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Abstract

The flight of compact debris can be highly stochastic in nature. However, stan-
dard flight equations are deterministic after assuming a spherical shape for
gravel. This study proposes a stochastic model to resolve some key aspects
of these uncertainties that originate due to changes in orientation of the debris
particle during flight. The model numerically solves the differential equations of
motion for a large number of gravel pieces taken from five different size grada-
tions. The amount by which the drag and lift coefficients (6Cp and §Cp), the
lift force direction (66) and the projected area (da) are varied at each time-step
during the flight simulation of a single debris are the four parameters used to
fit the model to the results obtained from gravel drop experiments. An op-
timization criterion (€) was introduced and the model was optimized for each
gravel gradation tested. It was found that only small perturbations in the lift
coefficient are needed to model the flight. However, larger perturbations in the
direction of the lift force are required to correctly predict the statistics of the
landing locations.
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1. Introduction

1.1. Role of wind-borne debris

Wind-borne debris and missiles in hurricanes and other strong wind events
have been observed to cause significant damage to the built environment. After
more than thirty years of research on hundreds of post-storm investigations,
Minor (2005) [1] has concluded that the building envelope is crucial to sat-
isfactory performance of buildings in windstorms and wind-driven debris is a
decisive factor in determining the performance of the building envelope. Field
investigations show how the entire structure of a building can suffer from cas-
cading failure following the first failure of the envelope. Leakage of the building
envelope due to impact by fast-moving debris exposes the conditioned space
within the building to the external unconditioned environment. This results in
increased rain and debris infiltration, causing further damage to the contents
within the interior of the building. This can also lead to internal pressuriza-
tion and increased roof uplift, which can, in severe cases, cause roof lift-off.
Smith & McDonald (1990) [2] stated in their report following Hurricane Hugo
(Charleston, SC-1989) that, the damage to the inside of the building and the
contents within due to water infiltration can cause greater financial loss than
the damage to the building structure itself. Thorough assessments of insurance
records following strong wind events also show a dramatic increase in the to-
tal financial loss for damage that involves breaching of the building envelope.
Sparks et al. (1994) [3] related wind speed to the damage claims and concluded
that the size of claims is greater when the building envelope is compromised in
the event of storms and hurricanes.

There have been extensive studies and literature for decades, corroborated
by thorough post-hurricane investigations, on the role of wind-borne debris on
the built environment. Reports after notable wind events such as Hurricane
Hugo (1989, Charleston SC), Hurricane Andrew (1992, South Florida), and
Hurricane Alicia (1983, Houston TX) show that wind-borne debris had been a
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major contributor to the total economic loss [1]. Several studies following Hur-
ricane Alicia have shown that blown-off roof gravel caused significant damage to
the windows of high-rise buildings in Downtown Houston. Behr & Minor (1994)
[4] have also drawn similar conclusions after Hurricane Andrew, which caused
an estimated total of US$ 26.5 billion in damage according to the report by
the United States National Hurricane Center [5]. In their report one year after
Hurricane Hugo, Smith & McDonald (1990) [2] have shown that the blown-off
gravel can cause severe injury and property damage, and in one case, aggregate
has been recorded to have traveled more than 245 ft (75 m) from one build-
ing to another breaking nearly all of the outer panes of double-glazed windows
and a number of inner panes as well. Roof gravel blow-off during Hurricane
Katrina resulted in the destruction of the front facade of the Hyatt Hotel in
downtown New Orleans, LA,[6] resulting in significant damage, loss of revenue
during repair, and an initial insurance claim of $100m[7]. Broken windows due
to windborne debris can lead to internal pressurization of the structure poten-
tially resulting in significant structural damage such as roof lift off [3]. Such
breaches in the building envelope can also result in rainfall penetration of the
structure causing water damage to the contents [8].

In an attempt to address the issue of damage from wind-borne debris, build-
ing design codes have gone through several modifications over time and the
existing design guidelines have still proven to fall short at times with debris
motion initiation occurring at wind speeds lower than the design wind speeds.
There still exists a significant knowledge gap around the motion initiation mech-
anism and resulting flight. These criteria can be solved only with a deeper
understanding of the forces acting on individual particles of randomly shaped

compact debris.

1.2. Debris classification

Debris has been classified in different ways based on their shape, size, weight
and locations. However, the most commonly used scheme of debris classifica-

tion while modeling debris flight, proposed by Wills et al. (2002) [8], classifies



60

65

70

the debris in three types (shown in Figure 1) based on their geometric shape:
rod-like (linear debris), plate-like (planar debris) and compact debris (three di-
mensional debris). Rod-like debris has one dimension significantly larger than
the other two, Plate-like debris has two dimensions significantly larger than the

third one, and Compact debris has similar dimensions in all three directions.

(©)

Figure 1: Classification of Debris with dimensions (a) Rod-like Debris (L1 >> L2), (b) Plate-
like Debris (L1, L2 >> L3), (¢) Compact Debris (L1 ~ L2 ~ L3 ~ L)

The standard compact debris flight equations assume that the debris can be
treated as spherical [9, 10] and that it does not rotate. The consequences of

these assumptions are that

1. There are no aerodynamic moments acting on the debris
2. There are no lift forces acting on the debris,
3. The debris cross-sectional area is independent of orientation, and, there-

fore,
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4. The only forces acting on the debris are the debris weight (vertically down)

and aerodynamic drag acting in the direction of the apparent wind.

