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Abstract

The flight of compact debris can be highly stochastic in nature. However, stan-

dard flight equations are deterministic after assuming a spherical shape for

gravel. This study proposes a stochastic model to resolve some key aspects

of these uncertainties that originate due to changes in orientation of the debris

particle during flight. The model numerically solves the differential equations of

motion for a large number of gravel pieces taken from five different size grada-

tions. The amount by which the drag and lift coefficients (δCD and δCL), the

lift force direction (δθ) and the projected area (δα) are varied at each time-step

during the flight simulation of a single debris are the four parameters used to

fit the model to the results obtained from gravel drop experiments. An op-

timization criterion (ε) was introduced and the model was optimized for each

gravel gradation tested. It was found that only small perturbations in the lift

coefficient are needed to model the flight. However, larger perturbations in the

direction of the lift force are required to correctly predict the statistics of the

landing locations.
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1. Introduction

1.1. Role of wind-borne debris

Wind-borne debris and missiles in hurricanes and other strong wind events

have been observed to cause significant damage to the built environment. After

more than thirty years of research on hundreds of post-storm investigations,5

Minor (2005) [1] has concluded that the building envelope is crucial to sat-

isfactory performance of buildings in windstorms and wind-driven debris is a

decisive factor in determining the performance of the building envelope. Field

investigations show how the entire structure of a building can suffer from cas-

cading failure following the first failure of the envelope. Leakage of the building10

envelope due to impact by fast-moving debris exposes the conditioned space

within the building to the external unconditioned environment. This results in

increased rain and debris infiltration, causing further damage to the contents

within the interior of the building. This can also lead to internal pressuriza-

tion and increased roof uplift, which can, in severe cases, cause roof lift-off.15

Smith & McDonald (1990) [2] stated in their report following Hurricane Hugo

(Charleston, SC-1989) that, the damage to the inside of the building and the

contents within due to water infiltration can cause greater financial loss than

the damage to the building structure itself. Thorough assessments of insurance

records following strong wind events also show a dramatic increase in the to-20

tal financial loss for damage that involves breaching of the building envelope.

Sparks et al. (1994) [3] related wind speed to the damage claims and concluded

that the size of claims is greater when the building envelope is compromised in

the event of storms and hurricanes.

There have been extensive studies and literature for decades, corroborated25

by thorough post-hurricane investigations, on the role of wind-borne debris on

the built environment. Reports after notable wind events such as Hurricane

Hugo (1989, Charleston SC), Hurricane Andrew (1992, South Florida), and

Hurricane Alicia (1983, Houston TX) show that wind-borne debris had been a
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major contributor to the total economic loss [1]. Several studies following Hur-30

ricane Alicia have shown that blown-off roof gravel caused significant damage to

the windows of high-rise buildings in Downtown Houston. Behr & Minor (1994)

[4] have also drawn similar conclusions after Hurricane Andrew, which caused

an estimated total of US$ 26.5 billion in damage according to the report by

the United States National Hurricane Center [5]. In their report one year after35

Hurricane Hugo, Smith & McDonald (1990) [2] have shown that the blown-off

gravel can cause severe injury and property damage, and in one case, aggregate

has been recorded to have traveled more than 245 ft (75 m) from one build-

ing to another breaking nearly all of the outer panes of double-glazed windows

and a number of inner panes as well. Roof gravel blow-off during Hurricane40

Katrina resulted in the destruction of the front facade of the Hyatt Hotel in

downtown New Orleans, LA,[6] resulting in significant damage, loss of revenue

during repair, and an initial insurance claim of $100m[7]. Broken windows due

to windborne debris can lead to internal pressurization of the structure poten-

tially resulting in significant structural damage such as roof lift off [3]. Such45

breaches in the building envelope can also result in rainfall penetration of the

structure causing water damage to the contents [8].

In an attempt to address the issue of damage from wind-borne debris, build-

ing design codes have gone through several modifications over time and the

existing design guidelines have still proven to fall short at times with debris50

motion initiation occurring at wind speeds lower than the design wind speeds.

There still exists a significant knowledge gap around the motion initiation mech-

anism and resulting flight. These criteria can be solved only with a deeper

understanding of the forces acting on individual particles of randomly shaped

compact debris.55

1.2. Debris classification

Debris has been classified in different ways based on their shape, size, weight

and locations. However, the most commonly used scheme of debris classifica-

tion while modeling debris flight, proposed by Wills et al. (2002) [8], classifies
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the debris in three types (shown in Figure 1) based on their geometric shape:60

rod-like (linear debris), plate-like (planar debris) and compact debris (three di-

mensional debris). Rod-like debris has one dimension significantly larger than

the other two, Plate-like debris has two dimensions significantly larger than the

third one, and Compact debris has similar dimensions in all three directions.

