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Abstract: Fault detectability and isolability are essential for realizing online diagnostic
algorithms in large format batteries used in safety-critical applications. As sensor locations
determine such detectability and isolability, sensor placement becomes a crucial task to
enable diagnostics. Limited sensing availability in battery systems makes this issue even more
challenging. In this setting, we propose an offline sensor placement framework to maximize
the fault detectability and isolability based on limited number of given sensors. Within this
framework, we combine physics-based thermal model, fault-to-output transfer functions, and
data-driven Evidential C-means (ECM) clustering to determine the essential sensor locations.
The performance of the proposed framework is demonstrated via simulation studies on a pouch

type battery.
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1. INTRODUCTION

Thermal faults significantly affect battery safety and per-
formance Xiong et al. (2020); Hu et al. (2020); Tran and
Fowler (2020); Bandhauer et al. (2011). Online fault diag-
nostics algorithms are essential to diagnose these anoma-
lies at an early stage to avoid hazardous situations. Design-
ing these algorithms is anyway challenging in large-format
batteries due to the non-uniform temperature distribu-
tion. Furthermore, the prerequisite for such algorithms
are fault detectability and isolability which in turn de-
pend on battery temperature measurements. In this work,
we focus on safety critical applications such as battery-
powered devices, vehicles, robots or drones in mining and
medical fields Dubaniewicz and DuCarme (2013); Duban-
iewicz et al. (2021); Faranda et al. (2019); Ma and Chen
(2021); Caldwell et al. (2017); Pu et al. (2015); Bock et al.
(2012). In these applications, safety concerns surpass the
economical cost of sensors leading to the possibility of
multiple temperature sensors. Even with the availability
of multiple sensors, the number of sensors is still limited
due to installation challenges arising from physical space
constraints. Accordingly, these sensors should be placed
meaningfully to maximize their utilization. In this context,
our goal is to investigate the appropriate sensor locations
that would maximize the diagnosis performance.

There is a considerable amount of existing literature on
battery thermal fault diagnostics schemes which include
the model-based Firoozi et al. (2021); Son and Du (2019);
Kang et al. (2020) as well as data-driven approaches Ojo
et al. (2020); Hong et al. (2017). The review papers Xiong
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et al. (2020); Hu et al. (2020); Tran and Fowler (2020)
provide a comprehensive list of such existing approaches.
There are some works that explores sensor placement for
state estimation in arrays or modules of battery cells
Samad et al. (2015); Wolf et al. (2012); Sattarzadeh et al.
(2021a). However, there are very few works that focus on
sensor placement in batteries to increase fault diagnosabil-
ity. The work in Cheng et al. (2020) utilizes the Dulmage-
Mendelsohn (DM) decomposition of the system incidence
matrix to detect and isolate the short circuit and sensor
faults for single cell and battery packs with minimal sensor
set. However, this work does not consider temperature dis-
tribution or internal thermal faults within a cell. Authors
in Wang et al. (2020) employ the temperature contour and
Principle Component Analysis (PCA) to obtain the sensor
places in battery packs. However, this work assumes the
uniform temperature distribution along each cell. In our
recent work Sattarzadeh et al. (2021b), we proposed an op-
timization based sensor placement approach to maximize
the fault detectability and isolability in pouch cell consid-
ering two-dimensional temperature distribution. The main
contribution of this work Sattarzadeh et al. (2021b) lies in
the implementation of partitions of two-dimensional space
into as many zones or clusters as there are sensors. Under
limited sensor case, instead of providing isolability and
detectability of individual fault modes at specific nodes,
this formulation provides isolability and detectability of
zonal faults.

Moreover, the work Sattarzadeh et al. (2021b) has the
following limitations. First, it only considers the effect
of fault on steady-state output ignoring the transient
nature of abrupt or incipient changes. Next, it utilizes
an optimization algorithm to simultaneously partition the
two-dimensional space into multiple zones and place the
sensor at each zone to obtain maximum detectability which



has a high computational burden and the computational
complexity increases with the size of system.