These assumptions lead to the derivation of the compact debris flight equa-
tions which, for a straight-line wind, are two dimensional. They can be written

as a set of two coupled second order ordinary differential equations

@ _du_ pCpd
a2 dt  2m

(U —u)/ (U — u)? + w? (1)

and

d?z _dw  pCpA

a2~ dt  2m

(—wV (U —u)?* +w? —g (2)

In the above equations x is the horizontal coordinate in the direction of the
wind flow, z is vertically upward, m is the mass of the debris, p is the fluid den-
sity, Cp is the drag coefficient (often assumed to be constant), g is acceleration
due to gravity, U is the wind speed (commonly taken to be uniform and hori-
zontal), and u and w are the horizontal and vertical components of the debris
particle velocity respectively. For a long enough flight distance these equations
yield a solution in which the debris travels horizontally at the wind speed and
vertically at its terminal velocity. However, irregularly shaped compact debris
does not travel in a two-dimensional plane. This can be observed by dropping
small pieces of gravel into a tank of water and observing that they do not fall

vertically. Observations from such experiments indicate that

1. the gravel pieces change orientation during their fall
2. their fall is not vertical or, in fact, even in a straight line, and

3. the path varies from one piece to the next even for gravel pieces taken

from the same gravel gradation.

When a piece of gravel is released from rest it will initially fall vertically
because the only forces acting on it are its weight down and the buoyancy force

up (assumed negligible when falling through air, but significant when falling
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through water). At this point the apparent fluid velocity, that is, the fluid ve-
locity relative to the gravel, will be vertically up. Therefore, any deviation of
the flight path from vertical must be the result of a lift force (i.e. an aerody-
namic force that acts normal to the direction of the apparent fluid velocity).
Further, since the gravel is observed to change orientation during flight, the
cross-sectional area of the gravel normal to the apparent fluid velocity will vary.
These observations violate all four of the assumptions listed above for using the
compact debris flight equations.

To better understand the flight of irregularly shaped compact debris, an
experimental and modeling study was undertaken and is presented below. In
section 2 the experimental methods are described including details of the data
collection and analyses. Experimental results are presented in section 3 includ-
ing qualitative descriptions of the flight paths and statistical analysis of the
landing locations of the various gravel pieces dropped. These observations are
used to develop a stochastic flight model for gravel pieces falling through a
stagnant environment (section 4). The results are discussed in section 5, and

conclusions are drawn in section 6.

2. Experimental methods

2.1. Fxperimental setup

To gain insight on the motion of irregularly shaped gravel pieces moving
through a fluid, a simple experimental setup is designed for this study. The
setup consists of a clear-sided tank filled with water and gravel pieces of different
sizes as representative of a typical compact debris (shown in Figure 2).

The main objective of the experiment is to observe the distribution of the
landing locations of dropped gravel pieces. An earth-fixed, right-handed coor-
dinate system is defined with its origin fixed at the center of the cross-section
of the tank. The = and y-axes are on the horizontal plane as shown in Figure 3
while the z-axis points vertically upwards with its origin at the water surface

where the particles are released.
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Figure 2: Some samples of the gravel pieces used in the experiment taken from gradation E.
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2.2. Experimental Procedure

To locate the center of the cross-section (the origin), fishing wire was stretched
from corner to corner diagonally. Each piece of gravel was released from the cen-
ter, directly below the point where the wires intersect each other. The gravel
was held by a pair of tweezers and released slightly below the water surface
such that the gravel was just submerged and stationary when released. The
orientation of the gravel at the release point was varied to avoid any systematic
bias in the initial conditions.

A thin uniform layer of sand was placed on the bottom of the tank to pre-
vent gravel pieces from bouncing off the floor when they land. For each gravel
size, sets of 20 pieces were dropped consecutively. After each set of 20 drops,
an aerial photo of the spread was taken from directly above the fish tank for
further analyses. A total of 200 drops were done for each gravel gradation.
Each particular set of drops was limited to 20 pieces before photographing and
removing the gravel from the sand bed. This was done to avoid having particles
land on top of or bounce off a previously dropped piece.

From each plan view photo, the landing locations were digitized as a scatter
plot with respect to a given 2D coordinate system. From the resulting x-y

coordinates of the landing locations, the radial distance from the center of the
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Figure 3: Schematic diagram of the water tank and the system of coordinates. The tank had
an internal length of 59 cm, a width of 29.2 cm and a height of 40 cm. The distance from the

water surface to the top of the sand layer was 37.5 cm.

tank base (directly below the release point at 2 = y = 0) to each landing location
was calculated. The landing locations were calculated using Scanlt [11]. This
software takes an image file and allows the user to create a 2D coordinate system.
Based on this defined coordinate system, each landing location is assigned a pair
of x-y coordinates which can be exported to a spreadsheet. The radial distances
of the landing locations from the center of the tank base is calculated using the

exported data. Figure 4 below shows the user interface of the software.

