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Abstract—This paper presents a first low-cost autonomous
robotic system for underwater assembly of mortarless structures.
The long-term goal is to enable the construction of large-scale
underwater structures, such as retaining walls and artificial
reefs. The approach follows the principle of co-design; the 2-
DOF manipulator and blocks are designed to complement the
localization and control strategies. The blocks and gripper are
designed with a connector geometry that removes error during
pickup of blocks and drop assembly. This error correction feature
allows a simplification of localization and control, which are
based on fiducial markers on custom platforms. We developed
the proposed system on a low-cost heavily modified BlueROV2
autonomous vehicle — which we call Droplet — with a two-degree
of freedom hand that can open and close a gripper and rotate
over the yaw. We performed extensive experiments in the pool
to evaluate each component and the system as a whole. Results
showed a 100 % success rate in dropping blocks in the presence
of some localization and control errors as well as the assembly of
several different 3D structures composed of up to eight blocks.

I. INTRODUCTION

This paper proposes a first low-cost underwater autonomous
robotic system for assembly of mortarless structures as a
first step towards construction of human-scale underwater
structures, including retaining walls [17] or artificial reefs [34].
General underwater construction and assembly capabilities
will enable the practical solution of many timely problems,
e.g., support for marine agriculture, ecological repair, and miti-
gation of coastal weather events. While some robotic solutions
exist for on-land construction [30], underwater assembly is
still in its infancy: so far, only tele-operated robots have been
proposed for such a task [4]. There are many challenges posed
by the underwater environment [57], including, but not limited
to, the absence of reliable localization systems (e.g., GPS) and
communication infrastructure (e.g., WiFi).

To cope with such challenges, we tightly co-designed the
manipulator and blocks with sensing and control strategies and
extensively evaluated each component in the pool. The blocks
and manipulator are designed using conical shapes that remove
error as blocks compliantly contact the gripper or other blocks.
This allowed a simplification of the localization strategy, based
on fiducial markers, and of the control system based on a
hierarchical PID controller. The implemented system is based
on a low-cost heavily modified BlueROV2 autonomous vehicle
with a two-degree of freedom hand that can open and close
a gripper and rotate over the yaw. We call the robot Droplet.
We designed two platforms: a source platform where blocks
are initially stored, and a target platform where blocks are
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Figure 1. The blocks and gripper are designed to complement sensing and
control, to achieve successful underwater robot assembly with a low-cost
robot.

dropped to assemble the structure. Fast prototyping of the
blocks is enabled through 3D printing. The robot is able to
achieve an accuracy in localization and control on the order
of a few centimeters. The designed blocks and gripper can
correct a positional error of 3.5cm and 20 degrees of yaw.
We performed several experiments, including a 100-repetition
trial. The robot was able to drop a block in the correct place
in every repeatability trial. The robot built a number of 3D
structures (L-shaped, wall, pyramid) composed of up to eight
blocks stacked non-adjacently in a pool. Fig. 1 shows the
complete system, while assembling an L-shaped 3D structure.

This work represents a foundation for low-cost robotic un-
derwater assembly and real construction. There are a number
of challenges that will be studied in the immediate future
to scale up the construction to practical structures. On the
design side, the challenge is to find ways of connecting blocks
and grippers that allow simple construction of sturdy, large
structures, requiring a deeper understanding of the interplay
of gravity, buoyancy, and current. We will study the use of
other materials, such as concrete, to enable the construction of
useful structures. On the robot side, robust sensing and control
are necessary to operate in turbid waters and in presence of
currents.

II. RELATED WORK

Our work begins to explore the possibility of automated
underwater construction. Under the umbrella of this topic,
work has been done on underwater manipulation and robotic
construction on land, underwater, and block designs.



