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Abstract—This paper presents a first low-cost autonomous
robotic system for underwater assembly of mortarless structures.
The long-term goal is to enable the construction of large-scale
underwater structures, such as retaining walls and artificial
reefs. The approach follows the principle of co-design; the 2-
DOF manipulator and blocks are designed to complement the
localization and control strategies. The blocks and gripper are
designed with a connector geometry that removes error during
pickup of blocks and drop assembly. This error correction feature
allows a simplification of localization and control, which are
based on fiducial markers on custom platforms. We developed
the proposed system on a low-cost heavily modified BlueROV2
autonomous vehicle – which we call Droplet – with a two-degree
of freedom hand that can open and close a gripper and rotate
over the yaw. We performed extensive experiments in the pool
to evaluate each component and the system as a whole. Results
showed a 100% success rate in dropping blocks in the presence
of some localization and control errors as well as the assembly of
several different 3D structures composed of up to eight blocks.

I. INTRODUCTION

This paper proposes a first low-cost underwater autonomous

robotic system for assembly of mortarless structures as a

first step towards construction of human-scale underwater

structures, including retaining walls [17] or artificial reefs [34].

General underwater construction and assembly capabilities

will enable the practical solution of many timely problems,

e.g., support for marine agriculture, ecological repair, and miti-

gation of coastal weather events. While some robotic solutions

exist for on-land construction [30], underwater assembly is

still in its infancy: so far, only tele-operated robots have been

proposed for such a task [4]. There are many challenges posed

by the underwater environment [57], including, but not limited

to, the absence of reliable localization systems (e.g., GPS) and

communication infrastructure (e.g., WiFi).

To cope with such challenges, we tightly co-designed the

manipulator and blocks with sensing and control strategies and

extensively evaluated each component in the pool. The blocks

and manipulator are designed using conical shapes that remove

error as blocks compliantly contact the gripper or other blocks.

This allowed a simplification of the localization strategy, based

on fiducial markers, and of the control system based on a

hierarchical PID controller. The implemented system is based

on a low-cost heavily modified BlueROV2 autonomous vehicle

with a two-degree of freedom hand that can open and close

a gripper and rotate over the yaw. We call the robot Droplet.
We designed two platforms: a source platform where blocks

are initially stored, and a target platform where blocks are

Figure 1. The blocks and gripper are designed to complement sensing and
control, to achieve successful underwater robot assembly with a low-cost
robot.

dropped to assemble the structure. Fast prototyping of the

blocks is enabled through 3D printing. The robot is able to

achieve an accuracy in localization and control on the order

of a few centimeters. The designed blocks and gripper can

correct a positional error of 3.5 cm and 20 degrees of yaw.

We performed several experiments, including a 100-repetition

trial. The robot was able to drop a block in the correct place

in every repeatability trial. The robot built a number of 3D

structures (L-shaped, wall, pyramid) composed of up to eight

blocks stacked non-adjacently in a pool. Fig. 1 shows the

complete system, while assembling an L-shaped 3D structure.

This work represents a foundation for low-cost robotic un-

derwater assembly and real construction. There are a number

of challenges that will be studied in the immediate future

to scale up the construction to practical structures. On the

design side, the challenge is to find ways of connecting blocks

and grippers that allow simple construction of sturdy, large

structures, requiring a deeper understanding of the interplay

of gravity, buoyancy, and current. We will study the use of

other materials, such as concrete, to enable the construction of

useful structures. On the robot side, robust sensing and control

are necessary to operate in turbid waters and in presence of

currents.

II. RELATED WORK

Our work begins to explore the possibility of automated

underwater construction. Under the umbrella of this topic,

work has been done on underwater manipulation and robotic

construction on land, underwater, and block designs.



A. Underwater Manipulation

Underwater manipulation often focuses on enabling under-

water vehicles to perform intervention activities, like manipu-

lating an interface on a panel underwater or helping to perform

sample collection [12]. Underwater manipulation systems in

practice are generally tele-operated, but autonomous underwa-

ter manipulation has recently started to receive some attention.

