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Summary

In this paper, we propose the use of the simplicial algorithm, originally pro-

posed to implement piecewise-linear functions, to compute a digital vector–
vector multiplication (VVM) without multiplications. The main contributions

of the proposed methodology are (a) an improved error propagation with

respect to parameter quantization; (b) a more efficient digital implementation

with respect to area, energy, and speed in the case of large number of inputs;

and (c) an intrinsic capability to produce multivariable nonlinear processing.

We show that when quantization of inputs and parameters are considered, the

simplicial method achieves the same accuracy with fewer representation bits

for the parameters, assuming the same quantization for the inputs. Actually,

in the particular case of a large number of inputs, the simplicial method needs

half the number of parameter bits of a linear combination plus one.
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1 | INTRODUCTION

Vector–vector or matrix–vector multiplication (VVM/MVM) are pervasive operations and the basis of the most relevant
and commonly used algorithms in signal processing:1,2 fast Fourier transforms (FFTs), convolutions, digital filters, and
neural networks are some of the most prominent examples. In particular, deep and convolutional neural networks
(abbreviated as DNN and ConvNets, respectively), are nowadays receiving considerable attention in the area of
machine learning due to its high efficacy in classification tasks. The major workload in these large networks is due to
two types of vector–vector operations: sliding convolutions and static weighted combinations. For example, the well-
known network AlexNet3 has five convolutional layers and three fully connected layers; the convolutional layers have
2.97M single-precision floating-point (SPFP) parameters, that is, 32b weights, and require 775M operations to compute,
while the three linear layers have 57M weights and require 57M operations. Dedicated processors have been reported
in the literature4-6 which are capable of executing between 1 and 50 convolutional layers (most time consuming) per
second,5 depending on the network, at tens of milliwatts of power consumption. Executing these networks in mobile
devices is still a challenge and acts as a strong driver for the exploration of alternatives to reduce computation time,
energy, and storage.7 One possibility is to reduce the word length of the parameters. Indeed, different quantization
methods have been proposed along this line at the expense of some degradation in the resulting accuracy (see other
studies8-10 and the references therein). For example, Wu et al11 subdivides the weights into subgroups and selects a
reduced number of representative weights to store. The inputs (also called activations) are multiplied with the
corresponding representative weights and then the additions are performed, which leads to a 4� speedup factor and a
10� reduction in storage with an increase of 2.5% in classification error. This technique, called weight sharing, together
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with sparse matrix vector multiplication, has been successfully implemented on chip in Han et al,12 where a weight
data reduction of 96% and a computation energy reduction by a factor between 3 and 7 has been shown. Based on this
concept, Garland and Gregg13 proposed a counting and accumulating scheme, which avoids products, resulting in 66%
fewer gates and 70% less total power than a standard multiply–accumulate (MAC) based implementation. The work in
Zhou et al8 shows similar performance in network accuracy when (only) weights are quantized as powers of two with
5, 4, and even 3 bits, with respect to the original network with 32 bit-width weights. A second possibility is to also quan-
tize activations: Rastegari et al.'s14 study was one of the first works to quantize weights and activations simultaneously,
while Jung et al9 proposed a quantization with an adjustable interval that achieves full precision with 4 bits of weights
and activations. Wu et al15 proposed a variable precision scheme with different weight ({1, 2, 3, 4, 8, 32}) and activation
({3, 4, 8, 32}) bits for different layers of a given network, and showed similar performance to full precision models with
a compression between 30% and 40%. Approximate arithmetic approaches without multiplications, based on barrel
shifters and low power Wallace trees were proposed in Park et al.10

We are interested in large-scale VLSI-friendly alternative VVM digital implementations where the word length of
inputs and parameters must be minimized to satisfy the increasing needs of accuracy, storage, and energy demanded by
machine learning and artificial intelligence applications in portable devices. In this paper, we propose the simplicial16

piecewise linear (PWL) computation method described in Julian et al17 as an efficient alternative for neuromorphic dig-
ital computing, especially for large-scale systems. The main contributions of the proposed methodology are (a) an
improved error propagation with respect to parameter quantization; (b) a more efficient digital implementation with
respect to area, energy, and speed in the case of large number of inputs; and (c) an intrinsic capability to produce multi-
variable nonlinear processing. At this point, it is convenient to briefly elaborate on each one of these points.

In order to put these aspects in evidence, the approach followed throughout the paper consists of taking a standard
VVM and design an equivalent simplicial PWL interpolation for comparison purposes. When no quantization errors
are considered, the numerical results of both expressions are naturally the same. However, in the presence of quantiza-
tion errors, we demonstrate that the simplicial interpolation is able to achieve the same accuracy as the VVM but using
fewer representation bits for the parameters (assuming, of course, an equal number of representation bits for the
inputs). Actually, when the number of inputs N is large, the equivalent number of parameter bits of the simplicial algo-
rithm is half the number of bits of the VVM parameters, plus one. This is a novel and fundamental result, which not
only adds to the representation properties of piecewise-linear functions16,18,19 but, needless to say, also has a direct
impact on the associated digital implementation, since fewer parameter bits translate into less area, energy, and propa-
gation delay.