A. Underwater Manipulation

Underwater manipulation often focuses on enabling under-
water vehicles to perform intervention activities, like manipu-
lating an interface on a panel underwater or helping to perform
sample collection [12]. Underwater manipulation systems in
practice are generally tele-operated, but autonomous underwa-
ter manipulation has recently started to receive some attention.
Typically, underwater manipulation systems use high degree of
freedom manipulators meant to provide similar capabilities to
robot arms on land. Underwater manipulators are expensive,
with prices that range from a few thousand for the very
simplest manipulators, up to millions of US dollars [40]. In
water, the coupling between the arm’s motion and the vehicle’s
requires complex control laws to overcome. The TRIDENT
project in the EU [38] is an example of a project specifically
designed to enable autonomous intervention with high degree
of freedom manipulators mounted on a large Autonomous
Underwater Vehicle (AUV). In our work, we take a nearly
opposite approach. We design our system around making
the manipulation task as simple as possible, which allows
us to disregard the complex dynamic coupling between the
manipulator and the robot’s body. Our 2-DOF manipulator
requires no special control, making our system much cheaper
to deploy.

One of the closest prior works to ours in spirit is the system
developed by Palomeras et al. [31] which features a docking
station custom-designed to mate with features on an interven-
tion AUV. The AUV pushes itself with a controllable force
into cone-shaped features on the docking station, allowing it to
have a stable base from which to use its on-board manipulator.
While the idea of passive error correction is present in this
work, we apply the idea in a more drastic way to our system,
eliminating the need for complex control and manipulation
behaviors entirely.

B. Robotic Construction

Underwater robotic construction is still in its infancy [4]:
it has been directly addressed in the literature primarily focus-
ing on tele-operated approaches. Akizono et al. [1] proposed
using a combination of a conventional camera system and hap-
tic feedback to help a human operator control an underwater
construction robot. The experiments were conducted on land
but suggested success underwater. Utsumi, Hirabayashi, and
Yoshie [46] developed an augmented reality application for a
grasping system that picks up and releases rocks underwater.
Seo, Yim, and Kumar [39] presented some results on water
surface block assembly. A few techniques for self-assembly
of underwater robots have been explored in simulation [20,
48, 45]. While tele-operation can be effective for completing
small-scale manipulation tasks, it requires specially trained
human operators and high bandwidth connections between the
robot and operator. Underwater communication of sufficient
bandwidth still requires a physical tether in practice which
drastically limits the range and duration possible for a de-
ployment of a robotic system. In addition, the design of an
intuitive interface for a human operator is often a task-specific

process, making the deployment of new kinds of construction
technologies challenging.

Ground robotic construction is more mature [36], with
solutions that propose the use of a ground robot with a ma-
nipulator, e.g., wheeled robots [35, 19, 22] and tracked robots
[15, 24]. The first construction projects involved building brick
walls [3, 7] and only few years ago, Sam100 robot became
the first commercially viable bricklaying robot [14]. More
recently, Sustarevas et al. [43] proposed a mobile robot for 3D
printing large structures. Several construction systems work
by deploying multiple robots that tightly cooperate, e.g., to
carry long rods [41, 11, 56, 9, 21] or assemble parts [26].
Other robotic construction methods used swarms of robots that
assemble simple passive blocks that robots can easily pick up
and assemble into 2- and 3-D structures [50, 44, 53, 32, 54,
2,13, 49, 23, 27]. A set of work is based on multiple simple
robots and programmable blocks that can interact with each
other and self-assemble into complex structures, e.g., [42, 52,
51, 33]. The use of smart blocks would be too expensive for
a large scale construction underwater.

Aerial robotic construction, although not as mature as
ground robotics construction, has seen a rise [6], due to
advances in aerial grasping and manipulation [55]. Some work
proposed the construction of truss-like structures assembled
by a team of quadrotors [37, 29]. Braithwaite et al. [10]
demonstrated constructions of a multi-element tensile structure
between anchor points through small UAVs. Hunt et al. [25]
presented a prototype for 3D printing with a flying vehicle.
The idea of adjusting construction elements to suit the aerial
vehicle was recently explored. Augugliaro et al. [6] designed
90-gram foam blocks that small quadcopters were able to pick
up to construct a 6-m tower. The UAVs were able to place the
blocks with millimeter of accuracy. Similarly, Latteur et al.
[28] showed drones that were able to build a tower of hollow
concrete cones, the design of which allowed for 6.5cm of
inaccuracy from the controller.

Our approach to underwater construction is similar in spirit
to the latter type of work: we design blocks with geometries
that maximize the capture region of a joint and reduce error
during manipulation, resulting in a lower demand on both
sensing and control.