Typically, underwater manipulation systems use high degree of

freedom manipulators meant to provide similar capabilities to

robot arms on land. Underwater manipulators are expensive,

with prices that range from a few thousand for the very

simplest manipulators, up to millions of US dollars [40]. In

water, the coupling between the arm’s motion and the vehicle’s

requires complex control laws to overcome. The TRIDENT

project in the EU [38] is an example of a project specifically

designed to enable autonomous intervention with high degree

of freedom manipulators mounted on a large Autonomous

Underwater Vehicle (AUV). In our work, we take a nearly

opposite approach. We design our system around making

the manipulation task as simple as possible, which allows

us to disregard the complex dynamic coupling between the

manipulator and the robot’s body. Our 2-DOF manipulator

requires no special control, making our system much cheaper

to deploy.
One of the closest prior works to ours in spirit is the system

developed by Palomeras et al. [31] which features a docking

station custom-designed to mate with features on an interven-

tion AUV. The AUV pushes itself with a controllable force

into cone-shaped features on the docking station, allowing it to

have a stable base from which to use its on-board manipulator.

While the idea of passive error correction is present in this

work, we apply the idea in a more drastic way to our system,

eliminating the need for complex control and manipulation

behaviors entirely.

B. Robotic Construction

Underwater robotic construction is still in its infancy [4]:

it has been directly addressed in the literature primarily focus-

ing on tele-operated approaches. Akizono et al. [1] proposed

using a combination of a conventional camera system and hap-

tic feedback to help a human operator control an underwater

construction robot. The experiments were conducted on land

but suggested success underwater. Utsumi, Hirabayashi, and

Yoshie [46] developed an augmented reality application for a

grasping system that picks up and releases rocks underwater.

Seo, Yim, and Kumar [39] presented some results on water

surface block assembly. A few techniques for self-assembly

of underwater robots have been explored in simulation [20,

48, 45]. While tele-operation can be effective for completing

small-scale manipulation tasks, it requires specially trained

human operators and high bandwidth connections between the

robot and operator. Underwater communication of sufficient

bandwidth still requires a physical tether in practice which

drastically limits the range and duration possible for a de-

ployment of a robotic system. In addition, the design of an

intuitive interface for a human operator is often a task-specific

process, making the deployment of new kinds of construction

technologies challenging.

Ground robotic construction is more mature [36], with

solutions that propose the use of a ground robot with a ma-

nipulator, e.g., wheeled robots [35, 19, 22] and tracked robots

[15, 24]. The first construction projects involved building brick

walls [3, 7] and only few years ago, Sam100 robot became

the first commercially viable bricklaying robot [14]. More

recently, Sustarevas et al. [43] proposed a mobile robot for 3D

printing large structures. Several construction systems work

by deploying multiple robots that tightly cooperate, e.g., to

carry long rods [41, 11, 56, 9, 21] or assemble parts [26].

Other robotic construction methods used swarms of robots that

assemble simple passive blocks that robots can easily pick up

and assemble into 2- and 3-D structures [50, 44, 53, 32, 54,

2, 13, 49, 23, 27]. A set of work is based on multiple simple

robots and programmable blocks that can interact with each

other and self-assemble into complex structures, e.g., [42, 52,

51, 33]. The use of smart blocks would be too expensive for

a large scale construction underwater.

Aerial robotic construction, although not as mature as

ground robotics construction, has seen a rise [6], due to

advances in aerial grasping and manipulation [55]. Some work

proposed the construction of truss-like structures assembled

by a team of quadrotors [37, 29]. Braithwaite et al. [10]

demonstrated constructions of a multi-element tensile structure

between anchor points through small UAVs. Hunt et al. [25]

presented a prototype for 3D printing with a flying vehicle.

The idea of adjusting construction elements to suit the aerial

vehicle was recently explored. Augugliaro et al. [6] designed

90-gram foam blocks that small quadcopters were able to pick

up to construct a 6-m tower. The UAVs were able to place the

blocks with millimeter of accuracy. Similarly, Latteur et al.

[28] showed drones that were able to build a tower of hollow

concrete cones, the design of which allowed for 6.5 cm of

inaccuracy from the controller.

Our approach to underwater construction is similar in spirit

to the latter type of work: we design blocks with geometries

that maximize the capture region of a joint and reduce error

during manipulation, resulting in a lower demand on both

sensing and control.

III. UNDERWATER ROBOTIC CONSTRUCTION SYSTEM

We are particularly motivated by mortarless construction

techniques, as a simple first approach to underwater assembly.