2.8. Statistical Description of Gravel Size and Shape

For the experiments in this study, five different sizes of gravel have been used
denoted as gradations A, B, C, D and E from largest to smallest size in order
of their mean equivalent radii. For each of the five gravel sizes, a sample of 45
pieces was randomly selected, and lengths along the shortest dimension (L),
the longest dimension (L3) and in the direction perpendicular to L; and L3 were
measured (Lg). Figure 5 shows a representation of Ly, Lo and L3 measurements
for a sample gravel piece.

Both L; and Ly were, then, normalized by the longest dimension (L3) to

assess the size variation across the gravel gradations. The mean volume of the
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Figure 4: User interface of Scanlt showing extraction of coordinates for landing locations from

a sample aerial photo.

gravel pieces for each gradation was calculated by placing a number of gravel
pieces in water inside a measuring cylinder and observing the volume of displaced
water. From the mean volumes, mean equivalent radii for all the gradations are
calculated from the expression of the volume of a sphere. Table 1 shows a
summary of all these measurements.

To understand how the two aspect ratios vary for each gradation compared
to another, and to understand whether or not there is some form of geometric
similarity across the gradations, Ls/Ls for each gradation is plotted against
Ly /L3 and the resulting spread was observed qualitatively. Figure 6 shows the
plots obtained for each gradation:

In figure 6 it can be clearly observed that the spreads vary noticeably across
the gradations. The spread for gradation C seems to be quite localized compared
to the others. The ratio L1 /L3 for gradation C seems to lie mostly between 0.25
and 0.7, while Ly/L3 varies between 0.45 and 0.95. The same ratios for other
gravels are more spread apart (e.g. 0.2 < Ly/L3 < 0.85 and 0.3 < Ly/L3 < 1.0
for gradation B). The spreads for A and B can be seen to be more skewed
towards the upper right region of the plot. Histograms obtained from the two

ratios for all gradations also illustrate similar differences (Figure 7).
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Figure 5: A gravel piece with bounding cuboid showing length measurements along the three

directions (L1, L2 and L3).

The distribution of Ly /Ls is clearly peaked in the middle with little spread
on either side for gradation C, and Lo/ L3 has a peak that has a higher frequency
than the other gradations and skews towards the right. For both ratios, there
are relatively fewer occurrences further away from the peak compared to other
gradations. From this analysis, we can make a qualitative observation that the
aspect ratios and, therefore, the overall shapes and central tendencies of the
distributions appeared to differ across the gradations studied. This observation
is further checked by performing a single-factor MANOVA (Multivariate Anal-
ysis of Variance) from which we obtained a p-value below the significance level,
asig = 0.05, which quantitatively proves that the differences of means across the
gradations are statistically significant (details of the MANOVA are in Appendix
A). Therefore, given the lack of geometric similarity, one would not expect the
resulting distribution of landing locations to be similar across the gradations

tested.

3. Experimental results

During the experiment, the trajectory of the dropped gravel was carefully
observed. These observations leads to several findings: (1) gravel continuously
changes its orientation during its fall, (2) their path of travel is neither linear, nor

vertical, and (3) for gravel pieces taken from the same gradation, each piece has

10
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Gravel Size A B C D E

R, (mm) 7.10 | 5.68 | 5.60 | 3.58 | 1.99

mean L; (mm) | 999 | 882 | 8.02 | 4.21 | 2.86

mean Ly (mm) | 16.64 | 12.75 | 12.28 | 7.56 | 4.62

mean L3 (mm) | 21.13 | 18.02 | 17.69 | 10.55 | 7.18

mean % 0.49 | 051 | 0.46 | 0.42 | 0.42
St. Dev. % 0.13 | 0.16 | 0.11 | 0.14 | 0.13
mean % 0.80 | 0.73 | 0.71 | 0.73 | 0.67
St. Dev. %; 012 | 0.16 | 0.12 | 0.15 | 0.14

Table 1: Summary of all the dimension measurements for gravel gradations A through E

a different trajectory. All these findings contradict the underlying assumptions
in the standard compact debris flight equations. The standard debris flight
equations for compact debris treat compact debris as spherical objects that are
not rotating [9, 10]. This assumption fails to take the aerodynamic moments
and lift forces into account which results in a 2D motion in straight-line winds.
The experimental findings, however, show otherwise as seen in a series of frame-
by-frame pictures of a single gravel drop in Figure 8.

Initially, as a gravel piece is released from rest, it will fall vertically down-
wards as long as the only two forces acting on it are weight (vertically down)
and buoyancy (vertically up). Since the velocity of the fluid relative to the
gravel is vertically upwards at this point, any subsequent deviation of the piece
from vertical is associated with the presence of a lift force acting on it in a
direction perpendicular to its velocity at any given point. Moreover, the change
in orientation of gravel pieces during their fall shows that the projected cross-
sectional area of the gravel normal to the apparent fluid velocity will continue
to vary during the fall. Due to these factors, the resulting landing locations for

a number of dropped gravel pieces will be spread around the center of the tank

11
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Figure 6: Lo/L3 vs L1 /L3 scatter plots showing the distribution of the two aspect ratios for

each gradation. The blue lines have a slope of 1 and mark the lower bounds on the data.

base as shown in Figure 4.