IIT. UNDERWATER ROBOTIC CONSTRUCTION SYSTEM

We are particularly motivated by mortarless construction
techniques, as a simple first approach to underwater assembly.
Fig. 2 shows some motivating examples: a human-assembled
modular reef structure, and an Incan wall which is still sturdy
half a millennium after its construction.

While some of the design choices are independent of the
specific robot used, we ground our presentation to Droplet, a
low-cost BlueROV2 heavy configuration!, which we heavily
modified to make it autonomous and tetherless. The robot has
an 8-thruster vectored configuration allowing for 6 degree-of-

Thttps://bluerobotics.com/store/rov/bluerov2-upgrade-kits/
brov2-heavy-retrofit-r1-rp/



(a) The MARS modular reef structure
(Reef Design Lab; Alex Goad)

(b) Mortarless construction of an Incan
wall (Bcasterline; Wikimedia).

Figure 2.
construction.

Sources of inspiration: modular artificial reefs and mortarless

(b)

Figure 3. (a) Rendering of error correcting block. The gripper slot is magenta
and drop error correction features are green. (b) Idealized model used for
acceptance area. Black and white circles represent receiver. Green represent
successfully dropped block.

fredom control, and a number of sensors, including a camera
and an IMU.

A. Passive Error Correcting Blocks

We exploit passive error correction both to absorb noise in
the system and to provide a convenient simplification of the
assembly process. Figure 3a shows a rendering of the block
design. The sides are fitted with large 3.175 cm deep pyramid-
shaped recesses that mirror the pyramids on the robot’s finger
tips. During pickup, the robot’s positional noise actually helps
the block reliably slide into the desired grasp position as the
fingers are gradually closed. The top and bottom of the block
are fitted with mirrored cone slots. The cones allow the block
to slide into place from a variety of pre-drop positions. The
cones also help keep the block in place despite gentle bumps
from the robot as it grasps the block.

Our design is inspired by Eckenstein and Yim’s work on
acceptance area for docking connectors [16]. The acceptance
area, A, is the set of all deviations from the ideal dropoff
position, 1, from which the blocks can successfully align
by sliding along the mirrored cones. Figure 8 shows the
acceptance area and ideal dropoff location for our blocks in
2D. To determine whether the robot is in the acceptance area
of a block we use a conservative tolerance region t specified
as a box in 6D configuration space.

In an ideal case, disregarding friction and bouncing effects,

Figure 4. 2DOF manipulator grasping a block.

we can think of any pre-drop position of the block as being
successful if the projected circles of the slots on the bottom
of the block contain the tips of the cones in the slots the
block is being dropped onto — see Fig. 3b. By using this low
dimensional idea of the acceptance area of a block pair, we
can create an abstraction of the robot’s workspace in which
we can plan assembly behaviors. We consider the acceptance
area of each possible block position to be a single point in our
discrete task space.

The size of the acceptance area of the blocks can be
designed to fit estimated localization quality and external
effects such as currents, making the system robust in a variety
of circumstances. Section IV discusses how the design can be
adapted based on known sensor noise.

B. Custom 2DOF Gripper

In the spirit of co-designing hardware and software to
achieve a simple system in aggregate, we designed a 2 degree-
of-freedom gripper specifically for the task of stacking our
blocks (Fig. 4). The gripper has two large fingers fitted with
3D-printed pyramid-shaped pads as large as the side of the
blocks. The fingers are actuated with a parallel linkage driven
by a high torque underwater servo®. The gripper has a “wrist”
joint which can rotate the fingers relative to the robot using
another servo. The wrist joint allows improved design freedom
without increasing the complexity of how Droplet localizes.

The fingers feature a slightly acute angle held in place by
tensioned torsion springs between the actuated link and the
link that interfaces with the block. When the fingers are closed
around a block, tension is increased due to the torsion springs.
The torsion springs help prevent the gripper from pulling itself
apart on failed grasps and add a natural end stop for the servo,
ensuring the block is tightly grasped when the servo reaches
its stall current. No position or force sensing is required by the
high-level planner to reliably grasp blocks using these fingers.

After several iterations on placement choices for the gripper,
we settled on mounting the gripper directly below Droplet’s
center of gravity. In this position, roll and pitch noise in
Droplet’s position translate to position error in the manipulator.

