

1 **Rapid and Reproducible Characterization of the Wavelength Dependence of Aquatic**
2 **Photochemical Reactions Using Light Emitting Diodes (LEDs)**

3
4 **Authors:** Collin P. Ward^{1*}, Jennifer C. Bowen², Danielle H. Freeman^{1,3}, and Charles M.
5 Sharpless⁴

6
7 **Affiliations:**

8 ¹Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution,
9 Woods Hole, Massachusetts 02543, USA.

10 ²Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI,
11 48109, USA.

12 ³ MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge
13 and Woods Hole, MA, USA

14 ⁴Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08540,
15 USA

16 **Corresponding author:** Collin Ward, cward@whoi.edu
17

18 **TOC Graphic:**

19
20
21

22 **ABSTRACT**

23 Arguably the largest knowledge gap in the aquatic photochemistry discipline is the wavelength
24 dependence of sunlight-driven reaction rates in surface waters. Here, we introduce a new light-
25 emitting diode (LED) based approach to directly quantify the wavelength dependence of aquatic
26 photochemical reaction rates. The LEDs generate narrow-banded, spatially uniform light at five
27 wavelengths (275, 309, 348, 369, and 406 nm), with irradiances that are very stable and easily
28 adjusted to desired levels. Strong agreement was observed between irradiance measurements in
29 each LED reactor using chemical actinometry and spectroradiometry. Apparent quantum yield
30 (AQY) spectra of photochemical oxygen consumption by Suwannee river organic matter were
31 determined four times across a six-month period. The shape and magnitude of the AQY spectra
32 were highly reproducible, as indicated by strong exponential fits ($R^2 \geq 0.98$) and low variability in
33 oxidation rates across the four trials (coefficient of variation = $\sim 10\%$). This LED-based approach
34 is cost-effective, high-throughput, and portable, allowing a broader community to study the
35 wavelength dependence of aquatic photochemical processes in more detail than was previously
36 possible. We anticipate that this approach will substantially advance our understanding of the
37 wavelength dependence of photochemical reactions in surface waters and improve the accuracy of
38 kinetic models.

39

40

41

42

43

44

45

46 **INTRODUCTION**

47 Aquatic photochemistry is an interdisciplinary field that examines how sunlight-driven reactions
48 impact the fate and composition of diverse materials in surface waters, including major and minor
49 elements (e.g., C,¹⁻¹⁴ N,^{15,16} O,^{17,18} S,¹⁹ P,²⁰ Fe,^{21,22} & Mn²³), inorganic and organic pollutants (e.g.,
50 heavy metals,^{24,25} crude oil,²⁶⁻²⁸ pharmaceuticals and personal care products,^{29,30} pesticides,³¹ &
51 plastics^{32,33}), and biomolecules (e.g., lipids,^{34,35} amino acids,^{36,37} and pigments³⁸). Accurate
52 assessment of photochemical processes requires information about the reaction kinetics, which
53 depend on the light available at different wavelengths throughout the water column and the
54 photochemical reaction efficiency, or apparent quantum yield (AQY; mol product per mol light
55 absorbed) at those wavelengths.

56

57 For simplicity, most aquatic photochemistry studies are conducted under broadband light (natural
58 or simulated) to estimate reaction rates in sunlight, but this approach does not provide information
59 about the AQY wavelength dependence (AQY spectra). Approaches for examining wavelength
60 dependence have historically had several drawbacks, including low sample throughput, that have
61 made work in the area difficult. Consequently, there is a large knowledge gap around AQY spectra,
62 particularly for complex photosensitizers, such as dissolved and particulate organic
63 matter.^{4,5,7,12,39-41} This limits our ability to model many photochemical reactions in surface waters
64 and, in turn, incorporate sunlight-driven processes into Earth system models.

65

66 To measure AQY spectra, two traditional approaches exist: monochromatic and polychromatic.
67 The monochromatic approach either uses high powered lasers⁴² or combines a high-power
68 broadband light source (e.g., Xe or Hg arc) with a discrete band wavelength selection device (e.g.,

69 monochromator or band pass filters) to approximate monochromatic light.^{15,17,43} Major benefits of
70 this approach are that AQYs are measured directly and that photon dose-dependence,^{7,17,43} or the
71 change in reaction rate over time due to increased light absorption, can be controlled for. Major
72 limitations of this approach are sample-throughput, cost, and portability and, in the case of laser
73 excitation, the potential for environmentally irrelevant multiphoton phenomena. In contrast, the
74 polychromatic approach improves throughput and can modestly reduce equipment cost.^{43,44} In this
75 approach, a series of long pass optical filters is used to progressively cut off shorter wavelength
76 portions of an arc source spectrum, and the difference in reaction rates and light absorption rates
77 obtained between successive filters is used to calculate AQYs. The major benefit of this approach
78 is high sample throughput because numerous vials are simultaneously exposed to different
79 wavelengths. A major limitation is that the shape of the AQY spectrum is typically assumed (e.g.,
80 exponential or linear decay with wavelength), which can produce inaccurate AQY spectra.
81 Another limitation is the inability to easily control for photon dose-dependence of the kinetics
82 occurring under each filter.⁴⁵ Further, because this approach involves determining the reaction and
83 light absorption rate differences between pairs of filters to calculate AQYs, it inherently generates
84 larger errors than the monochromatic approach. Finally, because the polychromatic approach, like
85 the monochromatic approach, uses high power light sources and optical filters, it, too, is relatively
86 expensive and not easily portable.