In this paper, motivated by the approach presented in
Blesa et al. (2015), we improve our battery sensor place-
ment approach presented in our previous study Sat-
tarzadeh et al. (2021b). Accordingly, we consider the fol-
lowing enhancements: (i) In order to capture the transient
nature of abrupt or incipient faults, we utilize a Fault Sen-
sitivity Matrix (FSM) that contains the residual between
faulty and non-faulty model outputs, the zeros and steady
state gains of fault-to-output transfer functions. Such FSM
captures the transient as well as steady-state effects of
faults. It also captures the effect of spatial dynamics of the
faults along the cell. (ii) We employed Evidential C-Means
(ECM) clustering algorithm to yield a plausibility matrix
denoting the probability of nodes belonging to a particular
cluster. We utilized these probabilities to partition the two
dimensional space into multiple clusters based on FSM.
(iii) We propose a simple search algorithm that utilizes
the FSM and the clustered nodes to obtain the maximum
detectability and isolability. The application of ECM clus-
tering algorithm provides us with statistical knowledge
of the impact of faults on each node and enables us to
utilize that information in a straight-forward way for both
segregation of node clusters as well as sensor placement
for maximum detectability and isolability. Unlike our pre-
vious work, here the solution of an optimization problem
along with a clustering algorithm is rendered unnecessary
leading to significantly less computation burden. In other
words, the key advantage for our current strategy lies
in detecting zonal faults under a limited sensor scenario
using Fvidential C-means clustering and Fault Sensitivity
Matriz.

Specifically, the sensor placement methodology is per-
formed in two stages. In the first stage, we utilize the ECM
clsutering algorithm to reduce the size of sensor set and
generate potential sensor subsets based on the number of
available sensors and fault signatures. In the second stage,
we utilize the searching algorithm to find the optimum
location of sensors in each subsets. As a proof of concept,
we consider the single pouch cell battery with high number
of discretized nodes in two-dimensional space to illustrate
the effectiveness of approach. The paper is organized as
follows: Section 2 represents the 2D thermal model of
battery, Section 3 discusses the proposed sensor placement
strategy, Section 4 represents the simulation results and
case studies of the proposed algorithm and the paper is
concluded in Section 5.

2. POUCH CELL THERMAL MODEL

In this section, we present the battery model with Partial
Differential Equations (PDEs) that captures the two-
dimensional thermal behavior of large format pouch cell
along length and breadth Yazdanpour et al. (2014):
oT T | T | Qrotal
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where C,, is the specific heat capacity in Jkg7'K~!; ke
is the thermal conductivity of cell in Wm~'K~!, and p
and v are the average density and volume of the cell in
kg/m?3 and m3, respectively. The total heat generated is
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Fig. 1. Discretized nodes of a pouch cell two-dimensional
thermal model.

denoted by Qtoml which includes the Ohmic and entropic
heat generated inside the cell and the heat convection
from the cell to the surrounding area. The term Q:ota;
can be computed with the knowledge of State-of-Charge,
current, open circuit voltage, and terminal voltage of the
battery. More explanation on Qe computation can be
found in Sattarzadeh et al. (2021a). In this model, we
assume that the pouch cell is manufactured such that the
depth of cell is significantly smaller than the length and
breadth of cell. Therefore, we neglect the temperature and
heat distribution along the depth of cell and only consider
the non-uniform temperature and heat distribution along
length and breadth Yazdanpour et al. (2014).

Using method of lines, we discretized the PDE model (1)
to a system of (Ordinary Differential Equations) ODEs
Sattarzadeh et al. (2021b). A schematic representation of
such discretized nodes is shown in Fig. 1. We further re-
arrange the ODEs to obtain a Linear Time Invariant (LTT)
system as follows Sattarzadeh et al. (2021b):

T = AT + Bu + Ef, (2)
y = CT, (3)

where 4 = Qjotq1 is the nominal input, T = [Ty, T2, ,TN]
is the state vector where the states represent tempera-
ture of the discretized nodes, y = [y1,y2, -, yx|T is the
measurement vector, and f = [f1, fa, -, fm]? represents
all possible faults affecting the node temperatures. The
matrices A and B are derived from the discretized model,
C depends on sensor configuration, and FE is the fault
distribution matrix. The fault distribution matrix can be
formulated from the knowledge of thermal failure modes
of the cell. Given the LTT system (2)-(3), our objective
is to design a sensor placement strategy to maximize
detectability and isolability of internal thermal faults.