Zhttps://www.bluetrailengineering.com/servos



The extent of this error increases linearly with the distance that
the fingers hang below the chassis. Because of this we adopted
the design goal of making the gripper as short as possible. The
gear box that drives the wrist joint hangs only 3.5 cm below
the chassis and the gear box driving the finger linkage adds 9
cm. Because Droplet grasps blocks from the side, the primary
contributor to the height of the manipulator is the large set of
fingers which must be tall enough to surround the block.

While picking up a block, the manipulator controller grad-
ually closes its fingers. Gradually closing the fingers increases
the total time required to manipulate each block, but prevents
the fingers from jamming before they slide into place. While
closing the fingers slowly, the position noise of the robot helps
the block slide into the correct position more reliably.

While dropping a block, Droplet opens its fingers as quickly
as possible. Opening the fingers rapidly allows Droplet to take
advantage of opportunities to drop the block at the correct
position amid positioning noise. By limiting the amount of
time the block is in contact with the fingers, Droplet limits
the effect of changing velocity and position on the block’s
trajectory as it falls.

C. Assembly Planning

Fiducial markers on two build platforms provide the frames
of reference assembly behaviors take place in. Each platform
is fitted with a bundle of fiducial markers which are used
to determine Droplet’s pose R in the platform’s frame of
reference P;, FiTp, with Z pointing upward, X towards the
marker along the long aluminum struts, and Y to the right
facing the marker.

To simplify the assembly process, we fitted the platforms
with 3D printed slots which provide error correction for the
first layer of dropped blocks and hold blocks in position
reliably before they are used during assembly (Fig. 5). Both of
the platforms are levelled before assembly occurs using bolts
that serve as adjustable height legs. Because Droplet holds
itself orthogonal to the gravity vector, it is assumed there is no
angular difference between the build platforms and the robot
on the roll and pitch axes.

Assembly sequences for Droplet are specified in a high
level GCode like format used in CNC machines. Currently,
there are three possible commands: PICKUP, DROP and
ROTATE_WRIST. The pickup and drop commands take as
arguments the platform ID and the 3-dimensional indices of
the target slot for the behavior. For example, PICKUP 0 1 2
3 instructs the robot to pick up the block on platform ID 0
at slot number 1 2 3. The index of a slot is translated to a
waypoint relative to the marker mounted to the build platform
by displacing the known location of slot number 0 0 O by the
dimensions of each slot. The system is sensitive to the proper
calibration of the location of slot 0 0 0. Measurements during
the platform’s fabrication process proved to be enough for
proper calibration in our experiments. The specification format
is simple enough that an assembly sequence could easily
be generated using a higher level layout planning method.
Currently, the sequences are specified by hand.

Figure 5. Build platforms with rigidly attached fiducial markers; pickup and
drop platforms are on the left and right, respectively.

|target-current|<€1 |target-current|<€2 successful drop

Switch Coarse Accurate Manipulate Coarse
Platforms Move Move Block Move
Figure 6.  State machine phases to manipulate a block. For simplicity,

we identified “Manipulate Block” for CLOSEGRIPPER, OPENGRIPPER; RO-
TATEWRIST can happen just after the last COARSEMOVE, when Droplet is
far from the platforms.

Given a high-level build sequence specification, the robot
compiles the sequence into a state machine that controls
the robot through the assembly process. The state ma-
chine has 6 possible states: SWITCHPLATFORMS, COARSE-
MOVE, ACCURATEMOVE, CLOSEGRIPPER, OPENGRIPPER,
ROTATEWRIST. Each state has a paired PID controller —
described in the next subsection — and a termination condition.
Each state specifies a waypoint in the frame of reference of one
of the build platforms which becomes the target for the PID
controller. The SWITCHPLATFORMS state moves the robot on
an open loop rotation then engages a P controller to navigate to
a point far away from the blocks. The ROTATEWRIST, OPEN-
GRIPPER and CLOSEGRIPPER states use a PID controller to
hold the robot steady while moving the gripper.

The ACCURATEMOVE and COARSEMOVE states move
the robot using a PID controller until it receives a location
reading within the tolerance region t of its target slot. The
user may specify the size of t to trade accuracy for speed.
ACCURATEMOVE is given a smaller t than COARSEMOVE
to ensure blocks are dropped in the proper position. Figure 6
shows the states the robot moves through for each pickup and
drop action.