Figure 1: Classification of Debris with dimensions (a) Rod-like Debris (L1 >> L2), (b) Plate-

like Debris (L1, L2 >> L3), (c) Compact Debris (L1 ≈ L2 ≈ L3 ≈ L)

.

The standard compact debris flight equations assume that the debris can be65

treated as spherical [9, 10] and that it does not rotate. The consequences of

these assumptions are that

1. There are no aerodynamic moments acting on the debris

2. There are no lift forces acting on the debris,

3. The debris cross-sectional area is independent of orientation, and, there-70

fore,
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4. The only forces acting on the debris are the debris weight (vertically down)

and aerodynamic drag acting in the direction of the apparent wind.

These assumptions lead to the derivation of the compact debris flight equa-

tions which, for a straight-line wind, are two dimensional. They can be written75

as a set of two coupled second order ordinary differential equations

d2x

dt2
=
du

dt
=
ρCDA

2m
(U − u)

√
(U − u)2 + w2 (1)

and

d2z

dt2
=
dw

dt
=
ρCDA

2m
(−w)

√
(U − u)2 + w2 − g (2)

In the above equations x is the horizontal coordinate in the direction of the

wind flow, z is vertically upward, m is the mass of the debris, ρ is the fluid den-

sity, CD is the drag coefficient (often assumed to be constant), g is acceleration80

due to gravity, U is the wind speed (commonly taken to be uniform and hori-

zontal), and u and w are the horizontal and vertical components of the debris

particle velocity respectively. For a long enough flight distance these equations

yield a solution in which the debris travels horizontally at the wind speed and

vertically at its terminal velocity. However, irregularly shaped compact debris85

does not travel in a two-dimensional plane. This can be observed by dropping

small pieces of gravel into a tank of water and observing that they do not fall

vertically. Observations from such experiments indicate that

1. the gravel pieces change orientation during their fall

2. their fall is not vertical or, in fact, even in a straight line, and90

3. the path varies from one piece to the next even for gravel pieces taken

from the same gravel gradation.

When a piece of gravel is released from rest it will initially fall vertically

because the only forces acting on it are its weight down and the buoyancy force

up (assumed negligible when falling through air, but significant when falling95
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through water). At this point the apparent fluid velocity, that is, the fluid ve-

locity relative to the gravel, will be vertically up. Therefore, any deviation of

the flight path from vertical must be the result of a lift force (i.e. an aerody-

namic force that acts normal to the direction of the apparent fluid velocity).

Further, since the gravel is observed to change orientation during flight, the100

cross-sectional area of the gravel normal to the apparent fluid velocity will vary.

These observations violate all four of the assumptions listed above for using the

compact debris flight equations.

To better understand the flight of irregularly shaped compact debris, an

experimental and modeling study was undertaken and is presented below. In105

section 2 the experimental methods are described including details of the data

collection and analyses. Experimental results are presented in section 3 includ-

ing qualitative descriptions of the flight paths and statistical analysis of the

landing locations of the various gravel pieces dropped. These observations are

used to develop a stochastic flight model for gravel pieces falling through a110

stagnant environment (section 4). The results are discussed in section 5, and

conclusions are drawn in section 6.

2. Experimental methods

2.1. Experimental setup

To gain insight on the motion of irregularly shaped gravel pieces moving115

through a fluid, a simple experimental setup is designed for this study. The

setup consists of a clear-sided tank filled with water and gravel pieces of different

sizes as representative of a typical compact debris (shown in Figure 2).

The main objective of the experiment is to observe the distribution of the

landing locations of dropped gravel pieces. An earth-fixed, right-handed coor-120

dinate system is defined with its origin fixed at the center of the cross-section

of the tank. The x and y-axes are on the horizontal plane as shown in Figure 3

while the z-axis points vertically upwards with its origin at the water surface

where the particles are released.
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Figure 2: Some samples of the gravel pieces used in the experiment taken from gradation E.

.

2.2. Experimental Procedure125

To locate the center of the cross-section (the origin), fishing wire was stretched

from corner to corner diagonally. Each piece of gravel was released from the cen-

ter, directly below the point where the wires intersect each other. The gravel

was held by a pair of tweezers and released slightly below the water surface

such that the gravel was just submerged and stationary when released. The130

orientation of the gravel at the release point was varied to avoid any systematic

bias in the initial conditions.

A thin uniform layer of sand was placed on the bottom of the tank to pre-

vent gravel pieces from bouncing off the floor when they land. For each gravel

size, sets of 20 pieces were dropped consecutively. After each set of 20 drops,135

an aerial photo of the spread was taken from directly above the fish tank for

further analyses. A total of 200 drops were done for each gravel gradation.

