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A Quadratic Program based Control Synthesis under Spatiotemporal
Constraints and Non-vanishing Disturbances

Mitchell Black

Abstract— In this paper, we study the effect of non-vanishing
disturbances on the stability of fixed-time stable (FxTS) systems.
We present a new result on FxTS, which allows a positive
term in the time derivative of the Lyapunov function with
the aim to model bounded, non-vanishing disturbances in
system dynamics. We characterize the neighborhood to which
the system trajectories converge, as well as the convergence
time. Then, we use the new FxXTS result and formulate a
quadratic program (QP) that yields control inputs which drive
the trajectories of a class of nonlinear, control-affine systems to
a goal set in the presence of control input constraints and non-
vanishing, bounded disturbances in the system dynamics. We
consider an overtaking problem on a highway as a case study,
and discuss how to both set up the QP and decide when to
start the overtake maneuver in the presence of sensing errors.

I. INTRODUCTION

Control design for systems with input and state constraints
is not a trivial task. Spatio-temporal specifications typically
impose spatial constraints that require the system trajectories
to be in a safe set at all times, and temporal constraints
impose convergence of the system trajectories to a goal set
within a given time. Incorporating safety-related constraints
on the system states can be achieved via control barrier
functions (CBF) [1]. For requirements involving convergence
of the system states to a desired location or a set, approaches
using control Lyapunov functions (CLF) [2]-[4] are very
popular. Many authors have used CLFs in control design
either via Sontag’s formula [5], [6], or in an optimization
framework [2], [7] to guarantee convergence of closed-loop
system trajectories to a given goal point or a goal set.

For concurrent safety and convergence guarantees, a com-
bination of CLFs and CBFs in the control synthesis can
be used [1], [5], where the CLF guarantees convergence
while the CBF guarantees safety of the state trajectories. The
authors in [8] utilize Lyapunov-like barrier functions to guar-
antee asymptotic tracking of a time-varying output trajectory,
while the system output always remains inside a given set.
Casting control synthesis problems as quadratic programs
has gained popularity recently due to ease of implementation
on real-time systems [9], [10]. The fact that CLF and CBF
conditions are linear in the control input enables the use
of QPs for problems involving spatiotemporal specifications
[1]-[3]. The authors in [11] use CBF to encode signal-
temporal logic (STL) specifications and formulate a QP to
compute the control input. Most of the aforementioned work
is concerned with designing control laws so that reaching
a desired location or a desired goal set is achieved as time
goes to infinity, i.e., asymptotically. Based on the notion of

The authors would like to acknowledge the support of the Air Force
Office of Scientific Research under award number FA9550-17-1-0284,
National Science Foundation award number 1931982, and the Walter Byers
Scholarship from the National Collegiate Athletic Association.

The authors are with the Department of Aerospace Engineering, Uni-
versity of Michigan, Ann Arbor, MI, USA; {mblackjr, kgarg,
dpanagou}@umich.edu.

978-1-7281-7447-1/20/$31.00 ©2020 IEEE

Kunal Garg

Dimitra Panagou

fixed-time stability (FxTS) [12], the authors in [13] define
a Fixed-Time CLF to guarantee convergence of the state
trajectories to the origin within a fixed time, as opposed
to asymptotic or exponential convergence. Practically, it is
also important to design robust controllers against uncer-
tainties and disturbances in the system dynamics to account
for unmodelled dynamics and sensing errors. Robust CBFs
guarantee forward-invariance of safe sets [9], [14], [15].
Typically, the safe set is contracted by a small amount that
depends upon the Lipschitz constants of the CBF and the
bound on the considered disturbance.