The mean and standard deviation of the radial distances of these landing
locations measured from directly below the release point. These statistics are
recorded in Table 2. Figure 9 shows a histogram of the radial distances for 200
drops for one gravel gradation (gradation A).

From the histogram in Figure 9, we observe that the peak has a finite non-
zero value. This implies that only a few pieces actually land close to directly
below the release point, rather, in most cases, the path traveled by the dropped

gravel pieces are not vertical. This is qualitatively similar to the drop experi-

Gradation B
L ]

L,

Gradation D

ments of Tohidi & Kaye (2017) [12] for rod-like debris.

12



225

230

235

[l Gradation A
[NGradation B

[ENGradation E

Il Gradation Al
16 |l Gradation B
[IGradation C:
14 |l Gradation D
[ Gradation E|

Frequency
Frequency

e N & o ©
e® N A& o @

0.2 0.3 0.4 0.5 06 0.7 3 0.4 0.5 0.6 07 0.8

L, Lty

Figure 7: Histograms showing the spread of the two aspect ratios (L1/L3 and L2/L3).

Gradation A B (@ D E

Mean [mm] 56.7 | 38.9 | 52.8 | 48.6 | 30.1

St. Dev. [mm] | 30.0 | 28.5 | 32.2 | 30.8 | 22. 3

Table 2: Means and standard deviations of radial distances obtained from experiments for all

the gradations

4. Model development

This section describes the development and optimization of a stochastic com-
pact debris flight model that accounts for variation in gravel geometry, variation
in orientation during flight, and lift forces generated from asymmetry in the

gravel shape and rotation during flight.

4.1. Model equations

In order to develop a 3-D debris trajectory model, it is necessary to define a
fixed system of coordinates to track the motion of gravels in 3-D space. Figure 3
shows the fixed, right-handed coordinate system that has its origin placed at the
release point for the experiments and the same coordinate system is used in the
model development. The position and velocity vectors for the center of a given
gravel piece are given by the position x = [z,y, 2] and velocity, u = [ug, Uy, u.]
respectively. While the gravel pieces are observed to change orientation during

their falls the model assumes that the rotation only contributes to changes in

13
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Figure 8: Series of 12 frame-by-frame images, showing a single piece of gravel falling through

water. The vertical red lines correspond to the release location.

the magnitude of the drag force (through changes in cross-sectional area and
Cp) and the magnitude and direction of the lift force. As the drag and lift forces
are modelled stochastically there is no need to explicitly model the aerodynamic
moments and resulting rotation.

This modeling approach is conceptually similar to that of Grayson et al. (2012)
[13], who developed a six degree-of-freedom stochastic model for plate-like de-
bris flight. In their model the debris location and orientation was randomly
perturbed each time step while integrating deterministic 6 DOF flight model.
In the model presented below we randomly perturb the equation parameters
each time step and then calculate the location which is treated as deterministic
for a given set of equation parameters.

The equations that govern the motion of these particles are the rectilinear

14
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Figure 9: Histogram of radial distances of landing locations for gradation A.

equations of motion in three dimensions:

dx _du _ Fy+Fg+FrL+Fq 3)
2~ dt m

where bold symbols represent Cartesian vectors, and the velocity vector (u) is

given by
" dx ()
S dt
and m is the mass of the gravel piece. The forces acting on the gravel are the
drag force,
1
Fd = —ipA|u|uCD, (5)
lift force,
1
FL = 5pA|u|2CLnL, (6)
weight,
FW = (05 O» _mg)7 (7)
and buoyancy force,

Herein p is the density of the fluid, A is a characteristic cross-sectional area of
the gravel, Cp and C', are drag and lift coefficients respectively, g is acceleration

due to gravity, V is a characteristic volume of the gravel and ny, is a unit vector

15
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in the direction of lift force. See Figure 10 for the kinematic and free body
diagrams. Solving the coupled equations (3) and (4) leads to the velocity and

position of the gravel piece as a function of time.

Fg

w1

,

Figure 10: (a) Velocity diagram showing the velocity components in z, y and z directions. (b)

w

Free body diagram.

4.2. Model parameters

For any given collection of gravel pieces, even if from the same gradation,
the values of A and V will vary from piece to piece. During flight, changes
in orientation mean that the area normal to the apparent fluid velocity will
vary over time. Changes in orientation will also lead to variation in the force
coefficients Cp and Cj, and the direction of the lift force ny. Finally, the
initial values of all these parameters will vary depending on the orientation
of the gravel upon release from rest. It is highly likely that, even if all these
parameters were known explicitly as a function of orientation, it would still not
be possible to predict the trajectory as the results would be so sensitive to the
initial release angle that, in the absence of perfect knowledge of the release,
it would not be possible to predict an individual flight path [12]. Therefore,
the model development is focused on predicting the statistical properties of a
large number of trajectories for gravel pieces released under nominally identical
conditions. To do this, A, Cp, Cr and ny, are treated as randomly varying

parameters in the model.