Fig. 2 shows some motivating examples: a human-assembled

modular reef structure, and an Incan wall which is still sturdy

half a millennium after its construction.

While some of the design choices are independent of the

specific robot used, we ground our presentation to Droplet, a

low-cost BlueROV2 heavy configuration1, which we heavily

modified to make it autonomous and tetherless. The robot has

an 8-thruster vectored configuration allowing for 6 degree-of-

1https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/
brov2-heavy-retrofit-r1-rp/



(a) The MARS modular reef structure
(Reef Design Lab; Alex Goad)

(b) Mortarless construction of an Incan
wall (Bcasterline; Wikimedia).

Figure 2. Sources of inspiration: modular artificial reefs and mortarless
construction.

(a) (b)

Figure 3. (a) Rendering of error correcting block. The gripper slot is magenta
and drop error correction features are green. (b) Idealized model used for
acceptance area. Black and white circles represent receiver. Green represent
successfully dropped block.

fredom control, and a number of sensors, including a camera

and an IMU.

A. Passive Error Correcting Blocks

We exploit passive error correction both to absorb noise in

the system and to provide a convenient simplification of the

assembly process. Figure 3a shows a rendering of the block

design. The sides are fitted with large 3.175 cm deep pyramid-

shaped recesses that mirror the pyramids on the robot’s finger

tips. During pickup, the robot’s positional noise actually helps

the block reliably slide into the desired grasp position as the

fingers are gradually closed. The top and bottom of the block

are fitted with mirrored cone slots. The cones allow the block

to slide into place from a variety of pre-drop positions. The

cones also help keep the block in place despite gentle bumps

from the robot as it grasps the block.

Our design is inspired by Eckenstein and Yim’s work on

acceptance area for docking connectors [16]. The acceptance

area, A, is the set of all deviations from the ideal dropoff
position, I, from which the blocks can successfully align

by sliding along the mirrored cones. Figure 8 shows the

acceptance area and ideal dropoff location for our blocks in

2D. To determine whether the robot is in the acceptance area

of a block we use a conservative tolerance region t specified

as a box in 6D configuration space.

In an ideal case, disregarding friction and bouncing effects,

Figure 4. 2DOF manipulator grasping a block.

we can think of any pre-drop position of the block as being

successful if the projected circles of the slots on the bottom

of the block contain the tips of the cones in the slots the

block is being dropped onto – see Fig. 3b. By using this low

dimensional idea of the acceptance area of a block pair, we

can create an abstraction of the robot’s workspace in which

we can plan assembly behaviors. We consider the acceptance

area of each possible block position to be a single point in our

discrete task space.

The size of the acceptance area of the blocks can be

designed to fit estimated localization quality and external

effects such as currents, making the system robust in a variety

of circumstances. Section IV discusses how the design can be

adapted based on known sensor noise.

B. Custom 2DOF Gripper

In the spirit of co-designing hardware and software to

achieve a simple system in aggregate, we designed a 2 degree-

of-freedom gripper specifically for the task of stacking our

blocks (Fig. 4). The gripper has two large fingers fitted with

3D-printed pyramid-shaped pads as large as the side of the

blocks. The fingers are actuated with a parallel linkage driven

by a high torque underwater servo2. The gripper has a “wrist”

joint which can rotate the fingers relative to the robot using

another servo. The wrist joint allows improved design freedom

without increasing the complexity of how Droplet localizes.

The fingers feature a slightly acute angle held in place by

tensioned torsion springs between the actuated link and the

link that interfaces with the block. When the fingers are closed

around a block, tension is increased due to the torsion springs.

The torsion springs help prevent the gripper from pulling itself

apart on failed grasps and add a natural end stop for the servo,

ensuring the block is tightly grasped when the servo reaches

its stall current. No position or force sensing is required by the

high-level planner to reliably grasp blocks using these fingers.

After several iterations on placement choices for the gripper,

we settled on mounting the gripper directly below Droplet’s

center of gravity. In this position, roll and pitch noise in

Droplet’s position translate to position error in the manipulator.