In the presence of non-vanishing disturbances, typically
only boundedness of the trajectories in a neighborhood of
the nominal equilibrium (or set) can be guaranteed (see,
e.g., [16, Section 9.2]). In this paper, we consider bounded,
non-vanishing disturbances in the dynamics of a (nominal)
system with a FxTS equilibrium, and guarantee that the
system trajectories converge to a neighborhood of the nom-
inal equilibrium point within a fixed time. We characterize
the size of this neighborhood and the convergence time as
a function of the bound on the considered disturbances.
Then, in conjunction with robust CBFs, we formulate a
QP to compute a control input that renders the safe set
forward invariant, and drives the closed-loop trajectories to a
neighborhood of a desired goal set within a fixed time, in the
presence of control input constraints. Finally, we consider a
two-lane overtake scenario where an Ego car is required to
overtake a Lead car while maintaining a safe distance from
it, within an available time-window dictated by the presence
of an Oncoming car in the overtake lane. We assume that
the position and velocity of the other cars are available to
the Ego car within some bounded error to model sensing
uncertainties, and that the control inputs are subject to some
bounded actuation error. Then, utilizing the new robust FxTS
result, we formulate a systematic way of deciding for the
Ego car whether executing an overtake is safe or not. When
safe, the developed QP formulation produces the controller
for the Ego car to safely perform the overtake maneuver in
the available time frame.

The paper is organized as follows. Section II provides
the foundations for Set Invariance and Fixed-Time Stability
(FxTS), and introduces preliminary results on Robust FxT
CLFs and Robust CBFs. In Section IIT an overtaking problem
is used to motivate the Robust FxT-CLF-CBF-QP framework,
while Section IV discusses the simulation results. We end
with conclusion and directions for future work in Section V.

II. MATHEMATICAL PRELIMINARIES

Subsequently, R denotes the set of real numbers and R
the set of non-negative real numbers. We use || - || to denote
the Euclidean norm. We write S for the boundary of the
closed set S, int(.S) for its interior. The Lie derivative of a
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function V : R® — R along a vector field f : R” — R" at
a point z € R™ is denoted as L;V (z) £ 2V f(x).

A. Forward Invariance of Safe Set

Consider the control-affine system
#(t) = f(z(t) + g(x@))u(t), =(0)=z0, (1)

where ¢ € R”, u € U C R™ are the state and the
control input vector, respectively, f : R® — R™ and ¢ :
R™ — R™ ™ are continuous functions. Here, I/ denotes
the set of admissible control inputs. Define a safe set S; =
{z | hs(x) > 0}, where hs : R” — R is a continuously
differentiable function.

We present a necessary and sufficient condition, known as
Nagumo’s Theorem, for guaranteeing forward invariance of
the safe set Sj, i.e., safety of the system trajectories.

Lemma 1. Let the solution of (1) exist and be unique in
forward time. Then, the set S, is forward-invariant for the
closed-loop trajectories of (1) with x(0) € Sy if and only if
there exists uw € U such that Lh(z) + Lyh(z)u > 0 for all
x € 0S,, where S, = {x | hy(x) = 0} is the boundary of
the safe set S.

B. Fixed-Time Stability

Next, we review the notion of fixed-time stability. Con-
sider the nonlinear system

o(t) = f(x(t)),

where z € R and f : R™ — R” is continuous with f(0) =
0. The origin is said to be an FxTS equilibrium of (2) if
it is Lyapunov stable and fixed-time convergent, i.e., for all
2(0) € R™, the system trajectories satisfy lim;_,7 x(t) =
0, where T' < oo is independent of x(0) [12]. Lyapunov
conditions for FxTS is given as follows.

z(0) = xo, 2)

Theorem 1 ([12]). Suppose there exists a positive definite
function V : R™ — R such that

V(z) < —aV(x)? — bV (z)9, (3)

holds along the trajectories of (2) with a,b >0, 0 <p <1
and q > 1. Then, the origin of (2) is FxTS with a settling
time T < Ty where

1,
Ca(l—p)  blg-1)

Building upon the nominal system (1), we now consider
the perturbed system, given as

&(t) = f(2(t) + g(x(t)u(t) + o(z(1)),

where f,g are as in (1), and ¢ : R® — R™ is an added,
unmatched disturbance, possibly non-vanishing, which is
assumed to be bounded. We denote the upper bound as
[¢lloc £ sup,ep, ll¢(x)]], where Dy C R™ is a neighbor-
hood of the origin. The additive disturbance ¢ can model
uncertainties in the parameters used in the control design;
modelling uncertainties; external perturbations to the dynam-
ics, such as wind; and actuation errors, for example a power
surge, to name a few. Next, we present a new result on
robustness of the trajectories around nominal FXTS equilibria
against a class of bounded, non-vanishing disturbances.