87
88 Advances in light-emitting diode (LED) technology over the past decade may provide a means to
89 overcome the many limitations of the monochromatic and polychromatic approaches to measure
90 AQYs of aquatic photochemical processes. The advantages of LEDs are numerous, including
91 relatively low costs, small size, high efficiency, long operating lifetimes, emission of spatially

92 uniform, narrow-banded light, and easy control over irradiance via the power supply current.⁴⁶
93 This technology has already revolutionized the indoor/outdoor lighting and agricultural industries,
94 and it is being readily adopted by the water and wastewater disinfection research community.⁴⁶
95 While the call to replace arc lamps with LEDs has been made⁴⁷, the aquatic photochemistry
96 community has yet to adopt an LED-based approach to spectrally resolve the wavelength
97 dependence of photochemical reactions in surface waters.

98

99 Here, we describe a new LED-based instrument capable of directly assessing the wavelength
100 dependence of aquatic photochemical reactions and overcoming many disadvantages of existing
101 approaches (e.g., cost, sample-throughput, portability), while generating data of high
102 reproducibility and quality. We anticipate that this approach will permit rapid growth in knowledge
103 about the wavelength dependence of a wide variety of photochemical reactions in surface waters
104 and, consequently, improve the accuracy of photochemical kinetic models.

105

106 MATERIALS AND METHODS

107 Description of the LED Reactor Assembly

108 Each LED reactor is comprised of an inner housing, containing the samples, and an outer housing,
109 on which is affixed an LED chip (Figure 1; Appendix S1). On top of the outer housing is a washer
110 that provides the base for the LED chips, which are mounted to a printed circuit board and a heat
111 sink. Passive cooling by the heat sink is sufficient to maintain the samples at room temperature,
112 22 ± 1 °C, without any additional cooling. The LED chips face down toward the inner housing
113 which contains four quartz tubes. The inner housing is machined specifically for the dimensions
114 of the tubes but can accommodate a variety of reaction vessel shapes and sizes depending on the

115 reaction of interest. Both housings are painted black matte to minimize light scattering and to
116 decrease stray light in the laboratory. A separate power supply is used for each reactor. A detailed
117 protocol for reactor assembly, validation, and use is provided in Appendix S1.

118

119 **Spectroradiometry and Chemical Actinometry**

120 Spectral irradiance measurements in all reactors were made with a NIST-calibrated Black Comet
121 spectroradiometer equipped with a cosine corrector (StellarNet Inc.; Appendix S1). Chemical
122 actinometry was assessed in the 309, 348, 369, and 406 nm reactors by measuring the
123 hydroxylation of benzoic acid to salicylic acid in the presence of nitrite.⁴⁸ Actinometry was not
124 assessed in the 275 nm reactor because the AQY of salicylic acid production has not been reported
125 at that wavelength.⁴⁸ Salicylic acid production was quantified fluorometrically using an Aqualog
126 (Horiba Scientific).

127

128 **Photochemical Oxidation Experiments**

129 Photochemical oxidation (dissolved O₂ consumption) experiments were conducted as an example
130 test of the LED reactors' long-term precision in measuring AQY spectra and oxidation rates. These
131 experiments used Suwannee River natural organic matter (SROM; 2R101N) acquired from the
132 International Humic Substances Society (<http://humic-substances.org/>). In total, six experiments
133 were conducted over a six-month period using four replicate solutions of SROM. Triplicate
134 experiments were conducted for one SROM solution on three consecutive days (referred to as
135 experiments 2a, 2b, and 2c). The coefficient of variation (CV) of photochemical oxidation rates
136 was 11%. To simplify the presentation, the averaged results of experiments 2a, 2b, and 2c are

137 presented in the main text as experiment 2. All results from the oxidation experiments are
138 summarized in Table S2. The 406 nm LED reactor was only included for experiments 3 and 4.

139

140 Before each experiment, solutions of SROM were prepared in Milli-Q water (Millipore) at a
141 concentration of 20 mg SROM L⁻¹ (~10 mg C L⁻¹). The solutions were adjusted to pH 7.0 ± 0.1
142 and allowed to equilibrate on a stir-plate for 24 hours prior to filtration with a 0.2 µm Sterivex
143 filter (Millipore). SROM was then transferred to Milli-Q rinsed quartz tubes (15 mm outer
144 diameter, 100 mm length; Technical Glass Products, Inc.) and sealed with a Viton-lined GL-18
145 cap with no headspace. The tubes were placed vertically in the inner housing with the flat bottom
146 facing the LED. To minimize the impact of photon dose-dependence (i.e., the change in AQY as
147 the samples absorb more light over time),^{5,39,47} we adjusted the emission intensity of the LEDs via
148 the power supplies such that the moles of photons absorbed by SROM under all LEDs were equal
149 within 5% (Figure 2b; Table S2). The total number of moles of photons absorbed by SROM was
150 calculated by multiplying rates of light absorption (Q_a; mol photons m⁻² s⁻¹, determined via
151 equation 1) by the exposed surface area of the quartz tubes (1.1 cm²) and the time of the light
152 exposure (43,200 s).

153

$$Q_a = \sum_{\lambda_{min}}^{\lambda_{max}} E_{0\lambda} (1 - e^{-a_{SROM\lambda} * z}) \quad (1)$$

154 Here, E_{0 λ} is the incident photon spectral irradiance reaching the quartz tube (mol photon m⁻² s⁻¹
155 nm⁻¹) determined with 1-nm resolution and the summation is performed with 1-nm increments
156 across the relevant wavelengths for each LED (e.g., 332 to 376 nm for the 348 nm LED). Naperian
157 absorption coefficients of SROM ($a_{SROM\lambda}$; m⁻¹) were measured using a Perkin Elmer 650
158 spectrophotometer and calculated as the geometric mean of the light-exposed and dark control
159 treatments to account for photo-bleaching, which was minimal in all experiments (< 5%). The

160 pathlength (z) was 10 cm, equivalent to the height of each vial. Photochemical O₂ consumption
161 was calculated as the concentration of dissolved O₂ in the dark-control tubes minus that in the
162 light-exposed tubes using membrane inlet mass spectrometry (Bay Instruments, Inc.).^{1,13,26,49} At
163 all wavelengths tested, O₂ concentrations decreased linearly with exposure time (Figure S1).