16



275

The ranges, within which C'p and Cp, are varied in this study, are determined
based on the work of Chai et al. (2018) [14] whose measurements showed values
of Cp and Cp vary over the ranges 0.4 < Cp < 0.8 and 0 < Cp < 0.35
respectively for a range of different rock pieces oriented in different directions.
Given that the force coefficients are functions of an unknown orientation and
we have no knowledge of the distribution of orientation during flight, we assume
that they are both uniformly distributed between the limits given.

The area A was taken to have a reference value given by
Ap = 7R? (9)

where, R, is the equivalent radius of the average gravel piece in a given grada-
tion. It is defined as the radius of the sphere that has the same volume as the

average gravel piece. The range of possible areas is taken to be
LiLy < A< LyLs (10)

where Ly, Ly, and L3 are the averages of the shortest, intermediate, and longest
gravel dimensions respectively as defined in section 2. This area calculation
assumes that the gravel is cuboid (see figure 5) and will, therefore, overestimate
the areas. However, this overestimation is offset by using the average length
values such that there will be gravel pieces for which L; Ly and Lo L3 are outside

the bounds assumed for A. The area value used in the model is
A= OéAR (11)
where, « is a random variable uniformly distributed over the range

LiLy _  _ Loy
AR - - AR

(12)

As the model does not calculate orientation, the direction of the lift force is
only known to be normal to the apparent fluid velocity. However, this criterion
only identifies the plane normal to the velocity vector. A specific unit vector,
ny,, is generated by first defining a reference unit vector (nyer) in the global
x — y plane

Nyer = (sind, cosh,0) (13)

17



280

285

290

295

300

in which @ is randomly generated at the start of each flight from a uniform
distribution over the range 0 < 6 < 27. The unit vector normal to the direction
of the apparent fluid motion is calculated by taking the cross product of the

unit vector in the direction of the velocity with the reference unit vector
—— X Nypef (14)
Therefore, the lift force vector in three dimensions takes the following form
1
FL = §pA|u|uCL X Nypef (15)

The coupled governing differential equations (3) and (4) are numerically
solved in MATLAB using a 4th order Runge-Kutta method with fixed time-
step [15]. The numerical integration is performed under the initial conditions
x(t =0) =[0,0,0] and u(t = 0) = [0, 0, 0], and the boundary condition z = z4x
at t = tyinal, where 2,4, is the depth of tank. As the time taken to reach zp,qz is
unknown for any given release, the equations are integrated for a large enough
time that the particle has dropped further than z,,,, and the time at which
Zmaz 18 reached, along with the location vector x = [x, Y, Zmaz], is calculated by
interpolating the trajectory data on to z = z,44-

At the beginning of each simulation the initial values of the random variables
Cp, CL, a and 0 are randomly generated from the distributions described above.
Then, at the end of each time-step, the values are randomly perturbed before
the next time-step in the integration. To avoid drastic changes in the magnitude
of each of these parameters (e.g. «), the new values are generated randomly
from a continuous uniform distribution over a pre-specified range (4+da) about
the previous value. So, the new values of Cp, Cr, 6 and a are generated
randomly from +0Cp, £6C,, 60 and +da ranges about the previous values
of the corresponding parameters. To illustrate the idea, consider the case where
the value of Cp from the previous time step was 0.55 and dCp has a fixed value
of 0.03 for that simulation. Then, the new value of Cp for the next time step,
will be randomly generated from a uniform distribution between Cp —§Cp and

Cp +dCp, or 0.52 and 0.58 for this example. The same perturbation approach

18
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is used for Cp, 0 and «a.

These random perturbations of Cp, Cr, o and 6 at each time-step are to
account for changes in orientation that alter the projected area (d«), the mag-
nitude of the drag and lift forces (6Cp and 6Cp) and the direction of the lift
force (06). Over the course of a given set of flight simulations, the statistical
distribution of the gravel landing locations will depend on the magnitude of the
perturbations (6Cp, 0Cr, da and 66) and the number of times that the values
are perturbed (N = T'/§t) where T is the time taken to reach z = 2,4, and 6t
is the integration time-step. To minimize the number of model parameters, the
time-step was fixed for all simulations and was taken to be the time taken for the
equivalent sphere to fall one radius when traveling at its terminal velocity Ur.

The terminal velocity was calculated using the median value of the Cp = 0.6

to yield
2(Fy — FB)
Up =222 — 2/ 16
g CppAe. (16)
and a time-step of
R,
ot = —. 17
o a7)

Therefore, the time scale is characteristic of a typical gravel piece within a given
gradation and is consistently defined over all gradations.

The ranges of Cp, C, and a are determined from laboratory measurements
of gravel geometry (section 2) and wind tunnel measurements of the force co-
efficients [14]. The equivalent sphere properties (m and R.) are also calculated
from measurement data. Therefore, the only unknown parameters in the model
are 0Cp, 0C',, da and 06. These four parameters are used as fitting parameters

to match the simulated landing locations with the experimental data.