Ty “4)

z(0) =xz¢ (5)

C. Robust FxT CLF

We extend the result in Theorem 1 by introducing a
positive constant in the upper bound of the time derivative of
the Lyapunov candidate, V. We label V' a robust FxT-CLF.

Theorem 2. Let V : R™ — R be a continuously differen-
tiable, positive definite, proper function, satisfying

V< -V — V2 + ¢, (6)

with ¢c1,c2 >0, c3 €R a3 =1+ L, agzl—lforsome

w > 1, along the trajectories of é). Then, there exists a
neighborhood D of the origin such that for all x%Q) € R™\D,

the trajectories of (2) reach D in a fixed time T, where
{21 V(@) < b(2VE2Y Y o > 2 a0,

D= {z| V(@) < 2=}, 0 < ¢s < 2,/cic3,
{0}, c3 <0,

)

atmlos(B2L); @ 22van,
c1(b—a) kb—a

T<| s (5-tan k), 0<e<2/@c, ®)
NG c3 <0,

where k > 1, a,b are the solutions of y(s) = c¢18> — ¢35 +

o o 4(:1CQ—C§ o c3

Cy = 0, kl = 4C¥ s and kg = —\/ﬁ

Proof. Note that for c3 < 0, we obtain (3) from (6), and so
FxTS of the origin is guaranteed for all x € R™. Thus, we
focus on when c3 > 0, for which sufficiently small values
of V' cause the right hand side of (6) to become positive.
The proof follows from [17, Lemma 2]. Consider (6) and let
1V + oV > c3. Re-write the inequality to obtain

e ! av ' dt=T
> t =

A(m(o)) —c1 V4 — Va2 4 g - /0 O
where 7' is the time when the system trajectories first reach
the domain D. It is easy to show that for each of the cases
listed in the Theorem statement, c; V' + ¢V > ¢3 and
thus the right-hand side of (6) is negative for all ¢ D.
Now, to show that the system trajectories converge to D in
fixed-time, we compute upper bounds on 7.

For the case when c3 < 2,/cicz, part (i) in [17, Lemma
2] provides an upper bound on the left-hand side of (9) for
¢ D={zx| V)< 2\/%} Similarly, for the case
c3 > 2,/ci1c, part (ii) of the Lemma provides upper bounds
on the left-hand side of (9). Thus, we obtain the domains D
and the bounds on convergence times 7" for the various cases
directly. Since for all three cases, T' < co and is independent
of the initial conditions, we have that the system trajectories
reach the set D within a fixed time 7. O

Next, we use Theorem 2 to show robustness of a FxTS
origin against a class of non-vanishing, bounded, additive
disturbance in the system dynamics.

Corollary 1. Assume that there exists u(t) € U, where U
is a set of admissible control inputs, such that the origin
for the nominal system (1) is fixed-time stable, and that
there exists a Lyapunov function V satisfying conditions of
Theorem 1. Additionally, assume that there exists L > 0 such
that H%—‘;H < L for all x € Dy C R™. Then, there exists
D C R" such that for all ©(0) € Dy \ D, the trajectories of
(5) reach the set D in a fixed time.
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Proof. The time derivative of V' along the system trajectories
of (5) reads
%

V = S[f(@) + g@)u+ 6(@)] < — aV? =BV + Llj6)|.

Hence, using Theorem 2, we obtain that there exists D C R"
such that all solutions starting outside D reach the set D in
a fixed time 7T, where the set D and the convergence time
T is a function of a,b,p, q, L and ||¢|| . O

In Theorem 2, (7) characterizes an estimate, D, of a
neighborhood of the equilibrium to where system trajectories
are guaranteed to converge within a fixed-time, 7', as con-
vergence to the equilibrium cannot be guaranteed, and (8)
provides an upper bound on 7' independent of z(0) € D.