Regarding the second point, the simplicial interpolation can be computed without the need of multiplications, only
by using a fixed number of additions that depends on the number of bits of the inputs, but not on the number of inputs.
When the number of inputs is large, the simplicial computation requires less energy, area, and time than a classical
VVM. In order to show this, we compare the corresponding digital architectures and evaluate both at a fundamental
level, in terms of the number of standard CMOS gates and operation cycles. In addition, we propose a modified compar-
ator for the simplicial algorithm that minimizes activity and produces a significant reduction in energy with respect to
previous realizations.20,21

As explained in Julian et al,17 the simplicial PWL algorithm can be decomposed into two operations: a first one,
where the inputs are sorted and successive differences are taken (input encoding), and a second one where a linear
interpolation is performed with the corresponding parameters. Therefore, the simplicial PWL algorithm can naturally
implement the family of nonlinear filters known as order statistic (OS) filters.22 These filters implement VVM on rank-
ordered inputs, that is, inputs belonging to domains like1

S¼ x�ℝN : 0≤ x1 ≤ x2 ≤…≤ xN ≤ 1
� �

: ð1Þ

The most famous OS filter is the median filter, which is a selection-type filter, since the output coincides with only
one of the inputs.23 Another example is the alpha-trimmed mean filter and the max(min) filters. OS filters can also
operate on weighted inputs and output a weighted sum, leading to the so called general OS filters.24 These operations
can be performed with the same architecture that produces the simplicial interpolation therefore enabling a wide vari-
ety of nonlinear operators. One example widely used in image processing is the family of morphological operations.25

Indeed, we have recently reported21 a VLSI implementation of a 48 � 48 simplicial cellular neural network array based

1Indeed, (1) is the definition of a simplex and gives the name to the simplicial representation
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on this approach that achieves a remarkable efficiency of 3.4 fJ per operation in a 55-nm CMOS technology. For illus-
tration purposes, we show an example where the proposed architecture implements a state-of-the-art morphological
DNN (26) for the recognition of city maps.

The paper is organized as follows. Section 2 describes the computational method and the operations that must be
carried out to compute a simplicial interpolation versus a VVM. Section 3calculates the propagation of errors to the out-
put due to input and parameter quantization. Section 4 analyzes the energy required by a digital architecture. Finally,
Section 6 contains the conclusions.

2 | COMPUTATIONAL METHODOLOGY AND PROPERTIES

2.1 | Simplicial computation

A simplicial PWL function is illustrated in Figure 1, where one simplex (a triangle in ℝ2 and its generalization in ℝN ) is
defined by vertices v1, v2, and v3. The function in this simplex is uniquely defined by the parameters c1, c2, and c3. In
other simplices, the function is defined by other parameters, thereby allowing the construction of linear, nonlinear, and
even discontinuous PWL functions. Our approach utilizes two hierarchy levels. A memory stores the parameters, which
are the values of the VVM at the vertices of a simplex where x belongs to. The memory passes these values as parame-
ters to a computation unit that performs an interpolation among the parameters and produces the result, namely, the
simplicial interpolation.

Let us consider a weighted combination of terms in the following form:

y¼wTx¼
XN
i¼1

wixi, ð2Þ

where x�ℝN is a vector belonging to the hypercube [0, 1]N. As shown in Chien and Kuh,16 any interior point of the
hypercube can be written as a convex combination of at most N+ 1 vertices2 vj, as follows:

x¼
XNþ1

j¼1

μjvj: ð3Þ

2A vertex vj is defined as the sum of j unit vectors, ei, i � {1, … , N}.

FIGURE 1 A linear function over a simplicial division of a domain with two simplices
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The convex combination implies that the values μj satisfy μj≥0 and

XNþ1

j¼1

μj ¼ 1: ð4Þ

The ordered sequence of N + 1 vertices {v1, … , vN + 1} defines a particular simplex contained in the hypercube. In
general, a hypercube in ℝN possesses N! simplices. As an example, Figure 1 illustrates the simplex in ℝ2 defined by the
vertices v1 ¼ ½1,1�, v2 ¼ ½1,0�, and v3 ¼ ½0,0�. The interior point x¼ ½0:5,0:2� can thus be written as
x¼ μ1v1þμ2v2þμ3v3, where μ1 ¼ 0:2, μ2 ¼ 0:3, and μ3 ¼ 0:5.

The μ values in the simplicial expression play the role of the coordinate values x. If we replace (3) into (2), we obtain
the expression of function (2) as a function of the μ values:

y¼wT
XNþ1

j¼1

μjvj ¼
XNþ1

j¼1

μjðwTvjÞ¼
XNþ1

j¼1

μjcj ¼ μTc, ð5Þ

where cj ¼wTvj, j¼ 1,…,Nþ1 can be interpreted as new parameters, corresponding to the simplicial expression. In
fact, cj are the values of (2) at the simplex vertices. For instance, if wT ¼ ½1,1� corresponding to function y= x1+ x2, then
c1 ¼ ½1,1��v1 ¼ 2, c2 ¼ ½1,1��v2 ¼ 1, c3 ¼ ½1,1��v3 ¼ 0. Evaluation of y at x¼ ½0:5,0:2� results in
y¼ μ1c1þμ2c2þμ3c3 ¼ 0:2�2þ0:3�1þ0:5�0¼ 0:7.

The values μi can be calculated by first sorting the input components {x1, … , xN} in ascending order, namely,
fx̂1,…, x̂Ng and then taking differences as indicated in the Algorithm 1.

In matrix form, the vector with the firs N components of μ¼ ½μ1…μN �T can be written as μ¼D�x, where D is the
matrix defined as

D¼

1 0 … 0

�1 1 0 … 0

..

.

