEG
channels with a variance exceeding three times that of the surrounding
channels were replaced by an estimate calculated using spherical spline
interpolation.

2.4. Speech features

In the present study, we measured the coupling between EEG data
and various properties of speech stimuli. These properties were ex-
tracted from the stimulus data based on previous research. First, we
defined a set of descriptors summarizing low-level acoustic properties of
the music stimuli. Specifically, a time-frequency representation of the
speech sounds was calculated using a model of the peripheral audi-
tory system (Chi et al., 2005) consisting of three stages: (1) a cochlear
filter bank with 128 asymmetric filters equally spaced on a logarith-
mic axis, (2) a hair cell stage consisting of a low-pass filter and a non-
linear compression function, and (3) a lateral inhibitory network con-
sisting of a first-order derivative along the spectral axis. Finally, the
envelope was estimated for each frequency band, resulting in a two-
dimensional representation simulating the pattern of activity on the au-
ditory nerve (Wang and Shamma, 1994) (the relevant MATLAB code is
available at https://isr.umd.edu/Labs/NSL/Software.htm). This acoustic
spectrogram (S) was then resampled to 16 bands (Di Liberto et al., 2015;
Lesenfants et al., 2019). A broadband envelope descriptor (E) was also
obtained by averaging all envelopes across the frequency dimension. Fi-
nally, the halfway rectified first derivative of the broadband envelope (E’)
was used as an additional descriptor, which was shown to contribute to
speech-EEG mapping and was used here to regress out the most acoustic-
related responses as much as possible (Daube et al., 2019).

Additional speech descriptors were defined to capture neural signa-
tures of higher-order speech processing. The speech material was seg-
mented into time-aligned sequences of phonemes using the Penn Pho-
netics Lab Forced Aligner Toolkit (Yuan and Liberman, 2008). Then,
the phoneme alignments were manually corrected using Praat software
(Boersma and Weenink, 2009). Phoneme onset times were then encoded
in an appropriate univariate descriptor (Pon), in which ones indicated
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onsets and all other time samples were labeled with zeros. An additional
descriptor was also defined to distinguish between vowels and conso-
nants (Pvc). Specifically, this regressor consisted of two vectors, simi-
lar to Pon, but labeling either vowels or consonants only. While Pon
was shown to improve speech-neural mapping compared to when only
acoustic features were used to describe the stimulus (Brodbeck et al.,
2018a, but see Daube et al., 2019), additional information on phoneme
categories remained that contributed to that mapping (Di Liberto et al.,
2015; Mesgarani et al., 2014). This information was encoded in a
19-dimensional descriptor indicating the phonetic articulatory features
corresponding to each phoneme (Phn). Features indicated whether a
phoneme was voiced, unvoiced, sonorant, syllabic, consonantal, approx-
imant, plosive, strident, labial, coronal, anterior, dorsal, nasal, fricative,
obstruent, front (vowel), back, high, or low (Chomsky and Halle, 1968;
Ladefoged and Johnson, 2014; Supplementary Table 2). The Phn de-
scriptor encoded this categorical information as step functions, with
steps corresponding to the starting and ending time points for each
phoneme. Note that a step function includes information on the dura-
tion of a phoneme, thus including information about its identity, since
certain phonemes are longer than others on average. For this reason, we
purposely did not include that information in Pon, which describes only
the timing of the phoneme onsets and not the phoneme categories.
Next, we encoded phonotactic probability information in an appro-
priate two-dimensional vector (Pt) (Brodbeck et al., 2018a; Di Liberto
et al., 2019). In a given language, certain phoneme sequences are more
likely to be valid speech tokens than others. The likelihood of a phoneme
sequence pl...n being a valid speech token can be estimated with statis-
tical models based on language-specific rules. Here, probabilities were
derived by means of the BLICK computational model (Hayes and Wil-
son, 2008), which estimates the probability of a phoneme sequence be-
longing to the English language. This model is based on a combination
of explicit theoretical rules from traditional phonology and a MaxEnt
grammar (Goldwater and Johnson, 2003), which find optimal weights
for such constraints to best match the phonotactic intuition of native
speakers. The phonotactic probability was derived for all phoneme sub-
sequences within a word (ph; ;, 1 <k < n, where n is the word length)
and used to modulate the magnitude of a phoneme onset vector (Pt;).
The calculation proceeds in several steps (Hayes and Wilson, 2008).
First, the score (h) of a phonological representation x = ph, , is cal-

m
culated as h(x) = Y w; * C;(x), where m is the number of phonotactic
i=1
constraints, w; is the weight of the ith constraint, and C;(x) is the number
of times x violates that constraint. Second, the MaxEnt value (P*) is cal-
culated as P*(x) = exp(—h(x)). Finally, the probability of x is calculated
as P(x) = P*(x)/ Y P*(y), where Q represents all possible values of
€Q
x. A second vectorywas produced to encode the change in phonotactic
probability due to the addition of a phoneme (ph; - ph; .1, 2<k<
n) (Pty).

Finally, a semantic dissimilarity descriptor was calculated for con-
tent words using word2vec (Baroni et al., 2014; Mikolov et al., 2013), a
state-of-the-art algorithm consisting of a neural network for the predic-
tion of a word given the surrounding context. In this specific applica-
tion, a sliding window of 11 words was used; in this window, the central
word was the output, and the surrounding 10 words were the input. This
approach is based on the “distributional hypothesis” that words with
similar meanings occur in similar contexts; this method uses an artifi-
cial neural network approach to capture this phenomenon. This network
has a 400-dimension hidden layer that is fully connected to both input
and output. For our purposes, the weights of this layer were the fea-
tures used to describe each word in this 400-dimensional space, thus
capturing the co-occurrence of a content word with all others. In this
space, words that share similar meanings have a closer proximity. The
semantic dissimilarity indices were calculated by subtracting the Pear-
son’s correlation between a feature vector for a word and the average
feature vector across all previous words in that particular sentence from
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Fig. 1. Investigating the hierarchical cortical encoding of language with the temporal response function (TRF) analysis framework. (A) Multichannel EEG signals
were recorded as participants listened to audio stories. Participants were asked to press a clicker counter when they detected a one-back phrase repetition (2-4
words), which occurred 1-5 times per experimental block. At the end of each block, participants were asked to report the number of repetitions, to identify words
that were spoken during the block from a list of eight and to indicate the gender of the speaker. (B) Results for the word comprehension and the 1-back detection task.
Significant group differences (ANOVA, ** p<0.01, *** p < 0.001) were measured for the ‘word comprehension’ score that positively correlated with proficiency. No
significant effects emerged for ‘one-back tasks’ and ‘gender identification’ as they were independent from the proficiency levels. The gender identification result was
not reported, as accuracy was larger than 95% for all participants. (C) Acoustic and linguistic information were extracted from the stimulus and encapsulated into
data vectors and matrices. Multivariate linear regression was used to identify a linear fit that optimally predicted the EEG signal from features at multiple linguistic
levels (EXT). The same procedure was also run on a more compact set of descriptors (ALL), which differed in that Sgr and Phn were replaced by Env (broadband
envelope instead of a 16-band spectrogram) and Pvc (indicator variables for only vowels and consonants rather than for a 19-dimensional set of phonetic features),
respectively. (D) Envelope TRF weights (TRFy,,) averaged across all EEG channels at peristimulus time latencies from O to 600 ms. TRFg,, was part of a model
that was fit by including features at all other levels of interest (ALL). Thick lines indicate weights that were significantly different from zero across all subjects of a
group (p < 0.05, Wilcoxon signed rank test, FDR corrected). Significant effects of group emerged on the peak-to-peak amplitude of the N1-P2 TRF complex (one-way
ANOVA, p = 0.03). No significant effect of group emerged at any individual time latency (point-by-point one-way ANOVA, p > 0.05). (E) Topographies of the TRF
weights across channels for two selected time latencies.