D. Robust CBF

Next, we review the notion of a robust CBF, to guarantee
forward invariance of a safe set, in the presence of a class of
additive, non-vanishing disturbances. Here, we assume that
Ss C Dy.

Lemma 2. The set S; is forward-invariant for the closed-
loop trajectories of (5) if

sup{Lshi(a) + Loh(a)u > - 25
ueU X

holds for all x € 0S5 N Dy.

Proof. The time derivative of h, along the trajectories of (5)
reads

\ I6les (10)

Ohs(x)

For © € S N Dy, we have that hs(z) = 0 and ||¢(z)| <
[|#lloo- Using (10), we obtain that there exists a u € U such
that hy > 0. Thus, using Lemma 1, we have that forward
invariance of set S is guaranteed. O

hs = Lihs(x) + Lohs(x)u +

Thus, condition (10) can be used to guarantee forward
invariance of a safe set S5 in the presence of a class of
additive, non-vanishing disturbances. Next, we take up a case
study, and discuss how to use the robust FxT-CLF and robust
CBF in a QP framework to compute a control input so that
conditions (6), (10) hold along the closed-loop trajectories.

III. CASE STUDY: OVERTAKE PROBLEM

In this section, we introduce a framework for computing
overtake control via a FXT-CLF-CBF QP subject to bounded,
non-vanishing, additive disturbances.

A. Problem Formulation

We consider an Ego car starting behind a slowly-moving,
Lead car on a two-lane undivided highway, where the Ego car
seeks to overtake the Lead car in a safe, timely manner whilst
avoiding oncoming traffic (see Figure 1). The combined
effort to achieve lane keeping, obstacle avoidance, and goal-

reaching makes this problem challenging.

For each vehicle, we select the model of a kinematic
bicycle in an inertial frame, introduced in [18] and adapted
for automobile highway merging in [19]. We use subscripts
e,l,oc to denote the Ego, the Lead and Oncoming car. The
motion of the cars is modelled as:

v; cos(6;) 0

Y Vo Oncoming
[— .
X (Xoc ¥ee) | V¢
Sdy Lead v,
,,,,,,, aa [.6) W
(x0y,) 4
Sdx

Fig. 1. Problem setup for the overtake problem.

where ¢; = [z; y; 0; v;]T is the state vector of car i €
{e,l,oc}, x; is the longitudinal position, y; is the transverse
position, 6; is the heading angle, v; is the velocity, w; is the
angular control input, and a; is the longitudinal control input
(measured as a fraction of M;g, where M; is the vehicle
mass and g = 9.81 m/s?). The disturbance in each car’s
dynamics, ¢;, takes into account modelling error and external
perturbations such as wind or road grade. We assume that
the disturbance ¢; is bounded, i.e., if ¢}, ¢, denote the states
of the Lead and Oncoming car as estimated by the Ego car,
then there exists € > 0 such that [|g5(t) — g;(¢)|| < € for
all t > 0, j € {l,oc}. Consistent with the discussion in the
previous section, we define ||¢||oc = €.

The control input u; € R2 for car 4 consists of w; and
a;. Notably, our adjustment to the dynamics of [18] is such
that 6 describes the full steering dynamics, 6 = W‘lﬂ,
where 3 is the steering angle in rad and [, is the length of
the vehicle in m. This is reasonable due to the small angle
approximation, which we expect to hold in our problem, and
from which we obtain that tan(8) = 3, such that § ~ 7;—5
Additionally, the model imposes the no-slip condition, and
vehicle volumes are considered for safety.

The overtake problem considered in the case study is
formally stated below.