D. AUV Control

Droplet’s thruster configuration is as follows: four of the
thrusters face downwards on a square about Droplet’s chassis
and are used to control the @ (roll), ¢ (pitch) and Z axes. Four
thrusters below the main electronics tube control the X, Y and
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Figure 7. Sensing/control diagram of Droplet.

1) (yaw) axes. Though there is coupling between Droplet’s roll
and pitch and its X and Y velocity (the top four motors are like
a drone), we disregard the coupling of the two sets of motors
because, in practice, Droplet is effective at staying level.

Each set of motors is controlled by a PID controller for
each axis which are combined using a tweaked version of the
algorithm from the BlueROV2 low-level controller [5]. The
T200 thrusters have a signal deadband around their stopped
position which makes using them at low speeds difficult. Our
version of the motor mixing algorithm adds the offset values
(M, My) for each motor to eliminate the need to reason about
the signal deadband. In practice, the value required for each
motor differs drastically and is different in different directions.

The data used to drive Droplet’s PID controllers come from
both the visual fiducial markers and the on-board IMU. The
on-board accelerometers are processed using a complemen-
tary filter [47] to give a high accuracy, high rate estimate
of Droplet’s # and @ angles. Droplet’s internal gyroscope
provides 6, ¢, and v velocities. Because the data for the 6
and ¢ angles is high quality and high rate, Droplet is effective
at holding itself steady. In addition, we ballasted Droplet
specifically to increase stability, on its 6 and ¢ angles.

Droplet’s X, Y, Z, v are recovered from the visual fiducial
markers. Droplet’s linear velocity is computed by differentiat-
ing the reading from the visual fiducial markers and applying
a low pass filter. The 1) angle receives high quality velocity
estimates, making it very stable as well. The X, Y and Z axes
receive the relatively low quality velocity data making them
the largest source of position noise.

IV. ADAPTING BLOCK DESIGN TO LOCALIZATION NOISE

By modifying the size of the acceptance area, A, of the
blocks and slots, we can adapt the system to different levels of
noise, localization, or control quality. Because Droplet makes
use of an opportune dropping strategy, it is paramount to limit
the number of false positive location readings. We define a
false positive location reading, £, as the event in which the
robot’s true location, 1, is outside A but it receives a sensor
reading, p, which is within the tolerance region t about the
ideal dropoff position I. If the block is dropped from 1 it will
fail to align as intended.

Misplacing a single block causes the entire assembly pro-
cess to fail, so reliably determining when the robot is within
the acceptance area of a slot is key. We can achieve this
reliability in two ways: by either reducing the noise in our

localization data, or by increasing the size of the acceptance
area. Decreasing the size of the tolerance region t reduces the
probability of getting a false positive reading but makes it more
difficult to get a true positive reading. Increasing the size of
the acceptance area requires increasing the size of the blocks,
eventually making them unwieldy to manipulate. Reducing
localization noise is challenging especially in underwater
environments. Thus, there is a trade off between three design
dimensions of the system: the size of the acceptance area,
the size of the tolerance region, and the noise level in the
localization data.

As discussed in the previous section, the least reliable
location information available to Droplet is its global x,y
position, so we limit our analysis to a 2D tolerance region
t = (t;,1,) specified as a box of side lengths 2¢,, 2t,, centered
on I. Figure 8 shows the tolerance region, acceptance area and
ideal dropoff position, for our blocks. Let the radius of the base
of the female cones on the bottom of the blocks be r. In the
2D case, A, is a circle of radius r centered on I. We can
parametrize block designs in one dimension using r.

Given a known covariance of sensor readings, >, we can
compute the probability of getting a false positive at location 1,
P(&|L, X) by integrating the multivariate Gaussian distribution,
N, with mean 1 over the tolerance region t = (t,,1,):

I+t

I,.+t,
PENLE) = / / Nyl L S)dady (1)
y=I,—t, Jx=I,—t,

To use P(E]1,X) as a general design aid, we can compute
a worst case P(£]X) by finding the point 1 on the border of
A that maximizes P(&]1, X):

P(E]Z) = max P(E]L, %) 2)

Figure 8 shows how P(€|X) changes with r using the worst
location covariance observed in the experiment in Section V-B
and t = (0.012,0.012) m, the value used by ACCURATE-
MOVE before dropping a block. By conservatively selecting
r, we can ensure reliable assembly. For our implementation,
we chose r = 0.042 m to balance error probability and 3D
printing speed.

