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Abstract— In this paper, we study the effect of non-vanishing
disturbances on the stability of fixed-time stable (FxTS) systems.
We present a new result on FxTS, which allows a positive
term in the time derivative of the Lyapunov function with
the aim to model bounded, non-vanishing disturbances in
system dynamics. We characterize the neighborhood to which
the system trajectories converge, as well as the convergence
time. Then, we use the new FxTS result and formulate a
quadratic program (QP) that yields control inputs which drive
the trajectories of a class of nonlinear, control-affine systems to
a goal set in the presence of control input constraints and non-
vanishing, bounded disturbances in the system dynamics. We
consider an overtaking problem on a highway as a case study,
and discuss how to both set up the QP and decide when to
start the overtake maneuver in the presence of sensing errors.

I. INTRODUCTION

Control design for systems with input and state constraints
is not a trivial task. Spatio-temporal specifications typically
impose spatial constraints that require the system trajectories
to be in a safe set at all times, and temporal constraints
impose convergence of the system trajectories to a goal set
within a given time. Incorporating safety-related constraints
on the system states can be achieved via control barrier
functions (CBF) [1]. For requirements involving convergence
of the system states to a desired location or a set, approaches
using control Lyapunov functions (CLF) [2]–[4] are very
popular. Many authors have used CLFs in control design
either via Sontag’s formula [5], [6], or in an optimization
framework [2], [7] to guarantee convergence of closed-loop
system trajectories to a given goal point or a goal set.

For concurrent safety and convergence guarantees, a com-
bination of CLFs and CBFs in the control synthesis can
be used [1], [5], where the CLF guarantees convergence
while the CBF guarantees safety of the state trajectories. The
authors in [8] utilize Lyapunov-like barrier functions to guar-
antee asymptotic tracking of a time-varying output trajectory,
while the system output always remains inside a given set.
Casting control synthesis problems as quadratic programs
has gained popularity recently due to ease of implementation
on real-time systems [9], [10]. The fact that CLF and CBF
conditions are linear in the control input enables the use
of QPs for problems involving spatiotemporal specifications
[1]–[3]. The authors in [11] use CBF to encode signal-
temporal logic (STL) specifications and formulate a QP to
compute the control input. Most of the aforementioned work
is concerned with designing control laws so that reaching
a desired location or a desired goal set is achieved as time
goes to infinity, i.e., asymptotically. Based on the notion of
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fixed-time stability (FxTS) [12], the authors in [13] define
a Fixed-Time CLF to guarantee convergence of the state
trajectories to the origin within a fixed time, as opposed
to asymptotic or exponential convergence. Practically, it is
also important to design robust controllers against uncer-
tainties and disturbances in the system dynamics to account
for unmodelled dynamics and sensing errors. Robust CBFs
guarantee forward-invariance of safe sets [9], [14], [15].
Typically, the safe set is contracted by a small amount that
depends upon the Lipschitz constants of the CBF and the
bound on the considered disturbance.

In the presence of non-vanishing disturbances, typically
only boundedness of the trajectories in a neighborhood of
the nominal equilibrium (or set) can be guaranteed (see,
e.g., [16, Section 9.2]). In this paper, we consider bounded,
non-vanishing disturbances in the dynamics of a (nominal)
system with a FxTS equilibrium, and guarantee that the
system trajectories converge to a neighborhood of the nom-
inal equilibrium point within a fixed time. We characterize
the size of this neighborhood and the convergence time as
a function of the bound on the considered disturbances.
Then, in conjunction with robust CBFs, we formulate a
QP to compute a control input that renders the safe set
forward invariant, and drives the closed-loop trajectories to a
neighborhood of a desired goal set within a fixed time, in the
presence of control input constraints. Finally, we consider a
two-lane overtake scenario where an Ego car is required to
overtake a Lead car while maintaining a safe distance from
it, within an available time-window dictated by the presence
of an Oncoming car in the overtake lane. We assume that
the position and velocity of the other cars are available to
the Ego car within some bounded error to model sensing
uncertainties, and that the control inputs are subject to some
bounded actuation error. Then, utilizing the new robust FxTS
result, we formulate a systematic way of deciding for the
Ego car whether executing an overtake is safe or not. When
safe, the developed QP formulation produces the controller
for the Ego car to safely perform the overtake maneuver in
the available time frame.