2https://www.bluetrailengineering.com/servos



The extent of this error increases linearly with the distance that

the fingers hang below the chassis. Because of this we adopted

the design goal of making the gripper as short as possible. The

gear box that drives the wrist joint hangs only 3.5 cm below

the chassis and the gear box driving the finger linkage adds 9
cm. Because Droplet grasps blocks from the side, the primary

contributor to the height of the manipulator is the large set of

fingers which must be tall enough to surround the block.

While picking up a block, the manipulator controller grad-

ually closes its fingers. Gradually closing the fingers increases

the total time required to manipulate each block, but prevents

the fingers from jamming before they slide into place. While

closing the fingers slowly, the position noise of the robot helps

the block slide into the correct position more reliably.

While dropping a block, Droplet opens its fingers as quickly

as possible. Opening the fingers rapidly allows Droplet to take

advantage of opportunities to drop the block at the correct

position amid positioning noise. By limiting the amount of

time the block is in contact with the fingers, Droplet limits

the effect of changing velocity and position on the block’s

trajectory as it falls.

C. Assembly Planning

Fiducial markers on two build platforms provide the frames

of reference assembly behaviors take place in. Each platform

is fitted with a bundle of fiducial markers which are used

to determine Droplet’s pose R in the platform’s frame of

reference Pi,
PiTR, with Z pointing upward, X towards the

marker along the long aluminum struts, and Y to the right

facing the marker.

To simplify the assembly process, we fitted the platforms

with 3D printed slots which provide error correction for the

first layer of dropped blocks and hold blocks in position

reliably before they are used during assembly (Fig. 5). Both of

the platforms are levelled before assembly occurs using bolts

that serve as adjustable height legs. Because Droplet holds

itself orthogonal to the gravity vector, it is assumed there is no

angular difference between the build platforms and the robot

on the roll and pitch axes.

Assembly sequences for Droplet are specified in a high

level GCode like format used in CNC machines. Currently,

there are three possible commands: PICKUP, DROP and

ROTATE WRIST. The pickup and drop commands take as

arguments the platform ID and the 3-dimensional indices of

the target slot for the behavior. For example, PICKUP 0 1 2

3 instructs the robot to pick up the block on platform ID 0

at slot number 1 2 3. The index of a slot is translated to a

waypoint relative to the marker mounted to the build platform

by displacing the known location of slot number 0 0 0 by the

dimensions of each slot. The system is sensitive to the proper

calibration of the location of slot 0 0 0. Measurements during

the platform’s fabrication process proved to be enough for

proper calibration in our experiments. The specification format

is simple enough that an assembly sequence could easily

be generated using a higher level layout planning method.

Currently, the sequences are specified by hand.

Figure 5. Build platforms with rigidly attached fiducial markers; pickup and
drop platforms are on the left and right, respectively.
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Figure 6. State machine phases to manipulate a block. For simplicity,
we identified “Manipulate Block” for CLOSEGRIPPER, OPENGRIPPER; RO-
TATEWRIST can happen just after the last COARSEMOVE, when Droplet is
far from the platforms.

Given a high-level build sequence specification, the robot

compiles the sequence into a state machine that controls

the robot through the assembly process. The state ma-

chine has 6 possible states: SWITCHPLATFORMS, COARSE-

MOVE, ACCURATEMOVE, CLOSEGRIPPER, OPENGRIPPER,

ROTATEWRIST. Each state has a paired PID controller –

described in the next subsection – and a termination condition.

Each state specifies a waypoint in the frame of reference of one

of the build platforms which becomes the target for the PID

controller. The SWITCHPLATFORMS state moves the robot on

an open loop rotation then engages a P controller to navigate to

a point far away from the blocks. The ROTATEWRIST, OPEN-

GRIPPER and CLOSEGRIPPER states use a PID controller to

hold the robot steady while moving the gripper.

The ACCURATEMOVE and COARSEMOVE states move

the robot using a PID controller until it receives a location

reading within the tolerance region t of its target slot. The

user may specify the size of t to trade accuracy for speed.

ACCURATEMOVE is given a smaller t than COARSEMOVE

to ensure blocks are dropped in the proper position. Figure 6

shows the states the robot moves through for each pickup and

drop action.

D. AUV Control

Droplet’s thruster configuration is as follows: four of the

thrusters face downwards on a square about Droplet’s chassis

and are used to control the θ (roll), φ (pitch) and Z axes. Four

thrusters below the main electronics tube control the X , Y and



Figure 7. Sensing/control diagram of Droplet.