V. EXPERIMENTAL VALIDATION

To achieve low-cost autonomous underwater assembly, a
significant amount of re-engineering on the robot and hardware
was required. Because of a latency of 0.1 seconds of the
stock camera, making visual-based autonomous control at
cm-level impossible, we used a FLIR Blackfly S 1440 x
1080 monochrome camera at 30 FPS with a Stardot Tech-
nologies 4 mm fixed focal length lens. For autonomous on-
board operations, we removed the tether and we exchanged
the stock Raspberry Pi computer for a more powerful Intel
Upboard UpSquared featuring 8 GB RAM and a 2.5 GHz quad
core processor which runs the localization and main control
software. We replaced the stock firmware of the low-level
controller with our implementation — SimpleSub — to have a
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Numerical approximation of P(€|X) for increasing r with the value of r =
0.042 used for our blocks marked in red.

lower latency to directly control each thruster and get IMU
measurements at 500 Hz (instead of 10 Hz) from the main
computer. To achieve stability over roll and pitch, we ballast
the robot using a raft made of PVC trim fixed to the top of its
chassis and a pair of ballast tubes filled with marine buoyancy
foam fixed to the sides of its chassis. Designs for the mounting
hardware and a parts list to replicate Droplet are available on
Github?.

We built the pickup/drop platforms out of 5cm by 2.5cm
aluminum extrusions. One platform is designated as a palette
which holds the blocks in known positions before assembly.
The other is designated as the dropoff platform and serves as
the base for the built structure. Each platform is fitted with a
set of cone-shaped slots that mate with the blocks. The slot
cones are fastened to the build platform and held securely
in known locations relative to the fiducial marker. The build
platforms also feature threaded legs which are used before
each experiment to level the platform, eliminating the need to
reason about the platform’s relationship to the gravity vector.

The fiducial markers were printed on aluminum with laser
cut mounting holes that allow it to be precisely mounted on
a white Delrin back plate, fixed onto the aluminum extrusion.
We chose STags [8] as fiducial markers, due to their detection
robustness underwater in our preliminary experiments com-
pared to other markers commonly used, e.g., ARTag [18]. We
printed our blocks in PETG (material commonly used in water
bottles) using a Pegasus 12 and a Creality CR-10 3D printer.
Each block was ballasted to be slightly negatively buoyant,
using stainless steel washers suspended on bolts through the
center of the block.

A. Validating ideal acceptance area

To understand whether our ideal model of the valid pre-drop
locations is valid amid hydrodynamic and frictional effects, we

3https://github.com/dartmouthrobotics/underwater-assembly-auv

built a rig that fits onto one of the build platforms and allows
x,y,z and yaw placement of the hand (Fig. 9a). To position
the hand relative to a drop slot, we hang a plumb bob from
the center of the hand which points to a 2.5 cm grid of dots,
painted on the slot using a 3D printed stencil. While this setup
allows some manual positioning error, it gives us a higher level
of certainty about the true position of the fingers relative to
the slot than would be possible using our visual positioning
system alone. For each drop trial, a block is placed in the
gripper and manually released by an operator.

As a first experiment, we dropped a block with the fingers
elevated 13 cm above the slot with the yaw of the fingers
aligned correctly with the slot. We completed five trials at
each of 49 locations, for a total of 245 drops, and recorded
whether or not the block fell into the proper alignment with
the slot. At 13 cm, the bottom of the block is resting about
3cm above the top of the cones of the slot. At this height,
hydrodynamic effects proved to have minimal effect on the
trajectory of the block as the block fell and slid into place
properly for each of the five trials. In this configuration, each
of the 245 drops slid into the predicted alignment.

When we moved the gripper 25cm to above the slots,
the results of dropping differed significantly from the ideal
model of acceptance area. We dropped the block twice from
each location in a 7 x 5 subset of the grid. In Figure 10
we compare the results of dropping at 13cm and 25cm.
Small perturbations in the block’s initial configuration as it
is dropped cause it to catch the water as it falls in different
ways. The center void that we left out to speed print time
and allow the mounting ballasts acts like a sail. At 25 cm, the
block did not align as expected in 14 of the 70 drops.