164

165 **Apparent Quantum Yields and Water Column Rate Modelling**

166 Apparent quantum yields (AQYs) for the photochemical oxidation of SROM (Φ_{PO_λ} ; mol O₂ mol
167 photons⁻¹) were calculated for each tube in each LED reactor by dividing the moles of O₂ consumed
168 by SROM by the moles of photons absorbed by SROM. For purposes of modelling exercises, the
169 AQY data were fit to an exponential curve with 1-nm increments.

170

171 Water column rates of SROM photochemical oxidation were calculated via:

$$172 \text{ Photochemical Oxidation (mol O}_2 \text{ m}^{-2} \text{ d}^{-1}) = \sum_{280 \text{ nm}}^{400 \text{ nm}} Q_{a_\lambda} \Phi_{PO_\lambda} \quad (2)$$

173 where Q_{a_λ} was calculated at each wavelength via equation (1) assuming constant: (i) incident
174 spectral irradiance (E_{0_λ}) equal to that of clear-sky noon sunlight at 30°N,⁴⁶ (ii) a_{SROM_λ} of the SROM
175 solutions used in the experiments, and (iii) water depth of 2 m. Summation of rates was performed
176 with 1-nm increments from 280 to 400 nm. The goal of this modelling exercise was not to calculate
177 actual rates of OM photochemical oxidation in the Suwannee River, but rather to determine the
178 sensitivity of calculated water column rates to variability in the AQY spectra.

179

180 **RESULTS AND DISCUSSION**

181 **Characterization of Irradiance in the LED Reactors**

182 To confirm that the light measured by radiometry was representative of the light inside the quartz
183 tubes, we compared the radiometric irradiance at 309, 348, 369, and 406 nm to that obtained by
184 nitrite actinometry (Table S1). The difference between radiometry and actinometry irradiance
185 measurements ranged from 5 to 18%, with an average of 10%. A comparison at 348 nm was made
186 three times over a six-month period to test the reactor performance over time. In these trials, the
187 difference between radiometry and actinometry irradiance measurements ranged from 5 to 12%
188 (Table S1). The strong agreement between radiometry and chemical actinometry (Table S1)
189 validates the reactor's ability to correctly determine AQYs (i.e., radiometry correctly predicts the
190 actinometer AQY).

191

192 Radiometry was then used to further evaluate the irradiance in each LED reactor. Spatial
193 variability of irradiance across the four vial positions was low in each reactor (<10%; Table S1).
194 The irradiance bands were reasonably sharp; full width at half maximum (FWHM) of the bands
195 ranged from 9 to 17 nm (Figure 2a). Irradiance increased linearly with increasing LED current
196 across the range recommended by the manufacturer ($R^2 \geq 0.99$, Figure S2). The peak wavelength
197 and the FWHM of the peaks were stable (± 1 nm) across all current settings. Irradiance for a given
198 LED was independent of power supply, varying by only 1% across the five supplies used in the
199 reactor assembly (Figure S3). Lastly, when using the reactor assembly outdoors, light
200 contamination from natural sunlight was <1% (Figure S4).

201

202 **Assessment of DOC Photochemical Oxidation Using the LED Reactor Assembly**

203 Photochemical oxidation of SROM led to AQY spectra for all four experiments that were similar
204 in shape and magnitude, indicating high precision of the reactor assembly over an extended time

205 period (Figure 2c). AQY values decreased approximately exponentially with increasing
206 wavelength ($R^2 \geq 0.98$). The fits to a linear decay model were comparatively worse ($R^2 \geq 0.89$).
207 The average CV of AQY values ranged from 8 to 14% at 309 and 406 nm, respectively (Table
208 S2). The variability was largely driven by the manual radiometry measurements (CV = 5 to 10%;
209 Table S1) rather than light absorption and O₂ consumption measurements (CV < 1%). Future
210 automation or mechanical sensor control of the radiometry measurements may reduce the
211 uncertainty of AQY values determined using the LED reactors.

212

213 The AQY values reported in this study are comparable to those previously reported for other
214 terrestrial OM sources.¹⁷ For example, at 309 nm, we report an AQY of 1.3 ± 0.1 mmol O₂ mol
215 photons⁻¹, similar to AQYs at 310 nm reported for Shark River OM of 1.8 ± 0.1 mmol O₂ mol
216 photons⁻¹.¹⁷ Although the magnitudes of AQYs were similar, the shapes of the AQY spectra
217 between studies were different. AQYs determined using the LED reactor decayed exponentially
218 with wavelength, whereas Andrews *et al.*¹⁷ reported that their data were best fit linearly with
219 wavelength. This discrepancy could be explained by natural variabilities in the shape of AQY
220 spectra between DOC sources, unequal photon doses for the modelled AQY values in Andrews *et*
221 *al.*¹⁷, or, as previously discussed,⁵⁰ no correction for inner-filter effects.