The paper is organized as follows. Section II provides
the foundations for Set Invariance and Fixed-Time Stability
(FxTS), and introduces preliminary results on Robust FxT
CLFs and Robust CBFs. In Section III an overtaking problem
is used to motivate the Robust FxT-CLF-CBF-QP framework,
while Section IV discusses the simulation results. We end
with conclusion and directions for future work in Section V.

II. MATHEMATICAL PRELIMINARIES

Subsequently, R denotes the set of real numbers and R+

the set of non-negative real numbers. We use ‖ · ‖ to denote
the Euclidean norm. We write ∂S for the boundary of the
closed set S, int(S) for its interior. The Lie derivative of a
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function V : Rn → R along a vector field f : Rn → Rn at
a point x ∈ Rn is denoted as LfV (x) , ∂V

∂x f(x).

A. Forward Invariance of Safe Set

Consider the control-affine system

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0, (1)

where x ∈ Rn, u ∈ U ⊂ Rm are the state and the
control input vector, respectively, f : Rn → Rn and g :
Rn → Rn×m are continuous functions. Here, U denotes
the set of admissible control inputs. Define a safe set Ss =
{x | hs(x) ≥ 0}, where hs : Rn → R is a continuously
differentiable function.

We present a necessary and sufficient condition, known as
Nagumo’s Theorem, for guaranteeing forward invariance of
the safe set Ss, i.e., safety of the system trajectories.

Lemma 1. Let the solution of (1) exist and be unique in
forward time. Then, the set Ss is forward-invariant for the
closed-loop trajectories of (1) with x(0) ∈ Ss if and only if
there exists u ∈ U such that Lfh(x) + Lgh(x)u ≥ 0 for all
x ∈ ∂Ss, where ∂Ss , {x | hs(x) = 0} is the boundary of
the safe set Ss.

B. Fixed-Time Stability

Next, we review the notion of fixed-time stability. Con-
sider the nonlinear system

ẋ(t) = f(x(t)), x(0) = x0, (2)

where x ∈ Rn and f : Rn → Rn is continuous with f(0) =
0. The origin is said to be an FxTS equilibrium of (2) if
it is Lyapunov stable and fixed-time convergent, i.e., for all
x(0) ∈ Rn, the system trajectories satisfy limt→T x(t) =
0, where T < ∞ is independent of x(0) [12]. Lyapunov
conditions for FxTS is given as follows.

Theorem 1 ([12]). Suppose there exists a positive definite
function V : Rn → R such that

V̇ (x) ≤ −aV (x)p − bV (x)q, (3)

holds along the trajectories of (2) with a, b > 0, 0 < p < 1
and q > 1. Then, the origin of (2) is FxTS with a settling
time T ≤ Tb where

Tb =
1

a(1− p)
+

1

b(q − 1)
. (4)

Building upon the nominal system (1), we now consider
the perturbed system, given as

ẋ(t) = f(x(t)) + g(x(t))u(t) + φ(x(t)), x(0) = x0 (5)

where f, g are as in (1), and φ : Rn → Rn is an added,
unmatched disturbance, possibly non-vanishing, which is
assumed to be bounded. We denote the upper bound as
‖φ‖∞ , supx∈D0

‖φ(x)‖, where D0 ⊆ Rn is a neighbor-
hood of the origin. The additive disturbance φ can model
uncertainties in the parameters used in the control design;
modelling uncertainties; external perturbations to the dynam-
ics, such as wind; and actuation errors, for example a power
surge, to name a few. Next, we present a new result on
robustness of the trajectories around nominal FxTS equilibria
against a class of bounded, non-vanishing disturbances.

C. Robust FxT CLF
We extend the result in Theorem 1 by introducing a

positive constant in the upper bound of the time derivative of
the Lyapunov candidate, V . We label V a robust FxT-CLF.