We also tested the yaw of the gripper relative to the slot
when held over the ideal position. In this case, the block was
able to slide into the correct position from up to ten degrees of
misalignment. With higher yaw misalignment, the block lands
on top of the cones but without sliding into place on them.

When the block failed to land in proper alignment with the
slot, the most common problem was that it would be either one
set of cones too far forward or backward. When the block lands
in a stable, but wrong, location, the error is more difficult for
the system to recover from: the robot must understand where
it dropped the block and how it might remove the block. If
the block completely falls off the side, it is more simple to
correct: the robot needs simply understand the block didn’t
land and try again.

B. Localization noise testing

To understand the probability of getting a false positive
localization reading, we mounted the robot on the same rig
used for the dropping experiments and positioned it at 49
different xy locations relative to the desired slot. We recorded
the position readings received from the visual localization
system over 10 seconds at each location. Figure 9b shows
the robot mounted on the rig and Fig. 11 shows the results
of this experiment. We mark the tolerance region as a 2.4 cm
square about the center of the slot and the ideal acceptance
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Figure 9. Manual positioning rig used for dropping (a) and localization (b)
experiments.
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Figure 10. Expected (left) vs actual successful pre-drop locations sampled
on X,Y plane at 13 cm (center) and of 25 cm (right) above the slots sampled
on a grid of X, Y pre-drop position errors.

area of the block as a cyan region.

Upon inspection of the noise at each location, we found that
the noise is roughly Gaussian distributed for each location with
a standard deviation of 0.0004 on the z axis and 0.0033 on
the y axis when the robot was positioned just above the ideal
dropoff location. We received no false positive readings for the
duration of the experiment which supports the low probability
predicted using Equation (2) in Figure 8.
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Figure 11. Locations measured using plumb bob relative to the tolerance

zone and ideal acceptance area.

C. Effect of tolerance on time

When reducing the size of the tolerance region for a way-
point, reaching a waypoint becomes more challenging for the
robot, increasing the time required for the robot to complete a
build sequence. To understand the tradeoff between runtime
and accuracy, We searched over a set of 81 combinations
of tolerance values for the X and Y axes of the robot. For
each combination of X and Y tolerances, the robot navigated
a triangle of three waypoints spaced about 10 cm apart and
recorded the time to complete the entire circuit.

Figure 12 shows the results of this experiment. While the
measurement process involved a large amount of noise arising
from slight differences in how the robot approaches each
waypoint, it is clear that larger tolerance regions allow the
robot to complete the circuit faster. Based on these results,
we use a large tolerance 4.0 cm for repositioning maneuvers
near the blocks and then a smaller tolerance for dropping and
pickup actions: 1.2 cm on the X, Y axes and 2.5 cm on the Z
axis.

D. Repeatability testing

To validate our model of how often a false positive reading
will occur, we completed two sets of repeatability trials in
which the robot picked up and dropped a single block from
the center location in Figure 11 a total of 100 times. For the
first set of 50 trials, Droplet approached the block, picked it
up, moved backwards and up 30 cm then replaced the block.
To make the second set of trials more challenging, droplet
moved to a randomly selected 3D point behind and above
the slots between every pickup and drop. Before each drop
action, Droplet descended to a point where the bottom of the
block was just above the cones of the slot. In all 100 trials,
Droplet successfully placed the block in the correct location.
Figure 13 shows the location readings that triggered each drop.
The reliability Droplet achieved during this experiment shows
that our simplified analysis of the acceptance area and false
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Figure 12. Time to reach a waypoint using the first-hit, pause, second-hit
method of deciding on when a waypoint is reached. Standard deviation: 9.26 s.
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positive probability works well despite unpredictable noise
from control and slight tipping on the roll and pitch axes.

On average, each drop took 147 seconds to complete,
making the entire set of 100 trials take over four hours of
runtime to complete. Reducing the time spent per block could
have significant impact on allowing Droplet to build larger
structures on a single charge. In the next subsection, we show
a breakdown of the time required for each drop.