1 (the first word in a sentence was instead correlated with the average est. Specifically, neural processing of the acoustic and linguistic features

feature vector for all words in the previous sentence). Thus, if a word
is unlikely to co-occur with the other words in the sentence, it should
not correlate with the context, resulting in a higher semantic dissimi-
larity value. The semantic dissimilarity vector (Sem) marks the onset of
content words with their semantic dissimilarity index.

2.5. Computational model and data analysis

A single input event at time t, affects the neural signals for a cer-
tain time window [t;, t;+t,;,], with t; > 0 and t,;, > 0. Temporal re-
sponse functions (TRFs) were fit to describe the speech-EEG mapping
within that latency window for each EEG channel (TRF; Ding et al.,
2014; Lalor et al., 2009). We did this by means of a regularized linear
regression (Crosse et al., 2016) that estimates a filter that allows us to op-
timally predict the neural response from the stimulus features (forward
model; Fig. 1C). The input of the regression also included time-shifted
versions of the stimulus features so that the various time lags in the la-
tency window of interest were all simultaneously considered. Therefore,
the regression weights reflect the relative importance between time la-
tencies in the stimulus-EEG mapping and were studied here to infer the
temporal dynamics of the speech responses (see Figs. 1 and 2). Here, a
time-lag window of 0-600 ms was used to fit the TRF models, which was
considered to contain most of the EEG responses to the speech of inter-

of interest was expected to emerge after the speech sound was presented
(t; > 0), whereas the component of interest with the longest latency,
the semantic dissimilarity TRF, was expected to be mostly complete by
a latency of 600 ms (Broderick et al., 2018). The reliability of the TRF
models was assessed using a leave-one-out cross-validation procedure
(across trials), which quantified the EEG prediction correlation (Pear-
son’s r) on unseen data while controlling for overfitting. The TRF model
calculation included a Tikhonov regularization, which involves the tun-
ing of a regularization parameter (1) that was conducted by means of an
exhaustive search of a logarithmic parameter space from 0.01 to 101 on
the training fold of each cross-validation iteration (Crosse et al., 2016).
Note that the correlation values were calculated with the noisy EEG sig-
nal; therefore, the r-scores could be highly significant even though they
have low absolute values (r ~ 0.1 for sensor-space low-frequency EEG;
Daube et al., 2019; Di Liberto et al., 2015; Lesenfants et al., 2019).
Stimulus descriptors at the levels of acoustics, phonemes, phonotac-
tics, and semantics were combined in a single TRF model fit procedure.
This strategy was adopted with the goal of discerning EEG responses at
different processing stages. For example, a TRF derived with Pt alone
could reflect EEG responses to both phonotactics and the acoustic enve-
lope Env, as the two vectors are correlated. A TRF based on the com-
bination of Pt and Env would instead discern their respective EEG con-
tributions; hence, the weights for Pt will reflect responses that are most
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Fig. 2. Effect of proficiency on L2 phoneme encoding. (A) Phoneme distance maps (PDMs) based on the TRFp,, weights at electrode Cz and peristimulus time latencies
from O to 600 ms. Blue and red colors indicate phonemes for L1 and L2 participants, respectively. (B) Distance between L1 and L2 phonemes for each language
proficiency group. A significant effect of proficiency was measured on the L1-L2 phoneme distance (one-way ANOVA, F(1.4, 54.1) = 22.8, p = 1.6*1078). Error bars
indicate the SE of the mean across phonemes. (C) Distance between phoneme pairs for each proficiency level. The left panel shows results for contrasts existing in
English but not in Standard Chinese; in these contrasts, we expected increasing discriminability with proficiency due to learning. The right panel shows distances
for contrasts that exist both in English and Standard Chinese; in these contrasts, we did not expect a learning effect. Values were divided by the distance for L1
participants. Gray lines indicate the mean across all selected phonemic contrasts. (For interpretation of the references to color in the text, the reader is referred to

the web version of this article.)

relevant to phonotactics, whereas the responses that are more related to
Env than to Pt will become less prominent in TRFp,. Though this sep-
aration is straightforward for independent features, it is certainly not
straightforward for this experiment. In fact, this operation is expected
to strengthen the representation of the neural encoding of features of
interest and not to achieve perfect separation; perfect separation could
be attained when working with independent features, which is certainly
not the case here.

Here, individual-subject TRFs were fitted by combining Env, Env’,
Pvc, Pon, Pt, and Sem (stimulus descriptor ALL). We also fit TRF models
with an extended stimulus descriptor (EXT) including Sgr, Env’, Phn,
Pon, Pt, and Sem, which provided us with a higher level of detail on
spectrotemporal and phonological speech features at the cost of higher
dimensionality (see Supplementary Figs. 2 and 3). The combined stim-
ulus descriptor had 40 dimensions, which had to be multiplied by the
number of time lags (30 when the sampling frequency was 50 Hz) to
obtain the dimensionality of the TRF input. For this reason, we con-
ducted all analyses on the reduced stimulus set ALL, whereas the EXT
descriptor was used to assess spectrotemporal and phoneme TRFs. As
data collection was conducted so that the three proficiency groups A,
B, and C were balanced and sufficiently large to derive the TRFs of in-
terest, all TRF analyses were conducted according to this 3-way group-
ing of the L2 participants. The subsequent decoding analysis was con-

ducted instead by taking into consideration the more detailed 6-way
grouping (A1, A2, B1, B2, C1, and C2), as regression decoding (see the
Proficiency-level decoding subsection) focused on individual-subject de-
coding rather than between-group analyses;, furthermore, it tolerates
small imbalances across groups.