Theorem 2. Let V : Rn → R be a continuously differen-
tiable, positive definite, proper function, satisfying

V̇ ≤ −c1V a1 − c2V a2 + c3, (6)

with c1, c2 > 0, c3 ∈ R, a1 = 1 + 1
µ , a2 = 1 − 1

µ for some
µ > 1, along the trajectories of (2). Then, there exists a
neighborhood D of the origin such that for all x(0) ∈ Rn\D,
the trajectories of (2) reach D in a fixed time T , where

D =


{x | V (x) ≤ k

(
c3+
√
c23−4c1c2
2c1

)µ
}; c3 ≥ 2

√
c1c2,

{x | V (x) ≤ c3
2
√
c1c2
}, 0 < c3 < 2

√
c1c2,

{0}, c3 ≤ 0,

,

(7)

T ≤


µ

c1(b−a)
log
(
kb−b
kb−a

)
; c3 ≥ 2

√
c1c2,

µ
c1k1

(
π
2
− tan−1 k2

)
, 0 < c3 < 2

√
c1c2,

µπ
2
√
c1c2

, c3 ≤ 0,

, (8)

where k > 1, a, b are the solutions of γ(s) = c1s
2 − c3s +

c2 = 0, k1 =
√

4c1c2−c23
4c21

, and k2 = − c3√
4c1c2−c23

.

Proof. Note that for c3 ≤ 0, we obtain (3) from (6), and so
FxTS of the origin is guaranteed for all x ∈ Rn. Thus, we
focus on when c3 > 0, for which sufficiently small values
of V cause the right hand side of (6) to become positive.
The proof follows from [17, Lemma 2]. Consider (6) and let
c1V

a1 + c2V
a2 > c3. Re-write the inequality to obtain∫ V (x(T ))

V (x(0))

1

−c1V a1 − c2V a2 + c3
dV ≥

∫ T

0

dt = T, (9)

where T is the time when the system trajectories first reach
the domain D. It is easy to show that for each of the cases
listed in the Theorem statement, c1V a1 + c2V

a2 > c3 and
thus the right-hand side of (6) is negative for all x /∈ D.
Now, to show that the system trajectories converge to D in
fixed-time, we compute upper bounds on T .

For the case when c3 < 2
√
c1c2, part (i) in [17, Lemma

2] provides an upper bound on the left-hand side of (9) for
x /∈ D = {x | V (x) ≤ c3

2
√
c1c2
}. Similarly, for the case

c3 ≥ 2
√
c1c2, part (ii) of the Lemma provides upper bounds

on the left-hand side of (9). Thus, we obtain the domains D
and the bounds on convergence times T for the various cases
directly. Since for all three cases, T <∞ and is independent
of the initial conditions, we have that the system trajectories
reach the set D within a fixed time T .

Next, we use Theorem 2 to show robustness of a FxTS
origin against a class of non-vanishing, bounded, additive
disturbance in the system dynamics.

Corollary 1. Assume that there exists u(t) ∈ U , where U
is a set of admissible control inputs, such that the origin
for the nominal system (1) is fixed-time stable, and that
there exists a Lyapunov function V satisfying conditions of
Theorem 1. Additionally, assume that there exists L > 0 such
that

∥∥∂V
∂x

∥∥ ≤ L for all x ∈ D0 ⊆ Rn. Then, there exists
D ⊂ Rn such that for all x(0) ∈ D0 \D, the trajectories of
(5) reach the set D in a fixed time.
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Proof. The time derivative of V along the system trajectories
of (5) reads

V̇ =
∂V

∂x
[f(x) + g(x)u+ φ(x)] ≤− aV p − bV q + L‖φ‖∞.

Hence, using Theorem 2, we obtain that there exists D ⊂ Rn
such that all solutions starting outside D reach the set D in
a fixed time T , where the set D and the convergence time
T is a function of a, b, p, q, L and ‖φ‖∞.

In Theorem 2, (7) characterizes an estimate, D, of a
neighborhood of the equilibrium to where system trajectories
are guaranteed to converge within a fixed-time, T , as con-
vergence to the equilibrium cannot be guaranteed, and (8)
provides an upper bound on T independent of x(0) ∈ D.