E. System Trials

To validate our system as a whole, we specified a seven
block build plan in which all blocks are picked up from a
pallet and placed on a build platform, forming an L-shaped
wall. Once both platforms are properly levelled, the robot
was able to successfully complete the build plan in about 30
minutes. This build plan showcases all of the design aspects of
our system. We designed the structure to have one-slot spaces
between blocks to allow the robot to have a clean area to
approach to prevent bumps with the structure from knocking
the whole structure over. In addition, we specified two straight
structures: a pyramid of six blocks and a wall of eight blocks.
See Figure 15 for examples of the structures built by Droplet.

We had the robot record the time each phase of the assembly

process took during the seven block L-wall build. Figure 14
shows a visualization of the phases the robot moves through to
complete the assembly process of the seven block L-wall. The
majority of the time was spent repositioning the robot between
grasp and drop locations (1025 seconds). The second most
time consuming action was closing the gripper (278 seconds).
Finally, switching platforms took 60 seconds and waiting to
drop the block took 44 seconds.

VI. DISCUSSION AND FUTURE WORK

This paper establishes a solid first step towards achiev-
ing more general autonomous underwater construction. Our
robotic system is capable of creating structures out of mortar-
less error correcting blocks and achieve 100 % success rate.

Starting from this foundational work, we plan to pursue
research directions that will enable Droplet to build more
practical structures in more realistic field settings.

Design Flexibility. Our current system is limited to a single
block geometry placed in one of two angles on a rectangular
grid. By exploring different shapes of blocks, we can allow
Droplet to build more interesting and useful structures using
the same assembly behaviors. As a simple first step, we plan
to explore the addition of double length blocks which could be
used to make roofs or to more quickly build large structures.

Block material. We currently 3D print the building blocks
from PETG which makes it easy to iterate on designs and
keeps the blocks light weight. Because of the amount of time
required to print each block and the cost of material, it is
infeasible to scale the production of PETG building blocks to
realistic construction levels. In previous work, we made several
blocks using a concrete / perlite mix which were buoyant
enough to easily manipulate. While the concrete blocks had
increased friction, they were still able to slide into place. We
plan to explore ways to design concrete blocks that can still
slide into place while having features large enough that they
do not break after repeated drops.

Block hydrodynamics. By tuning the weighting and outer
shape of our blocks, it would be possible to design them
to fall in ways that helps increase the reliability of drop-
based assembly. We purposefully limited the time that the
blocks spend falling through the water because our design
disregarded hydrodynamic effects. By using hydrodynamics
as a design opportunity, we could speed the assembly process
by allowing Droplet to drop blocks while moving quickly high
above the structure. Paying attention to the hydrodynamics and
weighting of the blocks combined with an opportune dropping
strategy could also allow Droplet to build structures in waters
with currents.

Error detection. While we currently achieved a perfect
success rate, in more complex structures blocks might fall out
of place. To solve this problem, we plan to enable our robot to
perform basic error detection. Because the blocks are designed
to slide into place if they are stacked within a given acceptance
area, we can start by using the vehicle’s front mounted camera
to detect whether a structure matches the desired structure. If
not, the misplaced block can be knocked off of the top with



the gripper or a new block can be fetched and added to the
top of the structure.

Time. One key limitation of our system is that the size
of a structure which can be built on a single battery charge is
limited by the amount of time it takes to place each block. Our
current manipulation strategy consisting of a set of phases with
increasingly tight tolerances ensures that the robot remains
in control throughout the execution of a trajectory, limiting
overshoot for important maneuvers. The trade we make is
that it takes several minutes to place each block. In many
instances, the robot will be visibly in the right location to
move its gripper but will take several seconds before actuating
the gripper. We will study improved opportunistic drops and
automated layout planning to speed assembly time.

Robust localization. To make our system applicable in live
field settings, it will need to be robust to a variety of water and
lighting conditions. Our dependence on fiducial markers limits
us to deploying in clear waters with ample light. Reduced
light or cloudy waters would result in unacceptably inaccurate
positioning information. In future work we plan on exploring
other forms of rapidly deployable localization infrastructure
such as acoustic-based systems or by introducing basic sensor
fusion, allowing an IMU to aid in localization for short periods
of low visibility.
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