The TRF weights constitute good features to study the spatiotemporal
relationship between a stimulus feature and the neural signal. The TRF
weights represent the impulse response of the estimated linear system,
and as such, their values at a given latency t; correspond to a positive
or negative deflection of the EEG electrical signal t; ms after hearing an
impulse sound at time zero. As such, TRFs can be interpreted similarly
to ERPs, as they are both defined in a channel x latency domain, with
the advantage that they can describe the EEG response to a continuous
stimulus. For ERPs, prior knowledge and hypotheses can be used to re-
strict the channel and latency space to investigate, thus simplifying the
analysis. Here, the TRF analyses for Env, Pt, and Sem were especially
focused on five midline electrodes [0z, Pz, Cz, Fz, and Fpz] and to the
latency window [0, 600] ms. The five electrodes were chosen based on
prior studies indicating that the TRFs of interest would emerge as com-
ponents centered on the vertical midline, whereas the latency window
was chosen as it was sufficient to capture the components of interest for
Env, Phn, Pt, and Sem (Brodbeck et al., 2018a; Broderick et al., 2018;
Di Liberto et al., 2019, 2015).
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Another difference between TRFs and ERPs is that TRFs can be multi-
variate, thus describing the impulse responses for different contributors
to the EEG signal. The study of a multivariate speech descriptor, such
as Phn, could benefit from the derivation of indices that summarize the
impact of those multiple dimensions into single values. One solution was
to use the EEG prediction correlation values to quantify the goodness of
fit for a multivariate TRF model. Here, we considered the relative en-
hancement in EEG prediction correlation when Phn was included in the
model (using the ALL feature-set), thus allowing us to discern the rela-
tive contribution of phonetic features to the neural signal. This isolated
index of phoneme-level processing was previously shown to correlate
with psychometric measures of phonological skills (Di Liberto et al.,
2018b).

Further analyses were conducted by using a generic modeling ap-
proach (Di Liberto and Lalor, 2017). Specifically, one generic TRF model
was derived for groups A, B, C, and L1 by averaging the regression
weights from all subjects within the group. Then, EEG data from each
left-out subject (whose data were not included in the generic models)
were predicted with the four models. The four prediction correlations
were used as indicators of how similar the EEG signal from a subject
was to the one expected for each of the four groups, providing us with
a simple classifier.

2.6. Phoneme distance maps (PDMs)

We sought to study the effect of proficiency on phonological per-
ception by projecting TRFp;,,, onto a space in which distance represents
the perceptual discriminability between pairs of phonemes. The regres-
sion weights for TRFpy,,, were represented in a 19-dimensional space of
phonetic features. Each phoneme could be described as a particular lin-
ear combination of phonetic features. This allowed for the derivation
of a linear transformation matrix describing the linear mapping from
phonetic features to phonemes, which we used to rotate TRFpy, to the
phoneme domain (Supplementary Fig. 3). Then, a classical multidi-
mensional scaling (MDS) was used to project the TRFpy, (phonemes
were considered as objects and time latencies were considered as di-
mensions) onto a multidimensional space for each proficiency group,
in which distances represented the discriminability of particular pho-
netic contrasts in the EEG signal. The result for each L2 proficiency
group was then mapped to the average L1-MDS space by means of a
Procrustes analysis (MATLAB function procrustes). This analysis allowed
us to project the L2 phoneme maps for different proficiency levels to a
common multidimensional space where they could be compared quan-
titatively; we call these maps phoneme distance maps (PDMs).

2.7. Proficiency-level decoding

Support vector regression (SVR) with a radial basis function kernel
was used to decode the proficiency level of L2 participants. The output of
the regression was the proficiency level, a continuous variable. As such,
the decoding output was a decimal number, even though proficiency lev-
els in the training data could have only six possible values corresponding
to Al, A2, B1, B2, C1, and C2. The input of the SVR was the concate-
nation of 26 features derived from the TRF analysis described in the
previous section. All features were continuous variables. The neural en-
coding of acoustic and linguistic features could be assessed based on the
model weights or on the EEG prediction correlation values (Crosse et al.,
2016), and the latter could be calculated with subject-specific models or
generic models (averaged across multiple participants; Di Liberto and
Lalor, 2017). Here, the 26 features were selected according to previous
studies with L1 participants (Brodbeck et al., 2018a; Broderick et al.,
2018; Di Liberto et al., 2019, 2015) as they capture the main TRF com-
ponents in the model weights (9 features), subject-specific EEG predic-
tion correlations (5 features), and generic models EEG prediction corre-
lations (12 features; see also Di Liberto and Lalor, 2017).
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Each feature had multiple dimensions, such as EEG electrodes and
time latencies. A multilinear principal component analysis (MPCA) was
performed to summarize each of them with a single vector. Specifically,
given the TRF weights for all electrodes and latencies for a particular fea-
ture (e.g., envelope), MPCA was performed, and the first component was
retained (see Supplementary Table 1 for details on the explained vari-
ance for each feature). This operation was performed for the TRFs cor-
responding to envelope, phoneme onsets, phonetic features, phonotac-
tics, and semantic dissimilarities, resulting in five distinct vectors. Based
on previous TRF studies and our initial hypotheses, we complemented
the result of this lossy compression by adding distinctive features that
summarized specific aspects of interest of the TRFs. For speech acous-
tics, we included information on the power spectrum of the TRF (the
EEG responsiveness to 16 logarithmically spaced sound frequencies) by
collapsing the weights in TRF,;; corresponding to Sgr values across the
time-latency dimension. MPCA was then conducted on the resulting val-
ues to quantify this spectral feature with a single value per subject. For
phonotactics and semantic dissimilarity, the strength of the main TRF
components was summarized by averaging the regression weights over
selected time windows and electrodes where they were strongest in the
current data (80-140 and 300-700 for Pt and 300-700 for Sem at Fz,
Cz, and Oz, respectively).

Additional features were based on the EEG prediction correlations
calculated by training and testing TRF models on each participant sepa-
rately (with leave-one-out cross-validation across recording blocks; see
previous section). This procedure provided us with a correlation score
for each electrode, which was then summarized with a single value by
performing MPCA and retaining the first component. This procedure
provided us with four features for EEG predictions based on Env, Phn,
Pt, Sem. Note that, different from the TRF weight features, these EEG
prediction correlations were calculated for each feature separately. A
fifth feature was derived by measuring the increase in EEG prediction
correlations when Phn was included or was not in the stimulus set to-
gether with Env’ and Sgr (PhnEnv’Sgr-Env’Sgr). This subtraction was
considered to constitute an isolated measure of phoneme-level process-
ing (Di Liberto et al., 2018b, 2015). The decoding result did not change
when using PhnEnv’Sgr-Phng;, . Env’Sgr instead, where Phngy,, is a ran-
dom phoneme vector. Finally, EEG signals from a subject were also pre-
dicted with TRF models fit on all other subjects, grouped in A, B, C, and
L1, with the rationale that the EEG data from a given subject should
be best predicted by TRF models from subjects of the same group. This
approach, which has been referred to as average modeling or generic
modeling (Di Liberto and Lalor, 2017; Jessen et al., 2019), provided
each subject with a score for each group and for each feature of inter-
est. Here, we selected Env, PhnEnv’Sgr-Env’Sgr, and Sem. MPCA was
then used for dimensionality reduction for the other features, providing
us with twelve features (4 groups and 3 predicting features).