0 … 0 �1 1

2
66664

3
77775: ð6Þ

2.2 | Numerical complexity

Let us assume now that xi and μi are quantized using q bits into Q¼ 2q different levels in order to evaluate the total
number of operations required. For this purpose, we can assume that xi= kiΔl, μi ¼ κiΔl, where Δl¼ 1=Q and ki, κi� [0,
Q� 1] are integers. At first sight, expression (5) requires N+ 1 sums and N products. A closer inspections reveals that
the simplicial expression can be written as follows:

y¼
XNþ1

j¼1

μjcj ¼
XNþ1

j¼1

Δl κjcj
� �¼Δl

XNþ1

j¼1

Xκj
k¼1

cj

 !
, ð7Þ
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where we have used the fact that κjcj ¼
Pκj

k¼1cj. Every term
Pκj

k¼1cj requires κj� 1 additions; therefore, (7) requires a
total number of sums given by

SSIMP ¼Nþ
XNþ1

k¼1

ðκk�1Þ¼�1þ
XNþ1

k¼1

κk: ð8Þ

Due to (4),
PNþ1

k¼1 μk ¼Δl
PNþ1

k¼1 κk ¼ 1 so that

XNþ1

k¼1

κk ¼ 1
Δl

¼Q: ð9Þ

Therefore, the simplicial expression can be implemented using only

SSIMP ¼Q�1 ð10Þ

additions, assuming that the inputs have already been sorted to produce the μ values (Figure 2).
Note that if the number of inputs N is greater than Q, then at least N � Q inputs will have the same value, and there

will be at most Q values μi different from zero. In that case, the number of nonzero terms in the summation (7) is at
most Q and becomes independent of N. This is illustrated in the example of Figure 3, where we assume there are only

FIGURE 3 Illustration of the simplicial interpolation versus a VVM. If the number of different numerical values xi does not change, the

number of horizontal rectangles corresponding to pairs (ci, μi) remains constant; even if the number of terms, given by the number of pairs

(xi, wi), increases

FIGURE 2 Graphical representation of (sorted) input values, xi (left) versus the μi components (right). From here, it can be clearly

appreciated that the number of elements to be summed in the simplicial expression is Q � 1, as given by (10)
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Q¼ 6 different numerical values xi for each component of x (vertical axis) and N ¼ 13 parameters wi (horizontal axis).
The value of the linear combination y is the shaded area, which can be alternatively interpreted as the union of the
many columns of width wi and height given by the corresponding value of x, or the union of the rows of width ci and
height given by the corresponding value of μ. Note that only six values μi are different from zero, and the summation
only requires six terms regardless of the number of parameters wi.

If we assume that p is the number of bits used to quantize parameters ci, the dynamic range—in bits—of
output y is

DRðyÞ¼ qþp, ð11Þ

which is also independent of N.
On the other hand, the product in the VVM (2) requires N � 1 additions and N products, and assuming that r is the

number of bits used to quantize parameters wi, its associated dynamic range (2) is

DRðyÞ¼ log2ðNÞþqþ r: ð12Þ

For equal number of quantization levels in their respective parameters and inputs, the two representations are dif-
ferent: the VVM has an additional log2ðNÞ number of bits. In the particular case where p¼ log2ðNÞþ r, both expres-
sions are identical and have exactly the same dynamic range.

3 | QUANTIZATION EFFECTS

In this section, we consider a weighted combination of terms as in (2) and an associated simplicial representa-
tion (5), where the parameters and inputs are full precision numbers. This could be the situation after an optimiza-
tion algorithm has been applied to the given set of data to produce an optimal fit. We are interested in the analysis
of the errors that occur in both representations when we quantize the inputs and parameters to produce a digital
implementation.

3.1 | Parameter quantization

Let us assume first that the input is represented with no error using q bits and we only want to analyze the effect of
parameter quantization on the output error.

In the case of a VVM, the parameters wi, i¼ 1,…,N , are represented as wi ¼ ŵiþδwi, where ŵi is quantized with
r bits. Without loss of generality we assume that xi and wi have uniform distributions in the ranges [�Rx/2,Rx/2] and
[�Rw/2,Rw/2]. The output is given by

y¼
XN
i¼1

ŵixiþδwixi, ð13Þ

and the error is

δy¼
XN
i¼1

δwixi, ð14Þ

which has zero mean and a variance equal to

varðδyÞ¼
XN
i¼1

varðδwixiÞ: ð15Þ

As wi is represented with r bits in the interval [� Rw/2, + Rw/2], δwi lies in the interval 2�r � [� Rw/2, + Rw/2].
Assuming that xi and wi are not correlated and have zero mean, the error variance can be written as follows:
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varðδyÞ¼
XN
i¼1

varðδwiÞvarðxiÞ¼ ðRw2�rÞ2
12

XN
i¼1

varðxiÞ: ð16Þ

Since xi has uniform distribution,
PN

i¼1xi has an Irwin–Hall distribution with zero mean and variance R2
xN=12.

Therefore, (16) can be written as

varðδyÞ¼ ðRw2�rÞ2
12

R2
xN
12

, ð17Þ

and the standard deviation expression is

σðδyÞ¼RwRx

ffiffiffiffi
N

p

12
�2�r: ð18Þ

The range of y is the summation of the product of two random variables with uniform distribution, so it has a nor-
mal distribution with zero mean and standard deviation:

σðRðyÞÞLin ¼
RxRw

12

ffiffiffiffi
N

p
: ð19Þ

Then, the output range can be approximated with k-σ (k≥3) confidence as follows:

RðyÞ≈ 2k�RxRw

12

ffiffiffiffi
N

p
, ð20Þ

and the standard deviation of the error relative to the output range is given approximately by