5. Model results and comparison

The numerical studies were carried out for different combinations of the
four fitting parameters discussed in previous chapter. The perturbation ranges

0Cp,0CL, and da were varied from 0 to 50% of the overall range of the respective

19
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parameter in increments of 2.5% of the overall range while 66 was varied from
0 to 60° in 1.5° increments. This leads to a total of 21 values for each pertur-
bation parameter except for 6 which has 41 values. To capture all possible
combinations of these four parameters, a total of 213 x 41 simulations were run
for each drop with 200 drops per case and for all five gradations. This resulted
in a total of almost 380 million drop simulations.

The numerical results for each combination of parameters were compared
to the experimental measurements described in section 3. For each gradation,
the set of fitting parameters that yields the minimum error was extracted as an
optimum set of model parameters. To show how the other combinations yield
less desirable results compared to the optimized combination of the parameters
the model was run with the perturbations turned off. Figure 11(a) shows a
scatter plot of the resulting numerical and experimental landing locations for
the largest gravel size (gradation A). Figure 11(b) shows a quantile plot of the
radial distance showing the model radial distances plotted against experimental.
The solid red line has a slope of 1 representing exact agreement between the
experiments and the model. Both these plots are for when the model was run
with the perturbations turned off so that the model spread is only due to the
changes in randomly assigned initial conditions. It is clear from this set of plots
that the spread obtained from this iteration of the model does not resemble the

experimental data at all.

5.1. Optimization Technique

For all the combinations of fitting parameters, the numerical simulations give
us the x and y coordinates of landing locations for 200 drops per gravel size. The
radial distances of each landing location from the center of the tank were then
calculated from the coordinates. From this, the mean and the standard deviation
of the radial distances were calculated. To find an optimized combination of
0Cp,6CL, 60 and da, the absolute differences between the two means (numerical
and experimental) and the two standard deviations are calculated. These two

quantities are not to be minimized independently since they are not exclusive
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Figure 11: (a) Scatter plot of landing locations obtained from the model and experimental
results for the case when the perturbations were set to zero (b) Quantile plot of the radial

distance for the same data. Both plots are for gradation A.

of each other. For example, a very localized spread (meaning the standard
deviation is smaller) can yield a mean which can be the same as another spread
that is less localized (i.e. with higher standard deviation). To optimize both
these quantities, an optimization parameter (¢) was introduced that quantified
the difference between the means and standard deviations of the model and
experimental data. Two versions of € were investigated. The first was the sum

of the squares of the differences in the means and standard deviations,

€p = \/(rea:p - T’model)Q + (07'.ewp - 07'.model)2~ (18)

The second was these differences normalized using the experimental values for

the mean and standard deviation,

2 2
€r = <1 N Tmodel) + (1 N Jr.model) ) (19)
Texp Or.exp

To calculate the optimal set of perturbation values for a given gravel gra-

dation, the values of both ep and ep were calculated for all 379,701 unique
combinations of the perturbation values and the minimum found. For three out

of the five gravel sizes the optimized set of perturbation parameters were the
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same for each definition of e. However, for gradations B and C, the optimized
cases were different for the two definitions of €. Figure 12 shows quantile plots
for three realizations of the optimization method using each definition of e. In
each case 150 sample radial distances were randomly selected from the experi-
mental and numerical data sets and the values of ep and e were calculated. The
optimal combination of perturbations was then calculated and a quantile plot
was developed in which the remaining 50 experimental data points were plotted
against the remaining 50 model points for the optimal set of perturbations.

To understand which of the two optimization techniques yields results closest
to the experimental radial distances, t-tests were performed between the exper-
imental and the numerical radial distances for the optimized cases for each
definition. The t-tests results show that there exists no statistically significant
difference (p-value < 5% significance level) between the two means under the
assumption of equal variances, regardless of the optimization approach. Next,
the R-squared value was calculated as a measure of predictive accuracy for both
pairs, i.e. experimental vs numerical optimized based on (18) and (19). The re-
sults showed that the optimization using the minimum value of (19) consistently
outperformed the other approach (18). Based on this analysis, the approach in

equation (19) is used in this study as the optimization technique.
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Figure 12: Quantile plots of radial distance for 50 drops with experimental results on the
horizontal axis and numerical results on the vertical axis for the optimized perturbation values
generated from a separate set of 150 drops. (Left) Model optimization based on ratios (19)
and (right) model optimization based on differences (18)

22



360

365

370

The value of the optimization parameter as a function of each perturbation
was plotted in Figure 13 to illustrate the significance of the role played by
each perturbation. In each plot three of the perturbation parameters were held
constant at their optimal values and then e was plotted as a function of the
remaining parameter. For all four plots there is variability along the lines due
to the finite size of the data sets used in the optimization. However, despite
this noise, there are clear minima for two of the parameters, namely 66 and
6Cr. For da and 6Cp the minima are less distinct relative to the noise. This
was reflected in the perturbation values in the multiple optimization runs used
to develop Figure 12. Each time the optimization was run the optimal values
of [6Cp,dC}, 60, 5a] changed. However, the changes in §6 and 6C}, were small
and centered around the values shown in Figure 13 whereas the values of da

and 6Cp varied over a wider range.