Problem 1. Given q.(0),q:(0), ¢oc(0) determine if overtak-
ing the Lead car is safe, i.e., if there exist vehicle state and
control trajectories, qe(t), qi(t), qoc(t), ue(t), where u.(t) €
U= {(w,a) | wn <w < wmp,am < a < apny}, such that
20(6) = 2Ol > s, 19e(0) — 91 ()] > sy for i € {1, 0c}
and t € [0, T), where T is the upper bound on time required
to complete the overtake. If safe, design a control input,
u(t) € U for all x.(0) < 2;(0) — Saz, ye(0) = w(0),
21(0) < o:(0), 0.(0) = 6,(0) = 0, 0,.(0) = 7, and
0e(0),v(0), voc(0) > 0, so that the closed-loop trajectories
of the Ego car overtake the Lead car.

We divide the Problem 1 into the following sub-problems:

1) Determine when an overtake is safe to initiate;
2) Steer Ego Vehicle safely into overtaking lane;
3) Advance Ego Vehicle safely past Lead Vehicle;
4) Steer Ego Vehicle safely back into original lane.

We use h,; to encode that the Ego vehicle maintains

0
g = |viosin(@:) | {0 0wl 11y all wheels within road limits even with bounded steering
0 1 0] fas ’ capabilities, and h », that the Ego vehicle respects a safety-
0 0 1 zone around the Lead Vehicle. The CBFs h, ;(q) are defined
2728
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as follows:

hs1 = (ye - el)(ye - 62): (12)

T — 2 _ 2
hS,Q —1— ( l e) _ (yl ye) , (13)
Sda Sdy

where s4; = veT coste + le, 54y = wy — ¢ are the semi-
major axes for the x and y coordinates respectively, and
ey, eg are parameters which define the edge of the road in
the y coordinate. Here, 7 = 1.8 sec is the time headway‘.
Specifically, we define e; = % + VeWmae (1 — cosf.), and
ez = (2w — %) — VeWmaa (1 — cos ), where w; = 3m is
the width of a lane? and w, = 2.27m and [, = 5.05m are
the width and length of a car’.

To capture the convergence requirement in each of the sub-
problems 2) — 4), we define goal sets S, = {q | V(¢— qj)
0}, where ¢/ = [z7 yJ 67 vJ]" denotes the goal location
for the j — th sub-problem ] € {2,3,4}, and we define
G =q—q]. Weuse a CLF V : R4 5 R to encode the
convergence requirement, defined as

V(a)

=K (kyZ? + ky0? + ko0

- - 14
+ kyG* + ko0? + Koy — 1) (14)

where K is a constant selected during our parameter se-
lection phase, kg, ky, ko, ky, kzv, k v, are constant gains
chosen such that k2 < 4k, k, and k2, < 4k yko, which
1nﬂuence the size and shape of the goa? subspace and & =
xe—x],y—ye 99—9 —anndv—ve—vj Note that
the convergence requ1rement deﬁmng the goal location, and
thus the CLF V, changes for each sub-problem; nevertheless,
V' is positive definite w.r.t to its K -sublevel set in each case.
Consider the following inequalities.

Lyhg, (x) + Lghs, (x)u > 0,
Lyhs,(x) + Lghs,(x)u > 0,

(15)
(16)

which when true at the boundary of the sets Sg, and S,
guarantee forward invariance of the respective sets. We need
the following viability assumption before we can proceed
with our main results.

Assumption 1. There exists a control input v € U such that
1) for all g € 0S5, N 0Ss,, both (15) and (16) holds;
2) for all q € 3S;, (respectively, q € 0Ss,), (15) (respec-
tively, (16)) holds.
Furthermore, Sq, N Ss, NS, # 0, Vj € {2,3,4}.

Assumption 1 guarantees that the viable set is non-empty,
and that there exists a control input on the boundary of the
safe set as well as their intersection, that can keep the system
trajectories inside the intersection of the safe sets. We now
introduce a QP formulation to solve Problem 1:

1
—uTu 4+ p151 + p252 + p353 + g161

w a0 (172)
s.t. Ayu < by (17b)

LV (ge) + LoV (ge)u < 01 — on max{0, V(ge) }™*
—azmax{0,V(g)}"™  (17c)
Lyhs(ge) + Lghs, (ge)u = —d2hs, (ge) (17d)
thsz (qe) + Lghs, (qe)u > —d3hs, (Qe) (17e)

I+ = 1.8 sec comes from the “half-the-speedometer” rule, as in [20].