SVR was used to decode the L2 proficiency level, for the binary clas-
sification L1 versus L2 data, or for the binary classification L1 versus
C-level L2 data with leave-one-out cross-validation. A backward elimi-
nation procedure was used to identify the optimal set of features that
minimize the mean squared error (MSE) of the decoded proficiency lev-
els. Specifically, starting from a set containing all the features, the re-
gressor whose exclusion produced the larger decrease in MSE was re-
moved at each step. This procedure continued as long as there was at
least 5% improvement in the MSE score (please see Supplementary Ta-
ble 1 for a full list of features and information on the selected feature
for the L2 decoding and on L1 vs. L2 classification procedures).

2.8. Statistical analysis

Statistical analyses were performed using Wilcoxon tests for pair-
wise comparisons. Correction for multiple comparisons was applied
where necessary via the false discovery rate (FDR) approach. Three-
way ANOVA was used to assess the effect of proficiency on the TRF
weights with latency and electrode as additional fixed factors. One-
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way ANOVA was used when testing the significance of an effect over
multiple (> 2) groups when comparisons did not involve multiple la-
tencies and electrodes. The values reported use the convention F(df,
dfror). Greenhouse-Geisser correction was applied when the assump-
tion of sphericity was not met (as indicated by a significant Mauchly’s
test result). FDR-corrected Wilcoxon tests were used after ANOVA for
post hoc comparisons.

3. Results

EEG signals were recorded as participants listened to audio stories.
The experiment involved behavioral tasks to monitor engagement with
the speech material (Fig. 1B and Supplementary Fig. 1). As expected,
the word comprehension score increased significantly with proficiency
(ANOVA, F(1.8, 44.3) = 24.1; p = 5.4*1078, post hoc comparisons:
DPaws = 0.003, pp ys.c = 0.084, pa.ys.c < 0.001). However, all subjects
were able to perform the gender identification and one-back tasks with
similar accuracy across proficiency levels, suggesting a comparable de-
gree of engagement among participants across groups (gender identifica-
tion task: ANOVA, F(1.4, 34.7) = 0.1, p = 0.90; one-back task: ANOVA,
F(1.9, 45.9) = 1.1; p = 0.34).

3.1. Hierarchical cortical encoding of nonnative speech

To investigate the low- versus higher-level brain processing of
speech, we fit forward TRF models to assess the coupling between the
low-frequency cortical signals (1-15 Hz) and progressively more ab-
stract properties of the linguistic input. The combination of multiple
speech features in a single multivariate model allowed us, for the first
time, to assess the hierarchical processing of L2 speech from a single
EEG recording session based on natural speech. The stimulus descrip-
tor included Env, Env’, Pon, Pvc, Pt, and Sem (ALL; see Methods). This
combination of features allowed us to capture and discern EEG vari-
ance corresponding to various hierarchical stages while using a low-
dimensional descriptor (8 dimensions). We also fit TRF models with an
extended stimulus descriptor (EXT) that included Sgr, Env’, Pon, Phn,
Pt, and Sem, which provided us with a higher level of detail in the spec-
trotemporal and phonological processing of speech. However, this in-
creased dimensionality of the model (40 dimensions) makes fitting the
model more challenging. Leave-one-out cross-validation indicated that
the resulting TRF models could reliably predict the EEG signal for all
subjects (ra; > Tarr, surrie @0d Texr > Texr suurrLe P < 0.01, permu-
tation test in which input sentences were randomly shuffled, N = 100;
EEG prediction correlations were averaged across all electrodes).

Model weights corresponding to the Env descriptor (TRFg,,, a sub-
set of TRF ;) showed significant effects of proficiency (three-way ANOVA
with latency, electrodes, and proficiency as factors, F(2,6670) = 8.65,
p = 1.7*10~%), latency (F(28,6670) = 90.22, p < 107190) and elec-
trode (F(4,6670) = 3.25, p < 0.011) with a significant proficiency*latency
interaction (F(56,6670) = 4.61, p = 4.1¥107%7) and latency*electrode
interaction (F(112,6670) = 10.60, p < 107199) but no significant
proficiency*electrode interaction (F(8,6670) = 0.69, p = 0.71). Fig. 1D,
E shows the model weights corresponding to the Env descriptor (part of
TRF,;) after averaging across all electrodes and all subjects within each
proficiency group (A, B, C, and L1). TRFs for the four groups appeared
temporally synchronized, which was expected for cortical responses to
low-level acoustics. While proficiency effects emerged on the TRFg,
magnitude did not survive correction for multiple comparisons at in-
dividual time-latencies (point-by-point one-way ANOVA with FDR cor-
rection), significant effects of group emerged on the peak-to-peak am-
plitude of the N1-P2 TRF complex when considering the average TRF
across all electrodes (one-way ANOVA, p = 0.03) as well as on indi-
vidual electrodes (one-way ANOVA with FDR correction, p < 0.05 on
11/64 electrodes). We also tested whether the envelope response in L2
participants became more similar to that of native speakers with profi-
ciency. To do so, we measured the Pearson’s correlation scores between
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the TRFg,,, for each L2 subject and the average TRFy,, weights across all
L1 participants. This measure of similarity between L1 and L2 subjects
did not show any significant difference between the A, B, and C groups
(p > 0.05).

Although envelope TRFs have proven to be robust and have
contributed to the study of various aspects of auditory perception
(Bednar and Lalor, 2020; Crosse et al., 2015; Hausfeld et al., 2018;
O’Sullivan et al., 2014), we also modeled the low-level auditory re-
sponses by considering the acoustic spectrogram (Sgr), which was
shown to be a better predictor of the EEG signal (Daube et al., 2019;
Di Liberto et al., 2015). However, observing TRFg,, (part of TRFgyr) for
different auditory frequency bands did not lead to new clear-cut insights
in this case; thus, the rest of the manuscript focuses on the envelope TRF
results.