222

223 To examine how the variability in AQY spectra translates into variability of modelled SROM
224 photochemical oxidation rates, we calculated rates throughout a 2 m deep water column under
225 clear-sky summer conditions at 30°N (Figure 2d). For all experiments, the action spectra peaked
226 at 330 nm. The average rate of SROM photochemical oxidation was 2.5 ± 0.3 mmol O₂ m⁻² d⁻¹.
227 Given the previously established high precision (long-term reproducibility) and accuracy

228 (radiometry agreement with actinometry), we believe this new reactor design is well-suited to test
229 the long-standing hypothesis that photochemical oxidation of DOC may influence the dissolved
230 O₂ cycle in surface waters^{1,17} and, thus, the accuracy of O₂ based methods used to infer the
231 metabolic state of aquatic ecosystems.⁵⁰

232

233 **Five Key Advantages of LEDs for Wavelength Dependence Studies**

234 This study describes an LED-based reactor assembly capable of quantifying the wavelength
235 dependence of aquatic photochemical reactions. There are five key benefits of this new approach.
236 First, the narrow bandwidth (FWHM = ~15 nm) output of LEDs provides reliable wavelength
237 control to directly assess the spectral dependence of photochemical reactions. Available
238 wavebands range from the deep UVC (i.e., < 280 nm, applicable to conditions on early Earth, the
239 upper atmosphere, or UVC water treatment) to the visible (i.e., > 400 nm), allowing the user to
240 customize reactor assemblies, including the inner housings, depending on the reactions of interest.

241

242 Second, the high power and spatial uniformity of LEDs (Figure S2, Table S1) allows for high
243 throughput, reproducible, and direct measurement of AQY spectra (Figure 2c). The precision of
244 AQYs determined using the LED reactor assembly (CV = 10%) is comparable to that of
245 monochromatic systems (CV = 11%).¹⁷ Moreover, the LED reactor assembly represents a
246 substantial improvement over monochromatic approaches that can only measure one or two
247 samples at a time, or polychromatic approaches that indirectly calculate AQYs from differential
248 rates, thus increasing uncertainty in the final values.

249

250 Third, the LED-based approach is more cost-effective than current methods. Because LEDs have
251 low energy requirements, they don't require costly ballasts or power supplies. The narrow-banded
252 light generated by the LEDs eliminates the need for wavelength selection devices (e.g.,
253 monochromator or optical filters). The efficiency of LEDs eliminates the need for costly cooling
254 systems like air conditioners or water baths. Instead, a \$5 (USD) heat sink is sufficient to stabilize
255 samples at room temperature. Moreover, the LED chips themselves are cost-effective compared
256 to Xe arc lamps (~\$750 for a replacement lamp). Cost-effective (<\$10/W) and powerful ($\geq 10\text{W}$
257 optical power) UVA and visible LEDs are already on the market; currently, UVB and UVC LEDs
258 are considerably more expensive (\$1000/W) and have a maximum optical power of $\sim 100\text{ mW}$.
259 Multi-chip arrays can be assembled to increase irradiance, and power levels of individual chips are
260 expected to increase substantially due to heightened demand for energy efficient water and air
261 disinfection.⁴⁶ This cost advantage is especially notable when considered over the system lifetime,
262 given that the expected lifetime of LEDs is at least 10-fold longer than Xe arc lamps ($>10,000$
263 versus 1,000 hours). Not including the quartz tubes, the entire LED reactor assembly used here is
264 comprised of off-the-shelf parts and costs less than \$2,500 to build, which is approximately five
265 to ten times less expensive than widely used, commercial Xe arc based solar simulators (not
266 accounting for the additional cost of a monochromator or optical filters).

267

268 Fourth, our LED reactor assembly is compact ($\sim 3\text{ ft}^3$), lightweight ($\sim 20\text{ lbs.}$), durable, and energy
269 efficient ($<20\text{ W}$), making it operational at remote research field stations or on research cruises,
270 potentially using a car battery and an inverter. This stands in direct contrast to arc or laser systems
271 that are large ($>12\text{ ft}^3$), fragile, immobile ($>200\text{ lbs.}$), and energy intensive ($>500\text{ W}$). The ability
272 to run photochemical experiments in the field eliminates the need to stabilize and preserve samples

273 for subsequent analysis in the laboratory, which may improve the overall quality of the data
274 acquired.

275

276 Fifth, the ability to adjust irradiance (Figures 2b and S2) is a key feature that allows the user to
277 minimize the influence of photon dose-dependence when measuring AQY spectra.^{7,17,43} Dose
278 dependence of photochemical reactions has been recognized for decades, but no high-throughput
279 method has allowed users to account for this process. Reactor assemblies of the type described
280 here provide the community a high-throughput approach to easily characterize photon dose-
281 dependence, which should greatly improve the ability of photochemical kinetic models to
282 accurately predict changes in rates over time.

283

284 Adoption of this new LED-based instrument by the aquatic photochemistry community will
285 substantially advance our knowledge of the wavelength dependence of photochemical reactions
286 and improve the accuracy of rate estimates. Reactions of interest may include the production of
287 reactive intermediates, the cycling of major and minor elements, and the fate of legacy and
288 emerging contaminants. Ultimately, the information gained from this new technology can be
289 incorporated into Earth system models to quantify sunlight-driven processes over space and time.

290

291

292

293

294

295 **Supporting information:** Photochemical oxidation time series tests; irradiance vs. forward
296 current profiles; power supply tests; natural light contamination tests; chemical actinometry vs.
297 radiometry validation tests; experimental data for Figures 2b and 2c in the main text; Appendix
298 describing how to build, validate, and use the LED reactor assembly.

299

300 **Acknowledgements:** We thank Sam McNichol for assistance with the power supply tests, and
301 Rose Cory for discussions about the reactor designs. Funding for this work was provided in part
302 by the Department of Fisheries and Oceans Canada Multi Partner Research Initiative project #1.06
303 (to CPW), the Andrew W. Mellon Foundation Endowed Fund for Innovative Research (to CPW),
304 and the National Science Foundation Graduate Research Fellowship Program (to DHF).