D. Robust CBF
Next, we review the notion of a robust CBF, to guarantee

forward invariance of a safe set, in the presence of a class of
additive, non-vanishing disturbances. Here, we assume that
Ss ⊂ D0.
Lemma 2. The set Ss is forward-invariant for the closed-
loop trajectories of (5) if

sup
u∈U
{Lfhs(x) + Lghs(x)u} ≥ −

∥∥∥∥∂hs(x)∂x

∥∥∥∥ ‖φ‖∞, (10)

holds for all x ∈ ∂Ss ∩ D0.

Proof. The time derivative of hs along the trajectories of (5)
reads

ḣs = Lfhs(x) + Lghs(x)u+
∂hs(x)

∂x
φ(x).

For x ∈ ∂Ss ∩ D0, we have that hs(x) = 0 and ‖φ(x)‖ ≤
‖φ‖∞. Using (10), we obtain that there exists a u ∈ U such
that ḣs ≥ 0. Thus, using Lemma 1, we have that forward
invariance of set S is guaranteed.

Thus, condition (10) can be used to guarantee forward
invariance of a safe set Ss in the presence of a class of
additive, non-vanishing disturbances. Next, we take up a case
study, and discuss how to use the robust FxT-CLF and robust
CBF in a QP framework to compute a control input so that
conditions (6), (10) hold along the closed-loop trajectories.

III. CASE STUDY: OVERTAKE PROBLEM

In this section, we introduce a framework for computing
overtake control via a FxT-CLF-CBF QP subject to bounded,
non-vanishing, additive disturbances.

A. Problem Formulation
We consider an Ego car starting behind a slowly-moving,

Lead car on a two-lane undivided highway, where the Ego car
seeks to overtake the Lead car in a safe, timely manner whilst
avoiding oncoming traffic (see Figure 1). The combined
effort to achieve lane keeping, obstacle avoidance, and goal-
reaching makes this problem challenging.

For each vehicle, we select the model of a kinematic
bicycle in an inertial frame, introduced in [18] and adapted
for automobile highway merging in [19]. We use subscripts
e, l, oc to denote the Ego, the Lead and Oncoming car. The
motion of the cars is modelled as:

q̇i =

vi cos(θi)
vi sin(θi)

0
0

+

0 0
0 0
1 0
0 1

[ωiai
]
+ φi, (11)

Fig. 1. Problem setup for the overtake problem.

where qi = [xi yi θi vi]
T is the state vector of car i ∈

{e, l, oc}, xi is the longitudinal position, yi is the transverse
position, θi is the heading angle, vi is the velocity, ωi is the
angular control input, and ai is the longitudinal control input
(measured as a fraction of Mig, where Mi is the vehicle
mass and g = 9.81 m/s2). The disturbance in each car’s
dynamics, φi, takes into account modelling error and external
perturbations such as wind or road grade. We assume that
the disturbance φi is bounded, i.e., if q̂el , q̂

e
oc denote the states

of the Lead and Oncoming car as estimated by the Ego car,
then there exists ε > 0 such that ‖q̂ej (t) − qj(t)‖ ≤ ε for
all t ≥ 0, j ∈ {l, oc}. Consistent with the discussion in the
previous section, we define ‖φ‖∞ = ε.

The control input ui ∈ R2 for car i consists of ωi and
ai. Notably, our adjustment to the dynamics of [18] is such
that θ describes the full steering dynamics, θ = v tan(β)

lv
,

where β is the steering angle in rad and lv is the length of
the vehicle in m. This is reasonable due to the small angle
approximation, which we expect to hold in our problem, and
from which we obtain that tan(β) ≈ β, such that θ ≈ vβ

lv
.

Additionally, the model imposes the no-slip condition, and
vehicle volumes are considered for safety.

The overtake problem considered in the case study is
formally stated below.