σðδyÞ
RðyÞ Lin

≈
1
2k

�2�r : ð21Þ

In the simplicial case, the parameters are represented as cj ¼ ĉjþδcj, j¼ 1,…,Nþ1, where ĉj has p bits, and δcj is the
quantization error; the inputs are represented as μj ¼ μ̂jþδμj, where μ̂j has q bits and δμj is the quantization error. As
we mentioned, for this analysis, the input is discrete but has no errors, so that δμj ¼ 0. The quantized values μ̂j,
j¼ 1,…,Nþ1, are obtained by first quantizing each xj, then sorting them and lastly taking the difference, that is,
μ̂¼D� x̂, where D was defined in (6).3

The function can be Taylor-expanded in a neighborhood of ðμ̂, ĉÞ as

y¼ ⟨μ̂, ĉ⟩þ
XNþ1

j¼1

∂y
∂μj

�����
μ̂,ĉ

δμjþ
XNþ1

j¼1

∂y
∂cj

����
μ̂,ĉ

δcj ¼ ⟨μ̂, ĉ⟩þ
XNþ1

j¼1

ĉjδμjþ
XNþ1

j¼1

μ̂jδcj: ð22Þ

Considering that there are only T ≜minfN ,Qg values μ̂j different from zero and that δμj ¼ 0, for every
j¼ 1,…,Nþ1, the representation error is

δy¼
XT
j¼1

μ̂jδcj: ð23Þ

The values μ̂j, j¼ 1,…,Nþ1, are the differences between consecutive values of the already sorted (in increasing
order) sequence of values x̂j, j¼ 1,…,N ; therefore, they have a triangular distribution. If the number of quantization
levels is greater than the number of inputs, that is, Q>>N, the distribution of μ̂j has a mean Eðμ̂jÞ¼ 1=N and

3Another possibility would be quantizing the distribution of μj.
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varðμ̂jÞ¼ 1=N2. On the other hand, if the number of inputs is large, that is, N>>Q, there will be a large number of μ̂j
values equal to zero and at most Q values with a mean of Eðμ̂jÞ¼ 1=Q and a variance varðμ̂jÞ¼ 1=Q2. Accordingly, the
error variance can be summarized as

varðδyÞ¼
XT
j¼1

1
T2 varðδcjÞ¼

1
T2 ð2�pRcÞ2 T12¼

ð2�pRcÞ2
12T

: ð24Þ

The coefficients ci coincide
4 with the value of y evaluated at the vertices of the domain, so that Rc can be calculated

as the range of the output:

Rc ≈ 2k
RwRx

ffiffiffiffi
N

p

12
: ð25Þ

Considering this, the standard deviation is given by

σðδyÞ≈ 2kRwRxffiffiffiffiffi
12

p 3

ffiffiffiffi
N
T

r
�2�p, ð26Þ

and the standard deviation relative to the output is

σðδyÞ
Ry Simp

≈
1ffiffiffiffiffiffiffiffi
12T

p �2�p : ð27Þ

Equations (24) and (27) provide the evidence behind the improved accuracy of the simplicial computation. The vari-
ance of the error in (24) is proportional to T due to the number of terms in the summation and inversely proportional
to T2 due to the variance of μ̂j. The net effect is a variance inversely proportional to T.

Note that while the relative variance of the error in the parameters (considering p = r) is the same, that is,

varðδwiÞ
R2
w

¼ varðδciÞ
R2
c

¼ 2�p

12
¼ 2�r

12
, ð28Þ

the relative variance of μ is 1/T2, much smaller than varðxiÞ=R2
x ¼ 1=12. The net result is a reduction of the error due to

parameter quantization when T (the minimum between the number of inputs and the quantization levels) increases.
This is a distinctive advantage of the simplicial input encoding, which represents the inputs by using relative differences
of monotonically increasing values.

Figure 4 illustrates the parameter error propagation in both cases. Figures 5 and 6 reproduce Figure 4for N ¼ 32,
q¼ 3, p¼ r¼ 3. In Figure 5, the VVM is expressed geometrically as the summation of vertical rectangles of area equal
to wixi. On the other hand, Figure 6 expresses the simplicial combination as the summation of horizontal rectangles of
area equal to μici. Notice that Figures 5B and 6B are identical because x̂i is represented with no error by μ̂i.

Example 3.1. A numerical simulation was performed using random values of inputs and parameters for
different values of N ¼ 2,4,8, :::,2048. Inputs and parameters were uniformly distributed in the interval
[� 1, 1], assuming no error in the inputs (q¼ 6) and sweeping the parameter accuracy (p, r) from 2 bits to
10 bits. For every combination of the number of inputs and parameter bits, 10,000 random values were eval-
uated. Figure 7 shows the relative standard deviation of the error for both the simplicial interpolation and
the VVM.

4The parameters wi have a uniform distribution, and the coefficients ci are summations of subsets of them, so, in general, their distribution will be
Gaussian. The distribution of the error δci can be considered uniform to compute a bound on the total error.
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Further analysis shows that if the number of inputs is smaller than the number of quantization levels of the input
(N < Q), then T¼N and the standard deviation (26) is independent of N:

FIGURE 4 Parameter error propagation in the simplicial interpolation versus a VVM. Thin dot-filled white bars indicate errors due to

quantization in wi terms; thin shaded bars indicate errors due to quantization in the ci terms

FIGURE 5 Illustration of components in a VVM: (A) no error; (B) quantization in xi; (C) quantization in wi; (D) quantization in both

terms. N ¼ 32, q¼ 3, p¼ r¼ 3
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σðδyÞ≈ 2kRwRxffiffiffiffiffi
12

p 3 �2�p: ð29Þ

In this case, the relative standard deviation is given by

FIGURE 6 Illustration of components in the simplicial combination: (A) no error; (B) quantization in μi; (C) quantization in ci;

(D) quantization in both terms. N ¼ 32, q¼ 3, p¼ r¼ 3

FIGURE 7 Numerical simulation of the relative standard deviation of the simplicial interpolation and the VVM for several values of