305

306

307

308

309

310

311

312

313

314

315

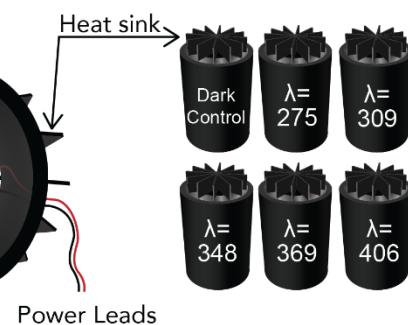
316

317

318

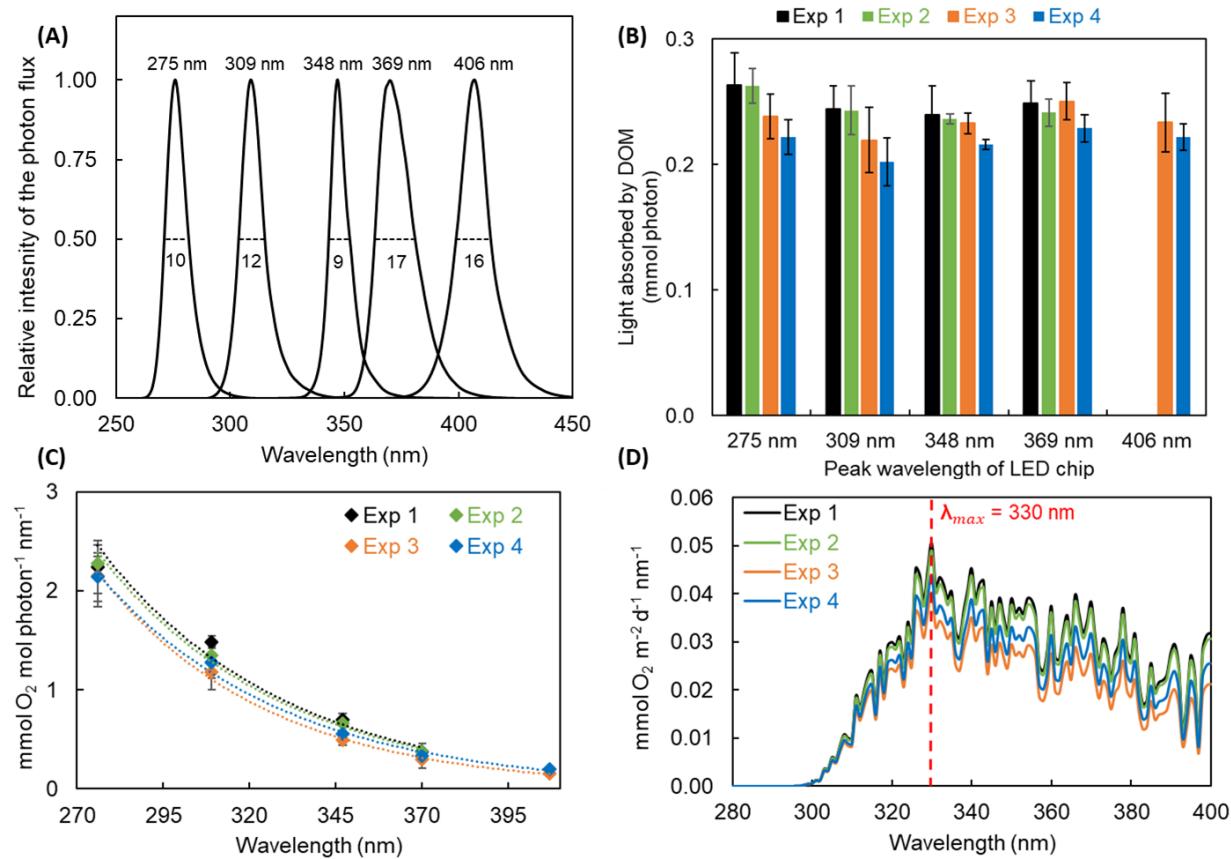
319

320


321 **Figure 1:** Schematic of the LED reactors and assembly.

322

A. LED Reactor



B. Assembly

342 **Figure 2: (A)** Relative spectral photon irradiance for the five LEDs chips used in this study. The
 343 peak waveband and full width at half maximum of each peak is listed. **(B)** Moles of photons
 344 absorbed by SROM in each of the four replicate experiments. The LED emission intensity was set
 345 such that a similar amount of light was absorbed at each wavelength, which minimized the
 346 influence of photon dose-dependence on the reproducibility assessment. **(C)** Apparent quantum
 347 yield (AQY) spectra for the photochemical oxidation of SROM in each of the four replicate
 348 experiments. **(D)** Action spectra for the photochemical oxidation of SROM from 280-400 nm in
 349 each of the four replicate experiments.

350

351

352

353

354

355

356

357

358

359 **References:**

360 (1) Cory, R. M.; Ward, C. P.; Crump, B. C.; Kling, G. W. Sunlight Controls Water Column Processing of
361 Carbon in Arctic Fresh Waters. *Science* (80-). **2014**, *345*, 925–928.

362 (2) Bowen, J. C.; Ward, C. P.; Kling, G. W.; Cory, R. M. Arctic Amplification of Global Warming
363 Strengthened by Sunlight Oxidation of Permafrost Carbon to CO₂. *Geophys. Res. Lett.* **2020**.
364 <https://doi.org/10.1029/2020GL087085>.