ψ (yaw) axes. Though there is coupling between Droplet’s roll

and pitch and its X and Y velocity (the top four motors are like

a drone), we disregard the coupling of the two sets of motors

because, in practice, Droplet is effective at staying level.

Each set of motors is controlled by a PID controller for

each axis which are combined using a tweaked version of the

algorithm from the BlueROV2 low-level controller [5]. The

T200 thrusters have a signal deadband around their stopped

position which makes using them at low speeds difficult. Our

version of the motor mixing algorithm adds the offset values

(Mf , Mb) for each motor to eliminate the need to reason about

the signal deadband. In practice, the value required for each

motor differs drastically and is different in different directions.

The data used to drive Droplet’s PID controllers come from

both the visual fiducial markers and the on-board IMU. The

on-board accelerometers are processed using a complemen-

tary filter [47] to give a high accuracy, high rate estimate

of Droplet’s θ and ψ angles. Droplet’s internal gyroscope

provides θ, φ, and ψ velocities. Because the data for the θ
and φ angles is high quality and high rate, Droplet is effective

at holding itself steady. In addition, we ballasted Droplet

specifically to increase stability, on its θ and φ angles.

Droplet’s X,Y, Z, ψ are recovered from the visual fiducial

markers. Droplet’s linear velocity is computed by differentiat-

ing the reading from the visual fiducial markers and applying

a low pass filter. The ψ angle receives high quality velocity

estimates, making it very stable as well. The X , Y and Z axes

receive the relatively low quality velocity data making them

the largest source of position noise.

IV. ADAPTING BLOCK DESIGN TO LOCALIZATION NOISE

By modifying the size of the acceptance area, A, of the

blocks and slots, we can adapt the system to different levels of

noise, localization, or control quality. Because Droplet makes

use of an opportune dropping strategy, it is paramount to limit

the number of false positive location readings. We define a

false positive location reading, E , as the event in which the

robot’s true location, l, is outside A but it receives a sensor

reading, p, which is within the tolerance region t about the

ideal dropoff position I. If the block is dropped from l it will

fail to align as intended.

Misplacing a single block causes the entire assembly pro-

cess to fail, so reliably determining when the robot is within

the acceptance area of a slot is key. We can achieve this

reliability in two ways: by either reducing the noise in our

localization data, or by increasing the size of the acceptance

area. Decreasing the size of the tolerance region t reduces the

probability of getting a false positive reading but makes it more

difficult to get a true positive reading. Increasing the size of

the acceptance area requires increasing the size of the blocks,

eventually making them unwieldy to manipulate. Reducing

localization noise is challenging especially in underwater

environments. Thus, there is a trade off between three design

dimensions of the system: the size of the acceptance area,

the size of the tolerance region, and the noise level in the

localization data.

As discussed in the previous section, the least reliable

location information available to Droplet is its global x, y
position, so we limit our analysis to a 2D tolerance region

t = (tx, ty) specified as a box of side lengths 2tx, 2ty centered

on I. Figure 8 shows the tolerance region, acceptance area and

ideal dropoff position, for our blocks. Let the radius of the base

of the female cones on the bottom of the blocks be r. In the

2D case, A, is a circle of radius r centered on I. We can

parametrize block designs in one dimension using r.

Given a known covariance of sensor readings, Σ, we can

compute the probability of getting a false positive at location l,
P(E|l,Σ) by integrating the multivariate Gaussian distribution,

N , with mean l over the tolerance region t = (tx, ty):

P(E|l,Σ) =
∫ Iy+ty

y=Iy−ty

∫ Ix+tx

x=Ix−tx

N ([x, y], l,Σ)dxdy (1)

To use P(E|l,Σ) as a general design aid, we can compute

a worst case P(E|Σ) by finding the point l on the border of

A that maximizes P(E|l,Σ):

P(E|Σ) = max
l∈∂A

P(E|l,Σ) (2)

Figure 8 shows how P(E|Σ) changes with r using the worst

location covariance observed in the experiment in Section V-B

and t = (0.012, 0.012) m, the value used by ACCURATE-

MOVE before dropping a block. By conservatively selecting

r, we can ensure reliable assembly. For our implementation,

we chose r = 0.042 m to balance error probability and 3D
printing speed.