Problem 1. Given qe(0), ql(0), qoc(0) determine if overtak-
ing the Lead car is safe, i.e., if there exist vehicle state and
control trajectories, qe(t), ql(t), qoc(t), ue(t), where ue(t) ∈
U = {(ω, a) | ωm ≤ ω ≤ ωM , am ≤ a ≤ aM}, such that
‖xe(t)− xi(t)‖ > sdx, ‖ye(t)− yi(t)‖ > sdy for i ∈ {l, oc}
and t ∈ [0, T ], where T is the upper bound on time required
to complete the overtake. If safe, design a control input,
ue(t) ∈ U for all xe(0) < xl(0) − sdx, ye(0) = yl(0),
xl(0) < xoc(0), θe(0) = θl(0) = 0, θoc(0) = π, and
ve(0), vl(0), voc(0) > 0, so that the closed-loop trajectories
of the Ego car overtake the Lead car.

We divide the Problem 1 into the following sub-problems:

1) Determine when an overtake is safe to initiate;
2) Steer Ego Vehicle safely into overtaking lane;
3) Advance Ego Vehicle safely past Lead Vehicle;
4) Steer Ego Vehicle safely back into original lane.
We use hs,1 to encode that the Ego vehicle maintains

all wheels within road limits even with bounded steering
capabilities, and hs,2, that the Ego vehicle respects a safety-
zone around the Lead Vehicle. The CBFs hs,i(q) are defined
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as follows:

hs,1 = (ye − e1)(ye − e2), (12)

hs,2 = 1−
(
xl − xe
sdx

)2

−
(
yl − ye
sdy

)2

, (13)

where sdx = veτ cos θe + lc, sdy = wl − wc

2 are the semi-
major axes for the x and y coordinates respectively, and
e1, e2 are parameters which define the edge of the road in
the y coordinate. Here, τ = 1.8 sec is the time headway1.
Specifically, we define e1 = wc

2 + veωmax (1− cos θe), and
e2 = (2wl − wc

2 )− veωmax (1− cos θe), where wl = 3m is
the width of a lane2 and wc = 2.27m and lc = 5.05m are
the width and length of a car3.

To capture the convergence requirement in each of the sub-
problems 2) – 4), we define goal sets SGj = {q | V (q−qgj ) ≤
0}, where qgj = [xgj y

g
j θ

g
j v

g
j ]T denotes the goal location

for the j − th sub-problem, j ∈ {2, 3, 4}, and we define
q̄j = q − qgj . We use a CLF V : R4 → R to encode the
convergence requirement, defined as

V (q̄) =K(kxx̄
2 + kv v̄

2 + kxvx̄v̄

+ ky ȳ
2 + kθ θ̄

2 + kyθȳθ̄ − 1)
(14)

where K is a constant selected during our parameter se-
lection phase, kx, ky , kθ, kv , kxv , kyθ are constant gains
chosen such that k2xv < 4kxkv and k2yθ < 4kykθ, which
influence the size and shape of the goal subspace, and x̄ =
xe−xgj , ȳ = ye−ygj , θ̄ = θe−θgj and v̄ = ve−vgj . Note that
the convergence requirement defining the goal location, and
thus the CLF V , changes for each sub-problem; nevertheless,
V is positive definite w.r.t to its K-sublevel set in each case.
Consider the following inequalities.

Lfhs1(x) + Lghs1(x)u ≥ 0, (15)
Lfhs2(x) + Lghs2(x)u ≥ 0, (16)

which when true at the boundary of the sets Ss1 and Ss2
guarantee forward invariance of the respective sets. We need
the following viability assumption before we can proceed
with our main results.

Assumption 1. There exists a control input u ∈ U such that
1) for all q ∈ ∂Ss1 ∩ ∂SS2

, both (15) and (16) holds;
2) for all q ∈ ∂Ss1 (respectively, q ∈ ∂Ss2 ), (15) (respec-

tively, (16)) holds.
Furthermore, SGj

∩ Ss1 ∩ Ss2 6= ∅, ∀j ∈ {2, 3, 4}.
Assumption 1 guarantees that the viable set is non-empty,

and that there exists a control input on the boundary of the
safe set as well as their intersection, that can keep the system
trajectories inside the intersection of the safe sets. We now
introduce a QP formulation to solve Problem 1:

min
u,δ1,δ2,δ3

1

2
uTu+ p1δ

2
1 + p2δ

2
2 + p3δ

2
3 + q1δ1 (17a)

s.t. Auu ≤ bu (17b)
LfV (qe) + LgV (qe)u ≤ δ1 − α1 max{0, V (qe)}γ1

− α2 max{0, V (qe)}γ2 (17c)
Lfhs1(qe) + Lghs1(qe)u ≥ −δ2hs1(qe) (17d)
Lfhs2(qe) + Lghs2(qe)u ≥ −δ3hs2(qe) (17e)