365 (3) Dalrymple, R. M.; Carfagno, A. K.; Sharpless, C. M. Correlations between Dissolved Organic
366 Matter Optical Properties and Quantum Yields of Singlet Oxygen and Hydrogen Peroxide.
367 *Environ. Sci. Technol.* **2010**, *44* (15), 5824–5829. <https://doi.org/10.1021/es101005u>.

368 (4) Estapa, M. L.; Mayer, L. M.; Boss, E. Rate and Apparent Quantum Yield of Photodissolution of
369 Sedimentary Organic Matter. *Limnol. Oceanogr.* **2012**, *57* (6), 1743–1756.
370 <https://doi.org/10.4319/lo.2012.57.6.1743>.

371 (5) Kieber, D. J.; McDaniel, J.; Mopper, K. Photochemical Source of Biological Substrates in Sea
372 Water: Implications for Carbon Cycling. *Nature* **1989**, *341* (6243), 637–639.
373 <https://doi.org/10.1038/341637a0>.

374 (6) Latch, D. E.; McNeill, K. Microheterogeneity of Singlet Oxygen Distributions in Irradiated Humic
375 Acid Solutions. *Science* (80-). **2006**, *311* (5768), 1743–1747.
376 <https://doi.org/10.1126/science.1121636>.

377 (7) Miller, W. L.; Zepp, R. G. Photochemical Production of Dissolved Inorganic Carbon from
378 Terrestrial Organic Matter: Significance to the Oceanic Organic Carbon Cycle. *Geophys. Res. Lett.*
379 **1995**, *22* (4), 417–420. <https://doi.org/10.1029/94GL03344>.

380 (8) Mopper, K.; Zhou, X. Hydroxyl Radical Photoproduction in the Sea and Its Potential Impact on
381 Marine Processes. *Science* (80-). **1990**, *250* (4981), 661–664.
382 <https://doi.org/10.1126/science.250.4981.661>.

383 (9) Mopper, K.; Kieber, D. J.; Stubbins, A. Marine Photochemistry of Organic Matter: Processes and
384 Impacts. In *Biogeochemistry of Marine Dissolved Organic Matter*; Hansell, D. A., Carlson, C. A.,
385 Eds.; Elsevier: New York, 2015; pp 390–431.

386 (10) Moran, M. A.; Zepp, R. G. Role of Photoreactions in the Formation of Biologically Labile
387 Compounds from Dissolved Organic Matter. *Limnol. Oceanogr.* **1997**, *42* (6), 1307–1316.
388 <https://doi.org/10.4319/lo.1997.42.6.1307>.

389 (11) Sharpless, C. M.; Aeschbacher, M.; Page, S. E.; Wenk, J.; Sander, M.; McNeill, K. Photooxidation-
390 Induced Changes in Optical, Electrochemical, and Photochemical Properties of Humic Substances.
391 *Environ. Sci. Technol.* **2014**, *48* (5), 2688–2696. <https://doi.org/10.1021/es403925g>.

392 (12) Song, G.; Richardson, J. D.; Werner, J. P.; Xie, H.; Kieber, D. J. Carbon Monoxide Photoproduction
393 from Particles and Solutes in the Delaware Estuary under Contrasting Hydrological Conditions.
394 *Environ. Sci. Technol.* **2015**, *49* (24), 14048–14056. <https://doi.org/10.1021/acs.est.5b02630>.

395 (13) Ward, C. P.; Cory, R. M. Complete and Partial Photo-Oxidation of Dissolved Organic Matter
396 Draining Permafrost Soils. *Environ. Sci. Technol.* **2016**, *50*, 3545–3553.

397 (14) Zafiriou, O. Sunburnt Organic Matter: Biogeochemistry of Light-Altered Substances. *Limnol.*

398 *Oceanogr. Bull.* **2002**, 11 (4), 69–74.

399 (15) Gao, H.; Zepp, R. G. Factors Influencing Photoreactions of Dissolved Organic Matter in a Coastal
400 River of the Southeastern United States. *Environ. Sci. Technol.* **1998**, 32 (19), 2940–2946.
401 <https://doi.org/10.1021/es9803660>.

402 (16) Aarnos, H.; Ylöstalo, P.; Vähäalto, A. V. Seasonal Phototransformation of Dissolved Organic
403 Matter to Ammonium, Dissolved Inorganic Carbon, and Labile Substrates Supporting Bacterial
404 Biomass across the Baltic Sea. *J. Geophys. Res. Biogeosciences* **2012**.
405 <https://doi.org/10.1029/2010JG001633>.

406 (17) Andrews, S.; Caron, S.; Zafiriou, O. Photochemical Oxygen Consumption in Marine Waters: A
407 Major Sink for Colored Dissolved Organic Matter? *Limnol. Oceanogr.* **2000**, 45 (2), 267–277.

408 (18) Ward, C. P.; Sharpless, C. M.; Valentine, D. L.; Aeppli, C.; Sutherland, K. M.; Wankel, S. D.; Reddy,
409 C. M. Oxygen Isotopes ($\delta^{18}\text{O}$) Trace Photochemical Hydrocarbon Oxidation at the Sea Surface.
410 *Geophys. Res. Lett.* **2019**, 46, 6745–6754.

411 (19) Ossola, R.; Tolu, J.; Clerc, B.; Erickson, P. R.; Winkel, L. H. E.; McNeill, K. Photochemical Production
412 of Sulfate and Methanesulfonic Acid from Dissolved Organic Sulfur. *Environ. Sci. Technol.* **2019**,
413 53 (22), 13191–13200. <https://doi.org/10.1021/acs.est.9b04721>.