V. EXPERIMENTAL VALIDATION

To achieve low-cost autonomous underwater assembly, a

significant amount of re-engineering on the robot and hardware

was required. Because of a latency of 0.1 seconds of the

stock camera, making visual-based autonomous control at

cm-level impossible, we used a FLIR Blackfly S 1440 x

1080 monochrome camera at 30 FPS with a Stardot Tech-

nologies 4mm fixed focal length lens. For autonomous on-

board operations, we removed the tether and we exchanged

the stock Raspberry Pi computer for a more powerful Intel

Upboard UpSquared featuring 8GB RAM and a 2.5GHz quad

core processor which runs the localization and main control

software. We replaced the stock firmware of the low-level

controller with our implementation – SimpleSub – to have a
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Figure 8. (a) A (cyan), I (green) and t (gray) for our block design. (b)
Numerical approximation of P(E|Σ) for increasing r with the value of r =
0.042 used for our blocks marked in red.

lower latency to directly control each thruster and get IMU

measurements at 500Hz (instead of 10Hz) from the main

computer. To achieve stability over roll and pitch, we ballast

the robot using a raft made of PVC trim fixed to the top of its

chassis and a pair of ballast tubes filled with marine buoyancy

foam fixed to the sides of its chassis. Designs for the mounting

hardware and a parts list to replicate Droplet are available on

Github3.

We built the pickup/drop platforms out of 5 cm by 2.5 cm
aluminum extrusions. One platform is designated as a palette

which holds the blocks in known positions before assembly.

The other is designated as the dropoff platform and serves as

the base for the built structure. Each platform is fitted with a

set of cone-shaped slots that mate with the blocks. The slot

cones are fastened to the build platform and held securely

in known locations relative to the fiducial marker. The build

platforms also feature threaded legs which are used before

each experiment to level the platform, eliminating the need to

reason about the platform’s relationship to the gravity vector.

The fiducial markers were printed on aluminum with laser

cut mounting holes that allow it to be precisely mounted on

a white Delrin back plate, fixed onto the aluminum extrusion.

We chose STags [8] as fiducial markers, due to their detection

robustness underwater in our preliminary experiments com-

pared to other markers commonly used, e.g., ARTag [18]. We

printed our blocks in PETG (material commonly used in water

bottles) using a Pegasus 12 and a Creality CR-10 3D printer.

Each block was ballasted to be slightly negatively buoyant,

using stainless steel washers suspended on bolts through the

center of the block.

A. Validating ideal acceptance area

To understand whether our ideal model of the valid pre-drop

locations is valid amid hydrodynamic and frictional effects, we

3https://github.com/dartmouthrobotics/underwater-assembly-auv

built a rig that fits onto one of the build platforms and allows

x,y,z and yaw placement of the hand (Fig. 9a). To position

the hand relative to a drop slot, we hang a plumb bob from

the center of the hand which points to a 2.5 cm grid of dots,

painted on the slot using a 3D printed stencil. While this setup

allows some manual positioning error, it gives us a higher level

of certainty about the true position of the fingers relative to

the slot than would be possible using our visual positioning

system alone. For each drop trial, a block is placed in the

gripper and manually released by an operator.

As a first experiment, we dropped a block with the fingers

elevated 13 cm above the slot with the yaw of the fingers

aligned correctly with the slot. We completed five trials at

each of 49 locations, for a total of 245 drops, and recorded

whether or not the block fell into the proper alignment with

the slot. At 13 cm, the bottom of the block is resting about

3 cm above the top of the cones of the slot. At this height,

hydrodynamic effects proved to have minimal effect on the

trajectory of the block as the block fell and slid into place

properly for each of the five trials. In this configuration, each

of the 245 drops slid into the predicted alignment.

When we moved the gripper 25 cm to above the slots,

the results of dropping differed significantly from the ideal

model of acceptance area. We dropped the block twice from

each location in a 7 × 5 subset of the grid. In Figure 10

we compare the results of dropping at 13 cm and 25 cm.

Small perturbations in the block’s initial configuration as it

is dropped cause it to catch the water as it falls in different

ways. The center void that we left out to speed print time

and allow the mounting ballasts acts like a sail. At 25 cm, the

block did not align as expected in 14 of the 70 drops.