1τ = 1.8 sec comes from the ”half-the-speedometer” rule, as in [20].
2Taken from https://tinyurl.com/knzhwje
3Taken from https://tinyurl.com/y2rr375y

where (17a), quadratic in the decision variables, models a
minimum-norm controller with relaxation variables δ1, δ2,
δ3 and p1, p2, p3, q1 ≥ 0, γ1 = 1 + 1

µ , γ2 = 1 − 1
µ ,

where µ > 1, and αi = πµ
2T for i = {1, 2}. The con-

straints, all of which are linear in the decision variables,
accomplish the following: (17b) enforces input constraints,
(17c) provides the FxT convergence guarantee, and (17d) and
(17e) provide safety guarantees. Our formulation, specifically
(17c), utilizes the result of Theorem 2 in order to guarantee
fixed-time convergence for any δ1. Moreover, we discuss
the relationship between this δ1 term and an upper limit on
the class of additive, bounded, non-vanishing disturbances
considered in Problem 1.

Next, we discuss the feasibility of the QP (17).

Lemma 3. Under Assumption 1, the QP (17) is feasible for
all q ∈ (SS1 ∩ SS2) \ SG.

Proof. Let q /∈ SG, and consider the three cases q ∈
int(SS1

) ∩ int(SS2
), q ∈ ∂SS1

and q ∈ ∂SS2
, separately.

In the first case, we have that hs1 , hs2 , V 6= 0. Choose
any u that satisfies (17b). With this choice of u, one can
choose δ1, δ2, δ3 so that (17c)-(17e) hold with equality. This
is possible since functions V, hs1 , hs2 are non-zero. Thus,
for all q ∈ (int(SS1

) ∩ int(SS2
))\SG, there exists a solution

to (17). Per Assumption 1, for all q ∈ ∂SS1 , there exists a
control input u ∈ U such that (17d) holds with any δ2 (since
hs1(q) = 0 for q ∈ ∂SS1

, the choice of δ2 does not matter).
Thus, using any u that satisfies (17d), one can define δ1
and δ3 so that (17c) and (17e) hold with equality. Similarly,
one can construct a solution for the case when q ∈ ∂SS2 ,
and q ∈ ∂SS1

∩ ∂SS2
. Thus, the QP (17) is feasible for all

q ∈ (SS1
∩ SS2

) \ SG.

We are now ready to present our main result.

Theorem 3. Let the solution to the QP (17) be denoted
as z∗(·) = (u∗(·), δ∗1(·), δ∗2(·), δ∗3(·)). Assume that ‖φ‖∞ ≤
δ∗1
‖ ∂V

∂q ‖
for all qe, i.e. LφV ≤ δ∗1(q). If the solution z∗(·) is

continuous on (SS1 ∩ SS2)\SG, then under the effect of the
control input u(qe) = u∗(qe), the closed-loop trajectories of
(5) reach a neighborhood D of the goal set Sg in fixed-time
T , and satisfy qe(t) ∈ SS1

∩ SS2
for all t ≥ 0, where the

neighborhood D and time of convergence are given by (7)
and (8), with c1 = α1, c2 = α2 and c3 = 2 max δ∗1 .

Proof. The proof for the unperturbed case is immediate. The
constraint (17c) ensures that the conditions of Theorem 2 are
satisfied and therefore convergence to the neighborhood D is
achieved in fixed-time, T , for the nominal system q̇ = f(q)+
g(q)u. For the perturbed system, q̇ = f(q) + g(q)u+ φ(q),
we have that V̇ = LfV + LgV u + LφV ≤ −α1V

γ1 −
α2V

γ2 +δ∗1 , which may be rewritten as V̇ = LfV +LgV u ≤
−α1V

γ1−α2V
γ2 +2 max δ∗1 . Thus, we have that the closed-

loop trajectories of q̇ = f(q)+g(q)u+φ(q) reach D in fixed-
time T , given by (7) and (8), respectively, with c1 = α1,
c2 = α2, c3 = 2 max δ∗1 .