N ¼ 2,4,8, :::,2048. Input quantization is q¼ 6 bits

SIMPLICIAL COMPUTATION 3775



σðδyÞ
Ry

≈
1ffiffiffiffiffiffiffiffiffi
12N

p �2�p, ð30Þ

and the ratio between the linear and simplicial representation errors, namely, ρ≜ σLin=σSimp, is given by

ρ¼
ffiffiffiffiffiffiffiffiffi
12N

p

2k
2�rþp: ð31Þ

Table 1 shows the value of ρ for equal number of parameters (r = p) and several number of inputs. For increasing
number of inputs (always considering N < Q), the accuracy of the simplicial expression improves with

ffiffiffiffi
N

p
over a

standard VVM.
On the other hand, if the number of inputs is large, that is, N > >Q, then T¼Q and the standard deviation is

σðδyÞ≈ 2kRwRxffiffiffiffiffi
12

p 3

ffiffiffiffi
N
Q

r
�2�p ¼ 2kRwRxffiffiffiffiffi

12
p 3

ffiffiffiffi
N

p
�2�p�q=2: ð32Þ

The relative standard deviation is given by

σðδyÞ
Ry

≈
1ffiffiffiffiffi
12

p �2�p�q=2, ð33Þ

and the representation error ratio by

ρ¼
ffiffiffiffiffi
12

p

2k
2�rþp2q=2: ð34Þ

Table 2 shows the value of ρ for equal number of parameters (r = p) and several values of input precision q. The
accuracy of the simplicial expression improves exponentially with respect to the precision of the input in bits q (or what
is equivalent, proportionally to

ffiffiffiffi
Q

p
), over a standard VVM.

3.2 | Input quantization

This section analyzes the expression of the resulting errors when only the inputs are quantized. If every component of
the inputs is quantized with q bits, then xj can be written as xj ¼ x̂jþδxj. In the VVM, the variance of the error is

varðδyÞ¼ var
XN
i¼1

ŵiδxi

 !
¼
XN
i¼1

varðŵiÞvarðδxiÞ¼R2
wN
12

ðRx2�qÞ2
12

¼ðRwRxÞ2N
122

2�2q: ð35Þ

Accordingly, the standard deviation is

TABLE 1 Ratio between linear and simplicial representation errors for different values of N (p = r) in the small number of inputs case

N 4 16 64 256 1024

1.15 2.3 4.6 9.2 18.5

TABLE 2 Ratio between linear and simplicial representation errors for different values of q (p = r) in the large number of inputs case

q 4 5 6 7 8 9 10

2.3 3.2 4.6 6.5 9.2 13 18.5
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σðδyÞ¼RwRx

ffiffiffiffi
N

p

12
2�q, ð36Þ

and considering the expression for the output range (20), the relative standard deviation is

σðδyÞ
RðyÞ Lin

≈
1
2k

�2�q : ð37Þ

In the simplicial case, the output satisfies yþδy¼ ⟨w, x̂þδx⟩¼ ⟨c, μ̂þδμ⟩. In addition,
y¼ ⟨c, μ̂⟩¼ ⟨c,Dx̂⟩¼ ⟨DTc, x̂⟩¼ ⟨w, x̂⟩, so taking differences we obtain

δy¼ ⟨w,δx⟩¼ ⟨c,δμ⟩: ð38Þ

Accordingly, the variance of the error, namely,

varðδyÞ¼ var
XNþ1

j¼1

δμjcj

 !
ð39Þ

is exactly the same as in the liner case (36); therefore,

σðδyÞ
RðyÞ Simp

≈
1
2k

�2�q : ð40Þ

3.3 | Total quantization

This section summarizes the expression of the resulting errors when both inputs and parameters are quantized.
In the VVM, the variance of the error is

varðδyÞ ¼ var
XN
i¼1

δwix̂iþ ŵiδxi

 !

¼ðRw2�rÞ2
12

R2
xN
12

þ
XN
i¼1

varðŵiÞvarðδxiÞ

¼ ðRw2�rÞ2
12

R2
xN
12

þðRx2�qÞ2
12

R2
wN
12

¼ðRwRxÞ2N
122

2�2rþ2�2q
� �

:

ð41Þ

Accordingly, the standard deviation is

σðδyÞ¼RwRx

ffiffiffiffi
N

p

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2r þ2�2q

p
: ð42Þ

Considering approximation (20) for the output range, the standard deviation relative to the output range can be
approximated as follows:

σðδyÞ
RðyÞ Lin

≈
1
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2r þ2�2q

p
ð43Þ
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In the simplicial case, the variance of the error is

varðδyÞ¼ var
XNþ1

j¼1

μ̂jδcj

 !
þ var

XNþ1

j¼1

δμjĉj

 !
¼ 1

ð2kÞ2R
2
c2

�2qþ 1
12T

R2
c2

�2p ð44Þ

The relative standard deviation can be written as

σðδyÞ
RðyÞ Simp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðqÞþBðp, tÞ

p
ð45Þ

where AðqÞ¼ 1=ð2kÞ2�2�2q, Bðp, tÞ¼ ð1=12Þ2�2p�t and t≜ log2ðTÞ.

Example 3.2. A numerical simulation was performed using random values of inputs and parameters for
different values of N ¼ 16,64,256,1024,4096. Inputs and parameters were uniformly distributed in the inter-
val [� 1, 1], sweeping the parameter accuracy (p, r) from 3 to 12 bits and the input accuracy q from 3 to
12 bits. For every combination of number of inputs and parameter/input bits, 10,000 random values were
evaluated.