3. SENSOR PLACEMENT STRATEGY

In order to apply fault diagnostics algorithms effectively,
we need to have insight about the locations of potential
faults as well as sensors measurements. However, the di-
agnosis becomes challenging when the number of faults
is more than the number of available measurements Ding
(2008). Typically, the number of available sensors are lim-
ited due to the cost and installation limitations. Therefore,
in this paper we look for a strategy to place k sensors
for detection and isolation of m faults where k < m. We
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Fig. 2. Sensor placement scheme.

consider the following assumptions: (i) the cost of k sensors
installation on battery is the same for any configuration,
(ii) the number of sensors, k, is a user defined parameter
and is selected based on the trade-off between cost limita-
tion and safety requirements, and (iii) the model represent
the physical system with an acceptable accuracy.

We formulate a sensor placement scheme as shown in Fig.
2. The strategy works in two steps. In Step 1, we uti-
lize the Evidential C-means (ECM) clustering algorithm
to generate k clusters of discretized nodes based on the
knowledge of potential faults. Next, in Step 2, we apply a
searching algorithm to find the optimum location of a sen-
sor within each cluster that maximizes fault detectability
and isolability. In the following subsections, we will discuss
the generation of Fault Sensitivity Matrix (FSM) used for
clustering along with the ECM clustering algorithm in Step
1, and the searching algorithm in Step 2.

3.1 Fault Sensitivity Matrix

We consider C' to be an identity matrix as sensors can
potentially be placed in any of the nodes. Subsequently,
we formulate the transfer function between j-th fault f;
and i-th output y; as follows Ding (2008):

Fij(s) = Ci(sI — A E, (4)
where Ej; is the j-th column of £ and C; is the i-th row
of C'in (3).

Next, motivated by Blesa et al. (2015), we define the Fault
Sensitivity Matrix (FSM), S, as follows:

S=[Z D R], (5)
The matrix R in (5) is defined as
Ory Ory Ory
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where r; = T,; — T}, is the residual sensitivity capturing
the difference between faulty (T,) and non-faulty (T;)
temperatures at node 1.

The matrix Z in (5) is defined as

Zlf1 Zlfz Zlfm

7 =

ZNf1 ZNfz Zme

where Z;; represents the summation of zeros of the
transfer function F; ;(s), that is (z;; = >.7_, |Z1]), where
p is the number of zeros and Z; is the [-th zero of F; ;(s).

The matrix D in (5) is defined as
di, di, ...d

1fm,

D= , (8)

dng, dny, - dNy,

where d; ; represents the the absolute value of DC gain of
.7:2-7]-(3).

Remark 1. Our goal is to ensure early detection of faults
which requires fast transient as well as high steady-state
response of the node temperature upon fault occurrence.
This requirement dictates the choice of Z, D, and R
matrices in (5). The matrix Z considers the zeros of fault-
to-output transfer functions which relates to the transient
responses. The matrix D captures the steady-state gains
on the fault-to-output transfer functions which relates to
the strong fault signature at the outputs. Finally, the
matrix R captures the difference between faulty and non-
faulty temperature responses which would be useful to
determine more sensitive nodes.

3.2 FEvidential C-means clustering algorithm

We perform the Evidential C-means (ECM) clustering
algorithm Masson and Denoeux (2008) to cluster the
discretized nodes (potential sensor places) based on the
number of available sensors. The ECM algorithm is an un-
supervised clustering algorithm which allows the overlap-
ping of clusters as opposed to other clustering algorithms
such as K-means clustering. This algorithm provides the
probability of membership of each object to all clusters
and is helpful in cases where an object is on the bound-
ary of two or more clusters. We utilize this algorithm to
cluster the discretized nodes according to their probability
of membership in each cluster. The nodes in the same
cluster are more similar than the nodes in other clusters.
For details of the algorithm, the readers are referred to
Masson and Denoeux (2008). In this work, we have used
the FSM introduced in the previous subsection to deter-
mine the similarity. Specifically, the similarity criterion for
clustering is based on the similarity of the rows of FSM.
Accordingly, we choose the following features to perform
the clustering:

(1) Summation of zeros of the transfer function between
output and possible faults. This is captured by Z in
(5).

(2) DC gain of fault-to-output transfer function for all
possible fault locations. This is captured by D in (5).

(3) Residual between the model output under non-faulty
condition and model output under faults. This is
captured by R in (5).