3.2. Effect of proficiency on the cortical encoding of phonemes in L2
listeners

Phonetic feature information was represented by the categorical de-
scriptor Phn, which marked the occurrence of a phoneme with a rect-
angular pulse for each corresponding phonetic feature (see Methods)
(Di Liberto et al., 2015). TRFs were fit for each subject by combining
the Phn descriptor with all others in the EXT feature set. The weights
corresponding to the descriptor of interest, TRFpy,,, were extracted from
TRFgxt. In this case, the other descriptors served as nuisance regres-
sors, meaning that they reduced the impact of acoustic-, phonotactic-
and semantic-level responses on TRFp;,,. The effect of proficiency was
assessed in L2 participants by measuring the change in TRFy;,,, between
proficiency levels A, B, and C. PDMs were derived based on an MDS anal-
ysis that projected the TRFy;,, weights onto a multidimensional space,
with distances representing the discriminability of particular phonetic
contrasts in the EEG signal (Fig. 2A; see Methods — Phoneme distance
maps). The effect of proficiency on the PDMs was studied by measur-
ing the distance between L1 and L2 maps (Fig. 2B) and by measuring
the change in the pairwise phoneme distance within L2 maps (Fig. 2C
and Supplementary Fig. 4). Fig. 2B shows the average L1-L2 distance
across all phonemes for each L2 participant, with blue and red fonts indi-
cating phonemes for L1 and L2 participants, respectively. Shorter L1-L2
distances were measured in the PDMs for increasing L2 proficiency lev-
els (Fig. 2B: ANOVA, F(1.4, 54.1) = 22.8; p = 1.6*1078), indicating an
effect of proficiency on the TRFypy;,,, with a progressive convergence of
the PDM to that for native listeners.

Unknown phonemes have been shown to be perceived by L2 speak-
ers as the closest existing phonemic neighbor in their L1, thus presenting
challenges in discrimination (Flege, 1988; Guion et al., 2000). To test
whether phonetic contrasts that do not exist in Standard Chinese (the na-
tive language of L2 subjects) became more discriminable in the EEG data
with increasing proficiency, we measured the distance between pairs of
phonemes in PDM space for each proficiency group. As TRF, was pre-
viously shown to be particularly sensitive to contrasts between conso-
nants but not between vowels (Di Liberto et al., 2018a, 2015), phonemic
discriminability was assessed for all pairs of consonants in the English
phonemic inventory. We expected discriminability to increase with pro-
ficiency when considering phonemic contrasts that exist in English but
not in Standard Chinese, thus reflecting the improved discrimination
skills of L2 listeners. Our data were sensitive to this learning process, as
we measured significant effects of L2 proficiency on the discriminabil-
ity of phoneme pairs that do not exist in Standard Chinese (ANOVA:
F(1.6, 150.3) = 3.8, p = 0.024; Supplementary Fig. 4) and for pairs in
which only one phoneme exists in Chinese (ANOVA: F(1.4, 245.8) = 4.4,
p = 0.013), whereas no significant effects were measured for contrasts
that exist in Chinese and, as such, L2 participants were sensitive to indi-
viduals without any knowledge of the English language (ANOVA F(1.26,
90.9) = 0.9, p = 0.39). Figs. 2C shows this result for selected phonetic
contrasts that are of particular importance for correct English compre-
hension as they occur in minimal pairs (words differentiated by only
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Fig. 3. Effect of proficiency on the EEG responses to phonotactic and semantic dissimilarity regressors. (A) Model weights of the phonotactic TRF for three selected
midline EEG channels at peristimulus time latencies from 0 to 600 ms. The results for distinct participant groups are color-coded. Thick lines indicate weights that
were significantly different from zero across all subjects of a group (p < 0.05, Wilcoxon signed rank test, FDR corrected). Horizontal black lines indicate a significant
effect of group proficiency on the TRF weights (point-by-point one-way ANOVA with FDR correction, p < 0.05). (B) Topographies of the phonotactic TRF weights
for five selected time latencies. (C) Cosine distance of the phonotactic TRF for individual L2 participants with the average L1 TRF. The distance was calculated based
on all electrodes and time latencies. (D) Model weights of the semantic dissimilarity TRF for selected EEG channels. (E) Topographies of the semantic dissimilarity
TRF weights for five selected time latencies. (F) Cosine distance of the phonotactic TRF for individual L2 participants with an average L1 TRF.

one phoneme, e.g., “bat” /bat/, “pat” /paet/). The Fig. shows six se-
lected English-only contrasts (T vs. TH, D vs. DH, V vs. W, Z vs. DH, B
vs. P, and Z vs. S), all of which exhibit increased discriminability when
comparing the A and C proficiency-level groups, and six selected phone-
mic contrasts belonging to both English and Standard Chinese languages
(Fvs. P,Lvs. F, Wvs. F, N vs. NG, M vs. N, and L vs. NG), which did
not show any consistent change with proficiency. In this case, distance
values for each phoneme pair were normalized based on the L1 map for
visualization.

3.3. Proficiency modulates phonotactic responses at both short and long
latencies

TRF weights corresponding to the phonotactic descriptor (TRFp,
a subset of TRF,;;) showed significant effects of latency (three-
way ANOVA, F(28,6670) = 34.58, p < 107199) and electrode
(F(4,6670) = 7.83, p < 2.7*107°), a significant proficiency*latency inter-
action (F(56,6670) = 2.75, p = 6.6*10~11) and latency*electrode inter-
action (F(112,6670) = 3.66, p = 3.9*10~34), but no effect of proficiency
(F(2,6670) = 2.44, p = 0.087) and no significant proficiency*electrode
interaction (F(8,6670) = 0.25, p = 0.98). Fig. 3A compares the cor-
responding TRF weights (part of TRF,;;) between proficiency groups
at three scalp locations of interest. Qualitatively different TRF pat-
terns emerged between groups, with an early positive component (~40
ms) that emerged consistently for all groups, an expected longer la-
tency component (300-500 ms) that was less pronounced for L2 sub-
jects than for L1 subjects but was significant for L2 with high and
medium proficiency, and an unexpected earlier component (~120 ms)
that emerged consistently only for all L2 groups but not the L1 group
(FDR-corrected Wilcoxon test). The same latencies showed significant
effects of proficiency group, which were measured as a point-by-point
one-way ANOVA (p < 0.05, FDR corrected; Fig. 3A reports the signifi-
cance of that test, and its effect size is reported in Supplementary Fig.
5). The topographical patterns in Fig. 3B further clarify that this effect
of proficiency was distributed across most scalp areas, but especially in
centro-frontal scalp areas at 120 ms, whereas the effect at a latency of

approximately 360 ms showed centro-parietal patterns. We also studied
the effect of proficiency on the cortical encoding of speech by assess-
ing whether the TRF of L2 participants became more similar to that
for L1 participants with proficiency. This distance was calculated with
a cosine metric over all electrodes and over time latencies of the TRF
simultaneously between each L2 participant and the average of all L1
subjects. The analysis did not indicate a significant effect of proficiency,
i.e., there was no significant difference between the A, B, and C groups
(Fig. 3C: one-way ANOVA, F(1.4, 33.2) = 2.0; p = 0.14), suggesting that
the effects of proficiency on L2 TRF should be studied for individual TRF
components.