Figure 8 shows the output error (relative standard deviation) as a function of parameter quantization,
with p and r between 3 and 12 bits, keeping the input quantization constant at q¼ 6 bits. The simplicial
expression shows a lower error than the VVM for lower values of parameter quantization. This effect is
more pronounced for higher number of inputs. Eventually, for sufficiently large number of bits in the
parameters (p, r> q), both expressions achieve the same accuracy. The numerical data shows good agree-
ment with the theoretical expression.

Figure 9 shows the output error (relative standard deviation) as a function of input quantization, with
q between 3 and 12 bits, keeping constant the parameter quantization at p,r¼ 6 bits. The VVM reaches a
plateau after q¼ 6. The simplicial expression also reaches a plateau but at a higher value of q and with a
smaller value. The effect is more pronounced the higher the number of inputs is. The numerical data show
good agreement with the theoretical expression.

FIGURE 8 Numerical simulation of the relative standard deviation of the linear function, the simplicial function, and its theoretical

value from Equation (44), for several values of N ¼ 16,64,256,1024,4096, as a function of parameter quantization. Input quantization is

q¼ 6 bits
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3.4 | Choice of parameter precision

Figure 10 illustrates the error relative standard deviation for the VVM (solid-triangles) and the simplicial expression
(solid-circles) as a function of p and r with a constant input precision q¼ 8.

In the linear case, once r ≥ q the error decreases marginally, therefore the optimal value for r is r◇ = q. In the
example of Figure 10, this implies r◇ ¼ 8.

In the simplicial case, the term AðqÞ¼ 1=ð2kÞ2�2�2q is constant, since q is fixed and equal to 8;
ffiffiffiffiffiffiffiffiffiffi
AðqÞp

is indicated
in solid line in Figure 10.

The second term, Bðp, tÞ¼ ð1=12Þ2�2p�t is a decreasing function of p and equals Bðp,qÞ¼ ð1=12Þ2�2p�n, for n ≤ q,
where n≜ log2ðNÞ. As the value of n increases, this term reduces by a factor 2�n. For n ≥ q, t= q and B(p, t) remain
unchanged, since it is no longer a function of n but of q, that is, Bðp, tÞ¼Bðp,qÞ. The term

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðp, tÞp

is plotted with a
dot-dash line in Figure 10 for two different values of n(n¼ 6 and n ≥ 8, corresponding to N ¼ 64 and N ¼ 256 inputs,
respectively).

For the large number of inputs case, n≥q, the intersection of both terms occurs when AðqÞ¼Bðp,qÞ:

1

ð2kÞ2 2
�2q ¼ 1

12
2�2p◇ �q: ð46Þ

After some algebraic manipulation, the solution is

p◇ ¼ q
2
þ1
2
log2ð3Þ: ð47Þ

For example, if the input precision is q¼ 8 bits and there are more than N ¼ 256 inputs, corresponding to n¼ 8, the
optimum is p◇ ¼ 4:8 bits, a value remarkably close to the estimated 4.7 bits of information for hippocampal synapses.27

In the VVM, when q¼ 8 bits, the optimum parameter precision is r◇ ¼ 8 regardless of the number of inputs. In this
case, both representations use the same precision q for the input and produce the same error, but the simplicial expres-
sion does so using less precision for the parameters. In fact, while the linear expression needs r= q, the simplicial needs
p≈ q/2+ 0.8.

FIGURE 9 Numerical simulation of the relative standard deviation of the linear function, the simplicial function, and its theoretical

value from Equation (44), for several values of N ¼ 16,64,256,1024,4096, as a function of input quantization. Parameter quantization is

p¼ r¼ 6 bits
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4 | COMPUTATION ENERGY

In modern technologies, most of the energy consumed by a digital circuit is dynamic, that is, is the consequence of the
charge and discharge of MOS transistor capacitances.28 Accordingly, the total energy demanded by each implementa-
tion will be proportional (by a technology dependent constant) to the number of full/half adder (FA/HA) circuits and
the number of times they switch (activity) during the period of time needed to complete the operation. Of course, in a
VLSI implementation, there is circuitry like registers and multiplexers that will also be necessary, but will be present in
both cases.

In the VVM, a parallel linear vector–vector product between an N r-bit word and an N q-bit word requires N � rq
AND gates, N � r HA and N � (q � 1)r FA, followed by an adder of N(r + q)-bit inputs, which requires (N � 1) HA
and ðN�1ÞðrþqÞ� logðNÞ FA. The total number of gates, considering two gates per HA and five per FA, is

GALin ¼N� rqþ2N� rþ5N�ðq�1Þrþ2ðN�1Þþ5ððN�1ÞðrþqÞ� logðNÞÞ: ð48Þ

The energy is the product of (48) times 1 cycle, so it is the same expression as (48)

ELin ¼N� rqþ2N� rþ5N�ðq�1Þrþ2ðN�1Þþ5ððN�1ÞðrþqÞ� logðNÞÞ: ð49Þ

The linear VVM can also be implemented in a serial fashion, which requires fewer gates (one multiplier and an
accumulator) and more execution cycles; however, in both cases the required energy is similar.