Remark 1. Comparing (17c) and Theorem 2 yields an
observation that δ∗1 in the solution of (17) is analogous to
c3 in (6). However, in the context of solving Problem 1, (17)
must be point-wise in the state space. It follows, therefore,
that by considering max δ∗1 over the solution set of (17) we
can use c3 = 2 max δ∗1 to obtain a useful, albeit conservative,
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estimate for the settling time to a neighborhood, D, of the
goal set, Sg .

Remark 2. This method does not estimate the disturbance
term, φ; rather, it determines a tolerable upper bound such
that FxTS to a neighborhood D of a goal set SG is preserved,
and provides characterizations of D and the convergence
time, T .

Next, we introduce a method for conditioning the pa-
rameters in (17) such that 2 maxq δ1(q)∗ ≤ 2

√
α1α2. We

then use c3 = 2 maxq{δ∗1} to compute a conservative
estimate on settling time for the Ego Vehicle during each
segment of Problem 1. We use the sum total of these
time estimates to compute an unsafe overtaking horizon,
i.e.
(
ve cos θe − v̂oc cos θ̂oc

)
Test. If an Oncoming Vehicle is

inside of the overtaking horizon (nearer to the Ego Vehicle
than the horizon), then the Ego Vehicle does not begin its
overtake.

IV. SIMULATION RESULTS AND DISCUSSION

A. Simulation Parameters
The CLF gains in (14) are fixed as: kx = 1

602 m−2,
ky = 100m−2, kθ = 400rad−2, kv = 1(m/s)−2, kxv =
0.05
√
kxkv = 1

1200m−2s, kyθ = 0.5
√
kykθ = 100(rad

m)−1 so that the goal set is defined as Cg: ‖x̄‖ ≤ 60 m,
‖ȳ‖ ≤ 0.1 m, ‖θ̄‖ ≤ 0.05 rad, ‖v̄‖ ≤ 1 m/s. The physical
boundaries of the road are set to be y = 0 and y = 2wl
respectively. The input constraints are given as |ω| ≤ π

18 rad
and |a| ≤ 0.25g ms−2. We used a time-step of dt = 0.001
sec. Other simulation parameters are: µ = 5, which leads to
γ1 = 1.2 and γ2 = 0.8, as well p1 = 1200, p2 = 1, and
q1 = 1000. We define θg = tan−1(

yg−ye
xg−xe

) and set vg = 25
as soon as it is safe to overtake. The final states of one
segment are used as initial states to the subsequent segment.

The following discussion will outline in greater detail the
setup for each subproblem.

1) Ego Vehicle Identify Opportunity to Per-
form Overtake: The initial states of the Ego
(qe(0)), Lead (ql(0)), and Oncoming (qoc(0)) are
chosen as qe(0) = [−τvl(0) wl

2 0 vl(0)]
T ,

ql(0) = [τvl(0) wl

2 0 vl(0)]
T , and qoc(0) =

[xe(0) + 2vl(0)tp 2wl − wl

2 −π 25] where vl(0)
and tp, the time until the Oncoming Vehicle passes by
the Ego Vehicle, are chosen a priori. The goal state, qg ,
is defined as an evolving function of ql where the goal
location is chosen as xg = xl − 1.5τvl + 50, yg = yl, and
vg = vl until an overtake maneuver is safe to initiate.

2) Ego Vehicle Merge into Overtaking Lane: We define
yg and vg in this segment as: yg = yl + wl, vg = 25. The
upper bound on settling time, T , is set to T = 10 sec.

3) Ego Vehicle Move a Safe Distance beyond Lead Vehi-
cle: The xg coordinate is modified to be: xg = xl+1.5τvl+

50, and T = 2τvl(0)
vg−vl(0) + 4 sec to adjust for an increase in

safe following distance at increased initial velocities.
4) Ego Vehicle Merge back into Original Lane: We set

yg = yl, and T = 6sec.