3.4. Stronger and earlier cortical responses to semantic dissimilarity with
proficiency

A similar analysis was conducted based on semantic dissimilarity
rather than on phonotactic scores. Specifically, content words were de-
scribed according to a 400-dimensional feature space that was identi-
fied based on word co-occurrence (word2vec algorithm; Mikolov et al.,
2013). Then, semantic dissimilarity was quantified as the distance of a
word with the preceding semantic context, thus resulting in a vector
marking the onset of all content words with these distance values (see
Methods) (Broderick et al., 2018). Model weights corresponding to the
semantic dissimilarity descriptor (TRFg,,, a subset of TRF,;;) showed
significant effects of proficiency (three-way ANOVA, F(2,6670) = 14.9,
p = 3.4*1077) and latency (F(28,6670) = 38.50, p < 107100), no sig-
nificant effect of electrode (F(4,6670) = 0.22, p = 0.924), a signifi-
cant proficiency*latency interaction (F(56,6670) = 2.87, p = 7.1*10712)
and latency*electrode interaction (F(112,6670) = 2.51, p = 4.5¥10716),
and no significant proficiency*electrode interaction (F(8,6670) = 1.28,
p = 0.24). Fig. 3D shows TRFg,, for three selected scalp channels. The
average TRFg,, for L1 participants was consistent with the results shown
by Broderick and colleagues (Broderick et al., 2018), with a negative
component peaking at peristimulus latencies of 340-380 ms. Similar TRF
patterns emerged for the L2 C-level participants, whose average TRFgq,
values showed a negative component at comparable time latencies, with
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Fig. 4. Accurate decoding of L2 proficiency from EEG data. (A) A multilinear principal component analysis (MPCA) was performed on the TRF weights corresponding
to speech descriptors at all linguistic levels of interest. The first MPCA component was retained for the TRFs corresponding to Env, Phn, Pt, and Sem. The combination
of these four features was predictive of L2 proficiency (r = 0.68), with significant effects for all features that were not due to group differences in age or attention.
(B) A support-vector regression analysis shows that EEG data accurately predicted the L2 proficiency level at the individual subject level (r =0.83, MSE = 1.14). (C)
Classification accuracy for L1 versus L2 and L1 versus C-level L2. The red dotted lines indicate the baseline classification levels, which were calculated as the 95
percentile of a distribution of classification accuracies derived after randomly shuffling the output class labels (N = 100). (For interpretation of the references to

color in the text, the reader is referred to the web version of this article.)

peak latencies between 340 and 440 ms (depending on the EEG chan-
nel). As expected, we observed significant effects of proficiency group
over central and posterior scalp areas, which were measured as a point-
by-point one-way ANOVA (p < 0.05, FDR corrected; Fig. 3D reports the
significance of that test, and its effect size is reported in Supplementary
Fig. 5). Interestingly, an unexpected significant bilateral centro-frontal
negativity (BCN) peaking between 440 and 520 ms appeared in all L2
subjects but not in L1 subjects.

The latency of these negative components was assessed at an
individual-subject level for the electrodes Oz, Pz, Cz, Fz, and Fpz by
identifying the latency between 300 and 600 ms where the TRF has the
largest negative magnitude. We found a significant effect of proficiency
on trough latency (two-way ANOVA, F(3,312) = 4.22, p = 0.006). Fur-
thermore, this effect was found to correspond to a negative correlation
between peak latency and proficiency, which was strongest at the Cz
location (Spearman’s correlation p = -0.37, p = 0.003). As for phono-
tactics (see previous section), we also assessed the cosine distance be-
tween the TRF of each L2 participant and the average TRF across all L1
participants, taking into consideration all TRF latencies and electrodes
simultaneously. In this case, this distance showed a significant effect
of proficiency (Fig. 3F: one-way ANOVA across the three proficiency
levels, F(1.83, 42.1) = 3.7; p = 0.033), indicating a robust progressive
L2-to-L1 convergence for semantic dissimilarity TRFs with proficiency.

3.5. Decoding language proficiency

Our results indicate that language proficiency modulates cortical re-
sponses at various linguistic processing levels. Given this relation, we
examined the extent to which the proficiency of a subject could be pre-
dicted from the combined effects of different linguistic features. First,
multilinear principal component analyses (MPCAs) were conducted on
the TRF weights corresponding to Env, Phn, Pt, and Sem separately, and
the first component was retained for each of them. In doing so, infor-
mation spacing along three dimensions (EEG channels, time latencies,
and stimulus features, e.g., phonetic features) was compressed into a
single value for each participant. A linear regression model was then fit
to predict L2 proficiency (L1 subjects were excluded from this analy-
sis) based on the four aforementioned TRF features. Fig. 4A shows the
effect of each regressor on the model fit (coefficient estimate and stan-

dard error), with an overall regression correlation r = 0.68. Note that
we are interested in the absolute value of the effect of each TRF feature,
as the sign is arbitrary due to the MPCA step. Significant effects were
measured for each of the four features, and this was true also when the
‘age’ information and the ‘one-back repetition detection’ score (which
was a measure of the attentional engagement to the experiment) were
included in the regression fit. This result confirmed that the main effect
of proficiency was not due to attention or age.

A similar decoding approach was then used to assess whether and
how robustly L2 proficiency could be decoded based on EEG indices of
language processing. A set of 26 features was identified to describe the
effects of L2 proficiency on the TRFs most comprehensively. Features
were based either on the TRF weights (as in Fig. 4A), on the EEG pre-
diction correlations based on subject-specific TRF models, or on EEG
prediction correlations for each subject when using average TRF mod-
els that were fit for the other subjects in A, B, C, and L1 groups sep-
arately (generic modeling approach; G.M. Di Liberto and Lalor, 2017;
Jessen et al., 2019) (see Methods for a detailed list of features). Each
of the 26 feature vectors had multiple dimensions (e.g., electrodes and
time latency). For this reason, as described above, MPCA was used to
reduce those vectors to one-dimensional regressors. Support vector ma-
chine (SVM) regression was used to decode L2 proficiency based on such
regressors. A backward elimination procedure identified a reduced set
of features (Supplementary Table 1) whose combination produced op-
timal L2 proficiency decoding scores, with MSE = 1.14 and Pearson’s
correlation r = 0.83, p = 3*10713 (Fig. 4B). Another way to quantify the
quality of the proficiency decoding is to assess the A- vs. C-level classifi-
cation by placing a simple threshold on the prediction values (a value of
3.5, which cuts the prediction space in half). This binary classification
could identify A- vs. C-level participants with 91% accuracy.