Gradations
A B C D E
0Cp 0.01 0.15 0.04 0.00 0.00
iCy, 0.0525 | 0.0175 | 0.04375 | 0.035 0.0175
00 (degrees) 42.0 46.5 42.0 49.5 52.5

da (% of amer — | 0.117 0.231 0.447 0.267 0.685

Qmin) (10%) (20%) (37.5%) | (22.5%) | (42.5%)
Exp. Mean (mm) 58.3 44.8 50.3 44.2 31.1
Model Mean (mm) | 58.3 44.9 50.3 44.2 31.1
Exp. o (mm) 30.8 29.6 29.7 27.8 21.8
Model ¢ (mm) 30.8 29.6 29.7 27.8 21.8

€R 0.00088 | 0.0019 | 0.00073 | 0.0013 | 0.0018

Table 3: Optimized combinations of the perturbation parameters and the resulting means and

standard deviations obtained from the model for all gradations.
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Figure 13: Plots of the optimization parameter € as a function of each perturbation parameter.
In each plot the three of the four perturbation parameters are held at their optimized values
and the fourth one plotted. From top left reading across then down §Cp, 6C, 60, and d«

expressed as a percentage of &maz — @min- All plots are for Gradation A

Having established that using er (19) provided a marginally better result

than ep (18), this technique was used to establish the optimal values of [§Cp, 6Cr, 66, da]
using all 200 experimental data points per gradation. The results of these op-
a5 timizations are shown in Table 3. From these data, we can see that for the
optimized condition, §C, has, albeit small, finite non-zero values. The pertur-
bation of § (which models the lift force direction), however, has large magnitudes
for each gradation under the optimized condition. These indicate that, to repli-
cate the experimental spread of landing locations numerically, the lift force has
s to be modeled in such a way that at the end of every time step during the flight

of a gravel piece, the magnitude of lift coefficient and the direction of the lift
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force has to be perturbed. However, the optimization suggests that there is
only a small variation in the magnitude of the lift force (small 6C) and that
the main impact of changes in gravel orientation during flight is to change the
direction of the lift force (large 66). Thus, the numerical model presented in this
study quantitatively shows that the lift force vector has a significant role on the
flight of irregularly shaped gravels, while the standard debris flight equations
fail take such effects into account due to the inherent assumption of sphericity
[9, 10].The variation in §Cp and « seen in Figure 13 make it difficult to draw
conclusions about their role in the gravel flight.

Figure 14 illustrates the agreement between the model and experimental
data for the optimized case calculated using all 200 data points for gradation
C. Figure 14(a) shows a scatter plot of landing locations obtained from the
optimized combination of [6Cp,dCL, 66, da] along with the experimental data.
Figure 14(b) shows a quantile plot of the radial distances (experimental vs
numerical) of landing locations for the same case. The solid red line is the line

of exact agreement between the experimental and numerical data points.
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© Experimental landing locations| 0.15
Numerical landing locations
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0.1 p:
$
0.05 = Rf;
T To8p oo = i
! y 0.05 d
-0.05 o @ &
0.1 ‘ f
, &
o ?‘_(‘
-0.15 0
-0.2 -0.15 -0.1 -005 0 0.05 0.1 0 0.05 0.1 0.15
X (m) T (M)

exp

Figure 14: (a) Spread of landing locations obtained from the model in comparison with
experimental spread, (b) Comparison of radial distances obtained from model with respect
to experimental radial distances. Both plots are based on the optimized combination of

perturbation parameters for Gradation C.
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In Figure 15, the comparison of experimental and numerical radial distances
obtained from the optimized combination of perturbation parameters for each
gravel gradation are shown. The figure shows that, for the optimized model,

the numerical data are in good agreement with the experiments.

6. Conclusions

A simple set of experiments in which gravel pieces are dropped in a tank
full of stationary water demonstrated that the standard compact debris flight
models are inappropriate for gravel flight. The experiments showed that gravel
does not fall vertically but rather has a more complex trajectory in which the
gravel orientation changes during flight and there are both lift and drag forces
acting on the debris. Standard compact debris flight models ignore lift forces and
assume a constant cross sectional area [10, 9]. To overcome these limitations, a
stochastic model was developed in which the lift and drag coefficients, projected
area, and orientation of the lift force are all varied randomly during flight. The
frequency at which these parameters were perturbed was set based on the size
and terminal velocity of the gravel gradation. The model was run for a range
of perturbation magnitudes and an optimal set of perturbation parameters was
established (Table 3). The results of the optimized model show very good
agreement with the measurements from the experimental drops (Figure 15).

The model developed was validated against a set of experiments in which
gravel pieces were dropped through stationary water. It is worth discussing the
limitations of this approach. In water, the buoyancy force relative to the gravel
weight will be much larger compared to gravel in air. This, along with the higher
fluid density increasing the drag and lift forces, resulted in much lower terminal
velocities (of the order of Ugerp, 0.5m/s) compared to gravel falling through air
(Uterm 10 —15m/s). Therefore, the Reynolds number in the water experiments
will be about a factor of 2-3 less than the same particle falling in air (O(3,000)
in water compared to O(10,000) in air). Both these Reynolds numbers would

be within the Reynolds number independent range for a sphere [16] so the force
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coefficients are likely independent of the Reynolds number and will be similar
in air and water. The other limitation is that the tests were run in a stationary
ambient whereas windborne debris flight occurs in an ambient wind field. The
inclusion of a wind field in the model is simple as the model is built modeling
the location and velocity vectors. However, it is possible that the values of the
optimal perturbations may be different from those in Table 3 and testing in air
with an ambient wind field should be completed.