We also tested the yaw of the gripper relative to the slot

when held over the ideal position. In this case, the block was

able to slide into the correct position from up to ten degrees of

misalignment. With higher yaw misalignment, the block lands

on top of the cones but without sliding into place on them.

When the block failed to land in proper alignment with the

slot, the most common problem was that it would be either one

set of cones too far forward or backward. When the block lands

in a stable, but wrong, location, the error is more difficult for

the system to recover from: the robot must understand where

it dropped the block and how it might remove the block. If

the block completely falls off the side, it is more simple to

correct: the robot needs simply understand the block didn’t

land and try again.

B. Localization noise testing

To understand the probability of getting a false positive

localization reading, we mounted the robot on the same rig

used for the dropping experiments and positioned it at 49

different xy locations relative to the desired slot. We recorded

the position readings received from the visual localization

system over 10 seconds at each location. Figure 9b shows

the robot mounted on the rig and Fig. 11 shows the results

of this experiment. We mark the tolerance region as a 2.4 cm
square about the center of the slot and the ideal acceptance



(a) (b)

Figure 9. Manual positioning rig used for dropping (a) and localization (b)
experiments.

Figure 10. Expected (left) vs actual successful pre-drop locations sampled
on X,Y plane at 13 cm (center) and of 25 cm (right) above the slots sampled
on a grid of X,Y pre-drop position errors.

area of the block as a cyan region.

Upon inspection of the noise at each location, we found that

the noise is roughly Gaussian distributed for each location with

a standard deviation of 0.0004 on the x axis and 0.0033 on

the y axis when the robot was positioned just above the ideal

dropoff location. We received no false positive readings for the

duration of the experiment which supports the low probability

predicted using Equation (2) in Figure 8.

Figure 11. Locations measured using plumb bob relative to the tolerance
zone and ideal acceptance area.

C. Effect of tolerance on time

When reducing the size of the tolerance region for a way-

point, reaching a waypoint becomes more challenging for the

robot, increasing the time required for the robot to complete a

build sequence. To understand the tradeoff between runtime

and accuracy, We searched over a set of 81 combinations

of tolerance values for the X and Y axes of the robot. For

each combination of X and Y tolerances, the robot navigated

a triangle of three waypoints spaced about 10 cm apart and

recorded the time to complete the entire circuit.

Figure 12 shows the results of this experiment. While the

measurement process involved a large amount of noise arising

from slight differences in how the robot approaches each

waypoint, it is clear that larger tolerance regions allow the

robot to complete the circuit faster. Based on these results,

we use a large tolerance 4.0 cm for repositioning maneuvers

near the blocks and then a smaller tolerance for dropping and

pickup actions: 1.2 cm on the X,Y axes and 2.5 cm on the Z
axis.

D. Repeatability testing

To validate our model of how often a false positive reading

will occur, we completed two sets of repeatability trials in

which the robot picked up and dropped a single block from

the center location in Figure 11 a total of 100 times. For the

first set of 50 trials, Droplet approached the block, picked it

up, moved backwards and up 30 cm then replaced the block.

To make the second set of trials more challenging, droplet

moved to a randomly selected 3D point behind and above

the slots between every pickup and drop. Before each drop

action, Droplet descended to a point where the bottom of the

block was just above the cones of the slot. In all 100 trials,

Droplet successfully placed the block in the correct location.

Figure 13 shows the location readings that triggered each drop.

The reliability Droplet achieved during this experiment shows

that our simplified analysis of the acceptance area and false

Figure 12. Time to reach a waypoint using the first-hit, pause, second-hit
method of deciding on when a waypoint is reached. Standard deviation: 9.26 s.



Figure 13. Successful pre-drop position readings for 100 repeatability trials.

Figure 14. Timeline of robot’s assembly states during a seven block trial of
the system.

positive probability works well despite unpredictable noise

from control and slight tipping on the roll and pitch axes.

On average, each drop took 147 seconds to complete,

making the entire set of 100 trials take over four hours of

runtime to complete. Reducing the time spent per block could

have significant impact on allowing Droplet to build larger

structures on a single charge. In the next subsection, we show

a breakdown of the time required for each drop.