In the simplicial, case it is necessary to add Q numbers of p-bits. This requires ðQ�1Þp� logðQÞ FA and Q� 1 HA,
and assuming that this is accomplished in one cycle, the energy (and also the number of gates) is given, in principle, by

ESimp ¼ 2ðQ�1Þþ5ððQ�1Þp� logðQÞÞ: ð50Þ

In addition, the simplicial representation requires a prior sorting operation to generate the μ values. This operation
can be done in two possible ways. The first option is sorting the inputs and taking the differences, as implemented in
Agustin Rodriguez et al.29 This requires OðNlog2ðNÞÞ comparisons of q bits and then N subtractions of q bits. The sec-
ond option that turns out to be much more efficient from the energy/area viewpoint (extensively used in compact reali-
zations like other studies30,3120) consists of encoding inputs in time by comparing them with an increasing ramp signal,
as illustrated in Figure 11A. The ramp always has Q clock cycles, regardless of the number of inputs N. In this case, the
sorting is naturally obtained as the time length of each encoded signal, and the μ values are directly the intervals of time

FIGURE 10 Relative standard deviation of the error with respect to the parameters precision: linear expression of Equation (43),

simplicial representation for N ¼ 64,1024, and the two individual terms in Equation (45). Input quantization is q¼ 8 bits
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between changes in the inputs. These intervals can be used to produce summation (7) in time, without explicit
multiplications.

The comparator can be efficiently implemented with N parallel blocks like the one illustrated in Figure 11B. The
comparison starts by the most significant bit; whenever a coincidence is detected, the next block to the right (the follow-
ing most significant bit) is enabled to compare. This block only produces an enable output to the following block when
it is enabled, and there is a coincidence between the ramp and the corresponding input bit. The last block in the cas-
cade corresponds to the least significant bit; when the enable output of this block becomes active, then the equality of
the whole input has been detected and the SR latch is activated. It is easy to see that the gates in every block of the cas-
cade are only activated once during a ramp cycle. Therefore, the energy spent by the entire cascade during a ramp cycle,
including the SR latch, is

EC ¼ 1þ3ðq�1Þþ2¼ 3q: ð51Þ

The entire comparator energy, considering N inputs, is given by

FIGURE 11 (A) Intrinsic sorting obtained by encoding inputs in time; (B) efficient time-encoding circuit block corresponding to the jth

input; (C) architecture to compute in time
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EC ¼ 3Nq: ð52Þ

The x̂j values form a word that addresses the parameter memory and outputs the parameters sequentially. These
parameters can be added serially, using standard digital circuitry as illustrated in Figure 11C. This is done with an accu-
mulator composed by an adder with p� 1 FA and q+ 1 HA, which implies a total number of gates:

GAAccum ¼ 2ðqþ1Þþ5ðp�1Þ ð53Þ

in Q cycles. In this case, the energy required is

ESimp ¼Q 2ðqþ1Þþ5ðp�1Þð Þ: ð54Þ

In summary, the energy demanded by the simplicial algorithm is

OðESimpÞ¼QðpþqÞþNq: ð55Þ

The energy required by the VVM is OðELinÞ¼Nqr, so it depends on the product of the number of inputs and the
representation bits of inputs and parameters. In the simplicial case, the computation energy has a complexity
OðECompÞ¼QðpþqÞ, independent of the number of inputs, while sorting has a complexity OðESortingÞ¼Nq that
depends on the number of inputs and their representation bits, but not on the parameters. This favors the simplicial
representation when N>>Q, as illustrated in Figure 12A.

In the case of a matrix–vector multiplication where multiple outputs need to be calculated for the same input, for
example, when

y¼WTx ð56Þ

with y �ℝM , the cost of sorting is constant and independent of the number of outputs M. This situation is typical in
neural networks where every layer implements a number M of neurons using the previous layer output as input (and
also in convolutional kernels where M kernels are used for any given input set). In this case, the energy demanded by
the simplicial and VVM representations are respectively

OðESimpÞ¼NqþMQðpþqÞ ð57Þ

OðELinÞ¼MðNqrþNrþNqÞ: ð58Þ

The energy in the VVM is the product of the number of input times the number of outputs, while in the simplicial
case it is decoupled. This produces a significant saving in computing energy, especially for large N. Figure 12B illus-
trates the situation for a case where M¼ 1000 different outputs need to be computed.

Lastly and for the sake of completeness, Figure 13 shows the number of gates (area) required by each implementa-
tion for several inputs, with q¼ 8 and parameters p,r¼ 2,4,…,12. The serial versions are much more compact than their
parallel counterparts. Notice that in the serial simplicial case, most of the gates correspond to the sorting operation. As
previously mentioned, in the case of a MVM, the sorting units are shared, which reduces the overall area.

5 | APPLICATION EXAMPLE

In order to illustrate the advantages of the proposed methodology, we present in the following examples the implemen-
tation of a deep morphological network (DMN) using the proposed simplicial architecture for the recognition of city
maps.32 As previously mentioned, morphological operations are a concatenation of min and max operations on the
inputs. In particular, DMN apply morphology operations on weighted inputs;33 thus, they are a special case of weighted
OS filters and can be considered as functions defined over a single simplex as in (1). In particular, we consider the
DMN architecture proposed in Nogueira et al,26 which is illustrated in Figure 14.
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Example 5.1. The DMN illustrated in Figure 14 has one morphological layer with six 11 � 11 input ker-
nels, a six-channel 2 � 2 MaxPool layer, three fully connected (FC) layers with rectified linear units
(ReLUs), and a final SoftMax classification layer. In our proposed architecture, we replace the first layer
with simplicial units which operate on 11�11¼ 121 inputs.

We trained the network using the UC Merced Land Use Dataset during 800 epochs, by stochastic gradi-
ent descent (SGD) method. All images were reduced to 224 � 224 pixels and were split into 1260 images for
training, 420 for validation and 420 to test the net performance. We used a batch size of four samples and a
learn rate of 0.01 for the simplicial coefficients, linear weights, and biases, with an exponentially decay fac-
tor of 0.99, reaching 95.79% accuracy on the training set, 82.14% on the validation set and 80.95% on the test
set. As a comparison, Nogueira et al26 report 76.7% accuracy.