2Taken from https://tinyurl.com/knzhwije
3Taken from https://tinyurl.com/y2rr375y

where (17a), quadratic in the decision variables, models a
minimum-norm controller with relaxation variables 41, 52,
d3 and p1, p2, p3, @1 2 0, 1 = 1+;,72 =1-
where > 1, and o; = & for i = {1,2}. The con-
straints, all of which are linear in the decision variables,
accomplish the following: (17b) enforces input constraints,
(17¢) provides the FxT convergence guarantee, and (17d) and
(17e) provide safety guarantees. Our formulation, specifically
(17¢), utilizes the result of Theorem 2 in order to guarantee
fixed-time convergence for any ;. Moreover, we discuss
the relationship between this d; term and an upper limit on
the class of additive, bounded, non-vanishing disturbances
considered in Problem 1.
Next, we discuss the feasibility of the QP (17).

Lemma 3. Under Assumption 1, the QP (17) is feasible for
all qc (551 N 552) \ SG~

Proof. Let ¢ ¢ S, and consider the three cases ¢ €
int(Sg, ) Nint(Ss,), ¢ € 9Ss, and g € 0Sg,, separately.

In the first case, we have that hg,, hs,,V # 0. Choose
any w that satisfies (17b). With this choice of u, one can
choose d1, 62, 93 so that (17c)-(17e) hold with equality. This
is possible since functions V,hg,, hs, are non-zero. Thus,
for all ¢ € (int(Ss, ) Nint(Ss,)) \ Sg, there exists a solution
to (17). Per Assumption 1, for all ¢ € 0Sg,, there exists a
control input u € U such that (17d) holds with any d5 (since
hs,(q) = 0 for ¢ € 0Sg,, the choice of d2 does not matter).
Thus, using any u that satisfies (17d), one can define d;
and d3 so that (17c) and (17¢) hold with equality. Similarly,
one can construct a solution for the case when ¢ € 0S5g,,
and ¢ € 0Ss, N 0Ss,. Thus, the QP (17) is feasible for all
q € (SSIQSSz)\Sg. O

We are now ready to present our main result.

Theorem 3. Let the solution to the QP (17) be denoted
as z°() = (u*(-),61(-),05(-), 85 (-)). Assume that ||¢|loc <
@ for all g, i.e. LyV < 6(q). If the solution z*(-) is
continuous on (Ss, N Ss,)\ S, then under the effect of the
control input u(q.) = u*(qe), the closed-loop trajectories of
(5) reach a neighborhood D of the goal set S, in fixed-time
T, and satisfy q.(t) € Ss, N Ss, for all t > 0, where the
neighborhood D and time of convergence are given by (7)
and (8), with ¢1 = a1,ca = ag and c3 = 2max d;.

Proof. The proof for the unperturbed case is immediate. The
constraint (17¢) ensures that the conditions of Theorem 2 are
satisfied and therefore convergence to the neighborhood D is
achieved in fixed-time, 7T, for the nominal system ¢ = f(q)+
9(q)u. For the perturbed system, ¢ = f(q) + g(q)u + ¢(q),
we have that V = L;V + L,Vu + LyV < —ay V7 —
as V72 447, which may be rewrltten asV =L;V+L,Vu <
—a1 V' —ap V72 +2max 67. Thus, we have that the closed-
loop trajectories of ¢ = f(q)+9g(q)u+¢(q) reach D in fixed-
time 7', given by (7) and (8), respectively, with ¢; = aq,
Co = (2, €3 = 2maxJ;. O

Remark 1. Comparing (17c) and Theorem 2 yields an
observation that 85 in the solution of (17) is analogous to
c3 in (6). However, in the context of solving Problem 1, (17)
must be point-wise in the state space. It follows, therefore,
that by considering max 67 over the solution set of (17) we
can use ¢z = 2max 03 to obtain a useful, albeit conservative,

2729

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 15,2021 at 19:41:56 UTC from IEEE Xplore. Restrictions apply.



estimate for the settling time to a neighborhood, D, of the
goal set, S.