E. System Trials

To validate our system as a whole, we specified a seven

block build plan in which all blocks are picked up from a

pallet and placed on a build platform, forming an L-shaped

wall. Once both platforms are properly levelled, the robot

was able to successfully complete the build plan in about 30

minutes. This build plan showcases all of the design aspects of

our system. We designed the structure to have one-slot spaces

between blocks to allow the robot to have a clean area to

approach to prevent bumps with the structure from knocking

the whole structure over. In addition, we specified two straight

structures: a pyramid of six blocks and a wall of eight blocks.

See Figure 15 for examples of the structures built by Droplet.

We had the robot record the time each phase of the assembly

process took during the seven block L-wall build. Figure 14

shows a visualization of the phases the robot moves through to

complete the assembly process of the seven block L-wall. The

majority of the time was spent repositioning the robot between

grasp and drop locations (1025 seconds). The second most

time consuming action was closing the gripper (278 seconds).

Finally, switching platforms took 60 seconds and waiting to

drop the block took 44 seconds.

VI. DISCUSSION AND FUTURE WORK

This paper establishes a solid first step towards achiev-

ing more general autonomous underwater construction. Our

robotic system is capable of creating structures out of mortar-

less error correcting blocks and achieve 100% success rate.

Starting from this foundational work, we plan to pursue

research directions that will enable Droplet to build more

practical structures in more realistic field settings.

Design Flexibility. Our current system is limited to a single

block geometry placed in one of two angles on a rectangular

grid. By exploring different shapes of blocks, we can allow

Droplet to build more interesting and useful structures using

the same assembly behaviors. As a simple first step, we plan

to explore the addition of double length blocks which could be

used to make roofs or to more quickly build large structures.

Block material. We currently 3D print the building blocks

from PETG which makes it easy to iterate on designs and

keeps the blocks light weight. Because of the amount of time

required to print each block and the cost of material, it is

infeasible to scale the production of PETG building blocks to

realistic construction levels. In previous work, we made several

blocks using a concrete / perlite mix which were buoyant

enough to easily manipulate. While the concrete blocks had

increased friction, they were still able to slide into place. We

plan to explore ways to design concrete blocks that can still

slide into place while having features large enough that they

do not break after repeated drops.

Block hydrodynamics. By tuning the weighting and outer

shape of our blocks, it would be possible to design them

to fall in ways that helps increase the reliability of drop-

based assembly. We purposefully limited the time that the

blocks spend falling through the water because our design

disregarded hydrodynamic effects. By using hydrodynamics

as a design opportunity, we could speed the assembly process

by allowing Droplet to drop blocks while moving quickly high

above the structure. Paying attention to the hydrodynamics and

weighting of the blocks combined with an opportune dropping

strategy could also allow Droplet to build structures in waters

with currents.

Error detection. While we currently achieved a perfect

success rate, in more complex structures blocks might fall out

of place. To solve this problem, we plan to enable our robot to

perform basic error detection. Because the blocks are designed

to slide into place if they are stacked within a given acceptance

area, we can start by using the vehicle’s front mounted camera

to detect whether a structure matches the desired structure. If

not, the misplaced block can be knocked off of the top with



the gripper or a new block can be fetched and added to the

top of the structure.

Time. One key limitation of our system is that the size

of a structure which can be built on a single battery charge is

limited by the amount of time it takes to place each block. Our

current manipulation strategy consisting of a set of phases with

increasingly tight tolerances ensures that the robot remains

in control throughout the execution of a trajectory, limiting

overshoot for important maneuvers. The trade we make is

that it takes several minutes to place each block. In many

instances, the robot will be visibly in the right location to

move its gripper but will take several seconds before actuating

the gripper. We will study improved opportunistic drops and

automated layout planning to speed assembly time.

Robust localization. To make our system applicable in live

field settings, it will need to be robust to a variety of water and

lighting conditions. Our dependence on fiducial markers limits

us to deploying in clear waters with ample light. Reduced

light or cloudy waters would result in unacceptably inaccurate

positioning information. In future work we plan on exploring

other forms of rapidly deployable localization infrastructure

such as acoustic-based systems or by introducing basic sensor

fusion, allowing an IMU to aid in localization for short periods

of low visibility.
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