414 (20) Zhang, X.; Li, J.; Fan, W.-Y.; Sheng, G.-P. Photomineralization of Effluent Organic Phosphorus to
415 Orthophosphate under Simulated Light Illumination. *Environ. Sci. Technol.* **2019**, 53 (9), 4997–
416 5004. <https://doi.org/10.1021/acs.est.9b00348>.

417 (21) Zepp, R. G.; Faust, B. C.; Hoigne, J. Hydroxyl Radical Formation in Aqueous Reactions (pH 3–8) of
418 iron(II) with Hydrogen Peroxide: The Photo-Fenton Reaction. *Environ. Sci. Technol.* **1992**, 26 (2),
419 313–319. <https://doi.org/10.1021/es00026a011>.

420 (22) Voelker, B. M.; Morel, F. M. M.; Sulzberger, B. Iron Redox Cycling in Surface Waters: Effects of
421 Humic Substances and Light. *Environ. Sci. Technol.* **1997**, 31 (4), 1004–1011.
422 <https://doi.org/10.1021/es9604018>.

423 (23) Zhang, T.; Liu, L.; Tan, W.; Suib, S. L.; Qiu, G.; Liu, F. Photochemical Formation and Transformation
424 of Birnessite: Effects of Cations on Micromorphology and Crystal Structure. *Environ. Sci. Technol.*
425 **2018**, 52 (12), 6864–6871. <https://doi.org/10.1021/acs.est.7b06592>.

426 (24) Seller, P.; Kelly, C. A.; Rudd, J. W. M.; MacHutchon, A. R. Photodegradation of Methylmercury in
427 Lakes. *Nature* **1996**, 380 (6576), 694–697. <https://doi.org/10.1038/380694a0>.

428 (25) Bergquist, B. A.; Blum, J. D. Mass-Dependent and -Independent Fractionation of Hg Isotopes by
429 Photoreduction in Aquatic Systems. *Science (80-.)* **2007**, 318 (5849), 417–420.
430 <https://doi.org/10.1126/science.1148050>.

431 (26) Ward, C. P.; Sharpless, C. M.; Valentine, D. L.; French-McCay, D. P.; Aeppli, C.; White, H. K.;
432 Rodgers, R. P.; Gosselin, K. M.; Nelson, R. K.; Reddy, C. M. Partial Photochemical Oxidation Was a
433 Dominant Fate of Deepwater Horizon Surface Oil. *Environ. Sci. Technol.* **2018**, 52 (4), 1797–1805.
434 <https://doi.org/10.1021/acs.est.7b05948>.

435 (27) Ward, C. P.; Overton, E. B. How the 2010 Deepwater Horizon Spill Reshaped Our Understanding
436 of Crude Oil Photochemical Weathering at Sea: A Past, Present, and Future Perspective. *Environ.*
437 *Sci. Process. Impacts* **2020**.

438 (28) Payne, J. R.; Phillips, C. R. Photochemistry of Petroleum in Water. *Environ. Sci. Technol.* **1985**, *19*
439 (7), 569–579.

440 (29) Yan, S.; Song, W. Photo-Transformation of Pharmaceutically Active Compounds in the Aqueous
441 Environment: A Review. *Environ. Sci. Process. Impacts* **2014**, *16* (4), 697–720.
442 <https://doi.org/10.1039/C3EM00502J>.

443 (30) Boreen, A. L.; Arnold, W. A.; McNeill, K. Photodegradation of Pharmaceuticals in the Aquatic
444 Environment: A Review. *Aquat. Sci.* **2003**, *65* (4), 320–341. <https://doi.org/10.1007/s00027-003-0672-7>.

446 (31) Remucal, C. K. The Role of Indirect Photochemical Degradation in the Environmental Fate of
447 Pesticides: A Review. *Environ. Sci. Process. Impacts* **2014**, *16* (4), 628.
448 <https://doi.org/10.1039/c3em00549f>.

449 (32) Gewert, B.; Plassmann, M.; Sandblom, O.; MacLeod, M. Identification of Chain Scission Products
450 Released to Water by Plastic Exposed to Ultraviolet Light. *Environ. Sci. Technol. Lett.* **2018**, *5* (5),
451 272–276. <https://doi.org/10.1021/acs.estlett.8b00119>.

452 (33) Ward, C. P.; Armstrong, C. J.; Walsh, A. N.; Jackson, J. H.; Reddy, C. M. Sunlight Converts
453 Polystyrene to Carbon Dioxide and Dissolved Organic Carbon. *Environ. Sci. Technol. Lett.* **2019**, *6*
454 (11), 669–674. <https://doi.org/10.1021/acs.estlett.9b00532>.

455 (34) Amiraux, R.; Belt, S. T.; Vaultier, F.; Galindo, V.; Gosselin, M.; Bonin, P.; Rontani, J. F. Monitoring
456 Photo-Oxidative and Salinity-Induced Bacterial Stress in the Canadian Arctic Using Specific Lipid
457 Tracers. *Mar. Chem.* **2017**, *194*, 89–99. <https://doi.org/10.1016/j.marchem.2017.05.006>.

458 (35) Collins, J. R.; Fredricks, H. F.; Bowman, J. S.; Ward, C. P.; Moreno, C.; Longnecker, K.; Marchetti,
459 A.; Hansel, C. M.; Ducklow, H. W.; Van Mooy, B. A. S. The Molecular Products and Biogeochemical
460 Significance of Lipid Photooxidation in West Antarctic Surface Waters. *Geochim. Cosmochim. Acta* **2018**, *232*, 244–264. <https://doi.org/10.1016/j.gca.2018.04.030>.