Each particular set of drops was limited to 20 pieces before photographing and

removing the gravel from the sand bed. This was done to avoid having particles

land on top of or bounce off a previously dropped piece.140

From each plan view photo, the landing locations were digitized as a scatter

plot with respect to a given 2D coordinate system. From the resulting x-y

coordinates of the landing locations, the radial distance from the center of the
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Figure 3: Schematic diagram of the water tank and the system of coordinates. The tank had

an internal length of 59 cm, a width of 29.2 cm and a height of 40 cm. The distance from the

water surface to the top of the sand layer was 37.5 cm.

tank base (directly below the release point at x = y = 0) to each landing location

was calculated. The landing locations were calculated using ScanIt [11]. This145

software takes an image file and allows the user to create a 2D coordinate system.

Based on this defined coordinate system, each landing location is assigned a pair

of x-y coordinates which can be exported to a spreadsheet. The radial distances

of the landing locations from the center of the tank base is calculated using the

exported data. Figure 4 below shows the user interface of the software.150

2.3. Statistical Description of Gravel Size and Shape

For the experiments in this study, five different sizes of gravel have been used

denoted as gradations A, B, C, D and E from largest to smallest size in order

of their mean equivalent radii. For each of the five gravel sizes, a sample of 45

pieces was randomly selected, and lengths along the shortest dimension (L1),155

the longest dimension (L3) and in the direction perpendicular to L1 and L3 were

measured (L2). Figure 5 shows a representation of L1, L2 and L3 measurements

for a sample gravel piece.

Both L1 and L2 were, then, normalized by the longest dimension (L3) to

assess the size variation across the gravel gradations. The mean volume of the160
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Figure 4: User interface of ScanIt showing extraction of coordinates for landing locations from

a sample aerial photo.

gravel pieces for each gradation was calculated by placing a number of gravel

pieces in water inside a measuring cylinder and observing the volume of displaced

water. From the mean volumes, mean equivalent radii for all the gradations are

calculated from the expression of the volume of a sphere. Table 1 shows a

summary of all these measurements.165

To understand how the two aspect ratios vary for each gradation compared

to another, and to understand whether or not there is some form of geometric

similarity across the gradations, L2/L3 for each gradation is plotted against

L1/L3 and the resulting spread was observed qualitatively. Figure 6 shows the

plots obtained for each gradation:170

In figure 6 it can be clearly observed that the spreads vary noticeably across

the gradations. The spread for gradation C seems to be quite localized compared

to the others. The ratio L1/L3 for gradation C seems to lie mostly between 0.25

and 0.7, while L2/L3 varies between 0.45 and 0.95. The same ratios for other

gravels are more spread apart (e.g. 0.2 ≤ L1/L3 ≤ 0.85 and 0.3 ≤ L2/L3 ≤ 1.0175

for gradation B). The spreads for A and B can be seen to be more skewed

towards the upper right region of the plot. Histograms obtained from the two

ratios for all gradations also illustrate similar differences (Figure 7).
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Figure 5: A gravel piece with bounding cuboid showing length measurements along the three

directions (L1, L2 and L3).

The distribution of L1/L3 is clearly peaked in the middle with little spread

on either side for gradation C, and L2/L3 has a peak that has a higher frequency180

than the other gradations and skews towards the right. For both ratios, there

are relatively fewer occurrences further away from the peak compared to other

gradations. From this analysis, we can make a qualitative observation that the

aspect ratios and, therefore, the overall shapes and central tendencies of the

distributions appeared to differ across the gradations studied. This observation185

is further checked by performing a single-factor MANOVA (Multivariate Anal-

ysis of Variance) from which we obtained a p-value below the significance level,

αsig = 0.05, which quantitatively proves that the differences of means across the

gradations are statistically significant (details of the MANOVA are in Appendix

A). Therefore, given the lack of geometric similarity, one would not expect the190

resulting distribution of landing locations to be similar across the gradations

tested.

3. Experimental results

During the experiment, the trajectory of the dropped gravel was carefully

observed. These observations leads to several findings: (1) gravel continuously195

changes its orientation during its fall, (2) their path of travel is neither linear, nor

vertical, and (3) for gravel pieces taken from the same gradation, each piece has
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Gravel Size A B C D E

Re (mm) 7.10 5.68 5.60 3.58 1.99

mean L1 (mm) 9.99 8.82 8.02 4.21 2.86

mean L2 (mm) 16.64 12.75 12.28 7.56 4.62

mean L3 (mm) 21.13 18.02 17.69 10.55 7.18

mean L1

L3
0.49 0.51 0.46 0.42 0.42

St. Dev. L1

L3
0.13 0.16 0.11 0.14 0.13

mean L2

L3
0.80 0.73 0.71 0.73 0.67

St. Dev. L2

L3
0.12 0.16 0.12 0.15 0.14

Table 1: Summary of all the dimension measurements for gravel gradations A through E

a different trajectory. All these findings contradict the underlying assumptions

in the standard compact debris flight equations. The standard debris flight

equations for compact debris treat compact debris as spherical objects that are200

not rotating [9, 10]. This assumption fails to take the aerodynamic moments

and lift forces into account which results in a 2D motion in straight-line winds.