Remark 2. This method does not estimate the disturbance
term, ¢; rather, it determines a tolerable upper bound such
that FxTS to a neighborhood D of a goal set S is preserved,
and provides characterizations of D and the convergence
time, T.

Next, we introduce a method for conditioning the pa-
rameters in (17) such that 2max, d1(¢)* < 2\/aqaz. We
then use c¢3 = 2max,{d]} to compute a conservative
estimate on settling time for the Ego Vehicle during each
segment of Problem 1. We use the sum total of these
time estimates to compute an unsafe overtaking horizon,

ie. (ve c0s 0, — Uy COS 906>
inside of the overtaking horizon (nearer to the Ego Vehicle

than the horizon), then the Ego Vehicle does not begin its
overtake.

est- If an Oncoming Vehicle is

IV. SIMULATION RESULTS AND DISCUSSION
A. Simulation Parameters
The CLF gains in (14) are fixed as: k, = 6(1]2m 2,
ky = 10Om*2 k:g 400rad 2k, = lL(m/s)"2,

’I'?) -

0.05v/ k .k, mm 2, kyo = 0.5y/kyke = 100(rad
m)~! so that the goal set is defined as Cj: ||Z]| < 60 m,

gl < 0.1 m, ||@] <0.05rad, |7 <1 m/s The physical
boundaries of the road are set to be y = 0 and y = 2wy
respectively. The input constraints are given as |w| < {5 rad
and |a| < 0.25g ms~2. We used a time-step of dt = 0.001
sec. Other simulation parameters are: © = 5, which leads to
71 = 1.2 and vy = 0.8, as well p; = 1200, po = 1, and
1 = 1000. We define 0, = tan™"(2=2=) and set v, = 25
as soon as it is safe to overtake. The final states of one
segment are used as initial states to the subsequent segment.

The following discussion will outline in greater detail the
setup for each subproblem.

1) Ego  Vehicle Identify  Opportunity to  Per-
form  Overtake:  The initial states of the Ego
(g(0)), Lead (g;(0)), and Oncoming (go.(0)) are
chosen as ¢.(0) = [-Tu(0) % 0 vl(O)]T,
@0 = [ru0) % 0 wO)]', and g.(0) =
[2(0) + 20, (0)t, 2w, — 4% —m 25|  where  v;(0)

and t,, the time until the Oncoming Vehicle passes by
the Ego Vehicle, are chosen a priori. The goal state, g,
is defined as an evolving function of ¢; where the goal
location is chosen as x4, = z; — 1.57v; + 50, y, = y;, and
vy = vy until an overtake maneuver is safe to initiate.

2) Ego Vehicle Merge into Overtaking Lane: We define
yg and v, in this segment as: y, = y; + wy, vy = 25. The
upper bound on settling time, 7', is set to 7' = 10 sec.

3) Ego Vehicle Move a Safe Distance beyond Lead Vehi-
cle: The x4 coordinate is modified to be: x4 = x;+1.57v; +

50, and T = 511’7;”((3) + 4 sec to adjust for an increase in
safe following distance at increased initial velocities.
4) Ego Vehicle Merge back into Original Lane: We set

Yg = Y1, and T' = Gsec.

B. Results

In accordance with Theorem 2, we desire to choose param-
eters such that it is guaranteed that 2 max d; = c3 < 2,/c1¢a,

where ¢; = a; = 3k for i € {1,2} for our nominal

simulation. The initial conditions chosen are v;(0) = 17
and t, = 2. Thus, we varied K from 107° to 1, 7' from
13.15 to 30.65, wyqe from 0.0175 to 14.45, and a,a.
from 0.245 to 245.25, and compared c3 with 2,/cicy for
the trials. We selected the final values as K = 0.0001,
T = 27.65, and Uy, = [0.1745 2.45]T. As such, we
selected cs = 2max d; = 0.638. To model the perturbation,
we chose a zero-mean, Gaussian normal distribution with
30 = ||¢|l and saturated at +||¢||~., where o is the standard
deviation with ||¢]|.c = 3.99.
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—V, =16.5m/s, t = 30sec