We consider all possible sensor locations and extract the
aforementioned features to create FSM, S, which serves as
the input dataset to ECM. Thereafter, we apply the ECM
algorithm on the obtained dataset. The ECM outputs a
plausibility matrix of dimension of N x k, given as:

Ple, Ple, --- Ple,
P=1 U 9)

PNe, PNo, --- PNe,



Algorithm 1: Node clustering algorithm.

Input: FSM S and number of sensors k.
Output: Clusters (04, ..., ©) and corresponding
nodes.
Pnxi = ECM(S,k)
for 1 <i< N do
max; (pig, ) — J
if p;,, = J then
L Ni €6

where Pie, represents the probability of node ¢ belonging
to cluster ©;.

The node clustering algorithm is detailed in Algorithm 1.
In Algorithm 1, we have used the following notations: 4 is
the index used for nodes and also for rows of P matrix; N
indicates i-th node where ¢ € {1,2,--- ,N}; O, indicates
I-th cluster where [ € {1,2,--- , k}.

3.3 Search-based sensor placement algorithm

In the previous subsection, the discretized nodes are clus-
tered by ECM. Here, we find the sensor location within
each cluster that will maximize fault detectability and
isolability based on potential fault locations. With respect
to a specific cluster ©,, where k € {1,2,--- |k}, we denote
fi to be the set of fault locations in ©, and f, to be the
rest of the fault locations that are not in ©.

In order to obtain the sensor location in each cluster, first
we consider a vector Pg, which contains the probability
of all nodes belonging to cluster ©,. Next, we compute
the mean value of elements of Pg,. Then, we select those
nodes in O, that have higher probability than the mean
value and denote them as the potential sensor subset x for
cluster ©,..

Next, we choose particular rows and columns of FSM S
in following two steps. First, we choose only the rows of &
corresponding to the nodes in the potential sensor subset k
with all columns and denote it as Sg, . Second, we choose

the corresponding columns of §@N associated with f, and
store this selection of rows and columns in a new matrix
So,.. Subsequently, we calculate the summation of each

rows of Sg, matrix and denote it as vector § with elements
3;. This quantity 3 captures the signature of f, on the
potential sensor subset k for cluster ©.

Then, we choose the corresponding columns of g@ﬂ as-
sociated with f, and store this in a new matrix @@K.
Subsequently, we calculate the summation of each rows
of @@N matrix and denote it as vector ¢ with elements
¢j- This quantity ¢ captures the signature of fm on the
potential sensor subset x for cluster O.

To ensure detectability and isolability, we select one node
from the potential sensor subset k for cluster ©, such that
this particular node is sensitive to f. and insensitive to
f .- In other words, the first condition can be achieved by
choosing a large element in § while the second condition
can be achieved by choosing a small element in §. We
achieve this by performing an index search which gives us

a common node that satisfies the aforementioned criteria.

This sensor placement algorithm is detailed in Algorithm 2.

Algorithm 2: Sensor placement algorithm for maxi-
mum detectability and isolability.

Input: Se,, Po, and cluster number x € {1,2,..,k}.
Output: Sensor place ind,, in cluster ©,.
Mean(Pg,, )— M,

< size(Po, ) do
if M, < [Peo,]; then

L {565—,; [Ser] — So,

for i € f., {«g@NLi — S‘\@N
> [gem} L 8j
foric f,, {ggﬁ}ji — Qe,

2 [Q@m] =
di
ind,, = argmax;(3; — §;)

4. CASE STUDIES

In this section, we perform case studies to evaluate the
performance of proposed sensor placement strategy. We
consider the pouch type battery parameters identified in
Sattarzadeh et al. (2021a) for this study. Following Sat-
tarzadeh et al. (2021a), the PDE model (1) is discretized
into 6 x4 = 24 nodes as shown in Fig. 1 to obtain the state-
space model (2)-(3). We start with generating/formulating
the following elements:

(1) We simulated the battery model (2)-(3) in MATLAB
platform to generate temperature data at each node
under faulty and non-faulty scenarios for all possi-
ble fault locations. We have injected white Gaussian
type noise in the data to mimic realistic scenario.
Subsequently, we subtracted the model data under
faulty and non-faulty scenarios to compute the resid-
ual r;,Vi € {1,2,--- ,N}. Based on these residuals,
we further computed the matrix R in (5).