The experimental findings, however, show otherwise as seen in a series of frame-

by-frame pictures of a single gravel drop in Figure 8.

Initially, as a gravel piece is released from rest, it will fall vertically down-205

wards as long as the only two forces acting on it are weight (vertically down)

and buoyancy (vertically up). Since the velocity of the fluid relative to the

gravel is vertically upwards at this point, any subsequent deviation of the piece

from vertical is associated with the presence of a lift force acting on it in a

direction perpendicular to its velocity at any given point. Moreover, the change210

in orientation of gravel pieces during their fall shows that the projected cross-

sectional area of the gravel normal to the apparent fluid velocity will continue

to vary during the fall. Due to these factors, the resulting landing locations for

a number of dropped gravel pieces will be spread around the center of the tank
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Figure 6: L2/L3 vs L1/L3 scatter plots showing the distribution of the two aspect ratios for

each gradation. The blue lines have a slope of 1 and mark the lower bounds on the data.

base as shown in Figure 4.215

The mean and standard deviation of the radial distances of these landing

locations measured from directly below the release point. These statistics are

recorded in Table 2. Figure 9 shows a histogram of the radial distances for 200

drops for one gravel gradation (gradation A).

From the histogram in Figure 9, we observe that the peak has a finite non-220

zero value. This implies that only a few pieces actually land close to directly

below the release point, rather, in most cases, the path traveled by the dropped

gravel pieces are not vertical. This is qualitatively similar to the drop experi-

ments of Tohidi & Kaye (2017) [12] for rod-like debris.
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Figure 7: Histograms showing the spread of the two aspect ratios (L1/L3 and L2/L3).

Gradation A B C D E

Mean [mm] 56.7 38.9 52.8 48.6 30.1

St. Dev. [mm] 30.0 28.5 32.2 30.8 22. 3

Table 2: Means and standard deviations of radial distances obtained from experiments for all

the gradations

4. Model development225

This section describes the development and optimization of a stochastic com-

pact debris flight model that accounts for variation in gravel geometry, variation

in orientation during flight, and lift forces generated from asymmetry in the

gravel shape and rotation during flight.

4.1. Model equations230

In order to develop a 3-D debris trajectory model, it is necessary to define a

fixed system of coordinates to track the motion of gravels in 3-D space. Figure 3

shows the fixed, right-handed coordinate system that has its origin placed at the

release point for the experiments and the same coordinate system is used in the

model development. The position and velocity vectors for the center of a given235

gravel piece are given by the position x = [x, y, z] and velocity, u = [ux, uy, uz]

respectively. While the gravel pieces are observed to change orientation during

their falls the model assumes that the rotation only contributes to changes in
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Figure 8: Series of 12 frame-by-frame images, showing a single piece of gravel falling through

water. The vertical red lines correspond to the release location.

the magnitude of the drag force (through changes in cross-sectional area and

CD) and the magnitude and direction of the lift force. As the drag and lift forces240

are modelled stochastically there is no need to explicitly model the aerodynamic

moments and resulting rotation.

This modeling approach is conceptually similar to that of Grayson et al. (2012)

[13], who developed a six degree-of-freedom stochastic model for plate-like de-

bris flight. In their model the debris location and orientation was randomly245

perturbed each time step while integrating deterministic 6 DOF flight model.

In the model presented below we randomly perturb the equation parameters

each time step and then calculate the location which is treated as deterministic

for a given set of equation parameters.

The equations that govern the motion of these particles are the rectilinear
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Figure 9: Histogram of radial distances of landing locations for gradation A.

equations of motion in three dimensions:

d2x

dt2
=
du

dt
=

Fw + FB + FL + Fd

m
(3)

where bold symbols represent Cartesian vectors, and the velocity vector (u) is

given by

u =
dx

dt
(4)

and m is the mass of the gravel piece. The forces acting on the gravel are the

drag force,

Fd = −1

2
ρA|u|uCD, (5)

lift force,

FL =
1

2
ρA|u|2CLnL, (6)

weight,

Fw = (0, 0,−mg), (7)

and buoyancy force,

FB = (0, 0, ρ∀g). (8)

Herein ρ is the density of the fluid, A is a characteristic cross-sectional area of250

the gravel, CD and CL are drag and lift coefficients respectively, g is acceleration

due to gravity, ∀ is a characteristic volume of the gravel and nL is a unit vector
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in the direction of lift force. See Figure 10 for the kinematic and free body

diagrams. Solving the coupled equations (3) and (4) leads to the velocity and

position of the gravel piece as a function of time.255

Figure 10: (a) Velocity diagram showing the velocity components in x, y and z directions. (b)

Free body diagram.