In order to assess the appropriate level of quantization for a digital implementation, we quantized the
parameters of the first layer (simplicial function only), for different input quantization levels. We computed
the output of the simplicial layer for all the images used and subtracted it from the full precision simplicial
output. We divided this difference by the range of the original output, applied norm 2 and divided by the

FIGURE 12 Energy for the lineal expression (49) and the simplicial expression (54) as a function of N for p,r¼ 2,4,…,16: (A) q¼ 8;

(B) q¼ 8 and M¼ 1000
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number of output neurons. This error value was then averaged for each image, each input channel, and
each simplicial filter, resulting in the plot of Figure 15. For input quantization levels of more than 4 bits, the
accuracy does not change significantly. This is confirmed by the plot of classification accuracy versus input/
parameter quantization of Figure 16.

For the second part of the example, we designed a digital core to implement the simplicial DMN and a standard
MAC implementation based on the state-of-the-art architecture presented in Gokhale et al.34 Both modules are parame-
trized to achieve the same throughput in the context of a pipelined system.

Example 5.2. We designed two modular digital blocks with 128 inputs, so that they can handle the 11 � 11
kernel operations. Based on Figure 16, we selected an input precision q¼ 4 for both cores. In the simplicial
case, we chose p¼ 3 bits for the parameters and in the standard linear, p¼ 4, in order to achieve the same
precision, in accordance with the results of Section 3.

FIGURE 13 Gates required by the simplicial (50) and serial simplicial (53) interpolation, parallel and serial linear VVM, and sorting

operation for q¼ 8 and p,r¼ 2,4,…,12 as a function of N

FIGURE 14 DMN architecture
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The standard linear architecture is based on the state-of-the-art implementation34 illustrated in
Figure 17. The first stage consists of eight channels that multiply and accumulate 16 inputs each with their
corresponding coefficients, one at a time, in 16 clock cycles. The second pipeline stage, takes the eight

FIGURE 15 Simplicial layer error as a function of the input quantization

FIGURE 16 Classification accuracy of the training set as a function of the input quantization

FIGURE 17 Synthesized architecture for the linear block
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partial results and adds them serially in eight clock cycles. Both stages work in pipeline, so the total comput-
ing time is 16 clock cycles.

The simplicial architecture is shown in Figure 18 and follows the principle previously described in
Figure 11C. It is composed of 128 4-bit inputs that are time-encoded with 1-bit lines during a ramp period of
16 clock cycles. They enter an adder tree, which generates the addresses of the coefficients that are subse-
quently added in an accumulator. This architecture also computes in 16 clock cycles.

Both architectures were described in SystemVerilog HDL language and synthesized with Synopsys®

DesignCompiler on a 65nm technology for an operation frequency of 50 MHz at 1.08 V. In both cases, the
designs were optimized using clock-gating cells to reduce area and switching activity. Post-synthesis simula-
tion and power analysis were performed with Siemens® QuestaSim and Synopsys® PowerCompiler, respec-
tively. Table 3 summarizes the results. The simplicial block is three times smaller and consumes 10 times
less power for the same processing time.

6 | CONCLUSIONS

We have shown that the simplicial interpolation is a convenient alternative to implement VVM, from accuracy, storage,
and energy viewpoints. Actually, the advantage is more pronounced for large number of inputs, which is relevant given
the current interest in large-scale computation demanded by machine learning and artificial intelligence architectures.
The simplicial representation requires an encoding of the inputs, which need to be sorted first and then subsequently
subtracted. When the number of inputs is large, the number of nonzero encoded inputs is at most equal to the number
of levels of the input, namely Q¼ 2q, and the variance is small 1/Q2. As a consequence, the parametric quantization
error has a reduced impact on the output error. In this situation, the simplicial representation achieves the same error

FIGURE 18 Synthesized architecture for the simplicial block

TABLE 3 Synthesis results of the simplicial and a standard linear 128 4-bit input core in a 65-nm technology, running at 50 MHz with

an operation voltage of 1.08 V

Simplicial Linear

Combinational cells 175 828

Sequential cells 17 210

Buff/Inv 10 120

Total area 1130.4 μm2 3787 μm2

Dyn. power 17.46 μW 182.27 μW

Leakage power 30.80 nW 141.22 nW

Total power 17.5 μW 182.4 μW
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as a standard VVM with approximately half the number of parameter bits. This translates directly into a saving in
parameter storage and also has an impact on energy, as explained next.

Depending on the number of inputs, the simplicial architecture exhibits better results either on area or energy. For
moderate and large number of inputs (Figure 12), the simplicial expression achieves better energy performance but a
serial VVM achieves a more compact implementation (Figure 13). For small number of inputs, the situation is the
opposite.

Most of the area of the simplicial approach is due to the encoding comparators regardless the number of inputs. In
terms of energy, the comparators become the predominant factor for very large number of inputs. We have shown that
if the same inputs need to be re-used by different computational blocks, the encoding operation can be shared and the
corresponding area/energy budget is significantly reduced. This is indeed the case for neural networks structures where
every neuron of a layer feeds all the neurons of the next layer. This can be exploited in multilayer neural networks,
especially if they are very large, by an adequate architecture design to produce more area/energy efficient cores.

Finally, it is worth noting that the accuracy properties are inherent to the nature of the computation, namely, input
encoding and interpolation. This is true whether we consider a single domain simplex (as in the case of OS filters) or a
more general region, where a supervisory system could be in charge of detecting different regions of the domain and
assigning the corresponding parameters.
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