(2) We used the state-space model (2)-(3) to compute
fault-to-output transfer functions F; ;(s) between j-
th fault and i-th output. Furthermore, we computed
Z and D in (5) from the transfer functions.

Based on the above elements, we formulate the FSM
S as given in (5). Note that there are two parameters
that dictate the outcome of the node clustering algorithm
(Algorithm 1): (i) number of sensors k, and (ii) potential
fault locations captured by F matrix in (2) which in turn
affects the creation of S. In this study, we assume that such
potential fault locations are available via thermal failure
mode studies. Subsequently, we perform the following case
studies to demonstrate the performance of proposed sensor
placement algorithm under different scenarios:

(1) Case 1: Potential fault locations consist of all nodes
(i.e. E is an identity matrix), and two available
sensors (i.e. k = 2).

(2) Case 2: Potential fault locations consist of all nodes
(i.e. E is an identity matrix), and three available
sensors (i.e. k = 3).
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Fig. 3. (a) Clusters and sensor placement result for Case
1 with two available sensors (k = 2) and 24 potential
faults (at all nodes); (b) potential faults locations.

(3) Case 3: Potential fault locations consist of all nodes
(i.e. E is an identity matrix), and four available
sensors (i.e. k = 4).

(4) Case 4: Potential fault locations consist of twelve
nodes on the bottom half of the cell (ie. E =
[012, I12]T where 015 is a null square matrix and ;5 is
an identity matrix) 12 potential node faults close to
the bottom of battery cell, and three available sensors
(i.e. k= 3).

The results of each case studies are shown in Fig. 3
to Fig. 6. In Case 1 all 24 nodes are considered to
be potential hot-spots. The result of proposed sensor
placement for two available sensors (k = 2) is shown in Fig.
3. The sensors locations for maximum detectability and
isolabality are shown in Fig. 3a and the potential hot-spots
are illustrated in Fig. 3b. The clustered faults in cluster 1
are detectable and isolable through sensor 1 measurement.
In other words, in case of fault occurrence at any location
of cluster 1, the fault signature will appear in sensor 1
measurement. In Case 2, we assume that k¥ = 3 and all 24
nodes are considered to be potential hot-spots. The sensors
configuration for maximum detectability and isolability
are shown in Fig. 4a and the potential fault locations
are shown in Fig. 4b. As it can be seen we have three
clusters and all the potential faults (nodes) in a specific
cluster are detected and isolated by the sensor placed in
corresponding cluster. The result of Case 3 is illustrated
in Fig. 5. The condition for potential fault locations in this
case study is same as the previous case studies, the only
difference is that the number of available measurements is
k = 4. In Case 4, we assume that faults only happen
around bottom part of the battery cell. The potential
fault locations are shown in Fig. 6b where the hot-spots
are considered to be at nodes 1 through 12. Moreover,
we assume that we have three available sensors (k = 3).
The sensor placement result for maximum detectability
and isolability is shown in Fig. 6a.

5. CONCLUSION

In this paper, we proposed a clustering-based sensor place-
ment strategy for maximizing fault detectability and isola-
bility in large format pouch cells. The algorithm is per-
formed in two steps. First, we utilized the ECM clustering
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Fig. 4. (a) Clusters and sensor placement result for Case 2
with three available sensors (k = 3) and 24 potential
faults (at all nodes); (b) potential faults locations.
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Fig. 5. (a) Clusters and sensor placement result for Case
3 with four available sensors (k = 4) and 24 potential
faults (at all nodes); (b) potential faults locations.
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Fig. 6. (a) Clusters and sensor placement result for Case 4
with three available sensors (k = 3) and 12 potential
faults (around bottom nodes); (b) potential faults
locations.

algorithm to cluster the potential sensor places into k
clusters based on the number of available measurements
and potential hot-spots. Then, we utilized the searching
algorithm to find the optimum sensor location in each clus-
ter to satisfy the maximum detectability and isolability.
Moreover, this algorithm is helpful in early detection of



fault along the cell by considering the transient response
of system to any potential fault. As a proof of concept,
we considered the single pouch cell battery with high
number of discretized nodes to illustrate the effectiveness
of approach. As a future work we plan to examine the
robustness of the approach with respect to uncertainties.
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