4.2. Model parameters

For any given collection of gravel pieces, even if from the same gradation,

the values of A and ∀ will vary from piece to piece. During flight, changes

in orientation mean that the area normal to the apparent fluid velocity will

vary over time. Changes in orientation will also lead to variation in the force260

coefficients CD and CL and the direction of the lift force nL. Finally, the

initial values of all these parameters will vary depending on the orientation

of the gravel upon release from rest. It is highly likely that, even if all these

parameters were known explicitly as a function of orientation, it would still not

be possible to predict the trajectory as the results would be so sensitive to the265

initial release angle that, in the absence of perfect knowledge of the release,

it would not be possible to predict an individual flight path [12]. Therefore,

the model development is focused on predicting the statistical properties of a

large number of trajectories for gravel pieces released under nominally identical

conditions. To do this, A, CD, CL and nL are treated as randomly varying270

parameters in the model.
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The ranges, within which CD and CL are varied in this study, are determined

based on the work of Chai et al. (2018) [14] whose measurements showed values

of CD and CL vary over the ranges 0.4 < CD < 0.8 and 0 < CL < 0.35

respectively for a range of different rock pieces oriented in different directions.275

Given that the force coefficients are functions of an unknown orientation and

we have no knowledge of the distribution of orientation during flight, we assume

that they are both uniformly distributed between the limits given.

The area A was taken to have a reference value given by

AR = πR2
e (9)

where, Re is the equivalent radius of the average gravel piece in a given grada-

tion. It is defined as the radius of the sphere that has the same volume as the

average gravel piece. The range of possible areas is taken to be

L̄1L̄2 ≤ A ≤ L̄2L̄3 (10)

where L̄1, L̄2, and L̄3 are the averages of the shortest, intermediate, and longest

gravel dimensions respectively as defined in section 2. This area calculation

assumes that the gravel is cuboid (see figure 5) and will, therefore, overestimate

the areas. However, this overestimation is offset by using the average length

values such that there will be gravel pieces for which L̄1L̄2 and L̄2L̄3 are outside

the bounds assumed for A. The area value used in the model is

A = αAR (11)

where, α is a random variable uniformly distributed over the range

L̄1L̄2

AR
≤ α ≤ L̄2L̄3

AR
(12)

As the model does not calculate orientation, the direction of the lift force is

only known to be normal to the apparent fluid velocity. However, this criterion

only identifies the plane normal to the velocity vector. A specific unit vector,

nL, is generated by first defining a reference unit vector (nref ) in the global

x− y plane

nref = (sinθ, cosθ, 0) (13)
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in which θ is randomly generated at the start of each flight from a uniform

distribution over the range 0 ≤ θ < 2π. The unit vector normal to the direction

of the apparent fluid motion is calculated by taking the cross product of the

unit vector in the direction of the velocity with the reference unit vector

nL =
u(t)

|u(t)|
× nref (14)

Therefore, the lift force vector in three dimensions takes the following form

FL =
1

2
ρA|u|uCL × nref (15)

The coupled governing differential equations (3) and (4) are numerically

solved in MATLAB using a 4th order Runge-Kutta method with fixed time-280

step [15]. The numerical integration is performed under the initial conditions

x(t = 0) = [0, 0, 0] and u(t = 0) = [0, 0, 0], and the boundary condition z = zmax

at t = tfinal, where zmax is the depth of tank. As the time taken to reach zmax is

unknown for any given release, the equations are integrated for a large enough

time that the particle has dropped further than zmax and the time at which285

zmax is reached, along with the location vector x = [x, y, zmax], is calculated by

interpolating the trajectory data on to z = zmax.

At the beginning of each simulation the initial values of the random variables

CD, CL, α and θ are randomly generated from the distributions described above.

Then, at the end of each time-step, the values are randomly perturbed before290

the next time-step in the integration. To avoid drastic changes in the magnitude

of each of these parameters (e.g. α), the new values are generated randomly

from a continuous uniform distribution over a pre-specified range (±δα) about

the previous value. So, the new values of CD, CL, θ and α are generated

randomly from ±δCD, ±δCL, ±δθ and ±δα ranges about the previous values295

of the corresponding parameters. To illustrate the idea, consider the case where

the value of CD from the previous time step was 0.55 and δCD has a fixed value

of 0.03 for that simulation. Then, the new value of CD for the next time step,

will be randomly generated from a uniform distribution between CD− δCD and

CD + δCD, or 0.52 and 0.58 for this example. The same perturbation approach300
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is used for CL, θ and α.

These random perturbations of CD, CL, α and θ at each time-step are to

account for changes in orientation that alter the projected area (δα), the mag-

nitude of the drag and lift forces (δCD and δCL) and the direction of the lift

force (δθ). Over the course of a given set of flight simulations, the statistical

distribution of the gravel landing locations will depend on the magnitude of the

perturbations (δCD, δCL, δα and δθ) and the number of times that the values

are perturbed (N = T/δt) where T is the time taken to reach z = zmax and δt

is the integration time-step. To minimize the number of model parameters, the

time-step was fixed for all simulations and was taken to be the time taken for the

equivalent sphere to fall one radius when traveling at its terminal velocity UT .