The inclusion of an ambient wind field will add an additional source of
trajectory variation due to turbulent gusts in the wind field. Karimpour & Kaye
(2012) [17] simulated spherical particles in a turbulent flow and showed that the
mean trajectory increases with increasing turbulent intensity but decreases if the
vertical and horizontal fluctuations are negatively correlated. It is unclear if the
trajectory variation due to gravel orientation (the subject of this study) or due
to turbulent fluctuations in the wind field will have a bigger impact on the
overall variability in the landing location. This topic is left to future study.

The model presented will improve the prediction of flight distance for wind-
borne gravel. The inclusion of a lift force will lead to flight distances that are
greater than those predicted using the standard two dimensional models. This
would be important in predicting the risk of gravel impact on a building facade

due to gravel blow-off from an upwind structure.
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pendix A. MANOVA of gravel shape

In order to assess our qualitative observation that the distributions of Ly /L3

and Lo/ L3 differed across gradations, discussed in section 2, multivariate anal-

ysis of variance (MANOVA) has been performed (using IBM SPSS Statistics
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27.0). MANOVA is a method of performing a formal hypothesis test of mean
differences across gradations using two (or more) dependent variables simulta-
neously. The two dependent variables in this case were Ly /L3 and Lo/Ls. This
is an extension of univariate analysis of variance (ANOVA) which is a method
of performing a formal hypothesis test of mean differences across gradations for
one dependent variable.

The underlying assumptions for MANOVA are:
- Absence of multivariate outliers

- Linearity

- Equality of covariance matrices

Absence of multivariate outliers is checked by assessing the Mahalanobis
Distances among the MANOVA model residuals. In our analysis, the maximum
Mahalanobis Distance was 9.444, which was less than the critical value based
on a chi-square distribution. Therefore, we did not have any multivariate out-
liers. The assumption of a linear relationship between the dependent variables
was assessed with a scatterplot matrix using JMP®) Pro 14 between the two
dependent variables (Figure A.16). The scatterplots suggested the relationship
between Ly/Ls and Ls/L3 was linear for all gradations. The assumption of
equality of covariance matrices across gradations is checked by Box’s M test.
For this test, we obtained a p-value of 0.259 suggesting the covariance matrices
were similar across the gradations.

Table A.4 summarizes the MANOVA results. All test statistics resulted in p-
values less than 0.05 suggesting differences in the Ly /L3 and Ly /L3 means across
the gradations. To determine which of the two dependent variables contribute
to this difference, single-factor ANOVAs were performed separately on Li/Ls
and Lo/Ls. The results are shown in Table A.5. The univariate ANOVAs both
produced p-values less than 0.05. This suggests that L;/Ls means differ across
gradations and Lo /L3 means differ across gradations, thus indicating that both

Ly/L3 and Lo/ L3 contribute to the significant differences across the gradations.
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using the optimal perturbation results shown in Table 3

31



/3 vs. 1113
c o e . um

Ziom

0.9

0.8

L2/L3

0.6

0.5

0.4

03
0.3 06 09 0.3 06 09 0.3 06 09 0.3 06 09 0.3 06 09

L1/L3

Figure A.16: Scatter plot matrix to check linearity between the two dependent variables.

(Gradations A-E from left to right).

32



(VAONVIN) @2ueLIeA JO SISA[eUR 9)RLIRATNUI 1010€]J-9[SUls Jo Arewrwung 'y o[qe],

9.6 1'2¢ | 160" | 000" |0°0ZZ | 00F | €5°G | TOT | 100y 1s931er] s Aoy
866° 8E€LE | 640" | 000" | 9€V | 008 | L9V | ILT ooel], 8, 3UIPIOH
866° G¢'L& | 6L0° | 000" | 8€¥ | 008 | 697 | 8V& BpquIET SHIIM
866 9°L¢ | 640" | 000" | OFF | 008 | OLF | 8ST Q0RI, S Te[[ld
sopeIn)

oMo P Ip
TAIOS() |"IUOOUON] m: 81g | ray | (dAg A |onpeA 190

33



$9599 9)RLIRATUN JO ATRWWING Gy 9[R],

86° 90°¢¢ 60" | 000" | TG9°G 1T i eV e/
16° 9v'9T | L0° | €00° | TT'V | S0 1 e | f1/'1 SopeId)
1999 soxenbg
IamoJ | -urered renbg jo wng | o[qenrep
PoAIDSq() | HUeOUON mz "318 q [ueay P | III odAT, quopuado(g 90IN0g

34



	Introduction
	Role of wind-borne debris
	Debris classification

	Experimental methods
	Experimental setup
	Experimental Procedure
	Statistical Description of Gravel Size and Shape

	Experimental results
	Model development
	Model equations
	Model parameters

	Model results and comparison
	Optimization Technique

	Conclusions
	MANOVA of gravel shape