B. Results
In accordance with Theorem 2, we desire to choose param-

eters such that it is guaranteed that 2 max δ1 = c3 < 2
√
c1c2,

where ci = αi = πµ
2T for i ∈ {1, 2} for our nominal

simulation. The initial conditions chosen are vl(0) = 17
and tp = 2. Thus, we varied K from 10−5 to 1, T from
13.15 to 30.65, ωmax from 0.0175 to 14.45, and amax
from 0.245 to 245.25, and compared c3 with 2

√
c1c2 for

the trials. We selected the final values as K = 0.0001,
T = 27.65, and umax = [0.1745 2.45]T . As such, we
selected c3 = 2 max δ∗1 = 0.638. To model the perturbation,
we chose a zero-mean, Gaussian normal distribution with
3σ = ‖φ‖∞ and saturated at ±‖φ‖∞, where σ is the standard
deviation with ‖φ‖∞ = 3.99.
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Fig. 2. State trajectories and CLF / CBF evolution respectively (top to
bottom) of the Ego Vehicle during simulated scenarios using 7 different
initial conditions. True CBF values have been negated for better visuals.

Figure 2 plots the paths traced by the Ego vehicle for
various initial conditions qe(0). With the selected parameters
for the QP (17), it is clear from the figure that for all chosen
initial conditions the Ego car maneuvered and converged
within the fixed-time windows and safety constraints were
obeyed at all times. Additionally, in the case where the
Oncoming Vehicle was scheduled to pass the Ego Vehicle at
tp = 30 sec, the Ego Vehicle appropriately made the decision
to execute the overtake immediately.

Finally, 10 evenly spaced upper bounds on φ(q), from
0.1‖φ‖∞ to 1.0‖φ‖∞ are considered and the overtake ma-
neuver is simulated. Figure 3 shows that for 100 trials of
the perturbed simulation, 10 for each disturbance bound, the
solutions of the individual sub-problems converged within
the finite-time window. In Figure 4 we display the results
for one such simulation. The two following observations are
notable: 1) for tp = 30 the safety estimator computed that
Oncoming Vehicle was inside of the overtaking horizon, and
as such decided not to initiate the overtake until after it
passed; 2) consistent with (8), as the disturbance bound grew
so did the overtaking horizon - notably, when tp = 34, the
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safety estimator computed that for ‖φ‖∞ = 0.4, 1.6, the Ego
Vehicle could complete the overtake safely, whereas at larger
disturbance bounds the decision to withhold the overtake
was made until the Oncoming vehicle had passed safely by.
Meanwhile, the controller satisfied the safety requirement for
all trials.
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Fig. 3. Time of convergence to goal set versus upper bound on disturbance
term, φ, for nominal and perturbed solutions, shown in conjunction with the
fixed-time prescription per subproblem.

Fig. 4. State trajectories and CLF / CBF evolution respectively (top
to bottom) of the Ego Vehicle during simulated scenarios using 1 initial
condition and 10 different disturbance bounds. True CBF values have been
negated for better visuals.

V. CONCLUSION

In this study on robust control synthesis using CLF- and
CBF-based techniques we introduced a new approach for
driving a dynamical system subject to spatiotemporal and

input constraints to a neighborhood of a goal set in fixed-
time despite bounded, additive, non-vanishing disturbances.
We provided theoretical guarantees of FxT convergence for
such a system whose control is computed by a FxT-CLF-CBF
QP provided that disturbances do not exceed a quantified
bound. Next, we outlined a procedure for conditioning the
QP and selecting parameters such that FxT convergence to
a neighborhood of a goal set is guaranteed for any initial
condition, and presented definitions for such a neighborhood.
We then demonstrated the procedure on an overtake problem
and highlighted the efficacy of the method with repeated
simulated trials. In the future, we plan to explore reducing the
conservativeness of this approach by considering an estimate
of the non-vanishing disturbance term via online adaptation
and/or learning based techniques.
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