The terminal velocity was calculated using the median value of the CD = 0.6

to yield

UT =

√
2(Fw − FB)

CDρAe
(16)

and a time-step of

δt =
Re

UT
. (17)

Therefore, the time scale is characteristic of a typical gravel piece within a given

gradation and is consistently defined over all gradations.

The ranges of CD, CL, and α are determined from laboratory measurements

of gravel geometry (section 2) and wind tunnel measurements of the force co-305

efficients [14]. The equivalent sphere properties (m and Re) are also calculated

from measurement data. Therefore, the only unknown parameters in the model

are δCD, δCL, δα and δθ. These four parameters are used as fitting parameters

to match the simulated landing locations with the experimental data.

5. Model results and comparison310

The numerical studies were carried out for different combinations of the

four fitting parameters discussed in previous chapter. The perturbation ranges

δCD,δCL and δα were varied from 0 to 50% of the overall range of the respective
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parameter in increments of 2.5% of the overall range while δθ was varied from

0 to 60o in 1.5o increments. This leads to a total of 21 values for each pertur-315

bation parameter except for δθ which has 41 values. To capture all possible

combinations of these four parameters, a total of 213 × 41 simulations were run

for each drop with 200 drops per case and for all five gradations. This resulted

in a total of almost 380 million drop simulations.

The numerical results for each combination of parameters were compared320

to the experimental measurements described in section 3. For each gradation,

the set of fitting parameters that yields the minimum error was extracted as an

optimum set of model parameters. To show how the other combinations yield

less desirable results compared to the optimized combination of the parameters

the model was run with the perturbations turned off. Figure 11(a) shows a325

scatter plot of the resulting numerical and experimental landing locations for

the largest gravel size (gradation A). Figure 11(b) shows a quantile plot of the

radial distance showing the model radial distances plotted against experimental.

The solid red line has a slope of 1 representing exact agreement between the

experiments and the model. Both these plots are for when the model was run330

with the perturbations turned off so that the model spread is only due to the

changes in randomly assigned initial conditions. It is clear from this set of plots

that the spread obtained from this iteration of the model does not resemble the

experimental data at all.

5.1. Optimization Technique335

For all the combinations of fitting parameters, the numerical simulations give

us the x and y coordinates of landing locations for 200 drops per gravel size. The

radial distances of each landing location from the center of the tank were then

calculated from the coordinates. From this, the mean and the standard deviation

of the radial distances were calculated. To find an optimized combination of

δCD,δCL, δθ and δα, the absolute differences between the two means (numerical

and experimental) and the two standard deviations are calculated. These two

quantities are not to be minimized independently since they are not exclusive
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Figure 11: (a) Scatter plot of landing locations obtained from the model and experimental

results for the case when the perturbations were set to zero (b) Quantile plot of the radial

distance for the same data. Both plots are for gradation A.

of each other. For example, a very localized spread (meaning the standard

deviation is smaller) can yield a mean which can be the same as another spread

that is less localized (i.e. with higher standard deviation). To optimize both

these quantities, an optimization parameter (ε) was introduced that quantified

the difference between the means and standard deviations of the model and

experimental data. Two versions of ε were investigated. The first was the sum

of the squares of the differences in the means and standard deviations,

εD =

√
(rexp − rmodel)

2
+ (σr.exp − σr.model)

2
. (18)

The second was these differences normalized using the experimental values for

the mean and standard deviation,

εR =

√(
1− rmodel

rexp

)2

+

(
1− σr.model

σr.exp

)2

. (19)

To calculate the optimal set of perturbation values for a given gravel gra-

dation, the values of both εD and εR were calculated for all 379,701 unique

combinations of the perturbation values and the minimum found. For three out

of the five gravel sizes the optimized set of perturbation parameters were the
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same for each definition of ε. However, for gradations B and C, the optimized340

cases were different for the two definitions of ε. Figure 12 shows quantile plots

for three realizations of the optimization method using each definition of ε. In

each case 150 sample radial distances were randomly selected from the experi-

mental and numerical data sets and the values of εD and εR were calculated. The

optimal combination of perturbations was then calculated and a quantile plot345

was developed in which the remaining 50 experimental data points were plotted

against the remaining 50 model points for the optimal set of perturbations.