gg, v, = 17mls, tp =4sec
;3, v, = 17.5mis, t = 2sec
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87+ o
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Fig. 2. State trajectories and CLF / CBF evolution respectively (top to
bottom) of the Ego Vehicle during simulated scenarios using 7 different
initial conditions. True CBF values have been negated for better visuals.

Figure 2 plots the paths traced by the Ego vehicle for
various initial conditions ¢, (0). With the selected parameters
for the QP (17), it is clear from the figure that for all chosen
initial conditions the Ego car maneuvered and converged
within the fixed-time windows and safety constraints were
obeyed at all times. Additionally, in the case where the
Oncoming Vehicle was scheduled to pass the Ego Vehicle at
t, = 30 sec, the Ego Vehicle appropriately made the decision
to execute the overtake immediately.

Finally, 10 evenly spaced upper bounds on ¢(g), from
0.1]|¢]|cc to 1.0]|¢||c are considered and the overtake ma-
neuver is simulated. Figure 3 shows that for 100 trials of
the perturbed simulation, 10 for each disturbance bound, the
solutions of the individual sub-problems converged within
the finite-time window. In Figure 4 we display the results
for one such simulation. The two following observations are
notable: 1) for ¢, = 30 the safety estimator computed that
Oncoming Vehicle was inside of the overtaking horizon, and
as such decided not to initiate the overtake until after it
passed; 2) consistent with (8), as the disturbance bound grew
so did the overtaking horizon - notably, when ¢, = 34, the
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safety estimator computed that for ||¢||oc = 0.4, 1.6, the Ego
Vehicle could complete the overtake safely, whereas at larger
disturbance bounds the decision to withhold the overtake
was made until the Oncoming vehicle had passed safely by.
Meanwshile, the controller satisfied the safety requirement for
all trials.

- -Fixed-Time Window: Segment 1
9 |-+Unperturbed Convergence Time: Segment 1
—Actual Convergence Time: Segment 1

- ——— ]
G L X
3 14 |- -Fixed-Time Window: Segment 2
~ 12© I"Unperturbed Convergence Time: Segment 2
g 10k —Actual Convergence Time: Segment 2
~ 8 ‘
B oo x

- -Fixed-Time Window: Segment 3
5.5F [~ Unperturbed Convergence Time: Segment 3
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0 0.5 1 1.5 2 2.5 3 3.5 4
Bound on Disturbance, ¢

Fig. 3. Time of convergence to goal set versus upper bound on disturbance
term, ¢, for nominal and perturbed solutions, shown in conjunction with the
fixed-time prescription per subproblem.
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Fig. 4.  State trajectories and CLF / CBF evolution respectively (top

to bottom) of the Ego Vehicle during simulated scenarios using 1 initial
condition and 10 different disturbance bounds. True CBF values have been
negated for better visuals.

V. CONCLUSION

In this study on robust control synthesis using CLF- and
CBF-based techniques we introduced a new approach for
driving a dynamical system subject to spatiotemporal and

input constraints to a neighborhood of a goal set in fixed-
time despite bounded, additive, non-vanishing disturbances.
We provided theoretical guarantees of FxT convergence for
such a system whose control is computed by a FXT-CLF-CBF
QP provided that disturbances do not exceed a quantified
bound. Next, we outlined a procedure for conditioning the
QP and selecting parameters such that FXT convergence to
a neighborhood of a goal set is guaranteed for any initial
condition, and presented definitions for such a neighborhood.
We then demonstrated the procedure on an overtake problem
and highlighted the efficacy of the method with repeated
simulated trials. In the future, we plan to explore reducing the
conservativeness of this approach by considering an estimate
of the non-vanishing disturbance term via online adaptation
and/or learning based techniques.
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