Further analyses were conducted to assess the effect of “nativeness”
on the EEG responses to speech. Specifically, differences in language
processing between L1 and L2 subjects may be in part driven by a fun-
damental distinction between native and nonnative language processing
that is not due to proficiency per se but rather due to differences in the
L1 and L2 processing networks (Cao et al., 2013; Morgan-Short et al.,
2012). In fact, the TRF results in Figs. 1-3 indicated that higher profi-
ciency levels do not always lead to EEG responses that are equivalent
to those of native speakers. Specifically, though there was some level of
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L1-L2 convergence for phoneme-level TRFs, this phenomenon was less
pronounced for phonotactic and semantic dissimilarity responses, with
marked differences between L1 and C-level L2 (e.g., the latency of the
negative component at ~120 ms in TRFp,). Here, we attempted to disen-
tangle those differences from the effect of L2 proficiency by conducting
an SVM binary classification analysis for L1 versus L2 participants. This
procedure used the same 26 features and backward elimination strategy
as in the previous regression analysis. First, an L1 versus L2 classification
accuracy of 87% was obtained when all 71 subjects were included in the
analysis, with a baseline classification accuracy of 70% (95" percentile
of a distribution of classification accuracy values when L1-L2 labels were
randomly shuffled — 100 shuffles). To reduce the contribution of profi-
ciency to the classification result, the same analysis was performed on
L1 and C-level L2 participants only. In this case, a classification accuracy
of 73% was measured, with a baseline of 66%, thus suggesting that the
EEG responses to continuous speech reflect both the influence of L2 pro-
ficiency and nativeness. Nevertheless, it is important to highlight that
this result emerged in a small cohort of L1 and L2 participants. Further-
more, different behavioral tasks were used for L1 and L2 participants,
as the L2 group included subjects who could not understand the speech.
As such, further work with a more specific design and a larger sample
size is needed to confirm this result.

4. Discussion

The human brain responds differently when listening to a second-
language compared to the responses when listening to native speech
(Hanna et al., 2016; Ojima et al., 2005; White et al., 2012). Typi-
cally, lower listening performance is noted in the former that varies
between individuals and can be quantified with standardized language
tests. Despite the general consensus for the cognitive, social, and eco-
nomic advantages that come with high L2 proficiency, the neural un-
derpinnings of second-language perception and learning remain unclear
(Chang, 2019; Flege, 1995). One reason that this issue remains unre-
solved is methodological. Experimental evidence derived from direct
neural measures is minimal and often limited to single linguistic prop-
erties (Brandmeyer et al., 2013; Khachatryan et al., 2016; Kimppa et al.,
2019; Mueller, 2005; Osterhout et al., 2008), thus offering only a partial
view of this complex brain mechanism. The present study established a
methodological framework to provide a more comprehensive examina-
tion of the language processing system in naturalistic conditions. We iso-
lated neural indices of speech perception at multiple processing stages
from EEG responses to natural speech, revealing marked effects of L2
proficiency that were robust at the individual subject level. Overall, the
results confirmed our hypothesis that the cortical encoding of speech in
L2 listeners changes with proficiency and that EEG responses to natural
speech are sensitive to its change for distinct linguistic properties, even
at the level of individual phonemic contrasts.

Previous studies that investigated L2 perception in naturalistic
paradigms focused on the relationship between neural activity and the
acoustic envelope and found stronger coupling in L2 subjects than L1
subjects (Song and Iverson, 2018). That EEG result, which was found us-
ing a selective attention listening task in a multitalker scenario, pointed
to a link between increased listening effort and stronger cortical tracking
of the speech envelope. However, it remains unclear which of the lin-
guistic and nonlinguistic properties of speech correlated with the acous-
tic envelope results in this increased cortical tracking. In fact, an in-
creased coupling between EEG data and the speech envelope could re-
flect increased encoding of acoustic features, stronger reliance on higher
order processes, or even activation of distinct cortical areas. For exam-
ple, recent work indicated that envelope tracking increases with age due
to a stronger engagement of higher order areas, thus reflecting a differ-
ence in processing strategy for older listeners (Brodbeck et al., 2018b;
Presacco et al., 2019). Here, the shape of the envelope TRF significantly
contributed to L2 proficiency decoding (Fig. 4), even though the mod-
ulation was not specific to any individual response component, which
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is in line with a link between acoustic-level encoding and effort. In-
terestingly, this result was obtained using a single-talker task with no
competing noise. Using this same approach with a more cognitively de-
manding task (Hjortkjaer et al., 2018; O’Sullivan et al., 2014) could help
tease apart the effects of L2 proficiency and listening effort on the cor-
tical encoding of acoustic features.

As we had hypothesized, the cortical encoding of phonemes changed
with L2 proficiency, becoming progressively more similar to that of L1,
which is in line with perceptual theories such as the expanded Native
Language Magnet Theory (NML-e; Kuhl et al., 2008) and the Percep-
tual Assimilation Model (PAM-L2; Best and Tyler, 2007). A core prin-
ciple of these theories is that adults perceive unfamiliar phonemes ac-
cording to some similarity to phonemes that are present in their exist-
ing (native) phonemic inventory. This existing inventory, or phoneme
map, would explain the facility in detecting native sounds and the dif-
ficulty in detecting and discriminating new phonemes. Our data are in
line with this view and provide important empirical evidence of such
an internal phonological map and of how it changes across various L2
proficiency levels. Our TRF analysis has discerned individual phonemic
contrasts, showing that the cortical encoding of phonemes becomes pro-
gressively more sensitive to contrasts existing in English but not Stan-
dard Chinese (Fig. 2). This work extends previous findings on the cor-
tical encoding of phonemes (Daube et al., 2019; Di Liberto et al., 2015;
Khalighinejad et al., 2017) by demonstrating that EEG responses to nat-
ural speech show sensitivity to individual phoneme contrasts with re-
sponse patterns that become progressively more categorical with pro-
ficiency. Furthermore, the aforementioned result goes beyond previous
work (Daube et al., 2019) by revealing a low-frequency EEG compo-
nent that could not be explained by simple acoustic features such as the
acoustic envelope, the derivative of the envelope, and spectrogram at-
tributes. Our results are in line with the majority of the theories on L2
perception, which suggest the impact of a subject’s L1 on L2 phonolog-
ical encoding. Specifically, Fig. 2A indicates that the native language
constitutes a “starting point” for phonological encoding of L2 sounds in
L2 learners, which then changes with experience and converges toward
the encoding for L1 listeners.

Reproducing this work on participants with other native languages
could provide us with detailed insights into the effect of the native lan-
guage on phoneme encoding in high-proficiency L2 learners. In fact, the
languages of interest in the present study were English and Mandarin,
with profound differences involving all the hierarchical levels investi-
gated. Indeed, we expect languages with higher overlap in, for example,
the phonological inventory to show a strong effect of proficiency on the
properties that have to be learned and a weaker effect on phonologi-
cal processing. Further studies with larger sample sizes could use this
approach to study the effect of different learning methodologies on L2
perception at different stages of learning. Finally, additional data with
a balanced design, in which subjects listen to both their native language
and a nonnative language, could reveal whether and how learning a
particular L2 influences the cortical processing of the native language
(Chang and Mishler, 2012; Zinszer et al., 2015), as was postulated by the
bidirectional cross-linguistic influence principle in the Speech Learning
Model (SLM; Flege, 1987).