To understand which of the two optimization techniques yields results closest

to the experimental radial distances, t-tests were performed between the exper-

imental and the numerical radial distances for the optimized cases for each350

definition. The t-tests results show that there exists no statistically significant

difference (p-value < 5% significance level) between the two means under the

assumption of equal variances, regardless of the optimization approach. Next,

the R-squared value was calculated as a measure of predictive accuracy for both

pairs, i.e. experimental vs numerical optimized based on (18) and (19). The re-355

sults showed that the optimization using the minimum value of (19) consistently

outperformed the other approach (18). Based on this analysis, the approach in

equation (19) is used in this study as the optimization technique.

Figure 12: Quantile plots of radial distance for 50 drops with experimental results on the

horizontal axis and numerical results on the vertical axis for the optimized perturbation values

generated from a separate set of 150 drops. (Left) Model optimization based on ratios (19)

and (right) model optimization based on differences (18)

.

22



The value of the optimization parameter as a function of each perturbation

was plotted in Figure 13 to illustrate the significance of the role played by360

each perturbation. In each plot three of the perturbation parameters were held

constant at their optimal values and then ε was plotted as a function of the

remaining parameter. For all four plots there is variability along the lines due

to the finite size of the data sets used in the optimization. However, despite

this noise, there are clear minima for two of the parameters, namely δθ and365

δCL. For δα and δCD the minima are less distinct relative to the noise. This

was reflected in the perturbation values in the multiple optimization runs used

to develop Figure 12. Each time the optimization was run the optimal values

of [δCD, δCL, δθ, δα] changed. However, the changes in δθ and δCL were small

and centered around the values shown in Figure 13 whereas the values of δα370

and δCD varied over a wider range.

Gradations

A B C D E

δCD 0.01 0.15 0.04 0.00 0.00

δCL 0.0525 0.0175 0.04375 0.035 0.0175

δθ (degrees) 42.0 46.5 42.0 49.5 52.5

δα (% of αmax −

αmin)

0.117

(10%)

0.231

(20%)

0.447

(37.5%)

0.267

(22.5%)

0.685

(42.5%)

Exp. Mean (mm) 58.3 44.8 50.3 44.2 31.1

Model Mean (mm) 58.3 44.9 50.3 44.2 31.1

Exp. σ (mm) 30.8 29.6 29.7 27.8 21.8

Model σ (mm) 30.8 29.6 29.7 27.8 21.8

εR 0.00088 0.0019 0.00073 0.0013 0.0018

Table 3: Optimized combinations of the perturbation parameters and the resulting means and

standard deviations obtained from the model for all gradations.
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Figure 13: Plots of the optimization parameter ε as a function of each perturbation parameter.

In each plot the three of the four perturbation parameters are held at their optimized values

and the fourth one plotted. From top left reading across then down δCD, δCL, δθ, and δα

expressed as a percentage of αmax − αmin. All plots are for Gradation A

Having established that using εR (19) provided a marginally better result

than εD (18), this technique was used to establish the optimal values of [δCD, δCL, δθ, δα]

using all 200 experimental data points per gradation. The results of these op-

timizations are shown in Table 3. From these data, we can see that for the375

optimized condition, δCL has, albeit small, finite non-zero values. The pertur-

bation of θ (which models the lift force direction), however, has large magnitudes

for each gradation under the optimized condition. These indicate that, to repli-

cate the experimental spread of landing locations numerically, the lift force has

to be modeled in such a way that at the end of every time step during the flight380

of a gravel piece, the magnitude of lift coefficient and the direction of the lift
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force has to be perturbed. However, the optimization suggests that there is

only a small variation in the magnitude of the lift force (small δCL) and that

the main impact of changes in gravel orientation during flight is to change the

direction of the lift force (large δθ). Thus, the numerical model presented in this385

study quantitatively shows that the lift force vector has a significant role on the

flight of irregularly shaped gravels, while the standard debris flight equations

fail take such effects into account due to the inherent assumption of sphericity

[9, 10].The variation in δCD and α seen in Figure 13 make it difficult to draw

conclusions about their role in the gravel flight.390

Figure 14 illustrates the agreement between the model and experimental

data for the optimized case calculated using all 200 data points for gradation

C. Figure 14(a) shows a scatter plot of landing locations obtained from the

optimized combination of [δCD, δCL, δθ, δα] along with the experimental data.

Figure 14(b) shows a quantile plot of the radial distances (experimental vs395

numerical) of landing locations for the same case. The solid red line is the line

of exact agreement between the experimental and numerical data points.

Figure 14: (a) Spread of landing locations obtained from the model in comparison with

experimental spread, (b) Comparison of radial distances obtained from model with respect

to experimental radial distances. Both plots are based on the optimized combination of

perturbation parameters for Gradation C.
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In Figure 15, the comparison of experimental and numerical radial distances

obtained from the optimized combination of perturbation parameters for each

gravel gradation are shown. The figure shows that, for the optimized model,400

the numerical data are in good agreement with the experiments.