462 (36) Boreen, A. L.; Edlund, B. L.; Cotner, J. B.; McNeill, K. Indirect Photodegradation of Dissolved Free
463 Amino Acids: The Contribution of Singlet Oxygen and the Differential Reactivity of DOM from
464 Various Sources. *Environ. Sci. Technol.* **2008**, *42* (15), 5492–5498.
465 <https://doi.org/10.1021/es800185d>.

466 (37) Lundein, R. A.; Janssen, E. M.-L.; Chu, C.; Mcneill, K. Environmental Photochemistry of Amino
467 Acids, Peptides and Proteins. *Chim. Int. J. Chem.* **2014**, *68* (11), 812–817.
468 <https://doi.org/10.2533/chimia.2014.812>.

469 (38) Arakawa, N.; Aluwihare, L. I.; Simpson, A. J.; Soong, R.; Stephens, B. M.; Lane-Coplen, D.
470 Carotenoids Are the Likely Precursor of a Significant Fraction of Marine Dissolved Organic Matter.
471 *Sci. Adv.* **2017**, *3* (9), e1602976. <https://doi.org/10.1126/sciadv.1602976>.

472 (39) Marchisio, A.; Minella, M.; Maurino, V.; Minero, C.; Vione, D. Photogeneration of Reactive
473 Transient Species upon Irradiation of Natural Water Samples: Formation Quantum Yields in
474 Different Spectral Intervals, and Implications for the Photochemistry of Surface Waters. *Water
475 Res.* **2015**, *73*, 145–156. <https://doi.org/10.1016/j.watres.2015.01.016>.

476 (40) Haag, W. R.; Hoigné, J.; Gassman, E.; Braun, A. M. Singlet Oxygen in Surface Waters - Part II:
477 Quantum Yields of Its Production by Some Natural Humic Materials as a Function of Wavelength.
478 *Chemosphere* **1984**, *13* (5–6), 641–650. [https://doi.org/10.1016/0045-6535\(84\)90200-5](https://doi.org/10.1016/0045-6535(84)90200-5).

479 (41) Sharpless, C. M. Lifetimes of Triplet Dissolved Natural Organic Matter (DOM) and the Effect of
480 NaBH₄ Reduction on Singlet Oxygen Quantum Yields: Implications for DOM Photophysics.
481 *Environ. Sci. Technol.* **2012**, *46* (8), 4466–4473. <https://doi.org/10.1021/es300217h>.

482 (42) Partanen, S. B.; Erickson, P. R.; Latch, D. E.; Moor, K. J.; McNeill, K. Dissolved Organic Matter
483 Singlet Oxygen Quantum Yields: Evaluation Using Time-Resolved Singlet Oxygen
484 Phosphorescence. *Environ. Sci. Technol.* **2020**, *54* (6), 3316–3324.
485 <https://doi.org/10.1021/acs.est.9b07246>.

486 (43) Kieber, D. J.; Miller, G. W.; Neale, P. J.; Mopper, K. Wavelength and Temperature-Dependent
487 Apparent Quantum Yields for Photochemical Formation of Hydrogen Peroxide in Seawater.
488 *Environ. Sci. Process. Impacts* **2014**. <https://doi.org/10.1039/c4em00036f>.

489 (44) Johannessen, S. C.; Miller, W. L. Quantum Yield for the Photochemical Production of Dissolved
490 Inorganic Carbon in Seawater. *Mar. Chem.* **2001**, *76* (4), 271–283.
491 [https://doi.org/10.1016/S0304-4203\(01\)00067-6](https://doi.org/10.1016/S0304-4203(01)00067-6).

492 (45) Reader, H. E.; Miller, W. L. The Efficiency and Spectral Photon Dose Dependence of
493 Photochemically Induced Changes to the Bioavailability of Dissolved Organic Carbon. *Limnol.*
494 *Oceanogr.* **2014**, *59* (1), 182–194. <https://doi.org/10.4319/lo.2014.59.1.0182>.

495 (46) Chen, J.; Loeb, S.; Kim, J. H. LED Revolution: Fundamentals and Prospects for UV Disinfection
496 Applications. *Environmental Science: Water Research and Technology*. 2017, pp 188–202.
497 <https://doi.org/10.1039/c6ew00241b>.

498 (47) Hölz, K.; Lietard, J.; Somoza, M. M. High-Power 365 Nm UV LED Mercury Arc Lamp Replacement
499 for Photochemistry and Chemical Photolithography. *ACS Sustain. Chem. Eng.* **2017**, *5* (1), 828–
500 834. <https://doi.org/10.1021/acssuschemeng.6b02175>.

501 (48) Jankowski, J. J.; Kieber, D. J.; Mopper, K. Nitrate and Nitrite Ultraviolet Actinometers. *Photochem.*
502 *Photobiol.* **1999**, *70* (3), 319–328. <https://doi.org/10.1111/j.1751-1097.1999.tb08143.x>.

503 (49) Kana, T. M.; Darkangelo, C.; Hunt, M. D.; Oldham, J. B.; Bennett, G. E.; Cornwell, J. C. Membrane
504 Inlet Mass Spectrometer for Rapid High-Precision Determination of N₂, O₂, and Ar in
505 Environmental Water Samples. *Anal. Chem.* **1994**, *66* (23), 4166–4170.
506 <https://doi.org/10.1021/ac00095a009>.

507 (50) Kitidis, V.; Tilstone, G. H.; Serret, P.; Smyth, T. J.; Torres, R.; Robinson, C. Oxygen Photolysis in the
508 Mauritanian Upwelling: Implications for Net Community Production. *Limnol. Oceanogr.* **2014**, *59*
509 (2), 299–310. <https://doi.org/10.4319/lo.2014.59.2.0299>.