Proficiency was also shown to shape language encoding at the
phonotactic level, with TRFs in L2 subjects progressively converging
toward L1 TRFs. Our results indicate two effects of phonotactics. First,
we measured a TRF component peak at speech EEG latencies of approx-
imately 300-450 ms, which we had hypothesized as it was measured
in a previous EEG study by our group (Di Liberto et al., 2019), with
more negative responses for higher proficiency levels (Fig. 3A). Sec-
ond, an effect at shorter latencies of approximately 120 ms, in which a
negative component that was not present for L1 participants emerged
for L2 participants. Interestingly, a component reflecting phonotactics
was previously measured at that speech-neural signal latency using MEG
(Brodbeck et al., 2018a) but not using EEG. Our finding provides a new
link between the EEG and MEG literature by clarifying that phonotactic
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features modulate EEG responses at both shorter and longer latencies
and that the effect at shorter latencies emerges for L2 learners but not
native speakers. This discrepancy may be due to the difference in the
type of signal recorded by EEG and MEG modalities. The larger values
for users with lower proficiency could reflect an effect of surprise on the
phoneme sequences due to the use of an incorrect (or imperfect) model
of phonotactics.

Semantic dissimilarity TRFs were previously shown to be character-
ized by a negative centro-parietal component at speech-EEG latencies of
approximately 350-400 ms. This finding is in line with previous work on
the N400 (Borovsky et al., 2012; Kutas and Federmeier, 2011; Kutas and
Hillyard, 1980), an event-related potential component that is modulated
by intelligibility and attention and that has the same spatiotemporal
characteristics (Broderick et al., 2018). Similarly, we expected strong
response negativity for users with higher language proficiency and no
response for people with no English proficiency at all (note that neg-
ative TRF values correspond to negative voltage values of the impulse
response of Sem). Consistent with this hypothesis, our results identi-
fied a posterior component with magnitude that increases with profi-
ciency (Fig. 3D). In addition, an unexpected centro-frontal component
arose at latencies of approximately 440-520 ms, which was negatively
correlated with the latency of response rather than the magnitude of
the component. This bilateral centro-frontal negativity (BCN) emerged
even for participants with no English understanding, thus reflecting neu-
ral correlates time-locked to word onset but not semantics per se. This
component may instead be related to other processes, such as sentence
structure processing, memory tasks, and the process of learning frequent
words (Chen et al., 2014; Coulson and Kutas, 2001; Manfredi et al.,
2018; Wlotko and Federmeier, 2012). Further work is needed to clarify
whether that signal reflects, for example, the familiarity with particu-
lar words, or whether it is related to ERP components such as the left
anterior negativity (LAN), which was shown to reflect processing dif-
ficulties in morpho-syntax (Meltzer and Braun, 2013; Steinhauer and
Drury, 2012).

Although both phonotactics and semantic level TRFs for L2 showed
some level of convergence to L1, there was also a pronounced difference
between L1 and C-level L2 participants, which was also reflected in the
significant L1 versus C classification result in Fig. 4C. This effect may
reflect fundamental differences in the cortical mechanisms underlying
L1 and L2 processing, rather than an effect of proficiency per se. This
effect of nativeness that is somewhat different from the effect of profi-
ciency is in line with the observation that a second language learned af-
ter a certain critical (or sensitive) period usually leads to lower language
proficiency than that of a native speaker (Bialystok and Hakuta, 1999;
Hartshorne et al., 2018; Purves et al., 2003). More data could provide
further insights on this topic, for example, by comparing L1 monolin-
guals with bilinguals and multilinguals with a wide range of learning-
onsets for the English language. Our results show different progressions
for the L2-to-L1 convergence for distinct features. As we had hypoth-
esized, such differences may be explained by the particular language-
learning strategy adopted for distinct features. Further work targeting
different second language learning strategies could contribute to reveal-
ing how strongly the linguistic encoding progression for distinct features
is related to the particular learning approach. Further research is also
needed to better understand the effect of nativeness, e.g., by comparing
L1 and high-proficiency L2 listeners using a semantic task that guaran-
tees the same level of comprehension for all participants. Such a task
could not be employed in the present study, as the primary focus of this
study was the effect of proficiency across A- to C-level L2 participants,
which, by design, presented variable levels of comprehension.

Our analysis focused on just a few components of the speech pro-
cessing hierarchy, namely, the acoustic, phonemic, phonotactic, and se-
mantic levels. One powerful element of this framework is that it can be
extended to other levels of processing without the need for additional
data. In fact, the EEG responses to natural speech likely reflect many
more components of interest than the ones targeted in this occasion;
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isolating these components following the model presented in this study
would give us insights into each newly added feature and its link with
proficiency, as well as provide us the chance to improve the accuracy
of our EEG-based L2 proficiency assessment. For these reasons, we be-
lieve that a wide collaborative effort under a common protocol of data
acquisition with EEG/MEG and natural stimuli could significantly and
quickly advance our understanding of the speech and language cortical
processing network (and could indeed extend to other questions of in-
terest). Such an initiative would allow for the extension of our findings
to other combinations of L1-L2 languages, as well as prompt the inves-
tigation of questions that require larger sample sizes. One such question
concerns the opportunity for decoding multiple robust objective indices
of proficiency from the same EEG recording. In fact, while the present in-
vestigation focused on coarsely grouping subjects into A, B, and C levels,
such proficiency levels summarize a number of skills (e.g., vocabulary
and phonological skills) that can change between participants within the
same proficiency group; this aspect could represent important objective
markers of language proficiency.

Understanding the neural underpinnings of second language per-
ception and learning becomes particularly relevant when we consider
that there are more children throughout the world that have been ed-
ucated via a second (or a later acquired) language rather than exclu-
sively via their L1 (Tucker, 2001). Furthermore, there is evidence for
the perceptual advantage of bilinguals and multilinguals that is due
to cross-language transfer (Chang, 2012; Chang and Mishler, 2012;
Kartushina and Frauenfelder, 2014), and particular combinations of lan-
guages may be better than others in the emergence of such a benefit.
Further work in this direction may provide us with tools to predict the
perceptual advantage that a particular second language would bring to
a person given their background; this work could constitute the basis
for a procedure that, for example, could inform us on which second
languages should be encouraged in school for particular individuals. In-
deed, additional work is needed to assess the parameters, making this
methodology applicable in particular cohorts of participants. While re-
cent work has partly answered this question, indicating that EEG indices
of acoustic-phonetic (Di Liberto et al., 2018b; Di Liberto and Lalor, 2017;
Jessen et al., 2019) and semantic-level (Broderick et al., 2020) percep-
tion can be isolated with ~10 minutes of EEG data in infants, chil-
dren, and older participants, as well as in hearing-impaired individuals
(Decruy et al., 2020; Fuglsang et al., 2020), more work is needed to
evaluate the reliability of the ensemble of EEG indices discussed in the
present study.
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