6. Conclusions

A simple set of experiments in which gravel pieces are dropped in a tank

full of stationary water demonstrated that the standard compact debris flight

models are inappropriate for gravel flight. The experiments showed that gravel405

does not fall vertically but rather has a more complex trajectory in which the

gravel orientation changes during flight and there are both lift and drag forces

acting on the debris. Standard compact debris flight models ignore lift forces and

assume a constant cross sectional area [10, 9]. To overcome these limitations, a

stochastic model was developed in which the lift and drag coefficients, projected410

area, and orientation of the lift force are all varied randomly during flight. The

frequency at which these parameters were perturbed was set based on the size

and terminal velocity of the gravel gradation. The model was run for a range

of perturbation magnitudes and an optimal set of perturbation parameters was

established (Table 3). The results of the optimized model show very good415

agreement with the measurements from the experimental drops (Figure 15).

The model developed was validated against a set of experiments in which

gravel pieces were dropped through stationary water. It is worth discussing the

limitations of this approach. In water, the buoyancy force relative to the gravel

weight will be much larger compared to gravel in air. This, along with the higher420

fluid density increasing the drag and lift forces, resulted in much lower terminal

velocities (of the order of Uterm 0.5m/s) compared to gravel falling through air

(Uterm 10− 15m/s). Therefore, the Reynolds number in the water experiments

will be about a factor of 2-3 less than the same particle falling in air (O(3, 000)

in water compared to O(10, 000) in air). Both these Reynolds numbers would425

be within the Reynolds number independent range for a sphere [16] so the force
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coefficients are likely independent of the Reynolds number and will be similar

in air and water. The other limitation is that the tests were run in a stationary

ambient whereas windborne debris flight occurs in an ambient wind field. The

inclusion of a wind field in the model is simple as the model is built modeling430

the location and velocity vectors. However, it is possible that the values of the

optimal perturbations may be different from those in Table 3 and testing in air

with an ambient wind field should be completed.

The inclusion of an ambient wind field will add an additional source of

trajectory variation due to turbulent gusts in the wind field. Karimpour & Kaye435

(2012) [17] simulated spherical particles in a turbulent flow and showed that the

mean trajectory increases with increasing turbulent intensity but decreases if the

vertical and horizontal fluctuations are negatively correlated. It is unclear if the

trajectory variation due to gravel orientation (the subject of this study) or due

to turbulent fluctuations in the wind field will have a bigger impact on the440

overall variability in the landing location. This topic is left to future study.

The model presented will improve the prediction of flight distance for wind-

borne gravel. The inclusion of a lift force will lead to flight distances that are

greater than those predicted using the standard two dimensional models. This

would be important in predicting the risk of gravel impact on a building facade445

due to gravel blow-off from an upwind structure.
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Appendix A. MANOVA of gravel shape

In order to assess our qualitative observation that the distributions of L1/L3

and L2/L3 differed across gradations, discussed in section 2, multivariate anal-

ysis of variance (MANOVA) has been performed (using IBM SPSS Statistics505
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27.0). MANOVA is a method of performing a formal hypothesis test of mean

differences across gradations using two (or more) dependent variables simulta-

neously. The two dependent variables in this case were L1/L3 and L2/L3. This

is an extension of univariate analysis of variance (ANOVA) which is a method

of performing a formal hypothesis test of mean differences across gradations for510

one dependent variable.

The underlying assumptions for MANOVA are:

- Absence of multivariate outliers

- Linearity

- Equality of covariance matrices515

Absence of multivariate outliers is checked by assessing the Mahalanobis

Distances among the MANOVA model residuals. In our analysis, the maximum

Mahalanobis Distance was 9.444, which was less than the critical value based

on a chi-square distribution. Therefore, we did not have any multivariate out-

liers. The assumption of a linear relationship between the dependent variables520

was assessed with a scatterplot matrix using JMP® Pro 14 between the two

dependent variables (Figure A.16). The scatterplots suggested the relationship

between L1/L3 and L2/L3 was linear for all gradations. The assumption of

equality of covariance matrices across gradations is checked by Box’s M test.

For this test, we obtained a p-value of 0.259 suggesting the covariance matrices525

were similar across the gradations.

Table A.4 summarizes the MANOVA results. All test statistics resulted in p-

values less than 0.05 suggesting differences in the L1/L3 and L2/L3 means across

the gradations. To determine which of the two dependent variables contribute

to this difference, single-factor ANOVAs were performed separately on L1/L3530

and L2/L3. The results are shown in Table A.5. The univariate ANOVAs both

produced p-values less than 0.05. This suggests that L1/L3 means differ across

gradations and L2/L3 means differ across gradations, thus indicating that both

L1/L3 and L2/L3 contribute to the significant differences across the gradations.
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Figure 15: Comparison between numerical and experimental radial distances for all gradations

using the optimal perturbation results shown in Table 3

.
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Figure A.16: Scatter plot matrix to check linearity between the two dependent variables.

(Gradations A-E from left to right).
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